2.1数列的概念与简单表示法

合集下载

2.1数列的概念与简单表示法课件人教新课标9

2.1数列的概念与简单表示法课件人教新课标9
100, 50, 20, 1 0, 5, 2, 1, 0.5, 0.2, 0.1 (5)-1的1次幂,2次幂,3次幂,4次幂……构成数列
-1, 1,-1, 1,…
1,若an=an-1-3,则{an}是单调递_______数列
∵an-an-1=-3<0 ∴{an}是递减
2.已知数列{an}满足a1
0,
-1,1,-1,1, … (5)无穷多个1排列成一列数:1,1,1,1,…
自己看课本中的三角形数, 正方形数
1, 3, 6, 10,… 1, 4, 9, 16,…
数列的定义:按照一定顺序排列着的 一列数叫做数列,数列中的每一个数 都叫做这个数列的项,各项依次叫做 这个数列的第1项(或首项),第2 项,…,第n项,…
思考:数列的通项公式可以看成数列的解析 式。利用数列的解析式,你能确定数列哪方 面的性质?
为什么说数列是特殊函数?特殊怎样理解?
例1 写出下面数列的一个通项公式,使它的前4项分别是下列 各数:
(1)1,-1,1,-1; 23 4
(2)2,0,2,0;
2根据下列各组数,写出它的一个通项公式
(1) 2 , 3 , 4 , 5 , 1234
例如 1, 1/2, 1/3, 1/4, …,1/n,…
数列的一般情势可以写成
a1, a2, a3, … , an, … 其中an是数列的 n项。简记作{an}。
• 判断题 (1)“1,2,3,4,5,6”与
“6,5,4,3,2,1”是同一 数列( )
(2)“1,2,2,3,3,3”不 是数列( )
③常数数列,各项相等的数列,则an+1=an对任意的 正整数n都成立
④摆动数列
下面数列,哪些是递增数列, 递减数列,常数数列,摆 动数列 (1)全体自然数构成数列 0, 1, 2, 3,…

高中数学课件:第二章 2.1 数列的概念与简单表示法 第一课时 数列的概念与通项公式

高中数学课件:第二章 2.1 数列的概念与简单表示法 第一课时 数列的概念与通项公式

返回
返回
[研一题] [例 1] 项公式: 4 1 4 2 (1)5,2,11,7,…; 1 9 25 (2)2,2,2,8, 2 ,…; (3)7,77,777,…; 根据数列的前几项,写出下列各数列的一个通
返回
(4)0,3,8,15,24,…; 1 3 7 15 31 (5)2,4,8,16,32,…; 2 10 17 26 37 (6)3,-1, 7 ,- 9 , 11,-13,….

返回
[悟一法] 1.根据数列的前几项写通项公式,体现了由特殊到一 般的认识事物的规律.解决这类问题一定要注意观察项与序 号的关系和相邻项间的关系.具体地可参考以下几个思路
(1)统一项的结构,如都化成分数、根式等.
返回
(2)分析这一结构中变化的部分与不变的部分,探索变 化部分的变化规律与对应序号间的函数关系式,如例1.(1) 中可把分子、分母分别处理. (3)对于符号交替出现的情况,可观察其绝对值,再以 (-1)n(n∈N*)处理符号,如例1.(6).
返回
[巧思] 求出数列{an}的通项公式是解决本题的关键.由
a1·2·3·…·an=n2可得a1·2·3·…·an-1=(n-1)2,故可求an. a a a a
返回
[妙解]
∵a1·2·3· an=n2(n∈N*),① a a …·
∴当 n≥2 时,a1·2·3· an-1=(n-1)2.② a a …· ① n2 由 ,得 an= 2(n≥2) ② n-1 n2 9 25 61 (1)∵an= (n≥2),∴a3+a5=4+16=16. n-12
返回
(4)数列 2,4,6,8,…的通项公式是 an=2n; (5)数列 1,2,4,8,…的通项公式是 an=2n 1; (6)数列 1,4,9,16,…的通项公式是 an=n2; 1 1 1 1 1 (7)数列1,2,3,4,…的通项公式是 an=n.

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法
第二章 §2.1 数列的概念与简单表示法
第1课时 数列的概念与简单表示法
知识点一 数列及其有关概念 梳理 (1)按照 一定顺序 排列的 一列数 称为数列,数列中的每一个数叫 做这个数列的 项 .数列中的每一项都和它的序号有关,排在第一位的数 称为这个数列的 第1项 (通常也叫做 首项 ),排在第二位的数称为这个数 列的第2项 ……排在第n位的数称为这个数列的第n项 . (2) 数列的一般形式可以写成 a1,a2,a3,…,an,… ,简记为{an} .
数列中的项的性质 (1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复. (3)有序性:一个数列不仅与构成数列的“数”有关,而且也与这些数的排列 次序有关.
知识点二 通项公式
梳理 如果数列{an}的第n项与序号n之间的关系可以用一个式子来表 示,那么这个公式叫做这个数列的通项公式.
跟踪训练 3 已知数列{an}的通项公式为 an=nn1+2(n∈N*),那么1120是 这个数列的第__1_0___项. 解析 ∵nn1+2=1120,∴n(n+2)=10×12,∴n=10.
(1)2 010,2 012,2 014,2 016,2 018; (2)0,12,23,…,n-n 1,…;
(3)1,12,14,…,2n1-1,…;
解 (1)(6)是有穷数列; (1)(2)是递增数列; (3)是递减数列; (4)(5)是摆动数列;
(4)-1×1 2,2×1 3,-3×1 4,4×1 5,…;(6)是常数列.
题型探究
类型一 数列的分类 例1 下列数列中,既是递增数列又是无穷数列的是 A.1,12,13,14,… B.-1,-2,-3,-4,…
√C.-1,-12,-14,-18,…

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

2.1数列的概念与简单表示法 第一课时

2.1数列的概念与简单表示法 第一课时

2.1数列的概念与简单表示法 第一课时一、学习目标:1、理解数列及数列的通项公式的相关概念,明白数列和函数之间的关系;2、对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.二、自学探究:阅读课本2830P P -页,完成下列问题:1. 数列及其有关概念:① 数列的概念:②数列的一般形式可以写成:③说出{}n a 与n a 的区别:④ 数列的分类:2. 数列的表示方法:① 讨论下列数列中的每一项与序号的关系:1,12,14,18,、、、;136,10,、、、;1,4,9,16,、、、.(数列的每一项都与序号有关,即数列可以看成是项数与项之间的函数.)② 数列的通项公式:(作用:①求数列中任意一项;②检验某数是否是该数列中的一项.)③ 数列的表示方法:___________,___________,__________3、数列与函数之间的关系:4、写出下面数列的一个通项公式,使它的前4项分别是下列各数:①0.5,0.5,0.5,、、、②1,-1,1,-1,、、、(可用分段函数表示)③-1,12,-14,18,、、、思考:是不是所有的数列都存在通项公式?根据数列的前几项写出的通项公式是唯一的吗?三、合作探究1、根据数列的前几项写出数列一个通项公式(1)2,5,8,11,14,---(2)4,0,4,0,4,0(4) (1)9,99,999,9999,(2)1,11,111,1111,(3)7,77,777,7777,⎧⎪⎨⎪⎩(5)1925,2,,8,,222(6)246810,,,,315356399--- 2、已知数列{}n a 的通项公式为2328n a n n =-。

(1)写出数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢?四、课堂检测:1、课本31页练习题4题2、课本33也A 组2题,3题,5题五、反思与小结六、课后作业根据数列的前几项写出数列一个通项公式(1)1,3,7,15,31,(2)0.9,0.99.0.999.0.9999,(3)222221324354,,,,;1357---- (4)414242,,,,,,5211717---。

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法
2.1数列的概念与 简单表示法(一)
情景导入
1. 一尺之棰,日取其半,万世不竭. (单位:尺)
22 23
↑↑ ↑ ↑ ↑
1,2, 3, 4,…,n,…
n(1 n) 2
1,22,32,42…,n2…
1.
2. 三角形数 1,3,6,10,···
3. 正方形数 1,4,9,16,···
这些数有什么有什么共同特点?
三、数列的对应性
数列可以看成以正整数集N*(或它的 有限子集{1,2,…,n})为定义域的函数 an=f(n)当自变量按照从小到大的顺序依次 取值时所对应的一列函数值。
反过来,对于函数y=f(x),如果f(i) (i=1,2,3,…) 有意义那么我们可以得到一个 数列
f(1),f(2),f(3),…,f(n),…
1.正负号的循环性。 乘以符号因子-1的幂,3个一循环指数为3n+某 数,某数为0,1,2,3,按3的余数0,1,2分 类讨论. 2.分子分母分开看。 3.幂形式,统底看指、统指看底。 4.等差数列比与自然数列1,2,3,…对应。 f(n)=公差乘以n+某数. 5.把项数写在下方找感觉。
例2. 根据下面数列{an}的通项公式,写出 前五项:
1
2ቤተ መጻሕፍቲ ባይዱ
785
3
52
4
23
5
66
6
986
定义域 解析式
图象
函数
数列 (特殊的函数)
定义域 解析式
图象
函数
R或R的子集 y=f(x)
连续的线条
数列 (特殊的函数)
N*或它的子集
an=f(n) 一些离散的点 的集合
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一 个数列吗?与“1, 3, 2, 4, 5”呢?

2.1.1数列的概念与简单表示法

2.1.1数列的概念与简单表示法

已知下列数列: 例 1 已知下列数列: (1)2,22,222,2222; ; n-1 - 1 2 (2)0, , ,…, n ,…; ,2 3 1 1 1 (3)1, , ,…, n-1,…; , 3 9 3 (-1)n-1 ) (4)-1,0,- ,…, - ,-1,0, ,…; ,- 2 (5)a,a,a,a,…. , , , ,
写出下面数列的一个通项公式, 例 2 写出下面数列的一个通项公式, 使它的前 4 项分别 是下列各数: 是下列各数: 1 1 1 1 (1) ,- , ,- ; 1×2 2×3 3×4 4×5 × × × × 22-1 32-1 42-1 52-1 (2) 2 , 3 , 4 , 5 ; 1 1 1 1 (3)1 ,2 ,3 ,4 ; 2 4 8 16 (4)9,99,999,9999. [分析 细心寻找每一项 an 与序号 n 之间的变化规律即 分析] 分析 可.
ห้องสมุดไป่ตู้
3.由数列的前几项归纳其通项公式的方法 由数列的前几项归纳其通项公式的方法 据所给数列的前几项求其通项公式时, 据所给数列的前几项求其通项公式时 , 需仔细观察分 抓住其几方面的特征: 析,抓住其几方面的特征: (1)分式中分子、分母的特征; 分式中分子、 分式中分子 分母的特征; (2)相邻项的变化特征; 相邻项的变化特征; 相邻项的变化特征 (3)拆项后的特征; 拆项后的特征; 拆项后的特征 (4)各项的符号特征和绝对值特征. 各项的符号特征和绝对值特征. 并对此进行联想、 各项的符号特征和绝对值特征 并对此进行联想、 转 归纳. 化、归纳.
1 1 [解] (1)是无穷递减数列 > 是无穷递减数列( ). 解 是无穷递减数列 n . n+1 + (2)是有穷递增数列 项随着序号的增加而增大 . 是有穷递增数列(项随着序号的增加而增大 是有穷递增数列 项随着序号的增加而增大). (3)是无穷数列,由于奇数项为正,偶数项为负,故为摆 是无穷数列, 是无穷数列 由于奇数项为正,偶数项为负, 动数列. 动数列. (4)是有穷递增数列. 是有穷递增数列. 是有穷递增数列 (5)是无穷数列,也是摆动数列. 是无穷数列, 是无穷数列 也是摆动数列. (6)是无穷数列,且是常数列. 是无穷数列,且是常数列 是无穷数列

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

(2)1,3,5,7;
an=2n-1
(3)1,
3 4
,
1 2
,
5 16
;
变式:-3,-1,1,3;
aபைடு நூலகம்=2n-5
an
n 1 2n
(4)9,99,999,9999. an=10n-1
变式:5,55,555,5555;
an
5 9
(10n
1)
拓展: 试写出下面数列的一个通项公式,使它的前4项 分别是下列各数:
2.1数列的概念与简单表示法
古希腊毕达哥拉斯学派数学家曾研究过三 角形数
1
3
6
10
类似地,1,4,9,16,25,······ 被称为正方形数。
1
4
9
16
童谣: 一只青蛙一张嘴,两只眼睛四条腿; 两只青蛙两张嘴,四只眼睛八条腿; 三只青蛙三张嘴,六只眼睛十二条腿; 四只青蛙四张嘴,八只眼睛十六条腿
如:数列{n2}的第11项是__1_2_1. (2)一些数列的通项公式不是唯一的;
如:数列1,-1,1,-1,… (3)不是每一个数列都能写出它的通项公式.
如:数列1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项 分别是下列各数:
(1)2, 4, 6, 8; an=2n
变式:4, 6, 8, 10; an=2n+2
(1)-2, 2, -2, 2;
an=(-1)n2
(2)1, 1 , 1 , 1 ;
23 4
an
(1)n1
1 n
(4)2,0,2,0.
an (1)n1 1
小结: 观察法求通项公式
(1)常见数列:正整数数列,奇数列,偶数列, 平方数列,三角形数列; (2)分数数列:观察分子分母的特点; (3)指数数列:观察底数、指数的特点; (4)各项符号一正一负:(-1)n或(-1)n+1

2.1数列的概念及简单表示法

2.1数列的概念及简单表示法

y=f (x)
点的集合
an=f (n)
一些离散的点的集合
2016年5月31日星期二
1、根 据数列 项数的 多少分
有穷数列:项数有限的数列. 例如数列1,2,3,4,5,6。是有穷数列 无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6…是无穷数列
2、根 据数列 项的大 小变化 分:
递增数列:从第2项起每一项都不小于它的前 一项的数列。
例如:数列1,1.4,1.41,1.414,…
⑵数列的通项公式有时是不唯一的
n 1 1 (1) n 1 | . 是 an ,也可以是 a n | cos 2 2
2016年5月31日星期二
如:数列:1,0,1,0,1,0,…它的通项公式可以
数列通项公式的作用: ①求数列中任意一项; ②检验某数是否是该数列中的一项.
2016年5月31日星期二来自2016年5月31日星期二
1、课本[练习]3、4、5
2016年5月31日星期二
数列的概念
数列的通项
根据数列 的前n项 求一些简 单数列的 通项公式
数列与函数
的关系
数列是一 个特殊的 函数
数列的分类
会根据通 项公式求
按项数 多少分
按大小 变化分
其任意一

2016年5月31日星期二
课本习题2.1A组的第1题
例如:已知数列{an }的通项公式an 2n 1, 请问: (1)这个数列中第100项是多少? (2)34是不是这个数列中的项?
2016年5月31日星期二
思考:
结论:
数列是一个特殊的函数,可 以看成以正整数集N*(或它的有 限子集{1,2,3,…,n})为定 义域的函数,当自变量从小到大 依次取值时对应的一列函数值。

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法【学习目标】1. 理解数列概念,了解数列的分类;理解数列和函数之间的关系,会用列表法和图象法表示数列;2. 理解数列的通项公式的概念,并会用通项公式写出数列的前几项,会根据简单数列的前几项写出它的一个通项公式;提高观察、抽象的能力. 【知识梳理】1.数列的定义:按照一定顺序排列的一列数称为叫做数列(sequence of number).【注意】⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 思考:简述数列与数集的区别_________________________________________________________________2.数列的项:数列中的每一个数叫做这个数列的项(term). 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.数列的分类:按项数分类:_______________ _______________按项与项间的大小关系 4.数列的通项公式:如果数列{}n a 的第n 项与 序号n 之间的关系可以用一个公式来表 示,那么这个公式就叫做这个数列的通项公式(the formula of general term ).注意:⑴并不是所有数列都能写出其通项公式,如数列1,1.4,1.41, 1.414,…;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a , 也可以是|21cos |π+=n a n . ⑶数列通项公式的作用:① 求数列中任意一项; ②检验某数是否是该数列中的一项5. 数列的图像都是一群孤立的点.从映射、函数的观点来看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式,因此,数列也可根据其通项公式画出其对应图象. 6.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N *(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列. 7.数列的表示形式:_________ __________ __________ 8.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1 ,S n -S n -1, n ≥2 .【典例精析】:【例1】下面的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)0,1,2,3,…。

2.1数列的概念与简单表示法课件人教新课标6

2.1数列的概念与简单表示法课件人教新课标6
2.若仅由数列{an}的递推关系 an=ban-1+c(n≥2,n∈N*),能否求出数
列{an}的每一项?
提示:不能,要想求出数列{an}的每一项,还需知道数列的第一项或
前几项.
第2课时
问题导学
数列的通项公式与递推公式
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
故选 A.
第2课时
问题导学
数列的通项公式与递推公式
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.已知数列{an}的通项公式为 an=(10-n)·
2n,求数列{an}中的最大项.
解:(方法一)∵an=(10-n)·
2n,
∴an+1-an=(10-n-1)·
故 a2 014=a6×335+4=a4=1.
1
2

5
= ,a7= 6 =1,…,
第2课时
问题导学
数列的通项公式与递推公式
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
数列的递推公式给出了相邻两项(或多项)之间的关系,只要知道第
一项就可以用递推公式求出后面的各项,如果各项间的规律明显,可以
第2课时
目标导航
数列的通项公式与递推公式
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习引导
预习交流
通项公式与递推公式的区别与联系是怎样的?

2.1数列的概念与简单表示法课件人教新课标

2.1数列的概念与简单表示法课件人教新课标

所以: an n
=
n1, 2
于是an=(-1)n

n(n 2
1)
(3)所给数列可改写为
1, 0, 12
1, 3
0, 4
1, 5
0, 6

数列分子是1,0重复变化,可看成是数
列1,-1,1,-1…对应项和的 组成的新数
列,分母是自然数列的各项,故所给数列的
通项公式是
an
=
1
(1)n 2n
(4) 将题设数列与数列9,99,999,
数列中的每一个数叫做这个数列的项 .各项依次叫做这个数列的第1项,第2项 ,······,第n项Байду номын сангаас ······
数列的一般情势可以写成 a1,a2,… ,an,…
其中an是数列的第n项。简记为{an}.
数列的分类
(1)按项分类:可以分为有穷数列和无穷数列. 有穷数列:项数有限的数列
无穷数列:项数无限的数列
a4=Xa3+Y=X(5X+Y)+Y 即:23=5a2+Xa+Y ②
联立① 、②得方程组 2X+Y=5
5a2+Xa+Y=23
解之得: X=2 或
Y=1
X= -3 Y=11
课堂小结
1、数列的概念
数列是按照一定次序构成的一列数,其中数 列中数的有序性是数列的灵魂.
2、数列的通项公式
如果数列{ an }中的第n项an与n之间的关系可 以用一个公式来表示,则称此公式为数列的通项 公式.
上述6个数列中的项与序号的关系有没有规 律?如何总结这些规律?
数列中的每一个数都对应着一个序号,反过 来,每个序号也都对应着一个数.如数列(1) 序号 1 2 3 4 5

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

an
n 1
1 nn 2 n 1 n 1
2
1 1 1 1 (2) 1 2 , 2 3 , 3 4 , 4 5 . 解:此数列的前4项的绝对值都等于序号与 序号加上1的积的倒数,且奇数项为负,偶数项 为正,所以通项公式是: n
数列的概念与简单表示法
一、数列的概念
找规律,填数字
2,4,6, 8 ,10, 12 9999 ,99999 9,99,999, 2,4, 8 ,16,32,64
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研 究数学问题,他们在沙滩上画点或用小石子来表示数
请观察下列图形,你能从中发现什么规律吗?
Байду номын сангаас
(1)1,2,3,4,5;(2)1,3,5,7,9;
(3)2,4,6,8,10; (4)1,2,4,8,16;
(5)-1,1,-1,1,-1; (6)1,4,9,16,25;
1 1 1 1 (7 )1, , , , ; 2 3 4 5
(8)9,99,999,9999,99999;
(1)1,2,3,4,5; (2)1,3,5,7,9; (3)2,4,6,8,10; (4)1,2,4,8,16; (5)-1,1,-1,1,-1;
① 1
② 3 =1+2
③ 6 =3+3

10=6+4

1 1
2
② 4 2
2
③ 93
2
④ 16 42
三角形数:1,3,6,10,… . 正方形数:1,4,9,16, … .
定义:
按照一定顺序排列的一列数叫数列。 数列中的每一个数叫做这个数列的项。
1.相同的一组数按不同的顺序排列时,是否为同一数列?

2.1.1 数列的概念与简单表示法

2.1.1 数列的概念与简单表示法

奇数项都为负,且分子都是1,偶数项都为正,且分子
都是3,分母依次是1,2,3,4,…正负号可以用
(-1)n调整.
an



3
n
1 (n n (n
2k 1), 2k),其中k

N
. *
由于1=2-1,3=2+1,所以数列的通项公式可合写成
an= (1)n 2 (1)n .
2.(1)这个数列各项的整数部分分别为1,2,3,4,
…,恰好是序号n;分数部分分别为 1,2,3,4,…,与序
2345
号n的关系是
n
n
1
,所以这个数列的一个通项公式是an=
n n n2 2n . n 1 n 1
(2)数列各项的绝对值为1,3,5,7,9,…,是连续的
正奇数;考虑(-1)n具有转换符号的作用,所以数列的一
5,那么可以叫做数列的个数为( )
A.1
B.2
C.3
D.4
【解析】选D.按照数列定义得出四种形式均为数列.
3.已知数列 3, 5 , 7 , 9 , a b ,…,根据前三项给
2 4 6 a b 10
出的规律,则实数对(a,b)可能是( )
A.(19,3) C.( 19,3 )
22
B.(19,-3) D.( 19, 3 )
个通项公式为an=(-1)n(2n-1).
(3)数列1,0,1,0,…的通项公式为 (1)n1 1,数列
2
0,1,0,1…的通项公式为 (1)n 1 ,因此数列a,0,
2
a,0…的通项公式为 (1)n1 1a ,数列0,b,0,b,…
2

的通项公式为 (1)n 1b ,所以数列a,b,a,b,a,b,

2.1数列的概念与简单表示法(一)

2.1数列的概念与简单表示法(一)
否用一个公式来表示,如何表示?
an f (n)
这个公式就叫做这个数列的通项公式。
小试牛刀
练习1:根据下面数列的通项公式,写出它
的前4项:
(1)
an

n n 1
(2)
an 1 n n
1,2,3,4 2345
1,2,3,4
练习2:写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
问题4: 按照数列的项数可以分为什么数列?根 据数列项的大小可以分为什么数列?
有穷数列:项数有限的数列. 例如数列1,2,3,4,5,6。是有穷数列
无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6,…是无穷数列
2)根据数列项的大小分:
递增数列:从第2项起,每一项都大于它的前一 项的数列。
6)7,77,777,7777,L
an n2
an

n2 2
an 2n 1
an 1 n1 2n 1
n 12 n
an 2n 1
an
7 9
10n 1
递减数列:从第2项起,每一项都小于它的前一 项的数列。
常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,
有些项小于它的前一项的数列
深化概念 问题5 相同的一组数按不同的顺序排列时,是否 为同一数列?
不是 如: 数列 10,9,8,7,6,5,4 。 与 数列 4,5,6,7,8,9,10。是不同的数列
4,…,n})为定义域的函数an=f(n),当自变量按照从小到大的顺 序依次取值时,所对应的一列函数值。反过来,对于函数y=f(x), 如果f(i) (i=1,2,3,…)有意义,那可得到一个数列 f(1),f(2),f(3),…f(n),… 即数列是一种特殊的函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n (1)an = ; n +1
n
1 2 3 4 5 , , , , . 2 3 4 5 6
(2)an = (−1) ⋅ n
(3)an = (−1) ⋅ n
n+1 2
− 1, 2 , − 3, 4 , − 5
1,−4,9,−16,25
例1、 写出下面数列的一个通项公式,使它的 、 写出下面数列的一个通项公式, 项分别是下列各数: 前4项分别是下列各数: 项分别是下列各数
注意:①一些数列的通项公式不是唯一的 注意:
②不是每一个数列都能写出它的通项公式
为通项的数列, ③ {a n }表示以 a n为通项的数列,即 {a n }表示 L 数列 a1, a 2, a 3, , a n L;而 a n 表示这个 数列 {a n }中的第 n 项,其中 n表示项的位置 序号。 序号。

… …
a
n
数列是一种特殊函数! 数列是一种特殊函数!
x 1 2 2.5 4 4.5 y 3 4 5 6 7 n
定义域是 N*(或它的 有限子集)
1 2 3 4 5
an a1 a2 a3 a4 a5
通项公式:数列 的第n项 通项公式:数列{an}的第 项an与n的关系式 的第 的关系式
3.数列与函数 3.数列与函数 对于数列中的每个序号n都有唯一的 对于数列中的每个序号 都有唯一的 一个数(项)an与之对应. 一个数( 与之对应
(2) )
(3) )
(4) )
an = 3
n- 1
果 个 列 的 项 如 一 数 {an} 首 a1 =1 从 2项 每 项 于 , 第 起 一 等 它 前 项 2 再 上, 1n ) 的 一 的倍 加 1 即 an = 2an−1 +( >1 a2 = 2a1 +1 那 么 ,
a3 = 2a2 +1 , L 象 样 出 列 方叫 递 法 其 这 给 数 的 法做 推 , 中 an = 2an−1 +( >1 1n )
三角形数 三角形数
1,
3,
6,
10,
.…..
正方形数 1, 4, 9, 16, …… 提问:这些数有什么规律吗? 提问:这些数有什么规律吗?
上述棋盘中各格子里的麦粒数按先后次序排成一列数: 上述棋盘中各格子里的麦粒数按先后次序排成一列数:
1, , , , … 2 2 2 2 …
2 3
63
三角形数: 三角形数:1,3,6,10,··· 正方形数: 正方形数:1,4,9,16,··· 1,2,3,4……的倒数排列成的一列数: , , , 的倒数排列成的一列数: 的倒数排列成的一列数
数列是一种特殊的函数 数列与函数的关系: 数列与函数的关系:
对于数列中的每个序号n,都有唯一的一个数( 对于数列中的每个序号 都有唯一的一个数(项) 都有唯一的一个数 an与之对应 与之对应. 序号n 序号 1 2 3 4 ……64 (自变量) 自变量) 项 an 1 22 23
n −1
…… 263
3 , 2 ,1 ,… ,35
问2: 数列
改为: -1,1,-1,1…… 改为: , , ,
1,-1,1,-1……,请问:是不是同一数列? , , , ,请问:是不是同一数列?
想一想: 数列与集合的区别是什么? 想一想 数列与集合的区别是什么?
思考:数列与集合的概念有何区别
中是一列数, (1)数列 n}中是一列数,而集合中的元素 )数列{a 中是一列数 不一定是数; 不一定是数; 中的数是有一定次序的, (2) 数列 n}中的数是有一定次序的,而集 ) 数列{a 中的数是有一定次序的 合中的元素没有次序; 合中的元素没有次序; 中的数可以重复, (3) 数列 n}中的数可以重复,而集合中的 ) 数列{a 中的数可以重复 元素不能重复。 元素不能重复。
1 ( 1) , 3 , 5 , 7 ;
an = 2n − 1
2
an = (n + 1) ( 2) ,, , ; 4 9 16 25 1 1 1 n +1 1 ( 3 )1, − , , − ; an = (−1) n 2 3 4 n +1 an = 1 + (−1) ( 4) , , ,。 2 0 2 0
称 递 公 。 为 推 式
果 知 列 的 1 ( 前 ) 且 一 a 它 如 已 数 {an} 第项 或 n项 , 任 项n与 前 项 ( 前 ) 的 系 以 一公 来 示 的 一 an−1 或 n项 间 关 可 用 个 式 表 , 么 个 式 叫 这数 的 推 式 那 这 公 就 做个 列 递 公 。 递推公式也是数列的一种表示方法。 递推公式也是数列的一种表示方法。
1 1 1 1, , , , … … 2 3 4
高一( )班每次考试的名次由小到大排成的一列数: 高一(5)班每次考试的名次由小到大排成的一列数:
1,,,, … 35 2 3 4 …
-1的1次幂,2次幂,3次幂,……排列成一列数: 的 次幂 次幂, 次幂 次幂, 次幂 次幂, 排列成一列数: 排列成一列数
例 : 数 {an}满 3 设 列 足 , a1 =1 a =1+ 1 ( >1 . n ) n an−1 写 这 数 的 5项 出 个 列 前 。
3 5 8 1 , , , ,2 2 3 5
二、新课讲解
1 例3.已知 a1 = 1, a n = 1 + ( n ≥ 2), 写出这个数列 a n −1 的前 5项. 解:∵a1=1
第1项 第2项 第3项 项 项 项
1 (n∈N*) { } ∈ n , …
1
2
n
1, 2 3 , , n , … , 35 3 { n} (n∈N*,n≤ 35) an n =n , … - 1 , 1 , - 1 , … , (-1) 4 an = (-1)n (n∈N*) ∈ 1 , 1 , 1 , …, 1 , … 5 0 n an = 1 或 an n (n∈N*) ∈
1, , 2 , 3 , … 2 63 2 2 2 …
有穷数列 无穷数列 递增数列
1 1 1 1, , , , … … 2 3 4
1
2
递减数列
3
1,,,, … 35 2 3 4 …
有穷数列
递增数列 常数列
1 , , , ,… 1 1 1
无穷数列 无穷数列

4

− 1,, 1,… … 1 − 1
5
递增数列, 递减数列, 递增数列, 递减数列, 常数列。 摆动数列, 常数列。
1 1 ∴ a2 = 1 + = 1+ = 2 1 a1
1 1 3 a3 = 1 + = 1+ = a2 2 2 1 2 5 a4 = 1 + = 1 + = a3 3 3 1 3 8 a5 = 1+ = 1+ = 5 5 a4
1.通项公式能够很清楚的表示数列中项数和 1.通项公式能够很清楚的表示数列中项数和 项的关系; 项的关系; 2.由通项公式可以求出数列中的每一项 由通项公式可以求出数列中的每一项. 2.由通项公式可以求出数列中的每一项. 例1: 根据下面数列的通项公式,写出前5项. 根据下面数列的通项公式,写出前5
第二章
数列
数列的概念与简单表示法
8
7
6
5
4
陛下,赏小 人一些麦粒 请在第一个格 请在第三个格 请在第四个格 子放1颗麦粒 子放4颗麦粒 就可以。 请在第二个格 子放8颗麦粒 依次类推……
子放2颗麦粒
8 7 6 5 4 64个格子 你想得到 个格子 3 什么样的 2 赏赐? 1 3 2 1
OK
?
64个格子
项数n 项数 1 2 3 4 ……64 (自变量 ) 自变量n)
(函数值an )
项 an 1
2
22 23
…… 263
可以认为: 可以认为: n = a
f (n)
数列是一种特殊的函数
20 18 16 14 12 10 8 6 4 2 0 1 2 3 4 5
an = n n+1)的 象 ( 图
是些孤立点
− 1,, 1,… … 1 − 1
无穷多个1排列成的一列数: 无穷多个 排列成的一列数: 排列成的一列数
1 , , , ,… 1 1 1

1,3,6,10,···
2 3
1,4,9,16,···
63
1, , , , … 2 2 2 2 …
1 1 1 1, , , , … … 2 3 4
1,,,, … 35 2 3 4 …
an =
1 n
=
写出下面数列的一个通项公式, 例1:写出下面数列的一个通项公式,使 它的前4项分别是下列各数: 它的前4项分别是下列各数:
1 1 1 1 , − ()1 − ,, ; 2 3 4 2 ,, ()2 0 2 0 ,;
根据数列的前若干项写 出的通项公式的形式唯 一吗?请举例说明。 一吗?请举例说明。
8
7
6
5
4
3
2
1
8 7 6 5 4 3 2 1
你认为国王 有能力满足 上述要求吗
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
2 1
0
2 2 18446744073709551615
2
1
2
3
…… ?63 2
传说古希腊毕达哥拉斯学派数学家研究的问题: 传说古希腊毕达哥拉斯学派数学家研究的问题:
6
7
8
9
10
5
做出常数数列: 做出常数数列: 4 , 4 , 4 , 4 , … 图象
4 3
做出摆动数列: 做出摆动数列: - 1,, 1,, 图象 1 - 1 …
相关文档
最新文档