三角形的中位线定理练习题.docx

合集下载

三角形中位线定理_练习题

三角形中位线定理_练习题

&0通■力调第1.已知三角形的周长为24 cm,则该三角形三条中位线的和为.2.三角形的面积为40 E2,则三条中位线组成的三角形的面积是.3.直角三角形斜边的中线长是6 cm,则它的两条直角边中点的连线长是.,顺次连接正方形各边中点所得的四边形是.5.如图 16.5-4,在AABC 中,D、E 分别是 AB、AC 的中点,则线段DE是/XABC的线,线段DE是/XAHE的线,线段BE是△ABC的线,若 BC= 10 cm,则DE=.图 16. 5— 46.如图16.5-5,D、E、F分别是△ABC各边的中点,(D图中的平行四边形有个;(2)图中与aDEF全等的三角形有个;(3)当AB=AC时,四边形AEDF是 1形;当NA = 90°时,四边形AEDF是形;当时,四边形AEDF是正方形.E 16. 5-6 3 16. 5 — 78.如图瓜 5 —7 ■在JLABC 中.AB = AC.AD_BC.M为AD的中点,CM交AB于P・D、•二CP交AB于N,若AB=6 cm.则AP的长为( )A. 1 cm R 2. 5 cmC. 2 cmD. 3 cm9.如图16.5 — 8,AABC中•中线BD、CE交于点O.F、G分别为OB、OC的中点.求证:四边形DEFG为平行四边形.图 16-5-8图 16.5—5如图16.5 — 6,人。

是△ABC的高,E为AB的中点,且EF.LBC于F,CD=《BD,那么FC是BF的(:A. 1■倍O10.如图15.5-9.二,亚力中.£、下分别是』。

、氏? 的中点.CE、AF分引文BD于V、、. 求证:B、= M\' = D\£7.三角形的中位线定理1.三角形中位线的定义:2.三角形中位线定理的证明:如图,在△ ABC^ , D E是AB和AC的中点,求证:DE// BC DE』BC. 2 方法一:方法二:3.归纳:(1)几何语言:(2)条中位线,对全等,个平行四边形(3)面积4.拓展:如图,在^ ABC+ , D是AB的中点,D日BQ 求证:DE=1 BCA【巩固练习】1.如图所示,□ ABCD的对角线AC BD相交于点Q AE=EB求证:O曰BCB2.如图所示,在^ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1 BD23.已知:如图,四边形ABC前,E、F、G H分别是AB BG CD DA的中点.求证:四边形EFGK平行四边形.4.如图所示,已知在DABC前,E, F分别是AD, BC的中点,求证:MN/ BC5.已知:△ ABC勺中线BD CE交于点Q F、G分别是OB OC勺中点.求证:四边形DEFG^平行四边形.6.已知:如图,E为DABCM DC边的延长线上的一点,且CE= DC连结AE分别交BC BD于点F、G,连结AC交BD于Q 连结OF求证:AB= 2OF.7.如图,在四边形ABC前,AD=BC点E, F, G分别是AB, CD AC的中点.求证:△EFG是等腰三角形。

专题 三角形中位线定理的运用(原卷版)

专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√6,若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√2B .√62C .√63D .√3【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为.【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC 的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是.【变式1-8】(2022春•雁塔区校级期末)如图,点D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°【变式2-1】(2021秋•鼓楼区校级期末)如图,点M ,N 分别是△ABC 的边AB ,AC 的中点,若∠A =60°,∠B=75°,则∠ANM=.【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED=.【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为.【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD中,AD=BC,E,F,G分别是AB,DC,AC 的中点.若∠ACB=64°,∠DAC=22°,则∠EFG的度数为.【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC中,∠A=40°,D,E分别在AB,AC上,BD =CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求∠APQ的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点.求证:BD=2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD 于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC=;若∠ACB=70°,则∠AED=°;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC 三个角之间的关系,并加以证明.【变式4-3】如图,△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QP A=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【例题5】(2022秋•任城区期末)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点,若AB=10,AC=6,则EF的长为()A.2B.3C.4D.5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD中,AC⊥BD,BD=16,AC=30,E,F 分别为AB,CD的中点,则EF=()A.15B..16C.17D.8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为.【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。

(完整word版)三角形的中位线练习题含答案,推荐文档

(完整word版)三角形的中位线练习题含答案,推荐文档

三角形的中位线练习题三角形中位线定义:.符号语言:在△ABC中,D、E分别是AB、AC的中点,则:线段DE是△ABC的__ __,三不同点:①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点:都是一条线段,都有三条。

三角形中位线定理: .符号语言表述:∵DE是△ABC的中位线(或AD=BD,AE=CE) ∴DE//21BC练习1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位EDBED同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )A .15mB .25mC .30mD .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( ) A .10 B .20 C .30 D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点.求证:EF +GH =5cm ;16.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .17.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .BG A E FH D C 图518.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。

专题11 三角形中位线定理(原卷版)

专题11 三角形中位线定理(原卷版)

专题11 三角形中位线定理【考点归纳】(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言:【好题必练】一、选择题1.(2020秋•罗湖区期末)如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.42.(2020秋•安丘市期末)如图,面积为2的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.3.(2020秋•长春期末)如图,在边长为4的等边三角形ABC中,DE为△ABC的中位线,则四边形BCED 的面积为()A.2B.3C.4D.64.(2020秋•长春期末)△ABC中,AB=7,BC=6,AC=5,点D、E、F分别是三边的中点,则△DEF 的周长为()A.4.5B.9C.10D.125.(2020秋•绿园区期末)如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=10m,则A,B之间的距离是()A.5m B.10m C.20m D.40m6.(2020秋•内江期末)如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°二、填空题7.(2020春•兴化市期中)如图,D、E分别是△ABC的边AB、AC的中点.若BC=6,则DE的长为.8.(2020春•姜堰区期中)已知以三角形各边中点为顶点的三角形的周长为6cm,则原三角形的周长为cm.9.(2020春•建湖县期中)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度.10.(2020春•常熟市期中)如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.11.(2020•凤山县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点.若BC=2,则EF的长度为.三、解答题12.(2020•房山区二模)如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.13.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.14.如图,在△ABC中,D为BC的中点,E为AC的中点,AB=6,求DE的长.15.如图,在△Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.16.如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为10,求△ABC的周长。

三角形中位线经典测试题

三角形中位线经典测试题

三角形中位线经典测试题1、已知三角形ABC,其中AC与BD交于点O,BC边中点为E,OE=1,求AB的长。

2、已知三角形ABC,其中DE是BC边的中位线,DE=2cm,求BC的长。

3、已知三角形ABC,要测量A、B两点间的距离,取OA的中点C,OB的中点D,测得CD=30米,求AB的长。

4、顺次连结任意四边形各边中点所得到的四边形一定是平行四边形。

5、以三角形的三个顶点及三边中点为顶点的平行四边形共有4个。

6、已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,线段EF的长不变。

7、已知三角形三边长分别为6、8、10,则它的中位线构成的三角形的面积为24.8、已知△ABC中,AD=11/44AB,AE=AC,BC=16,求DE的长。

9、已知四边形ABCD中,M、N、P、Q分别为AB、BD、CD、AC的中点,证明四边形MNPQ是平行四边形。

10、已知四边形ABCD中,AD∥BC,BC=3AD,E、F分别是对角线AC、BD的中点,证明四边形ADEF是平行四边形。

11、已知四边形ABCD中,AB=CD,E、F分别为BC、AD的中点,BA、EF的延长线交于点M,CD、EF的延长线交于点N,证明∠AME=∠XXX。

12、已知△ABC中,P是中线AD的中点,连接BP并延长交AC于E,F为BE的中点,证明AF∥DE。

13、已知四边形ABCD中,M是OB的中点,连接AM并延长至P,使MP=AM,连接DP交AC于N,证明(1)MN∥AD;(2)S四边形MPNQ=S△XXX。

14、已知△ABC中,AD是外角平分线,CD⊥AD于D,E是BC的中点,证明(1)DE∥AB;(2)DE=1/2(AB+AC)。

15、已知等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线相交于点O,∠AOB=60°,且E、F、M分别是OD、OA、BC的中点,证明△EFM是等边三角形。

三角形的中位线定理练习题

三角形的中位线定理练习题

三角形的中位线定理练习题一、填空选择题:1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm2、三角形三条中位线的长分别为3、4、5,则此三角形的面积为_________3.三角形的三边长分别为12cm、16cm、20cm,则它的中位线构成的三角形的周长与面积分别为____ 和___.4.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60 cm ,则原三角形的周长为_______. 5.三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是6.已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是(C )A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定7、在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=____cm.8、在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是____度.18°9.梯形的上底长4cm,下底长6cm,则梯形的中位线长为( B )A.12cmB.5cmC.10cmD.20cm10.如果梯形的一底为6,中位线为8,则另一底为( C ) A.4 B.7 C.10 D.14 11.已知等腰梯形ABCD的中位线EF的长为5,腰AD的长为4,则这个等腰梯形的周长为. 18 12.在四边形ABCD中,对角线AC=BD,那么顺次连结四边形ABCD各边的中点所得的四边形一定是( ) 13.梯形的中位线长16cm,梯形的一条对角线把中位线分成两条线段,这两条线段的差是4cm,则梯形上底长是cm. 12 cm14.梯形ABCD中,AD//BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(B )A.4 B.6 C.8 D.1015.梯形ABCD中,AD∥BC,AD=12,BC=16,中位线EF与对角线分别相交于H和G,则GH的长是. 216.如图,梯形ABCD中,AD∥BC,EF为中位线,G为BC上任一点,如果S△GEF=cm2,那么梯形的面积是cm2.217.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于D ,若DE =2,则EB =_____.2二、证明题:1.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点. 求证:四边形DEFG 是平行四边形.3.如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点,并且点E 、F 、G 、H 有在同一条直线上.求证:EF 和GH 互相平分.4.如图,同底边BC 的△ABC 与△DBC 中,E 、F 、G 、H 分别是AB 、AC 、DB 、DC 的中点,求证:EH 与FG 互相平分。

三角形的中位线练习题含答案

三角形的中位线练习题含答案

.三角形的中位线练习题三角形中位线定义:.A符号语言:在△ ABC 中, D 、E 分别是 AB 、AC 的中点 , E则:线段 DE 是△ ABC 的__D__,BC三不同点 :①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点: 都是一条线段,都有三条。

三角形中位线定理:.ADEBC符号语言表述: ∵ DE 是△ ABC 的中位线(或 AD=BD,AE=CE) ∴ DE// 12 BC练习1.连结三角形 ___________的线段叫做三角形的中位线. 2.三角形的中位线 ______于第三边,并且等于 _______. 3.一个三角形的中位线有_________条.4. 如图△ ABC 中, D 、 E 分别是 AB 、 AC 的中点,则线段 CD 是△ ABC 的___, 线段 DE 是△ ABC _______5、如图, D 、 E 、 F 分别是△ ABC 各边的中点( 1)如果 EF = 4cm ,那么 BC =__ cm 如果 AB = 10cm ,那么 DF =___ cm( 2)中线 AD 与中位线 EF 的关系是___6.如图 1 所示, EF 是△ ABC 的中位线,若 BC=8cm ,则 EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是 3cm , 5cm , 6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在 Rt △ ABC 中,∠ C=90°, AC=?5, ?BC=?12, ?则连结两条直角边中点的线段长为 _______. 9.若三角形的三条中位线长分别为2cm , 3cm ,4cm ,则原三角形的周长为( )A . 4.5cm B. 18cmC.9cmD. 36cmA ,B 间的距离,但绳子不够长,一位.同学帮他想了一个主意:先在地上取一个可以直接到达 A ,B 的点 C ,找到 AC ,BC 的中点 D ,E ,并且测出 DE的长为 10m ,则 A , B 间的距离为( )A . 15mB. 25mC. 30mD. 20m11.已知△ ABC 的周长为 1,连结△ ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010 个三角形的周长是( )A 、1 、 1C 、1D 、1B20082009200820092212.如图 3 所示,已知四边形 ABCD , R , P 分别是 DC , BC 上的点, E ,F 分别是 AP , RP 的中点,当点 P 在 BC上从点 B 向点 C 移动而点 R 不动时, 那么下列结论成立的是( )A .线段 EF 的长逐渐增大B .线段 EF 的长逐渐减少C .线段 EF 的长不变D.线段 EF 的长不能确定13.如图 4, 在△ ABC 中, E ,D , F 分别是 AB , BC , CA 的中点, AB=6, AC=4,则四边形 AEDF?的周长是( )A .10B .20C .30D .4014.如图所示, □ ABCD 的对角线 AC ,BD 相交于点 O , AE=EB ,求证: OE ∥BC .15.已知矩形 ABCD 中, AB=4cm , AD =10cm ,点 P 在边 BC 上移动,点E 、F 、G 、 H分别是 AB 、 AP 、 DP 、 DC 的中点 . 求证: EF+GH =5cm ;16.如图所示,在△ ABC 中,点 D 在 BC 上且 CD=CA ,CF 平分∠ ACB ,AE=EB ,求证: EF= 1BD .217.如图所示,已知在 □ABCD 中, E ,F 分别是 AD , BC 的中点,求证:MN ∥BC .;..18.已知:如图,四边形ABCD 中, E、F、 G、 H 分别是 AB 、 BC 、 CD、DA 的中点.求证:四边形EFGH 是平行四边形.D19.如图,点 E, F, G, H 分别是 CD, BC, AB , DA 的中点。

完整版三角形的中位线经典练习题及其答案

完整版三角形的中位线经典练习题及其答案

八年级三角形的中位线练习题及其答案1 •连结三角形2 •三角形的中位线于第三边,并且等于3 •一个三角形的中位线有__________ 条.4. 如图△ ABC中,D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。

丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm(2) ________________________________ 中线AD与中位线EF的关系是____________________________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm贝UEF=_________________________________________________cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt △ ABC中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 ____________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测出DE 的长为10m,则A, B间的距离为()A . 15mB . 25mC . 30mD . 20m11. 已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( )A 1 1 1 1A、 B C D、2008 2009 20082 2009212.如图3所示,已知四边形ABCD R, P分别是DC BC上的点,E,F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定13.如图4,在厶ABC中, E, D, F分别是AB, BC CA的中点,AB=6, AC=4,则四边形AEDF?勺周长是()A . 10B . 20C . 30D . 40A__________ D的线段叫做三角形的中位线.14. 如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15. 已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、arc CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E, F, G, H分别是CD, BC, AB , DA的中点。

中位线练习题

中位线练习题

中位线练习题一、选择题1. 在三角形ABC中,D是BC的中点,E是AC的中点,若AB=5,AC=7,BC=6,则DE的长度是多少?A. 3B. 4C. 5D. 62. 若三角形的一条中位线长为4,且这条中位线平行于三角形的一边,那么这条边的长度是多少?A. 2B. 4C. 8D. 不能确定3. 在三角形中,中位线的性质是什么?A. 与对边平行且等于对边的一半B. 与对边垂直且等于对边的一半C. 与对边平行且等于对边的两倍D. 与对边垂直且等于对边的两倍二、填空题4. 若三角形的一边长为10,其对应的中位线长为5,则该三角形的面积是______。

5. 在三角形ABC中,已知BD是AC的中位线,若AB=6,BC=8,BD的长度为4,那么AC的长度是______。

三、简答题6. 描述三角形中位线的性质,并给出证明。

7. 若三角形ABC中,点D、E分别是AB、AC的中点,如何证明DE是三角形ABC的中位线?四、计算题8. 在三角形ABC中,已知AB=8,AC=6,BC=10,求三角形ABC的中位线长度。

9. 若三角形ABC的一边长为12,其对应的中位线长为6,求三角形ABC的面积。

五、证明题10. 在三角形ABC中,D、E分别是AB、AC的中点,证明DE是三角形ABC的中位线。

11. 若三角形ABC的中位线DE与边BC平行,证明DE等于BC的一半。

六、综合题12. 在三角形ABC中,已知AD是BC的中位线,且AD=5,AB=7,AC=8,求BC的长度。

13. 在三角形ABC中,已知BD是AC的中位线,且BD=4,AB=6,求AC的长度。

七、拓展题14. 若三角形ABC的中位线DE与边BC平行,且DE=4,求三角形ABC的周长。

15. 在三角形ABC中,已知AD是BC的中位线,且AD=3,AB=5,求AC 的长度。

答案提示:- 选择题:1. B 2. C 3. A- 填空题:4. 24 5. 8- 简答题:6. 三角形的中位线平行于对边,并且等于对边的一半。

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

专题9.7 三角形中位线专项训练(30道)【苏科版】1.(2021秋•淅川县期末)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.9【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.【解答】解:连接DN,∵ED=EM,MF=FN,∴EF=12DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB=√AD2+BD2=√52+122=13,∴EF的最大值为6.5.∵∠A=90°,AD=5,∴DN≥5,∴EF≥2.5,∴EF长度的可能为5;故选:B.2.(2021秋•渝中区校级期末)如图,在△ABC中,AB=CB=6,BD⊥AC于点D,F在BC上且BF=2,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.4【分析】根据等腰三角形的性质得到AD=DC,根据三角形中位线定理解答即可.【解答】解:∵CB=6,BF=2,∴FC=6﹣2=4,∵BA=BC,BD⊥AC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=12FC=12×4=2,故选:B.3.(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是()A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF【分析】取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD,再利用三角形三边关系:两边之和大于第三边,即可得出AD,BC和EF的关系.【解答】解:如图,取AC的中点G,连接EF,EG,GF,∵E,F分别是边AB,CD的中点,∴EG,GF分别是△ABC和△ACD的中位线,∴EG=12BC,GF=12AD,在△EGF中,由三角形三边关系得EG+GF>EF,即12BC+12AD>EF,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .4.(2021秋•荆门期末)如图,△ABC 的周长为20,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =8,则MN 的长度为( )A .32B .2C .52 D .3【分析】证明△BNA ≌△BNE ,得到BE =BA ,AN =NE ,同理得到CD =CA ,AM =MD ,求出DE ,根据三角形中位线定理计算即可.【解答】解:在△BNA 和△BNE 中,{∠NBA =∠NBE BN =BN ∠BNA =∠BNE,∴△BNA ≌△BNE (ASA )∴BE =BA ,AN =NE ,同理,CD =CA ,AM =MD ,∴DE =BE +CD ﹣BC =BA +CA ﹣BC =20﹣8﹣8=4,∵AN =NE ,AM =MD ,∴MN =12DE =2,故选:B .5.(2021秋•宛城区期中)如图,在△ABC 中,∠A =90°,AC >AB >4,点D 、E 分别在边AB 、AC 上,BD =4,CE =3,取DE 、BC 的中点M 、N ,线段MN 的长为( )A .2.5B .3C .4D .5【分析】如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,首先证明CH =BD ,∠ECH =90°,解直角三角形求出EH ,利用三角形中位线定理即可解决问题.【解答】解:作CH ∥AB ,连接DN 并延长交CH 于H ,连接EH ,∵BD ∥CH ,∴∠B =∠NCH ,∠ECH +∠A =180°,∵∠A =90°,∴∠ECH =∠A =90°,在△DNB 和△HNC 中,{∠B =∠NCH BN =CN ∠DNB =∠HNC,∴△DNB ≌△HNC (ASA ),∴CH =BD =4,DN =NH ,在Rt △CEH 中,CH =4,CE =3,∴EH =√CH 2+CE 2=√42+32=5,∵DM =ME ,DN =NH ,∴MN =12EH =2.5,故选:A .6.(2021•丹东模拟)如图,在△ABC 中,CE 是中线,CD 是角平分线,AF ⊥CD 交CD延长线于点F ,AC =7,BC =4,则EF 的长为( )A .1.5B .2C .2.5D .3【分析】延长AF 、BC 交于点G ,证明△ACF ≌△GCF ,根据全等三角形的性质得到CG =AC =7,AF =FG ,求出BG ,根据三角形中位线定理解答即可.【解答】解:延长AF 、BC 交于点G ,∵CD 是△ABC 的角平分线,∴∠ACF =∠BCF ,在△ACF 和△GCF 中,{∠ACF =∠GCF CF =CF ∠AFC =∠GFC =90°,∴△ACF ≌△GCF (ASA ),∴CG =AC =7,AF =FG ,∴BG =CG ﹣CB =3,∵AE =EB ,AF =FG ,∴EF =12BG =1.5,故选:A .7.(2021•碑林区校级模拟)如图,AD 为△ABC 的角平分线,BE ⊥AD 于E ,F 为BC 中点,连接EF ,若∠BAC =80°,∠EBD =20°,则∠EFD =( )A .26°B .28°C .30°D .32°【分析】延长BE 交AC 于G ,证△ABE ≌△AGE (ASA ),得BE =GE ,再由三角形中位线定理得EF ∥GC ,则∠EFD =∠C ,然后求出∠ABC =∠ABE +∠EBD =70°,即可解决问题.【解答】解:延长BE 交AC 于G ,如图所示:∵AD 平分∠BAC ,∠BAC =80°,∴∠BAE =∠GAE =12∠BAC =40°,∵BE ⊥AD ,∴∠BEA =∠GEA =90°,∵AE =AE ,∴△ABE ≌△AGE (ASA ),∴BE =GE ,∵F 为BC 的中点,∴EF 是△BCG 的中位线,∴EF ∥GC ,∴∠EFD =∠C ,∵∠BEA =90°,∴∠ABE =90°﹣∠BAE =90°﹣40°=50°,∴∠ABC =∠ABE +∠EBD =50°+20°=70°,∴∠EFD =∠C =180°﹣∠BAC ﹣∠ABC =180°﹣80°﹣70°=30°,故选:C .8.(2021秋•广饶县期末)如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若AC =4,则AF =( )A .85 B .43 C .1 D .23 【分析】取EF 的中点H ,连接DH ,根据三角形中位线定理得到DH =12FC ,DH ∥AC ,证明△AEF ≌△DEH ,根据全等三角形的性质得到AF =DH ,计算即可.【解答】解:取EF 的中点H ,连接DH , ∵BD =DC ,BH =HF ,∴DH =12FC ,DH ∥AC ,∴∠HDE =∠F AE ,在△AEF 和△DEH 中,{∠AEF =∠DEH AE =DE ∠EAF =∠EDH,∴△AEF ≌△DEH (ASA ), ∴AF =DH ,∴AF =12FC , ∵AC =4,∴AF =43,故选:B .9.(2021春•平邑县期末)如图,在△ABC 中,AB =8,AC =6,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .1B .2C .32D .12【分析】证明△AFG ≌△AFC ,得到GF =FC ,根据三角形中位线定理计算即可.【解答】解:∵AD 是∠BAC 的角平分线,∴∠GAF =∠CAF ,∵CG ⊥AD ,∴∠AFG =∠AFC =90°,在△AFG 和△AFC 中,{∠AFG =∠AFC AF =AF ∠FAG =∠FAC,∴△AFG≌△AFC(ASA),∴GF=FC,AG=AC=6,∴GB=AB﹣AG=2,∵GF=FC,BE=EC,∴EF=12GB=1,故选:A.10.(2021春•宽城县期末)如图,E,F是四边形ABCD两边AB,CD的中点,G,H是对角线AC,BD的中点,若EH=6,则以下结论不正确的是()A.BC=12B.GF=6C.AD=12D.EH∥GF【分析】先判定EH为△ABD的中位线,GF为△ADC的中位线,然后根据三角形中位线性质对各选项进行判断.【解答】解:∵点E为AB的中点,点H为BD的中点,∴EH为△ABD的中位线,∴EH=12AD,EH∥AD,∵点F为CD的中点,点G为AC的中点,∴GF为△ADC的中位线,∴GF=12AD,GF∥AD,∴GF=EH=6,AD=2EH=12,EH∥GF,所以A选项符合题意,B选项、C选项和D 选项不符合题意.故选:A.二.填空题(共10小题)11.(2021秋•莱阳市期末)如图,D、E分别为△ABC的边AB、AC的中点.连接DE,过点B作BF平分∠ABC,交DE于点F.若EF=4,AD=7,则BC的长为22.【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,BD =AD =7,根据平行线的性质、角平分线的定义得到∠DBF =∠FBC ,根据等腰三角形的判定定理得到DF =BD =7,计算即可.【解答】解:∵D 、E 分别为△ABC 的边AB 、AC 的中点,∴DE ∥BC ,DE =12BC ,BD =AD =7,∴∠DFB =∠FBC ,∵BF 平分∠ABC ,∴∠DFB =∠DBF ,∴∠DBF =∠FBC ,∴DF =BD =7,∴DE =DF +EF =11,∴BC =2DE =22,故答案为:22.12.(2021秋•让胡路区校级期末)如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为 16 .如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是 27﹣n .【分析】根据E 、F 、G 分别为AB 、AC 、BC 的中点,可以判断EF 、FG 、EG 为三角形中位线,利用中位线定理求出EF 、FG 、EG 与BC 、AB 、CA 的长度关系即可求得△EFG 的周长是△ABC 周长的一半,△A ′B ′C ′的周长是△EFG 的周长的一半,以此类推,可以求得第n 个三角形的周长.【解答】解:∵如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴EF 、FG 、EG 为三角形中位线,∴EF =12BC ,EG =12AC ,FG =12AB ,∴EF +FG +EG =12(BC +AC +AB ),即△EFG 的周长是△ABC 周长的一半.同理,△A ′B ′C ′的周长是△EFG 的周长的一半,即△A ′B ′C ′的周长为14×64=16.以此类推,第n 个小三角形的周长是第一个三角形周长的64×(12)n ﹣1=27﹣n故答案是:27﹣n .13.(2021春•安徽月考)如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠CBA =70°,P 、M 、N 分别是AB 、AC 、BD 的中点,若BC =6,则△PMN 的周长是 9 .【分析】根据三角形中位线定理得到PM ∥BC ,PM =12BC =3,PN ∥AD ,PN =12AD =3,根据等边三角形的判定和性质定理解答即可.【解答】解:∵P 、M 分别是AB 、AC 的中点,∴PM ∥BC ,PM =12BC =3,∴∠APM =∠CBA =70°,同理可得:PN ∥AD ,PN =12AD =3,∴∠BPN =∠DAB =50°,∴PM =PN =3,∠MPN =180°﹣50°﹣70°=60°,∴△PMN 为等边三角形,∴△PMN 的周长为9,故答案为:9.14.(2021秋•长春期中)如图所示,在△ABC 中,BC >AC ,点D 在BC 上,DC =AC =10,且AD BD =32,作∠ACB 的平分线CF 交AD 于点F ,CF =8,E 是AB 的中点,连接EF ,则EF 的长为 4 .【分析】根据等腰三角形的性质得到F 为AD 的中点,CF ⊥AD ,根据勾股定理得到DF =√CD 2−CF 2=6,根据三角形的中位线定理即可得到结论.【解答】解:∵DC =AC =10,∠ACB 的平分线CF 交AD 于F ,∴F 为AD 的中点,CF ⊥AD ,∴∠CFD =90°,∵DC =10,CF =8,∴DF =√CD 2−CF 2=6,∴AD =2DF =12,∵AD BD =32,∴BD =8,∵点E 是AB 的中点, ∴EF 为△ABD 的中位线,∴EF =12BD =4,故答案为:4.15.(2021•商丘四模)如图,四边形ABCD 中,点E 、F 分别为AD 、BC 的中点,延长FE交CD 延长线于点G ,交BA 延长线于点H ,若∠BHF 与∠CGF 互余,AB =4,CD =6,则EF 的长为 √13 .【分析】根据三角形的中位线定理和勾股定理解答即可.【解答】解:连接BD ,取BD 的中点M ,连接EM ,FM ,∵E 、F 分别为AD 、BC 的中点,M 为BD 的中点,∴EM ,MF 分别为△ADB 、△BCD 的中位线,∴EM ∥AB ,MF ∥DC ,EM =12AB =2,MF =12DC =3,∵MF ∥DC ,∴∠FGC =∠EFM ,∵EM ∥AB ,∴∠FEM =∠FHB ,∵∠BHF 与∠CGF 互余,∴∠CGF +∠BHF =∠EFM +∠FEM =90°,∴∠EMF =180°﹣∠EFM ﹣∠FEM =90°,∴△EMF 是直角三角形,∴EF=√EM2+FM2=√22+32=√13,故答案为:√13.16.(2021•香坊区校级开学)如图,在△ABC中,E是AB的中点,D是AC上一点,连接DE,BH⊥AC于H,若2∠ADE=90°﹣∠HBC,AD:BC=4:3,CD=2,则BC的长为6.【分析】如图,延长AC至N,使CN=BC,连接BN,由等腰三角形的性质可得∠ADE =∠N,可证DE∥BN,由三角形中位线定理可得AD=DN,即可求解.【解答】解:如图,延长AC至N,使CN=BC,连接BN,∵2∠ADE=90°﹣∠HBC,∠BCA=90°﹣∠HBC,∴∠BCA=2∠ADE,∵CN=BC,∴∠N=∠CBN,∴∠BCA=∠N+∠CBN=2∠N,∴∠ADE=∠N,∴DE∥BN,又∵E是AB的中点,∴DE是△ABN的中位线,∴AD=DN,∵AD:BC=4:3,∴设AD=DN=4x,BC=CN=3x,∴CD=DN﹣CN=x=2,∴BC=6,故答案为6.17.(2021春•牡丹区期末)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为 2.5.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.5,故答案为:2.5.18.(2021春•洛阳期末)如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC的长为6cm.【分析】延长AC 、BE 交于点F ,证明△AEB ≌△AEF ,根据全等三角形的性质得到AF =AB =10cm ,BE =EF ,根据三角形中位线定理计算即可.【解答】解:延长AC 、BE 交于点F ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,在△AEB 和△AEF 中,{∠BAE =∠FAE AE =AE ∠AEB =∠AEF =90°,∴△AEB ≌△AEF (ASA ),∴AF =AB =10(cm ),BE =EF ,∵BD =DC ,DE =2cm ,∴CF =2DE =4(cm ),∴AC =AF ﹣CF =6(cm ),故答案为:6.19.(2021春•盐湖区校级期末)如图,在四边形ABCD 中,AB =CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,若∠MPN =130°,则∠NMP 的度数为 25° .【分析】根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.【解答】解:在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM =12AB ,PN =12DC ,PM ∥AB ,PN ∥DC ,∵AB =CD , ∴PM =PN ,∴△PMN 是等腰三角形,∵∠MPN=130°,∴∠PMN=180°−130°2=25°.故答案为:25°.20.(2021春•虹口区校级期末)如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN⊥CN于N,AB=10,BC=13,AC=6,则MN= 4.5.【分析】延长AM交BC于点G,根据BM为∠ABC的平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以AM=GM.同理AN=DN,根据三角形中位线定理即可求得MN.【解答】解:延长AM交BC于点G,延长AN交BC延长线于点D,∵BM为∠ABC的平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠MGB+∠CBM=90°,∴∠BAM=∠MGB,∴△ABG为等腰三角形,∴AM=GM.BG=AB=10,同理AN=DN,CD=AC=6,∴MN为△ADG的中位线,∴MN=12DG=12(BC﹣BG+CD)=12(BC﹣AB+AC)=12(13﹣10+6)=4.5.故答案为:4.5.三.解答题(共10小题)21.(2019春•岐山县期末)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【分析】连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中线,∴D,E是AB,AC的中点,∴DE∥BC,DE=12BC,同理:FG∥BC,FG=12BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.22.(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【分析】(1)取BD的中点P,利用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理来求EF的长度;(2)如图,取BD的中点P,连接EP、FP.用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理即可得到结论.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE ∥AB ,且PE =12AB =3,PF ∥CD 且PF =12CD =4.又∵∠ABD =30°,∠BDC =120°,∴∠EPD =∠ABD =30°,∠DPF =180°﹣∠BDC =60°,∴∠EPF =∠EPD +∠DPF =90°,在直角△EPF 中,由勾股定理得到:EF =√EP 2+PF 2=√32+42=5,即EF =5;(2)证明:如图,取BD 的中点P ,连接EP 、FP .∵E ,F 分别是AD 、BC 的中点,∴PE ∥AB ,且PE =12AB ,PF ∥CD 且PF =12CD .∴∠EPD =∠ABD ,∠BPF =∠BDC ,∴∠DPF =180°﹣∠BPF =180°﹣∠BDC ,∵∠BDC ﹣∠ABD =90°,∴∠BDC =90°+∠ABD ,∴∠EPF =∠EPD +∠DPF =∠ABD +180°﹣∠BDC =∠ABD +180°﹣(90°+∠ABD )=90°,∴PE 2+PF 2=(12AB )2+(12CD )2=EF 2,∴AB 2+CD 2=4EF 2.23.(2021秋•莱州市期末)已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AB 、CD 的中点,EF 分别交BD 、AC 于点G 、H .求证:OG =OH .【分析】取BC 边的中点M ,连接EM ,FM ,则根据三角形的中位线定理,即可证得△EMF 是等腰三角形,根据等边对等角,即可证得∠MEF =∠MFE ,然后根据平行线的性质证得∠OGH =∠OHG ,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,∵M、F分别是BC、CD的中点,∴MF∥BD,MF=12BD,同理:ME∥AC,ME=12AC,∵AC=BD∴ME=MF∴∠MEF=∠MFE,∵MF∥BD,∴∠MFE=∠OGH,同理,∠MEF=∠OHG,∴∠OGH=∠OHG∴OG=OH.24.(2021春•抚州期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.【分析】(1)根据ASA证明△AEC和△AED全等,进而利用全等三角形的性质解答即可;(2)根据勾股定理得出AB,进而利用三角形中位线定理解答即可.【解答】(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC =∠AED =90°,在△AEC 和△AED 中,{∠CAE =∠DAE AE =AE ∠AEC =∠AED,∴△AEC ≌△AED (ASA ),∴CE =DE ;(2)在Rt △ABC 中,∵AC =6,BC =8,∴AB =√AC 2+BC 2=√62+82=10,∵△AEC ≌△AED ,∴AD =AC =6,∴BD =AB ﹣AD =4,∵点E 为CD 中点,点F 为BC 中点,∴EF =12BD =2.25.(2021春•秦都区期末)如图,在△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 上的点,连接BE 、DE ,∠ADE =∠AED ,点F 、G 、H 分别为BE 、DE 、BC 的中点.求证:FG =FH .【分析】根据等腰三角形的判定定理得到AD =AE ,根据线段的和差得到BD =CE ,根据三角形的中位线定理即可得到结论.【解答】证明:∵∠ADE =∠AED ,∴AD =AE ,∵AB =AC ,∴AB ﹣AD =AC ﹣AE ,即BD =CE ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE ,∴FG =FH .26.(2021春•泰兴市月考)如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连接BD,取BD的中点H,连接HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=12AB,EH∥CN,EH=12CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=12AB,EH∥CN,EH=12CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.27.(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【分析】过D 作DG ∥AC ,可证明△AEF ≌△DEG ,可得AF =DG ,由三角形中位线定理可得DG =12CF ,可证得结论.【解答】证明:如图,过D 作DG ∥AC ,则∠EAF =∠EDG ,∵AD 是△ABC 的中线,∴D 为BC 中点, ∴G 为BF 中点,∴DG =12CF ,∵E 为AD 中点,∴AE =DE ,在△AEF 和△DEG 中,{∠EAF =∠EDG AE =DE ∠AEF =∠DEG,∴△AEF ≌△DEG (ASA ), ∴DG =AF ,∴AF =12CF .28.(2021春•莆田期末)如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F .你能说出OE 与OF 的大小关系并加以证明吗?【分析】此题要构造三角形的中位线,根据三角形的中位线定理进行证明.【解答】解:相等.理由如下:取AD 的中点G ,连接MG ,NG ,∵G 、N 分别为AD 、CD 的中点, ∴GN 是△ACD 的中位线,∴GN =12AC ,同理可得,GM=12BD,∵AC=BD,∴GN=GM=12AC=12BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.29.(2021春•城固县期末)如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD 的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.【分析】根据三角形中位线定理得到EG=12AC,EG∥AC,FG=12BD,FG∥BD,根据平行线的性质、等腰三角形的性质和判定定理证明结论.【解答】证明:∵E,G为AB、BC中点,∴EG=12AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=12BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.30.(2021春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.【分析】(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=12BD,FH∥EC,FH=12EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【解答】(1)证明:∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=12 BDFH∥EC,FH=12 EC∴FG=FH;(2)证明:由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)解:延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°。

6.4 三角形的中位线定理(含答案)

6.4  三角形的中位线定理(含答案)

6.4 三角形的中位线定理一、选择题(本大题共40小题,共120.0分)1.如图,点D、E、F分别为△ABC三边的中点,若△ABC的周长为18,则△DEF的周长为()A. 8B. 9C. 10D. 112.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A. 3.5B. 4C. 7D. 143.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.1B. 2C. 3D. 44.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A. 6B. 12C. 18D. 245.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A. 32B. 16C. 8D. 106.如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是()A. 平行四边形B. 矩形C. 菱形D. 正方形7.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A. 8B. 10C. 12D. 168.如图,在四边形ABCD中,点E,F,G分别是边AB,AD,DC的中点,则EF=()A.BDB. BDC. BGD. BG9.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A. AB=36mB. MN∥ABC. MN=CBD. CM=AC10.如图所示点D、E分别是AB、AC中点,若DE=4,则BC=()A. 2B. 4C. 6D. 811.如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=()A. 4B. 3C. 2D. 112.如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B. 3C. 4D. 613.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A. S△DEF=S△ABCB. △DEF≌△FAD≌△EDB≌△CFEC. 四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D. 四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长14.如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是()A. 正方形B. 矩形C. 菱形D. 平行四边形15.如图,点E、F、G、H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A. 一定不是平行四边形B. 一定不是中心对称图形C. 可能是轴对称图形D. 当时,它为矩形16.如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD平分∠ABC,则下列结论错误的是()A. BC=2BEB. ∠A=∠EDAC. BC=2ADD. BD⊥AC17.如图在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=4,则菱形ABCD的周长是()A. 64B. 48C. 32D. 1618.如图,在△ABC中,D,E分别为AC,BC的中点,若DE=3,则AB的长为()A.3B. 4C. 5D. 619.顺次连接等腰梯形四边中点所得四边形是()A. 菱形B. 正方形C. 矩形D. 等腰梯形20.在△ABC内取一点O,连接AO、BO、CO,它们的中点是D、E、F.若DE=2,则AB的长为()A. 1B. 2C. 4D. 821.如图,在□ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A. 3B. 6C. 8D. 1222.如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,菱形ABCD的周长为()A. 9B. 12C. 24D. 3223.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A. 34cmB. 30cmC. 29cmD. 17cm24.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.如果一个四边形是矩形,那么它的中点四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形25.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形26.顺次连接矩形各边中点得到的四边形是()A. 矩形B. 菱形C. 正方形D. 平行四边形27.如图,DE是的中位线,若BC的长为3cm,则DE的长是( )A.2cmB.C.D.1cm28.如图,在菱形ABCD中,点E,F分别是AB,AC的中点,连接EF,若EF=4,则菱形ABCD的周长为()A.16B.20C.24D.3229.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.B. 3C.C.D. D.30.如图,在菱形ABCD中,点E是AC的中点,EF∥CB,交AB于点F,如果,菱形ABCD的周长为()A. 16E.12F.10G.831.顺次连接矩形各边中点得到的四边形是()A.矩形B.菱形C.正方形D.平行四边形32.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.40cmB.30cmC.20cmD.10cm33.如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于()A.B.C.D.34.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A. 线段EF的长始终不变H.线段EF的长逐渐减小C. 线段EF的长逐渐增长D. 线段EF的长与点P的位置有关35.如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.3cmB.6cmC.9cmD.12cm36.在矩形ABCD中,对角线AC,BD交于点O,OE平分∠DOC,若OE=3,CE=2,则矩形ABCD的周长为()A. 10B. 15C. 20D. 2237.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC垂足为D,OD=40cm,当它的一端B着地时,另一端A离地面的高度AC为()A.20cmB.B. 40cmC.C. 60cmD.D. 80cm38.如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得的四边形一定是()A. 梯形B. 矩形C. 菱形D. 正方形39.顺次连接矩形各边中点所得的四边形是()A. 等腰梯形B. 菱形C. 矩形D. 正方形40.顺次连接对角线互相垂直且相等的四边形各边的中点所得四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案和解析1.【答案】B【解析】解:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF=BC,FE=AB,DE=AC;∴DF+FE+DE=BC+AB+AC=(AB+BC+CA)=×18=9,故选B.根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.2.【答案】A【解析】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选:A.根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.3.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.4.【答案】B【解析】解:∵D、E分别是AB、AC的中点,∴AD=AB,AE=AC,DE=BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选:B.根据线段中点的性质求出AD=AB、AE=AC的长,根据三角形中位线定理求出DE=AB,根据三角形周长公式计算即可.本题考查的是三角形的中点的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.5.【答案】B【解析】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.根据三角形中位线定理求出AC,根据直角三角形的性质计算即可.本题考查的是三角形中位线定理,直角三角形的性质,三角形的中位线平行于第三边,并且等于第三边的一半.6.【答案】C【解析】【分析】本题考查学生灵活运用三角形的中位线定理,平行四边形的判断及菱形的判断进行证明,是一道综合题.根据三角形的中位线定理可得,EH平行且等于CD的一半,FG平行且等于CD的一半,根据等量代换和平行于同一条直线的两直线平行,得到EH和FG平行且相等,所以EFGH为平行四边形,又因为EF等于AB的一半且AB=CD,所以得到所证四边形的邻边EH与EF相等,所以四边形EFGH为菱形.【解答】解:∵E、F、G、H分别是AD、BD、BC、AC的中点,∴在△ADC中,EH为△ADC的中位线,所以EH∥CD且EH=CD;同理FG∥CD且FG=CD,同理可得EF=AB,则EH∥FG且EH=FG,∴四边形EFGH为平行四边形,又AB=CD,所以EF=EH,∴四边形EFGH为菱形.故选:C.7.【答案】D【解析】解:∵点D,E,F分别是AB,BC,AC的中点,∴DE∥AC,EF∥AB,DE=AC=5,EF=AB=3,∴四边形ADEF平行四边形,∴AD=EF,DE=AF,∴四边形ADEF的周长为2(DE+EF)=16,故选:D.根据三角形的中位线定理,判断出四边形ADEF平行四边形,根据平行四边形的性质求出ADEF的周长即可.本题考查了三角形中位线定理,利用中位线定理判断出四边形ADEF为平行四边形是解题的关键.8.【答案】B【解析】【分析】本题主要考查三角形中位线定理,熟练掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半是关键.由E,F分别是边AB,AD的中点根据三角形中位线定理即可得.【解答】解:∵E,F分别是边AB,AD的中点,∴EF=BD,且EF∥BD.故选B.9.【答案】C【解析】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.根据三角形的中位线定理即可判断;本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.10.【答案】D【解析】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故选:D.根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.11.【答案】B【解析】解:∵DE是△ABC的中位线,∴DE=BC,∵BC=6,∴DE=BC=3.故选:B.由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得DE的值即可.考查了三角形的中位线定理,根据定理确定DE等于那一边的一半是解题的关键.12.【答案】C【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.此题考查了平行四边形的性质与三角形中位线的性质,熟记平行四边形的各种性质是解题的关键.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.13.【答案】D【解析】解:连接DF∵点D,E,F分别是AB,BC,AC的中点∴DE∥AC,DF∥BC,EF∥AB∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF∴△DEF≌△ADF≌△BDE≌△CEF∴S△ADF=S△BDE=S△DEF=S△CEF.∴S△DEF=S△ABC.故①②③说法正确∵四边形ADEF的周长为2(AD+DE)四边形BDFE的周长为2(BD+DF)且AD=BD,DE≠DF,∴四边形ADEF的周长≠四边形BDFE的周长故④说法错误故选:D.根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.14.【答案】B【解析】【分析】本题考查菱形的性质、平行四边形的判定、矩形的判定等、三角形的中位线定理知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:连接AC、BD,AC交FG于L.∵四边形ABCD是菱形,∴AC⊥BD,∵DH=HA,DG=GC,∴GH∥AC,HG=AC,同法可得:EF=AC,EF∥AC,∴GH=EF,GH∥EF,∴四边形EFGH是平行四边形,同法可证:GF∥BD,∴∠OLF=∠AOB=90°,∵AC∥GH,∴∠HGL=∠OLF=90°,∴四边形EFGH是矩形.故选B.15.【答案】C【解析】【分析】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.先连接AC,BD,根据,,可得四边形EFGH是平行四边形,当时,,此时四边形EFGH是矩形;当时,,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:如图,连接AC,BD,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,,,四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形,当时,,此时四边形EFGH是矩形,当时,,此时四边形EFGH是菱形,四边形EFGH可能是轴对称图形.故选C.16.【答案】C【解析】解:∵D,E分别是边AC,AB的中点,∴DE∥BC且BC=2DE,∵BD平分∠ABC,∴∠CBD=∠DBE=∠BDE,∴BE=DE=AE,∴AB=2DE,BC=2DE=2BE,故A正确;∴AB=BC,∴∠A=∠C=∠EDA,故B正确;C、∵AE=DE,与AD不一定相等,故本选项不一定成立;D、∵AB=BC,点D是AC的中点,∴BD⊥AC,故本选项正确.故选:C.根据D,E分别是边AC,AB的中点,得出DE是△ABC的中位线,所以DE∥BC且BC=2DE;又BD平分∠ABC,所以∠CDB=∠DBE=∠BDE,所以BE=DE=AE,所以AB=2DE,所以AB=BC,即可得出B、D选项正确.本题利用三角形的中位线定理、角平分线的性质和平行线的性质推出等角,得到等腰三角形是解题的关键.17.【答案】C【解析】解:∵在菱形ABCD中,对角线AC、BD相交于点O,∴∠BOC=90°,∵E为AB的中点,且OE=4,∴BC=2EO=8,∴菱形ABCD的周长是:8×4=32.故选:C.利用菱形的性质得出∠BOC=90°,再利用直角三角形斜边上的中线等于斜边的一半进而得出BC的长,即可得出菱形的周长.此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半等知识,得出BC的长是解题关键.18.【答案】D【解析】【分析】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.根据三角形中位线定理计算即可.【解答】解:∵D,E分别为AC,BC的中点,∴AB=2DE=6,故选:D.19.【答案】A【解析】【分析】此题主要考查了等腰梯形的性质,三角形的中位线定理和菱形的判定.用到的知识点:等腰梯形的两底角相等;三角形的中位线平行于第三边,并且等于第三边的一半;四边相等的四边形是菱形.根据等腰梯形的性质及中位线定理和菱形的判定,可推出四边形为菱形.【解答】解:如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,求证:四边形EFGH是菱形.证明:连接AC、BD.∵E、F分别是AB、BC的中点,∴EF=AC.同理,FG=BD,GH=AC,EH=BD,又∵四边形ABCD是等腰梯形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形.故选A.20.【答案】C【解析】解:∵AD=OD,BE=OE,∴DE是△OAB的中位线,∴AB=2DE=4,故选:C.根据三角形的中位线定理即可解决问题.本题考查三角形中位线定理,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】B【解析】【分析】本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键,根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.【解答】解:∵EF是△ABD的中位线,EF=3,∴AB=2EF=6,又∵AB=CD,∴CD=6.故选B .22.【答案】D【解析】解:∵点E、F分别是AB、AC的中点,EF=4,∴BC=2EF=8,∵四边形ABCD是菱形,∴菱形ABCD的周长是:4×8=32.故选:D.由点E、F分别是AB、AC的中点,EF=4,利用三角形中位线的性质,即可求得BC的长,然后由菱形的性质,求得菱形ABCD的周长.此题考查了菱形的性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.23.【答案】D【解析】解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,DF=BC,FE=AB,∴△DEF的周长==17(cm),故选:D.根据三角形中位线定理分别表示出DE、EF、DF,根据三角形的周长公式计算即可.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.24.【答案】C【解析】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选C.作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.25.【答案】A【解析】【分析】本题考查了旋转的性质、三角形的中位线的性质和全等三角形的性质和判定,根据三角形中位线和线段中点得出DE=BC,AE=AC,推出AE=DE,根据旋转的性质得出全等,推出AE=EC,DE=EF,推出AC=DF,根据矩形的判定推出即可.【解答】解:矩形,理由是:∵AC=BC,点D. E分别是边AB、AC的中点,∴DE=BC,AE=AC,∵AC=BC,∴AE=DE,∵将△ADE绕点E旋转180∘得△CFE,∴△ADE≌△CFE,∴AE=CE,DE =EF,∴四边形ADCF是平行四边形,∵AE=CE,DE =EF,AE =DE,∴AE=CE=DE=EF,∴AC=DF,∴四边形ADCF是矩形,故选A.26.【答案】B【解析】【分析】本题考查了三角形的中位线定理,根据三角形的中位线定理可得顺次连接矩形各边中点得到的四边形是菱形.【解答】解:顺次连接矩形各边中点得到的四边形是菱形,故选B.27.【答案】B【解析】解:∵DE是△ABC的中位线,∴DE=BC,∵BC的长为3cm,∴DE=1.5.故选B.三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;本题利用定理计算即可.本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.28.【答案】D【解析】解:∵点E,F分别是AB,AC的中点,∴BC=2EF=8∵四边形ABCD是菱形∴AB=BC=CD=AD=8∴菱形ABCD的周长=32故选:D.由三角形的中位线定理可得BC=8,由菱形的性质可求菱形ABCD的周长.本题考查菱形的性质,三角形的中位线定理,掌握菱形的性质是解决问题的关键.29.【答案】D【解析】【分析】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的值是解题的关键.连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选:D.30.【答案】A【解析】【分析】本题考查的是三角形中位线的性质及菱形的周长公式,易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【解答】解:∵E是AC中点,EF BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=4,∴菱形ABCD的周长是4×4=16.故选A.31.【答案】B【解析】【分析】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.如图:根据三角形的中位线定理可得,,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.解:如图,矩形ABCD中,E、F、G、H分别是AB、BC、CD、AD边的中点,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选B.32.【答案】A【解析】【分析】本题考查了菱形的性质——对角线互相平分,三角形的中位线平行于第三边并且等于第三边的一半,熟记菱形的性质与三角形中位线定理是解题的关键.根据已知可得菱形性质和直角三角形斜边上的中线等于斜边的一半,可以求得菱形的边长即BC=2OM,从而不难求得其周长.【解答】解:∵菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,∴根据三角形中位线定理可得:BC=2OM=10,则菱形ABCD的周长为40cm.故选A.33.【答案】B【解析】【分析】本题考查了三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.由翻折可得∠PDE=∠CDE,由中位线定理得DE∥AB,所以∠CDE=∠DAP,进一步可得∠APD=∠CDE.【解答】解:∵△PED是△CED翻折变换来的,∴∠CDE=∠EDP=48°,∵D,E分别为△ABC的AC,BC边的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠APD=∠PDE=48°.故选B.34.【答案】A【解析】【分析】本题考查的是勾股定理,三角形中位线的性质有关知识,连接AR,根据勾股定理得出AR的长不变,根据三角形的中位线定理得出EF=AR,即可得出答案.解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=AR,即线段EF的长始终不变.故选A.35.【答案】B【解析】解:∵平行四边形的对角线互相平分,∴OC=OA,又∵点E是BC的中点,∴OE是△ABC的中位线,∴AB=6cm.故选:B.先利用平行四边形的对角线互相平分,可知O是AC的中点,再结合E是BC中点,可得OE是△ABC的中位线,利用中位线定理,可求出AB.此题考查的知识点:(1)平行四边形的对角线互相平分;(2)三角形的中位线平行且等于底边的一半.36.【答案】C【解析】【分析】此题考查了矩形的性质以及三角形中位线的性质有关知识,由矩形ABCD中,对角线AC和BD交于点O,OE平分∠DOC,OE⊥CD,OE∥BC∥AD,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD、CD的长,进而解答即可.【解答】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,AD∥BC,∠BCD=90°,∵OE平分∠DOC,∴OE⊥CD,∴OE∥BC∥AD,∴OE是△ACD的中位线,∵OE=3,∴AD=2OE=2×3=6.∵CE=2,∴CD=4,∴矩形ABCD的周长=20,故选C.37.【答案】D【解析】解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×40=80(cm).故选:D.判断出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2OD.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.38.【答案】C【解析】【分析】本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形,因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.39.【答案】B【解析】解:因为矩形的对角线相等,根据三角形中位线定理可得:顺次连接矩形各边中点所得的四边形是菱形.故选:B.根据三角形的中位线定理可以证明:顺次连接四边形各边中点所得四边形是平行四边形.如果该四边形的对角线相等,又可以证明所得的平行四边形的一组邻边相等,即是菱形.因为矩形的对角线相等,所以顺次连接矩形各边中点所得的四边形是菱形.能够运用三角形的中位线定理证明下列命题:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.40.【答案】D【解析】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其必为平行四边形,若邻边互相垂直且相等,那么所得四边形是正方形.本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.。

人教版八年级数学下册《三角形的中位线定理》练习.docx

人教版八年级数学下册《三角形的中位线定理》练习.docx

初中数学试卷桑水出品《三角形的中位线定理》练习一、选择——基础知识运用1.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.142.如图,在△ABC中,AC=8,BC=12,AF交BC于F,E为AB的中点,CD平分∠ACB,且CD ⊥AF,垂足为D,连接DE,则DE的长为()A.2 B.52C.3 D.43.如图,△ABC的中线BE与CD交于点G,连接DE,下列结论不正确的是()A.点G是△ABC的重心B.DE∥BCC.△ABC的面积=2△ADE的面积D.BG=2GE4.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P 在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关5.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2二、解答——知识提高运用6.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN= 13 AC。

7.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD 的延长线相交于G、H.求证:∠AHF=∠BGF。

8.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.则四边形AEFD是什么特殊的四边形?请说明理由。

9.如图,在△ABC中,E,F分别为AB,BC边上的中点,G,H是AC的三等分点,EG,FH的延长线交于点D.求证:①DG:EG=2:1;②四边形ABCD是平行四边形。

(完整版)三角形的中位线专题训练

(完整版)三角形的中位线专题训练

三角形的中位线例题精讲例1如图1,D、E、F分别是△ABC三边的中点.G是AE的中点,BE与DF、DG分别交于P、Q两点.求PQ:BE的值.例2如图2,在△ABC中,AC>AB,M为BC的中点.AD是∠BAC的平分线,若CF⊥AD交AD的延长线于F.求证:()12MF AC AB=-.例3如图3,在△ABC中,AD是△BAC的角平分线,M是BC的中点,ME⊥AD交AC的延长线于E.且12CE CD=.求证:∠ACB=2∠B.FED CBA图1 图2 图3 图4 图5巩固基础练1. 已知△ABC周长为16,D、E分别是AB、AC的中点,则△ADE的周长等于( )A .1 B. 2 C. 4 D. 82. 在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么△PDE面积是△ABC'面积的( )A .12B.13C.14D.183. 如图4,在四边形ABCD中,E、F分别为AC、BD的中点,则EF与AB+CD的关系是( )A .2EF AB CD=+ B. 2EF AB CD>+ C. 2EF AB CD<+ D. 不确定4. 如图5,AB∥CD,E、F分别是BC、AD的中点,且AB=a,CD=b,则EF的长为.图6 图7 图8 图9 图105. 如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,若∠DAC=200,∠ACB=600,则∠FEG=.6.(呼和浩特市中考题)如图7,△ABC的周长为1,连接△ABC三边的中点构成第二个三角,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为.7. 已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线长.8. 如图8,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE.9. 如图9,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD.求证:CD=2EC.10.如图10,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点.求证:(1)DE∥AB; (2)()12DE AB AC=+.提高过渡练1. 如图11,M、P分别为△ABC的AB、AC上的点,且AM=BM,AP=2CP,BP与CM相交于N,已知PN=1,则PB的长为( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10,则MD的长为( )A. 10B. 8 C .6 D. 53. 如图13,△ABC是等边三角形,D、E、F分别是AB、BC、AC的中点,P为不同于B、E、C的BC上的任意一点,△DPH为等边三角形.连接FH,则EP与FH的大小关系是( )A. E P>FHB. EP=FHC. EP<FHD.不确定4. 如图14,在△ABC中,AD平分∠BAC,BD⊥AD,DE∥AC,交AB于E,若AB=5,则DE的长为.5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.图11 图12 图13 图14 图156. 已知在△ABC中,∠B=600,CD、AE分别为AB、BC边上的高,DE=5,则AC的长为.7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.图16 图17 图18 图19 图20顶级超强练1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27 图28。

三角形中位线定理的运用例谈(Word版_含解析、点评和练习设计)

三角形中位线定理的运用例谈(Word版_含解析、点评和练习设计)

赵中八数下册专题复习:三角形中位线定理的运用例谈 第 1页(共 14页) 第 2页 (共 14页)专题复习:三角形中位线定理的运用例谈三角形的中位线定理在平面几何中比较特殊,它既反映三角形的中位线与三角形边的位置关系,又有与三角形边的数量关系的规律性结论;在一些所谓的几何难题中常见它的身影,而三角形的中位线往往能起牵线搭桥甚至是关键性的作用;下面我精选一部分“含”三角形的中位线的几何解答题,让我们共同来探究、解析、训练.知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1.三角形三条中位线围成的三角形与原三角形在某些数量上的关系⑴.周长关系如图点D E F 、、分别是ABC的三边BC CA AB 、、的中点,请探究DEF的周长与ABC的周长的关系? 分析: 点D E F 、、分别是ABC的三边BC CA AB 、、的中点,可知:,,,111EF BC DE AB DF AC 222===∴()1EF DE DF BC AC AB 2++=++ 所以三角形的三条中位线围成的三角形的周长是原三角形的周长的一半. 练习:以上面的图为例,若DEF的周长为16cm ,则ABC的周长为 .⑵.面积关系 如图点D E F 、、分别是ABC的三边BC CA AB 、、的中点,请探究DEF的面积与ABC的面积关系?略析:根据三角形中位线定理可以得出,,,,111EF BC DF AC DE AB EF BC DF AC DE AB 222=== ;,再利用线段中点的定义、平行线性质、平行四边形的性质等可以进一步推出DEF、AFE、FBD、DEC是全等的,故它们的面积是相等的,则ABC S=DEF 4S. 所以三角形的三条中位线围成的三角形的面积是原三角形的面积的14. 说明:今后我们学习了相似三角形的性质后,这个结论的推导就简单多了.练习:以上面的图为例,若ABC的面积为216cm ,则DEF的面积为 .我们把它简称为中点四边形..中点四边形的特殊性主要是看原四边形的对角线的特征,分为下面几种情况:图(1)图(2)图(3)图(4)赵中八数下册专题复习:三角形中位线定理的运用例谈 第 3页(共 14页) 第 4页 (共 14页)⑴.原四边形的对角线既不相等也不垂直,其中点四边形是个一般的平行四边形.如图⑴,点E F G H 、、、分别是四边形ABCD 的四边的中点,试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:,EH BD GF BD EH GF ∴同理:HG EF ;故中点四边形EFGH 的形状是平行四边形. (还有其它方法证明)⑵.原四边形的对角线相等但不垂直,其中点四边形是个菱形. 如图⑵,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD =,试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,11EH BD EF AC EH EF 22==∴=;故中点四边形EFGH 是个菱形.⑶.原四边形对的角线垂直但不相等,其中点四边形是个矩形. 如图⑶,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD ⊥试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,EH BD EF AC 可以进一步推得HEF 90∠= ,故中点四边形EFGH 是个矩形.⑷.原四边形对的角线既垂直又相等,其中点四边形是个正方形. 如图⑷,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD AC BD =⊥,,试探究中点四边形EFGH 的形状.略析:由⑵和⑶的方法推理易得点四边形EFGH 既是菱形又是矩形,故中点四边形EFGH 是个正方形. (还有其它方法证明)练习:1.顺次连结平行四边形四边中点所构成的中点四边形的形状是 ;2.顺次连结矩形四边中点所构成的中点四边形的形状是 ;3.顺次连结菱形四边中点所构成的中点四边形的形状是 ;4.顺次连结正方形四边中点所构成的中点四边形的形状是 ;5.顺次连结对角线互相垂直等腰梯形的四边中点所构成的中点四边形的形状是 .3、三角形的中位线与梯形⑴.连结梯形两腰中点的线段(梯形的中位线)与两底的关系.如图,梯形ABCD 中,AD BC ,E F 、分别是两腰AB DC 、的中点,请探究EF 与AD BC 、的关系.分析:本题关键是把梯形的中位线转化成三连结AF 延长交BC 的延长线于G 点.根据题中条件易证ADF≌GCF,得:AF GF CG AD ==,吧 在ABG中,由,AE BE AF GF ==可以推出,1EF BG EF BG 2= .可以进一步得出:(),,1EF BC EF AD EF AD BC 2=+ .赵中八数下册专题复习:三角形中位线定理的运用例谈 第 5页(共 14页) 第 6页 (共 14页)结论:梯形的中位线平行于两底,并且等于两底和的一半.⑵.连结梯形两对角线中点的线段与两底的关系.如图,梯形ABCD 中,,AD BC BC AD > ,E F 、分别是两对角线AC BD 、的中点,请探究EF 与AD BC 、的关系.分析:本题关键是把梯形的中位线转化成三角形的中位线来解决.连结DF 延长交BC 于M 点.根据题中条件易证ADF≌CMF,得:DF MF CM AD ==,. 在D BM中,由,DE BE DF MF ==可以推出,1EF BM EF BM 2= .可以进一步得出:(),,1EF BC EF AD EF BC AD 2=- .结论:连结梯形两对角线中点的线段平行于两底,并且等于两底差的一半.练习:1.若一梯形的高为h ,其中位线长为m ,则此梯形的面积为 .2.以上面的⑵题为例的条件的基础上,若增添梯形ABCD 的中位线长为14cm EF 8cm =,,求梯形ABCD 的两底AD BC 、的长分别是多少?4.巧添三角形的中位线来破题添三角形中位线是几何图形辅助线比较常见的辅助线.已知三角形边上的中点,直接连结构成中位线是最常见的添中位线的方式,也是同学们容易想到的,这里不举例;下面这些例子添三角形中位线的途径有些有一定的技巧性,希望能给同学们从中得到一些启发. ⑴.补全三角形,得到三角形的中位线.例.如图E F G H 、、、分别是AB BD CD CA 、、、的中点,求证:四边形EFGH 是平行四边形.分析:本题求证的是四边形EFGH,如果我们连结AD 或BC 问如图,当连结BC 后,在ABC 和DBC,由于 分别是AB BD CD CA 、、、,;,.,11HE BC GF BC HE BC GF BC HE GF HE GF 22==∴= .故四边形EFGH 是平行四边形.⑵.再取中点,连成中位线例1. 如图,D 为△ABC 的边AB 的中点,,1CE AC OE 23==,求OB 的长?分析:在三角形的一边上有一中点,根据条件很容易再取一中点来连结 而成三角形的中位线来解决问题.如图,根据本题的条件若取出线段AE 的中点F ,容易得出 E F 、是线段AC 的三等分点,E F 、就分别是线段CF AE 、 的中点,连结DF 后,在ABE中,又由于D 为AB 的中点, 根据三角形的中位线定理可得:,BE 2DF DF BE = ;因为已 得出E 为线段CF 的中点,根据平行线等分线段(属于选学内容)可以得出O 为线段CD 的中点,即OE 为CDF的中位线,所以,DF 2OE BE 2DF 4OE 8=∴===; 所以.OB BE OE 826=-=-=例2.四边形ABCD 中,对角线AC=BD,E 、F 分别为AB 、DC 的中点,点O 为AC 、BD 的交点,M 、N 为EF 分别与DB 、AC 的交点,求证:OM=ONADBCEOFAEMNO赵中八数下册专题复习:三角形中位线定理的运用例谈 第 7页(共 14页) 第 8页 (共 14页)分析:本题的E F 、分别为AB DC 、的中点,但并非为某三角形和梯形 (四边形ABCD 没有告诉是梯形)的中位线,本题的E F 、分别为AB DC 、的中点,若化在ABC 和ABC来看,它们有一公共边,若 在公共边BC 取一中点G ,连结GE GF 、(见图示),此时GE GF 、就 分别是ABC 和ABC的中位线,根据三角形的中位线定理可得:且,11GE AC GF BD 22==;又AC BD GE GF GFE GEF =∴=∴∠=∠;∵,GE AC GF BD∴,;ONE GEF OMF GFE ONE OMF OM ON ∠=∠∠=∠∴∠=∠∴=.例3.M 、N 分别为AD 、BC 的中点,且AB=CD,求证:∠1=∠2分析:本题要证明的是两个角相等,而两个角相等的直接条件没有,再加上在图形上两个角的位置上有比较分散,所以我们应思考把分散位置上的12∠∠、转化在一起,很容易联想到由平行线来帮忙.由本题有线段中点的条件,所以可以尝试再取一中点连成三角形的中位线来提供平行线. 略证:如图,连结AC ,取出线段AC 的中点E . 又M N 、分别是线段AD BC 、的中点,,,NE CD ME AB NE CH ME BC 11NE CD ME AB22AB CD NE ME EMN ENM∴===∴=∴∠=∠ 即,,NE CH ME BC1ENM 2EMN 12∴∠=∠∠=∠∴∠=∠点评:本题在添加辅助线上有些技巧性,但如果能想到把位置分散的12∠∠、“搬”到同一个三角形中且要使它们相等来解决问题,根据本题提供的条件这样的辅助线是应该想到的.另外例2和例3都有一个都一个共同的特点,要把问题转化到同一个三角形中,关键要找到或构造共同的边的中点,例2的公共边BC 的中点G 和例3构造的公共边AC (对角线)的中点E .⑶.挖出隐含的中点构成中位线.例1.如图,,ME AB ME AB = ,D 为线段EC 的中点,A M D 、、三点共线求证:四边形ABCD 是梯形分析:证明四边形ABCD 是梯形当然关键是证明有且只有一组对 边平行,根据本题提供的条件就是要证明AD BC .提供平行线除了以前常用的方法,现在三角形的中位线定理又使我们多了一条途径.根据本题的条件已经有了D 为线段EC 的中点,若再找一个且是同一个三角形边的中点,连结就有了三角形中位线,有些中点是明显的,有的中点却是“隐藏”在图形中,需要用平时积累的知识使它现身.本题的,ME AB ME AB = 可以得出:四边形ABM E 是平行四边形, 平行四边形的对角线是互相平分的,若我们连结对角线BE 与对角线AM 的交点O 就是线段BE 的中点,在EBC中,根据三角形的中位线定理可以得出,OD BC AD BC 即.G BA D N MH 21EADCB MEO赵中八数下册专题复习:三角形中位线定理的运用例谈 第 9页(共 14页)第 10页 (共 14页)例2. △ABC 中,AD 平分∠BAC,CD ⊥AD,E 为BC 的中点,求证:DE ∥AB分析:本题和例1的思路是一样的,关键是挖出隐含的中点,从而来使 问题得以解决.如图若我们延长CD 交AB 于带点F ,根据题中条件容易证得AFD ≌ADC ,所以DFDC =,即D 为CF 的中点;又E 为BC 的中点,根据三角形的中位线定理可以得出,DE FB DE AB 即.例3.BD 、CE 分别平分∠ABC 、∠ACB ,AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G 求证:GF ∥BC分析:本题和例1、例2的思路是一样的,关键是挖出隐含的中点,从而来使问题得以解决.如图若我们分别延长AG AF 、交BC 于点M N 、,根据题中条件容易证得 AGC ≌MGC,所以AG MG =,即G 为AM 的中点;同理可以得到F 为AN 的中点,根据三角形的中位线定理可以得出,DG MN DG BC 即.点评:隐含在图形中的中点往往是我们平时容易忽视的,但挖出这些“隐藏的中点”往往有可能是一道题破题的一个关键环节;我们同学有的虽然有这方面的知识积累,但却没有这方面的意识,这也难以找到破题的的途径.根据上面三道例题来看,隐藏的中点要注意平行四边形(包括特殊的平行四边形)的对角线互相平分、角的平分线与垂线相结合的图形交点、等腰三角形的三线合一、平行线等分线段、中垂线等等知识点.练习:1. 如图,AD 、BE 、CF 分别是△ABC 三边中线交于点O ,FM ∥BE ,EM ∥BA. 求证:四边形ADCM 是平行四边形.2.如图,ABC中,D 为边BC 上的一点,中线BE 与线段AD 交于的F ,且1DF AD =,求:BD DC 的值?如图正方形ABCD 的对角线AC BD 、交于点O ,BAC ∠的平分线交BD 于点F .求证:1OF CE 2= 5.三角形中位线的实际应用举例例.A B 、两点被池塘隔开,现在要测出A B 、两点间的距离,但又无法直接去测量,怎么办? 略解: 在池塘外的空地上取一点C ,用绳子“连结”CA CB 、CA CB 、的中点分别为M N 、,量出M N 、之间的距离,此时AB 2MN =根据是三角形的中位线定理. (见右图图解) 练习: 对角线的长?请画出示意图进行DE CA FA B C F G E DON M EA B赵中八数下册专题复习:三角形中位线定理的运用例谈第 11页(共 14页)第 12页(共 14页)课外选练:1、如图,等腰梯形ABCD的AD BC,若E F G H、、、分别是AD BD BC AC、、、的中点,请判断四边形EFGH的形状,并说明理由.2、如图ABC中,EF为三角形的中位线,AD是BC边上的中点,点O为EF和AD的交点.求证:EF和AD互相平分.3、如图,点D E F、、分别是ABC的三边AB AC BC、、的中点,是BC的高。

三角形中位线练习题

三角形中位线练习题

三角形的中位线练习题三角形中位线定义:.A符号语言:在△ ABC 中, D 、E 分别是 AB 、AC 的中点 , E则:线段 DE 是△ ABC 的__D__,BC三不一样点 :①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个极点。

同样点: 都是一条线段,都有三条。

三角形中位线定理:.ADEBC符号语言表述: ∵ DE 是△ ABC 的中位线(或 AD=BD,AE=CE) ∴ DE// 12 BC练习1.连结三角形 ___________的线段叫做三角形的中位线. 2.三角形的中位线 ______于第三边,而且等于 _______. 3.一个三角形的中位线有_________条.4. 如图△ ABC 中, D 、 E 分别是 AB 、 AC 的中点,则线段 CD 是△ ABC 的___, 线段 DE 是△ ABC _______5、如图, D 、 E 、 F 分别是△ ABC 各边的中点( 1)假如 EF = 4cm ,那么 BC =__ cm 假如 AB = 10cm ,那么 DF =___ cm( 2)中线 AD 与中位线 EF 的关系是___6.如图 1 所示, EF 是△ ABC 的中位线,若 BC=8cm ,则 EF=_______cm .(1)(2)(3) (4)7.三角形的三边长分别是3cm , 5cm , 6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在 Rt △ ABC 中,∠ C=90°, AC=?5, ?BC=?12, ?则连结两条直角边中点的线段长为 _______. 9.若三角形的三条中位线长分别为2cm , 3cm ,4cm ,则原三角形的周长为( )A . 4.5cm B. 18cmC.9cmD. 36cm10.如图 2 所示, A ,B 两点分别位于一个池塘的两头,小聪想用绳索丈量 A ,B 间的距离,但绳索不够长,一位同学帮他想了一个想法:先在地上取一个能够直接抵达 A ,B 的点 C ,找到 AC ,BC 的中点 D ,E ,而且测出 DE的长为 10m ,则 A , B 间的距离为( )A . 15mB. 25mC. 30mD. 20m11.已知△ ABC 的周长为 1,连结△ ABC 的三边中点组成第二个三角形,?再连结第二个三角形的三边中点组成第三个三角形,依此类推,第2010 个三角形的周长是( )A 、1 、 1C 、1D 、1B20082009200820092212.如图 3 所示,已知四边形 ABCD , R , P 分别是 DC , BC 上的点, E ,F 分别是 AP , RP 的中点,当点 P 在 BC上从点 B 向点 C 挪动而点 R 不动时, 那么以下结论建立的是( )A .线段 EF 的长渐渐增大B .线段 EF 的长渐渐减少C .线段 EF 的长不变D.线段 EF 的长不可以确立13.如图 4, 在△ ABC 中, E ,D , F 分别是 AB , BC , CA 的中点, AB=6, AC=4,则四边形 AEDF?的周长是( )A . 10B . 20C . 30D .4014.如下图, □ ABCD 的对角线 AC ,BD 订交于点 O , AE=EB ,求证: OE ∥BC .15.已知矩形 ABCD 中, AB=4cm , AD =10cm ,点 P 在边 BC 上挪动,点E 、F 、G 、 H分别是 AB 、 AP 、 DP 、 DC 的中点 . 求证: EF+GH =5cm ;16.如下图,在△ ABC 中,点 D 在 BC 上且 CD=CA ,CF 均分∠ ACB ,AE=EB ,求证:EF= 1BD .217.如下图,已知在 □ABCD 中, E ,F 分别是 AD , BC 的中点,求证:MN ∥BC .18.已知:如图,四边形ABCD 中, E、F、 G、 H 分别是 AB 、 BC 、 CD、DA 的中点.求证:四边形EFGH 是平行四边形.D19.如图,点 E, F, G, H 分别是 CD, BC, AB , DA 的中点。

中位线定理的应用训练

中位线定理的应用训练

中位线定理的应用训练一.选择题(共5小题)1.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AC=9,DM =2,则AB等于()A.4B.5C.6D.82.如图,在△ABC中,∠ABC=90°,AB=4,BC=3,若DE是△ABC的中位线,延长DE,交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.4B.C.D.53.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.10B.12C.14D.154.如图,在△ABC中,M是BC边的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A.8B.10C.12D.145.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB 且2EF=AB;②∠BAF=∠CAF;③S四边形ADEF=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.4二.填空题(共2小题)6.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=2,则AC 的长等于.7.如图,在△ABC中,CD平分∠ACB,AD⊥CD,垂足为D,E为AB的中点,连接DE,AC=15,BC=27,则DE=.三.解答题(共42小题)8.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,写出线段AB、AC、EF的数量关系,并证明你的结论.9.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC 中点.求DE的长.10.已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.11.如图,CD是△ABC的角平分线,AE⊥CD于E,F是AC的中点,(1)求证:EF∥BC;(2)猜想:∠B、∠DAE、∠EAC三个角之间的关系,并加以证明.12.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=CF.13.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.14.如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM.15.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.16.如图,已知AO是△ABC的∠A的平分线,BD⊥AO的延长线于D,E是BC的中点.求证:DE=(AB﹣AC)17.在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由.(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度.(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系.18.已知:在△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.求证:∠CEF=∠ECD.19.如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.20.如图,在△Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.21.如图,在△ABC中,D,E分别是AB,AC的中点,△ABC的角平分线AG交DE于点F,若∠ABC=70°,∠BAC=54°,求∠AFD的度数.22.如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:点D、E分别是△ABC的边AB、AC的中点.求证:DE∥BC,DE=BC.23.如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).24.(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.25.已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,AC=BD,E,F分别是四边形ABCD边AD、BC的中点,EF分别交AC,BD于G,H,求证:∠OGH=∠OHG.26.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.27.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.28.如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.29.已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G分别是BC、AD、CD 的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.30.如图,在△ABC中,AB=4,AC=3,AD、AE分别是△ABC角平分线和中线,过点C 作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.31.如图,△ABC中,AD平分∠BAC,AD⊥BD,E为BC的中点.(1)求证:DE∥AC;(2)若AB=4,AC=6,求DE的长.32.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.33.如图,点D、E、F分别是AC、BC、AB中点,且BD是△ABC的角平分线.求证:BE =AF.34.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.35.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.36.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.试说明:(1)DE∥BC;(2)DE=(BC﹣AC).37.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,求∠PFE的度数.38.(1)如图1,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N.求证:∠BME=∠CNE;(提示:取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,F是BC边的中点,D是AC边上一点,E是AD的中点,直线FE交BA的延长线于点G,若AB=DC=2,∠FEC=45°,求FE的长度.39.如图,在四边形ABCD中,BC、AD不平行,且∠BAD+∠ADC=270°,E、F分别是AD、BC的中点,已知EF=4,求AB2+CD2的值.40.在△ABC中,AD平分∠BAC.BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.(1)求证:AE=DE;(2)若AB=8,求线段DE的长.41.△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).42.如图,△ABC中,M为BC的中点,AD为∠BAC的平分线,BD⊥AD于D.(1)求证:DM=(AC﹣AB);(2)若AD=6,BD=8,DM=2,求AC的长.43.如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.44.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H 分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.45.已知,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,求四边形EFGH的周长.46.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.47.△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.48.如图,在四边形ABCD中,E、F分别是AD、BC的中点,连接FE并延长,分别交CD 的延长线于点M、N,∠BME=∠CNE,求证:AB=CD.49.如图,在四边形ABCD中,E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.求四边形EFGH的周长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的中位线定理练习题 2、如图2所示,A, B 两点分别位于一个池塘的两端,小聪想用绳子测量A, B 间的距离,
但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B 的点C, 找到AC, BC 的中点D, E,并且测出DE 的长为10m,则A, B 间的距离为()
A. 15m B ・ 25m C ・ 30m D ・ 20m
D, F 分别是AB, BC, CA 的中点,AB=6, ACM,则四边形AEDF
的周长是()
4、三角形的三边长分别是3cm, 5cm, 6cm,则连结三边中点所围成的三角形的周长是
_____________ c m.
6、在RtAABC 中,ZC 二90° , AO 5, BC= 12,则连结两条直角边中点的线段长为 ___________
7、若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()
A. 4.5cm
B. 18cm
C. 9cm
D. 36cm
8、 如图,在平行四边形ABCD 中,AB=2AD, ZA=60°, E, F 分别是AB, CD 的中点,
且EF=lcm,那么对角线BD 二 _________ c m.
9、 如图,在四边形ABCD 中,P 是对角线BD 的中点,E, F 分别是AB, CD 的中点,AD=BC, ZPEF=18°,则ZPFE 的度数是 ____________ ・
10、 如图所示,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将AABE 向上翻 折,点A 正好落在CD±的点F,若△FDE 的周长为8, AFCB 的周长为22,则FC 的长 为 1、 、填空选择题:
如图1所示,EF 是AABC 的中位若 BC=8cm,则 EF 二 3、如图3,在AABC 中,E, A. 10
B. 20
C. 30
D. 40
5、三角形三条中位线的长分别为3、4、 5,则此三角形的面积为 __________
C

cm.
11、(2011・黔西南州)如图,小红作出了边长为1的第1个正三角形△A]BiCi,算出了正
AA I B I C I的面积,然后分别取△ AjBiCi三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△ A2B2C2的面积,用同样的方法作出了第3个正△ A3B3C3,算出第3个正△ A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△AnBnCn的面
12.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四
边形EFGH是平行四边形.
13 (2006*肇庆)如图,在AABC中,AB二AC,点D, E分别是AB, AC的中
点,F是BC
延长线上的一点,且CF二丄BC.
2
(1)求证:DE二CF; (2)求证:BE=EF.
C。

相关文档
最新文档