人教版九年级数学下册 期中测试卷含答案

合集下载

人教版九年级数学下册期中考试题及答案【完整版】

人教版九年级数学下册期中考试题及答案【完整版】

人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。

2024年最新人教版初三数学(下册)期中试卷及答案(各版本)

2024年最新人教版初三数学(下册)期中试卷及答案(各版本)

2024年最新人教版初三数学(下册)期中试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,2),则下列结论正确的是()A. a > 0B. b = 2aC. c = aD. 顶点坐标为(1,2)3. 若直线y = kx + b(k ≠ 0)经过点(2,3)和(4,7),则该直线的斜率k等于()A. 1B. 2C. 3D. 44. 在直角坐标系中,点P(m,n)关于原点O的对称点坐标为()A. (m,n)B. (m,n)C. (m,n)D. (m,n)二、填空题(每题5分,共20分)5. 已知等差数列{an}中,a1 = 3,d = 2,则a5 = _______。

6. 在△ABC中,若∠A = 90°,AB = 6cm,AC = 8cm,则BC = _______cm。

7. 若函数y = mx + n(m ≠ 0)的图像经过点(1,3)和(2,5),则该函数的解析式为y = _______。

8. 已知圆的方程为(x 3)^2 + (y + 4)^2 = 25,则圆心坐标为_______,半径为_______。

三、解答题(每题10分,共30分)9. 解方程组:{ 2x y = 4, 3x + 2y = 7 }。

10. 已知等差数列{an}中,a1 = 5,d = 3,求前10项的和S10。

11. 在△ABC中,若∠A = 60°,AB = 5cm,AC = 7cm,求BC的长度。

四、证明题(每题10分,共20分)12. 证明:对于任意实数a和b,都有(a + b)^2 ≥ 4ab。

13. 已知等差数列{an}中,a1 = 2,d = 3,证明:对于任意正整数n,都有an > 0。

2023年人教版九年级数学下册期中测试卷【附答案】

2023年人教版九年级数学下册期中测试卷【附答案】

2023年人教版九年级数学下册期中测试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.下列判断正确的是( )A .带根号的式子一定是二次根式B .5a 一定是二次根式C .21m +一定是二次根式D .二次根式的值必定是无理数4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠10.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)1.计算12763-的结果是__________.2.因式分解:(x+2)x ﹣x﹣2=_______.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为__________.5.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数24 72 18 x(人)(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、A6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、(x+2)(x﹣1)3、04、135、) 120016、2.5×10-6三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)k≤58;(2)k=﹣1.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)6 (2)1440人6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

人教版九年级数学下册期中试卷及答案【完整版】

人教版九年级数学下册期中试卷及答案【完整版】

人教版九年级数学下册期中试卷及答案【完整版】班级: 姓名:一、选择题(本大题共 10 小题,每题 3 分,共 30 分)1. ﹣3 的绝对值是( )1 A. ﹣3 B 3 C --D.132.关于二次函数y = 2x 2 + 4x 一 1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在 y 轴的右侧C .当 x < 0 时, y 的值随 x 值的增大而减小D . y 的最小值为-33.如果a 一 b = 2 3 ,那么代数式 (a 2 + b 2 一 b) . a 的值为( )2a a 一 bA . 3B .2 3C .3 3D .4 34.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百 馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是: 有 100 个和尚分 100 个馒头,如果大和尚 1 人分 3 个,小和尚 3 人分 1 个,正 好分完,试问大、小和尚各多少人?设大和尚有 x 人,依题意列方程得( )A . x + 3(100 一 x )=100B .3x + 100 一 x =1003 3 C . x 一 3 (100 一 x )= 100 D .3x 一 100 一 x = 100 3 35.若点A(x , 一6) ,B(x , 一2) ,C(x , 2) 在反比例函数y = 12的图像上,则x , 1 2 3 x 1x ,x 的大小关系是( )2 3A .x < x < xB .x < x < xC .x < x < xD .x < x < x1 2 3 2 1 3 2 3 1 3 2 16.如图是由 6 个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( ). .3A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30 °B.北偏东80 °C.北偏西30 °D.北偏西50 °48.如图, A,B 是反比例函数y=- 在第一象限内的图象上的两点,且A,B 两点x的横坐标分别是2 和4,则△OAB的面积是( )A .4B .3C .2D .19.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM = DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()1A.OM = AC B.MB = MO C.BD AC D.AMB = CND 210.如图,DE∥FG∥BC,若DB=4FB ,则 EG 与GC 的关系是( )5A.EG=4GC B.EG=3GC C.EG=- GC D.EG=2GC2二、填空题(本大题共6 小题,每小题3 分,共18 分)1.4 的算术平方根是.2.分解因式:2x3﹣6x2+4x = .3.已知抛物线y = x2 x 1 与x 轴的一个交点为(m,0) ,则代数式m²-m+2019 的值为.4.如图,点A 在双曲线y= 3x上,且AB∥x轴,C、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.5.如图所示,在四边形ABCD 中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.6.菱形的两条对角线长分别是方程x214x + 48 = 0 的两实根,则菱形的面积为.三、解答题(本大题共6 小题,共72 分)1.解分式方程:xx 1﹣1=2x3x 32.先化简,再求值(—3+m﹣2)÷m2 2m +1;其中m= 2 +1. m +2m +2上,点B 在双曲线y=x13.如图,在Rt△ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F,求∠F的度数.4.如图,已知P 是⊙O外一点,PO 交圆O 于点C,OC=CP=2,弦AB⊥OC,劣弧AB 的度数为120°,连接PB.(1)求BC 的长;(2)求证: PB 是⊙O的切线.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图 1 中a 的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9 人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.6.山西特产专卖店销售核桃,其进价为每千克40 元,按每千克60 元出售,平均每天可售出100 千克,后来经过市场调查发现,单价每降低2 元,则平均每天的销售可增加20 千克,若该专卖店销售这种核桃要想平均每天获利2240 元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共 10 小题,每题3 分,共30 分)1、B2、D3、A4、B5、B6、D7、A8、B9、A10、B二、填空题(本大题共6 小题,每小题3 分,共18 分)1、2.2、2x(x﹣1)(x﹣2).3、20204、25、40 °6、24三、解答题(本大题共6 小题,共72 分)1、分式方程的解为x=1.5.m +12、m 一1 ,原式=2+1 .3、(1) 65°; (2)25°.4、(1)2(2)略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为 1.65 m 的运动员能进入复赛.6、(1)4 元或6 元;(2)九折.。

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 9D. 272. 下列各式中,正确的是()A. $ \sqrt{9} = 3 $B. $ \sqrt[3]{8} = 2 $C. $ \sqrt{16} = 4 $D. $ \sqrt[3]{27} = 3 $3. 下列各式中,错误的是()A. $ 3^2 = 9 $B. $ (3)^2 = 9 $C. $ 3^3 = 27 $D.$ (3)^3 = 27 $4. 下列各式中,正确的是()A. $ 2^4 = 16 $B. $ 2^5 = 32 $C. $ 2^6 = 64 $D. $ 2^7 = 128 $5. 下列各式中,错误的是()A. $ 5^2 = 25 $B. $ 5^3 = 125 $C. $ 5^4 = 625 $D.$ 5^5 = 3125 $6. 下列各式中,正确的是()A. $ 10^2 = 100 $B. $ 10^3 = 1000 $C. $ 10^4 = 10000 $D. $ 10^5 = 100000 $7. 下列各式中,错误的是()A. $ 2^0 = 1 $B. $ 3^0 = 1 $C. $ 4^0 = 1 $D. $ 5^0 = 1 $8. 下列各式中,正确的是()A. $ 0^2 = 0 $B. $ 0^3 = 0 $C. $ 0^4 = 0 $D. $ 0^5 = 0 $9. 下列各式中,正确的是()A. $ (1)^2 = 1 $B. $ (1)^3 = 1 $C. $ (1)^4 = 1 $D. $ (1)^5 = 1 $10. 下列各式中,错误的是()A. $ (2)^2 = 4 $B. $ (2)^3 = 8 $C. $ (2)^4 = 16 $D. $ (2)^5 = 32 $二、填空题(每题3分,共30分)11. 若一个数的平方根是5,则这个数是__________。

人教版九年级数学下册期中试题及参考答案 (XY精编)

人教版九年级数学下册期中试题及参考答案 (XY精编)

九年级数学下册期中试题及答案第I 卷(选择题共36分) 一、选择题(共12个小题,共36分)1.√16的算术平方根是( )A.4B.±4C.±2D.22.如图是某几何体的三视图,该几何体是( )3.航天员在天宫课堂演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到1500000次,数据1500000月科学记数法表示为( )A.1.5×105B.1.5×106C.0.15×105D.1.5×1074.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2=( )A.25°B.35°C.45°D.55°5.民族图案是数学文化中的一块瑰宝,下列图案中既是轴对称图形也是中心对称图形的是( )6.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等7.某家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC= 90°,则扇形部件的面积为多少平方米( )A.12B.14C.18D.116第7题 第9题 第10题 第11题8.已知m 、n 是一元二次方程x 2-x -2022=0的两个实数根,则代数式m 2-2m -n 的值等于( )A.2020B.2021C.2022D.20239.如图,在矩形ABCD 中,AB<BC,连接AC,分别以点A,C 为圆心,大于AC 的长为半径画弧,两弧交于点M,N,直线MN 分别交AD,BC 于点E,F.下列结论:①四边形AECF 是菱形;②∠AFB=2∠ACB;③AC ·EF=CF ·CD;④若AF 平分∠BAC,则CF=√3AB.其中正确结论的个数是( )A.4B.3C.2D.110.如图,已知△ABC 中,∠C=90°,AC=BC=√2,将△ABC 绕点A 顺时针方向旋转60°到△AB'C'的位置,连接C'B,则C'B 的长为( )A.2-√2B.C.√32C.√3-1D.111.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在x 轴的正半轴上,A 、C 两点的坐标分别为(2,0)、(1,2),点B 在第一象限,将直线y=-2x 沿y 轴向上平移m(m>0)个单位.若平移后的直线与边BC 有交点,则m 的取值范围是( )A.0<m<8B.0<m<4C.2<m<8D.4≤m ≤812.如图,二次函数y=ax 2+bx+c(a ≠0)的图象过点(-2,0),对称轴为直线x=1.有以下结论 ①abc>0;②8a+c>0;③若A(x 1,m),B(x 2,m)是抛物线上的两点,当x=x 1+x 2时,y=c ;④点M,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM ⊥PN,则a 的取值范围为a ≥13;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x 1<x 2,则-2≤x1<x2<4.其中正确结论的序号是( )A.①②④B.①③④C.①③⑤D.①②③⑤二、填空题(共4个小题,共16分)13.若ab=a+b+1,则(a -1)(b -1)=_______.14.观察下列各式:a 1=1,a 2=25,a 3=14…,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n+2 =2a n+1,则a 2023=_______.15.如图,平行四边形是OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B,C 在第一象限,反比例函数y=1x 的图象经过点C,y=kx (k ≠0)的图象经过点B.若OC=AC,则k 的值是______.16.如图,在边长为8的正方形ABCD 中,点O 为正方形的中心,点E为AD 边上的动点,连接OE,作OF ⊥OE 交CD 于点F,连接EF,P 为EF的中点,G 为边CD 上一点,且CD=4CG,连接PA,PG,则PA+PG 的最小值为_______.三、解答题(本大题共6小题,共68分)17.(1)化简求值:a−32a−4÷(5a−2 -a -2)的值,其中a=tan60°- 6sin30°(2)解不等式组: {x −3(x −2)≥4x−23<x +1,并写出该不等式组的非负整数解.18.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,刘老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般:D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题.(1)刘老师一共调查了多少名同学?(2)C类女生有____名,D类男生有____名,将上面条形统计图补充完整;(3)为了共同进步,刘老师想从被调查人数的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.19.为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境.某学校准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数量是用1300元购买B种垃圾桶的组数量的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该学校计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?20.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO 交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.21.综合与实践问题情境:如图①,点E 为正方形ABCD 内一点,∠AEB=90°,将Rt △ABE 绕点B 按顺时针方向旋转90°,得到△CBE(点A 的对应点为点C),延长AE 交CE'于点F,连接DE.猜想证明:(1)试判断四边形BEFE'的形状,并说明理由.(2)如图②,若DA=DE,请猜想线段CF 与FE 的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE 的长.22.如图1,抛物线y=ax 2+2x+c,交x 轴于A 、B 两点,交y 轴于点C,当y ≥0时,-1≤x ≤3.(1)求抛物线的解析式;(2)若点D 是抛物线上第一象限的点①如图1,连接AD,交线段BC 于点G,若DG AG =12时,求D 点的坐标;②如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP ⊥x 轴,点H 是DP 上一点,连接AH,求AH+√1010DH 的最小值;(3)如图3,F 为抛物线顶点,直线EF 垂直于x 轴于点E,直线AD,BD 分别与抛物线对称轴交于M 、N 两点.试问,EM+EN 是否为定值?如果是,请直接写出这个定值;如果不是,请说明理由.参考答案一、选择题ACBBD BCBCC DB二、填空题13. 214.1303415.316.2√29三、解答题17.(1)−√36 (2)−53<x ≤-1,非负整数解是0、1. 18.(1)(1+2)÷50%=20(人)(2)3,1(3)共有6种可能,符合条件的有3种,P (一男一女)=36=1219.解:(1)设B 单价为x 元,则A 单价为(x -15)元.18000x−150=13500x ×2 ,x=450检验知,x=450是方程的解.450-150=300(元)答:A 单价300元,B 单价450元.(2)设:买B 种y 组,A 种(20-y )组.300(20-y)+450y ≤8000y ≤403 ∵因为y 是正整数 ∴y=13答:最多买B 种13组.20.(1)略 (2)sinE=72521.(1)四边形BEFE'是正方形(2)CF=FE(3)DE=3√17 22.(1)y=-x 2+2x+3(2)D(1,4)或(2,3)(3)EM+EN=8。

2023年人教版九年级数学下册期中试卷(附答案)

2023年人教版九年级数学下册期中试卷(附答案)

2023年人教版九年级数学下册期中试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣6的倒数是( )A .﹣16B .16C .﹣6D .62.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,△ABC 中,∠A=30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD=23,则线段CD 的长是( )A .2B .3C .32D .33210.把一副三角板如图放置,其中90ABC DEB ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边10AC BD ==,若将三角板DEB 绕点B 按逆时针方向旋转45︒得到''D E B △,则点A 在''D E B △的( )A .内部B .外部C .边上D .以上都有可能二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122x x x =++的解是___________. 2.分解因式:a 2﹣4b 2=_______.31x -x 的取值范围是__________.4.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是__________.5.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B 1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为__________.6.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B,若△AOB的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、D6、C7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、322、(a+2b )(a ﹣2b )3、1x ≥4、45、2n ﹣1,06、-2三、解答题(本大题共6小题,共72分)1、x =52、(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0)3、略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)50;(2)见解析;(3)16. 6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。

部编人教版九年级数学下册期中试卷及参考答案

部编人教版九年级数学下册期中试卷及参考答案

部编人教版九年级数学下册期中试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间2.关于二次函数, 下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时, 的值随值的增大而减小D. 的最小值为-3 3.如果a与1互为相反数, 则|a+2|等于()A. 2B. -2C. 1D. -14.今年一季度, 河南省对“一带一路”沿线国家进出口总额达214.7亿元, 数据“214.7亿”用科学记数法表示为()A. 2.147×102B. 0.2147×103C. 2.147×1010D. 0.2147×10115. 下列说法正确的是()A. 负数没有倒数B. ﹣1的倒数是﹣1C. 任何有理数都有倒数D. 正数的倒数比自身小6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.老师设计了接力游戏, 用合作的方式完成分式化简, 规则是:每人只能看到前一人给的式子, 并进行一步计算, 再将结果传递给下一人, 最后完成化简.过程如图所示:接力中, 自己负责的一步出现错误的是()A. 只有乙B. 甲和丁C. 乙和丙D. 乙和丁8.如图, A, B是反比例函数y= 在第一象限内的图象上的两点, 且A, B两点的横坐标分别是2和4, 则△OAB的面积是()A. 4B. 3C. 2D. 19.如图, 将△ABC绕点C顺时针旋转90°得到△EDC.若点A, D, E在同一条直线上, ∠ACB=20°, 则∠ADC的度数是A. 55°B. 60°C. 65°D. 70°10.如图, DE∥FG∥BC, 若DB=4FB, 则EG与GC的关系是()A. EG=4GCB. EG=3GCC. EG= GCD. EG=2GC二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算的结果等于___________.2. 分解因式: a2b+4ab+4b=_______.3. 若代数式有意义, 则的取值范围为__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5. 如图, 某校教学楼与实验楼的水平间距米, 在实验楼顶部点测得教学楼顶部点的仰角是, 底部点的俯角是, 则教学楼的高度是__________米(结果保留根号).6. 如图, 直线轴于点, 且与反比例函数()及()的图象分别交于、两点, 连接、, 已知的面积为4, 则________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 计算: .3. 在Rt△ABC中, ∠BAC=90°,D是BC的中点, E是AD的中点. 过点A作AF ∥BC交BE的延长线于点F(1)求证: △AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4, AB=5, 求菱形ADCF 的面积.4. 如图, 已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1, 0)、B(4, 0)、C(0, 2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点, 且满足∠DBA=∠CAO(O是坐标原点), 求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点, 连接PA分别交BC, y 轴与点E、F, 若△PEB、△CEF的面积分别为S1、S2, 求S1-S2的最大值.105阳光体育活动. 某中学就“学生体育活动兴趣爱好”的问题, 随机调查了本校某班的学生, 并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中, 喜欢篮球项目的同学有______人, 在扇形统计图中, “乒乓球”的百分比为______%, 如果学校有800名学生, 估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中, 喜欢篮球的有2名女同学, 其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队, 请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6. 某超市销售一款“免洗洗手液”, 这款“免洗洗手液”的成本价为每瓶16元, 当销售单价定为20元时, 每天可售出80瓶. 根据市场行情, 现决定降价销售. 市场调查反映: 销售单价每降低0.5元, 则每天可多售出20瓶(销售单价不低于成本价), 若设这款“免洗洗手液”的销售单价为x(元), 每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 销售这款“免洗洗手液”每天的销售利润最大, 最大利润为多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、D3、C4、C5、B6、B7、D8、B9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.b(a+2)23. 且.4、425.(15+15 )6、8.三、解答题(本大题共6小题, 共72分)x1、42、33.(1)略;(2)略;(3)10.4.(1)抛物线解析式为;(2)点D的坐标为(3, 2)或(-5, -18);(3)当t= 时, 有S1-S2有最大值, 最大值为.5、(1)5, 20, 80;(2)图见解析;(3).6、(1)y=﹣40x+880;(2)当销售单价为19元时, 销售这款“免洗洗手液”每天的销售利润最大, 最大利润为880元。

2023年人教版九年级数学下册期中考试卷(附答案)

2023年人教版九年级数学下册期中考试卷(附答案)

2023年人教版九年级数学下册期中考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A.50°B.60°C.80°D.100°8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD9.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:x3﹣4x=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、B7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x+2)(x ﹣2)3、24、425、6、 1三、解答题(本大题共6小题,共72分)1、x=32、3x3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)4元或6元;(2)九折.。

新人教版九年级数学下册期中试卷及答案【完整版】

新人教版九年级数学下册期中试卷及答案【完整版】

新人教版九年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .33.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.若()()229111181012k --=⨯⨯,则k =( ) A .12 B .10C .8D .6 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)+-=__________.2.因式分解:_____________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、B6、B7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32-2、3、﹣24、25、x≤1.6、24 5三、解答题(本大题共6小题,共72分)1、x=7.2、(1)k≤58;(2)k=﹣1.3、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)AC的长为55.5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)100,50;(2)10.。

新人教版九年级数学下册期中考试卷及答案【完美版】

新人教版九年级数学下册期中考试卷及答案【完美版】

新人教版九年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -5的相反数是( )A. B. C. 5 D. -52. 计算+ + + + +……+ 的值为()A. B. C. D.3.施工队要铺设1000米的管道, 因在中考期间需停工2天, 每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米, 所列方程正确的是()A. =2B. =2C. =2D. =24.已知是方程组的解, 则的值是()A. ﹣1B. 1C. ﹣5D. 55.关于x的不等式的解集为x>3, 那么a的取值范围为()A. a>3B. a<3C. a≥3D. a≤36.在某篮球邀请赛中, 参赛的每两个队之间都要比赛一场, 共比赛36场, 设有x个队参赛, 根据题意, 可列方程为()A. B.C. D.7.如图, 快艇从P处向正北航行到A处时, 向左转50°航行到B处, 再向右转80°继续航行, 此时的航行方向为()A. 北偏东30°B. 北偏东80°C. 北偏西30°D. 北偏西50°8.如图, 在中, , , 为边上的一点, 且.若的面积为, 则的面积为()A. B. C. D.9.如图, AB∥CD, 点E在线段BC上, CD=CE,若∠ABC=30°, 则∠D为()A. 85°B. 75°C. 60°D. 30°10.如图, O为坐标原点, 菱形OABC的顶点A的坐标为, 顶点C在轴的负半轴上, 函数的图象经过顶点B, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是____________.2. 分解因式: x2-2x+1=__________.3. 已知AB//y轴, A点的坐标为(3, 2), 并且AB=5, 则B的坐标为__________.4. 已知二次函数的部分图象如图所示, 则关于的一元二次方程的根为________.5.如图, 在平面直角坐标系xOy中, 已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A, B, 过点B作 BD⊥x轴于点D, 交的图象于点C, 连结AC.若△ABC是等腰三角形, 则k的值是_________.6. 如图, 平面直角坐标系中, 矩形OABC的顶点A(﹣6, 0), C(0, 2 ). 将矩形OABC绕点O顺时针方向旋转, 使点A恰好落在OB上的点A1处, 则点B 的对应点B1的坐标为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 计算: .3. 如图, 在锐角三角形ABC中, 点D, E分别在边AC, AB上, AG⊥BC于点G, AF⊥DE于点F, ∠EAF=∠GAC.(1)求证: △ADE∽△ABC;(2)若AD=3, AB=5, 求的值.4. “扬州漆器”名扬天下, 某网店专门销售某种品牌的漆器笔筒, 成本为30元/件, 每天销售量(件)与销售单价(元)之间存在一次函数关系, 如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件, 当销售单价为多少元时, 每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业, 决定从每天的销售利润中捐出150元给希望工程, 为了保证捐款后每天剩余利润不低于3600元, 试确定该漆器笔筒销售单价的范围.5. 在水果销售旺季, 某水果店购进一优质水果, 进价为20元/千克, 售价不低于20元/千克, 且不超过32元/千克, 根据销…34.8 32 29.6 28 …售情况, 发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克, 求当天该水果的销售量.(2)如果某天销售这种水果获利150元, 那么该天水果的售价为多少元?6. 某口罩生产厂生产的口罩1月份平均日产量为20000, 1月底因突然爆发新冠肺炎疫情, 市场对口罩需求量大增, 为满足市场需求, 工厂决定从2月份起扩大产能, 3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率, 预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、B3、A4、A5、D6、A7、A8、C9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.(x-1)2.3.(3,7)或(3,-3)4. 或5.k= 或.6.(-2 , 6)三、解答题(本大题共6小题, 共72分)x1、42、33.(1)略;(2).4.(1);(2)单价为46元时, 利润最大为3840元.(3)单价的范围是45元到55元.5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元, 该天水果的售价为25元.6.(1)10%;(2)26620个。

2024年人教版九年级数学下册期中考试卷(附答案)

2024年人教版九年级数学下册期中考试卷(附答案)

2024年人教版九年级数学下册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 11B. 12C. 13D. 142.下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 梯形D. 圆3.下列哪个比例是正确的?A. 3:5 = 6:10B. 2:3 = 4:6C. 5:7 = 10:14D. 8:9 = 16:184.下列哪个函数是二次函数?A. y = 3x + 2B. y = x^2 + 2xC. y = 2x^3 + 3D. y = 4x^4 + 55.下列哪个数是实数?A. 3iB. 2iC. 5D. 4i二、判断题(每题1分,共5分)1.一个数的平方根是唯一的。

()2.等腰三角形的底角相等。

()3.分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。

()4.二次函数的图像是抛物线。

()5.平行四边形的对角线互相平分。

()三、填空题(每题1分,共5分)1.一个数的立方根是指这个数的______。

2.两个相似三角形的对应边长之比叫做______。

3.一个数的平方根的平方等于这个数,这个数是______。

4.一个二次函数的一般形式是______。

5.一个实数的平方根有两个,一个是______,另一个是______。

四、简答题(每题2分,共10分)1.简述平行线的性质。

2.简述二次函数的顶点坐标。

3.简述等腰三角形的性质。

4.简述分数的化简方法。

5.简述实数的分类。

五、应用题(每题2分,共10分)1.一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

2.一个二次函数的顶点坐标为(2, 3),求这个函数的一般形式。

3.一个分数的分子为6,分母为8,求这个分数的简化形式。

4.一个实数的平方根为3,求这个实数。

5.一个平行四边形的对角线长度分别为10cm和12cm,求这个平行四边形的面积。

六、分析题(每题5分,共10分)1.分析二次函数的图像特征。

2023年人教版九年级数学下册期中试卷及答案【完整版】

2023年人教版九年级数学下册期中试卷及答案【完整版】

班级:姓名:1.﹣ 8 的相反数是( )1 1A.8 B. C. D.-88 82.下列说法中正确的是 ( )A.若a < 0 ,则a2 < 0 B.x 是实数,且x2 = a ,则 a > 0 C.x 有意义时,x 0 D.0.1 的平方根是士0.013.已知 5x=3,5y=2,则 52x ﹣3y= ( )3 A.4B.12C.39D.84.某企业今年 3 月份产值为万元, 4 月份比 3 月份减少了 10%, 5 月份比 4 月份增加了 15%,则 5 月份的产值是( )A.( -10%)( +15%)万元 B. (1-10%)(1+15%)万元C.( -10%+15%)万元 D. (1-10%+15%)万元5.下列对一元二次方程 x2+x ﹣ 3=0 根的情况的判断,正确的是( )A.有两个不相等实数根 B.有两个相等实数根C.有且只有一个实数根 D.没有实数根6.下列运算正确的是( )A.(﹣ 2a3 ) 2 =4a6 B.a2 •a3 =a6C.3a+a2 =3a3 D.(a ﹣b) 2 =a2 ﹣b27.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( ) A.50° B.60° C.80° D.100°8.在同一坐标系内,一次函数y = ax + b 与二次函数y = ax2 + 8x + b 的图象可能是( )A. B.C. D.9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④ 某一位置,所组成的图形不能围成正方体的位置是( )A.① B.② C.③ D.④10.如图,四边形 ABCD 内接于⊙O,若四边形 ABCO 是平行四边形,则∠AD C 的大小为( )A.45ο B.50ο C.60ο D.75ο1.16 的平方根是__________.2.分解因式: a2 ﹣ 4b2=_______.3.若正多边形的每一个内角为135 ,则这个正多边形的边数是__________.4.如图,△ABC 中,∠BAC =90°,∠B =30°, BC 边上有一点 P (不与点 B ,C 重合), I 为△APC 的内心,若∠AIC 的取值范围为 m °<∠AIC <n °,则m +n=__________.5.如图,直线 y =x +2 与直线 y =ax +c 相交于点 P (m ,3),则关于 x 的不等式x +2≤ax +c 的解为__________.6.菱形的两条对角线长分别是方程 x 2 一 14x + 48 = 0 的两实根,则菱形的面积 为__________. 1.解方程:2x x 一1 一 1 = 4x 一11 2.在平面直角坐标系 xOy 中,抛物线y ax2 bx向右平移 2 个单位长度,得到点 B ,点 B 在抛物线上.(1)求点 B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;1 12 a函数图象,求a 的取值范围.(3)已知点P ( , ) ,Q(2,2) .若抛物线与线段 PQ 恰有一个公共点,结合 与y 轴交于点 A ,将点 Aa3.如图,在口ABCD 中,分别以边 BC,CD 作等腰△BCF,△CDE,使 BC=BF,CD=DE,∠CBF=∠CDE,连接 AF,AE.(1)求证:△ABF≌△EDA;(2)延长 AB 与 CF 相交于 G,若AF⊥AE,求证BF⊥B C.4.如图,在△ABC 中, AD 是 BC 边上的中线, E 是AD 的中点,过点 A 作BC 的平行线交 BE 的延长线于点 F,连接 CF,(1)求证: AF=DC;(2)若 AB⊥AC,试判断四边形 ADCF 的形状,并证明你的结论.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.6.为满足市场需求,某服装超市在六月初购进一款短袖T 恤衫,每件进价是80 元,超市规定每件售价不得少于 90 元,根据调查发现:当售价定为 90 元时,每周可卖出 600 件,一件T 恤衫售价每提高 1 元,每周要少卖出 10 件.(1)试求出每周的销售量y (件)与每件售价x 元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T 恤衫销售中获利 850 元,又想尽量给客户实惠,该如何给这款T 恤衫定价?(3)超市管理部门要求这款T 恤衫售价不得高于 110 元,则当每件T 恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?1、A2、C3、D4、B5、A6、A7、D8、C9、A10、C1、±4.2、(a+2b)(a ﹣ 2b)3、八(或 8)4、255.5、x ≤1.6、241、x= 3(2, ) a2、(1)点 B 的坐标为 a ;(2)对称轴为直线x =1;(3)当2时,抛物线与线段 PQ 恰有一个公共点.3、(1)略;(2)略.4、(1)略(2)略15、(1) 200、81°;(2)补图见解析;(3) 36、(1) y = 10x +1500 ;(2)销售单价为95 元;(3)当销售单价为 110 元时,该超市每月获得利润最大,最大利润是 12000 元.1 1。

人教版九年级数学下册期中测试卷及答案【完整】

人教版九年级数学下册期中测试卷及答案【完整】

人教版九年级数学下册期中测试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.分解因式:2ab a-=_______.3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.4.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m.5.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B 1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为__________.6.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、B6、C7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、a(b+1)(b﹣1).3、0或14、-45、2n﹣1,06、(,6)三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、-53、(1)略;(24、(1)略;(2)AC5、(1)34;(2)1256、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

2024年最新人教版九年级数学(下册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(下册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(下册)期中考卷一、选择题(每题5分,共20分)1. 下列哪个数是实数?A. 2iB. 3C. 5D. 42. 下列哪个选项正确描述了勾股定理?A. 在直角三角形中,斜边的平方等于两直角边的平方和。

B. 在直角三角形中,两直角边的平方和等于斜边的平方。

C. 在直角三角形中,斜边的平方等于两直角边的乘积。

D. 在直角三角形中,两直角边的乘积等于斜边的平方。

3. 下列哪个选项正确描述了圆的性质?A. 圆的周长等于直径的π倍。

B. 圆的面积等于半径的π倍。

C. 圆的周长等于半径的π倍。

D. 圆的面积等于直径的π倍。

4. 下列哪个选项正确描述了函数的性质?A. 函数是自变量和因变量之间的关系。

B. 函数是自变量和因变量之间的运算关系。

C. 函数是自变量和因变量之间的相等关系。

D. 函数是自变量和因变量之间的不等关系。

5. 下列哪个选项正确描述了不等式的性质?A. 不等式是表示两个数之间大小关系的式子。

B. 不等式是表示两个数之间相等关系的式子。

C. 不等式是表示两个数之间运算关系的式子。

D. 不等式是表示两个数之间函数关系的式子。

二、填空题(每题5分,共20分)1. 填入适当的符号(>、<、=)使等式成立:3 22. 填入适当的符号(>、<、=)使等式成立:π 33. 填入适当的符号(>、<、=)使等式成立:5 34. 填入适当的符号(>、<、=)使等式成立:4 2三、解答题(每题10分,共40分)1. 解方程:2x 3 = 72. 解不等式:3x + 2 < 113. 求圆的面积,已知半径为5cm。

4. 求直角三角形的斜边长度,已知两直角边长度分别为3cm和4cm。

四、应用题(每题10分,共20分)1. 一个班级有30名学生,其中男生人数是女生人数的2倍。

求男生和女生各有多少人。

2. 一个长方形的长是宽的3倍,已知长方形的周长为18cm。

求长方形的长和宽。

五、证明题(每题10分,共20分)1. 证明:对于任意实数a和b,如果a > b,那么a² > b²。

2024年全新初三数学下册期中试卷及答案(人教版)

2024年全新初三数学下册期中试卷及答案(人教版)

2024年全新初三数学下册期中试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 1D. 12. 若a+b=5,ab=1,则a²+b²的值为()A. 12B. 13C. 14D. 153. 若x²5x+6=0,则x的值为()A. 2,3B. 2,3C. 2,3D. 2,34. 若a²+b²=20,a+b=5,则a²b²的值为()A. 5B. 5C. 105. 若a²2a8=0,则a的值为()A. 4,2B. 4,2C. 2,4D. 2,46. 若a²3a+2=0,则a的值为()A. 1,2B. 1,2C. 1,2D. 1,27. 若x²4x+4=0,则x的值为()A. 2,2B. 2,2C. 2,2D. 2,28. 若a²5a+6=0,则a的值为()A. 2,3B. 2,3C. 2,3D. 2,39. 若a²+b²=18,a+b=3,则a²b²的值为()A. 3B. 3D. 610. 若x²3x+2=0,则x的值为()A. 1,2B. 1,2C. 1,2D. 1,2二、填空题11. 若a²4a+4=0,则a的值为______。

12. 若a+b=5,ab=1,则a²+b²的值为______。

13. 若x²5x+6=0,则x的值为______。

14. 若a²+b²=20,a+b=5,则a²b²的值为______。

15. 若a²2a8=0,则a的值为______。

16. 若a²3a+2=0,则a的值为______。

17. 若x²4x+4=0,则x的值为______。

18. 若a²5a+6=0,则a的值为______。

2024年人教版初三数学下册期中考试卷(附答案)

2024年人教版初三数学下册期中考试卷(附答案)

2024年人教版初三数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。

()2. 一个数的平方根只有一个。

()3. 任何两个圆都是相似的。

()4. 两个相似的三角形,它们的对应边长之比相等。

()5. 一个二次函数的图像是一个抛物线。

()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。

2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。

3. 平行四边形的对角线互相_________。

4. 二次函数的一般形式是y = ________。

5. 圆的面积公式是A = ________。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述二次函数的一般形式。

4. 简述圆的面积公式。

5. 简述两个相似的三角形的性质。

五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。

2023-2024学年全国初中九年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 在平面直角坐标系中,点P(a, b)关于原点对称的点是()。

A. (a, b)B. (a, b)C. (a, b)D. (b, a)2. 下列各数中,是无理数的是()。

A. √9B. √16C. √3D. √13. 下列函数中,是正比例函数的是()。

A. y = 2x + 1B. y = 3x²C. y = x/2D. y = 54. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC是()。

A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定5. 下列几何体中,体积一定的是()。

A. 球B. 正方体C. 长方体D. 圆柱二、判断题(每题1分,共5分)1. 任何两个无理数相加一定是无理数。

()2. 平行线的性质是同位角相等。

()3. 一元二次方程的解一定是实数。

()4. 两条平行线之间的距离是恒定的。

()5. 对角线互相垂直的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若a=3, b=4,则a²+b²=______。

2. 已知一组数据的方差是9,那么这组数据的标准差是______。

3. 在三角形中,若两边分别是8和15,则第三边的长度可能是______。

4. 一次函数y=2x+3的图象与y轴的交点坐标是______。

5. 体积为64立方厘米的正方体的边长是______厘米。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 解释无理数的概念。

3. 如何判断一个四边形是平行四边形?4. 一元二次方程的解的公式是什么?5. 简述概率的基本性质。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的对角线长度。

2. 若一元二次方程x²5x+6=0的解是x₁=2和x₂=3,求方程的系数。

3. 在直角坐标系中,点A(2, 3)和点B(4, 1),求线段AB的中点坐标。

2023年人教版九年级数学下册期中考试卷及答案(1)

2023年人教版九年级数学下册期中考试卷及答案(1)

2023年人教版九年级数学下册期中考试卷及答案(1)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2的倒数是()A. -2B.C.D. 22.已知a, b满足方程组则a+b的值为()A. ﹣4B. 4C. ﹣2D. 23.在一次酒会上, 每两人都只碰一次杯, 如果一共碰杯55次, 则参加酒会的人数为()A. 9人B. 10人C. 11人D. 12人4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.关于x的不等式x-b>0恰有两个负整数解, 则b的取值范围是()A. B. C. D.6.已知x1, x2是方程x2﹣3x﹣2=0的两根, 则x12+x22的值为()A. 5B. 10C. 11D. 137.如图, 把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°8.如图, 已知, 以两点为圆心, 大于的长为半径画圆, 两弧相交于点, 连接与相较于点, 则的周长为()A. 8B. 10C. 11D. 139.如图, 在平面直角坐标系中, 点在第一象限, ⊙P与x轴、y轴都相切,且经过矩形的顶点C, 与BC相交于点D, 若⊙P的半径为5, 点的坐标是, 则点D的坐标是()A. B. C. D.10.如图, ⊙O中, 弦BC与半径OA相交于点D, 连接AB, OC, 若∠A=60°,∠ADC=85°, 则∠C的度数是()A. 25°B. 27.5°C. 30°D. 35°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 2的相反数是__________.2. 因式分解: _____________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt△ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图, 在扇形AOB中, ∠AOB=90°, 点C为OA的中点, CE⊥OA交于点E, 以点O为圆心, OC的长为半径作交OB于点D, 若OA=2, 则阴影部分的面积为__________.6. 已知抛物线的对称轴是直线, 其部分图象如图所示, 下列说法中: ①;②;③;④当时, , 正确的是__________(填写序号).三、解答题(本大题共6小题, 共72分)1. 解方程:=22. 已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α, β.(1)求m的取值范围;(2)若, 则m的值为多少?3. 已知: 如图, 四边形ABCD中, AD∥BC, AD=CD, E是对角线BD上一点, 且EA=EC.(1)求证: 四边形ABCD是菱形;(2)如果BE=BC, 且∠CBE:∠BCE=2:3, 求证:四边形ABCD是正方形.4. 如图, ▱ABCD的对角线AC, BD相交于点O. E, F是AC上的两点, 并且AE=CF, 连接DE, BF.(1)求证: △DOE≌△BOF;(2)若BD=EF, 连接DE, BF.判断四边形EBFD的形状, 并说明理由.5. 某校为了解学生对中国民族乐器的喜爱情况, 随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器), 现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查, 扇形统计图中的 .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生, 请你估计该校喜爱“二胡”的学生约有名.6. 小明大学毕业回家乡创业, 第一期培植盆景与花卉各50盆售后统计, 盆景的平均每盆利润是160元, 花卉的平均每盆利润是19元, 调研发现:①盆景每增加1盆, 盆景的平均每盆利润减少2元;每减少1盆, 盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆, 设培植的盆景比第一期增加x盆, 第二期盆景与花卉售完后的利润分别为W1, W2(单位: 元)(1)用含x的代数式分别表示W1, W2;(2)当x取何值时, 第二期培植的盆景与花卉售完后获得的总利润W最大, 最大总利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、C4、A5、A6、D7、B8、A9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、﹣22、3.增大.4、40°.5、3212π+.6.①③④.三、解答题(本大题共6小题, 共72分)1.x=7.2、(1);(2)m的值为3.3.(1)略;(2)略.4.(2)略;(2)四边形EBFD是矩形. 理由略.5、(1)200, 15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)W1=-2x²+60x+8000, W2=-19x+950;(2)当x=10时, W总最大为9160元.。

2023-2024学年全国初三下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初三下数学人教版期中考试试卷(含答案解析)

20232024学年全国初三下数学人教版期中考试试卷一、选择题(每题10分,共100分)1. 若一个三角形的两边长分别是5cm和12cm,且这两边的夹角是90°,那么这个三角形的周长是:A. 17cmB. 30cmC. 26cmD. 34cm2. 下列哪个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = 3/xD. y = x^23. 已知一个等差数列的前三项分别是2, 5, 8,那么这个数列的公差是:A. 1B. 3C. 6D. 84. 若一个圆的半径增加了50%,那么这个圆的面积增加了:A. 50%C. 150%D. 200%5. 在直角坐标系中,点(3, 4)关于y轴的对称点是:A. (3, 4)B. (3, 4)C. (3, 4)D. (4, 3)6. 若一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是:A. 32cmB. 36cmC. 42cmD. 46cm7. 下列哪个数是素数?A. 21B. 29C. 35D. 398. 若一个长方体的长、宽、高分别是2cm、3cm和4cm,那么这个长方体的对角线长度是:A. 5cmB. 6cmC. 7cm9. 若一个二次函数的图像开口向上,且顶点坐标是(2, 3),那么这个函数的标准形式是:A. y = a(x + 2)^2 + 3B. y = a(x 2)^2 + 3C. y = a(x^2 + 4x) + 3D. y = a(x^2 4x) + 310. 下列哪个图形不是轴对称图形?A. 矩形B. 正五边形C. 圆D. 梯形二、判断题(每题10分,共50分)11. 任何一个三角形的内角和都是180°。

()12. 若两个函数的图像关于y轴对称,则这两个函数是相等的。

()13. 任何一个偶数都可以表示为两个奇数的和。

()14. 若一个数的平方是负数,那么这个数一定是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学下册期中测试卷01一、选择题(每小题3分,共42分) 1.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .3k >B .0k >C .3k <D .0k <2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa )是气体体积V (单位:3m )的反比例函数,其图象如图所示。

当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于35m 4B .小于35m 4C .不小于34m 5D .小于34m 53.某反比例函数的图象经过点(2,3)-,则此函数图象也经过点( ) A .(2,3)-B .(3,3)--C .(2,3)D .(4,6)-4.对于反比例函数2y x=,下列说法不正确的是( ) A .点(2,1)--在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小5.已知长方形的面积为220 cm ,设该长方形一边长为 cm y ,另一边长为 cm x ,则y 与x 之间的函数图象大致是( )A B C D6.当0a ≠时,函数1y ax =+与函数ay x=在同一平面直角坐标系中的图象可能是( )ABCD7.已知ABC △2,'''A B C △的两边长分别为1,3,如果ABC △与'''A B C △相似,那么'''A B C △的第三边长应该是( )ABC D 8.点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数3y x=-的图象上,若1230x x x <<<,则为,为,y 为的大小关系是( ) A .112y x y <<B .122y y y <<C .211y y y <<D .211y y y <<9.如图所示,AB CD ∥,AC ,BD 交于点O ,若7BO =,3DO =,25AC =,则AO 的长为( ) A .10B .12.5C .15D .17.510.顺次连接三角形三边的中点,所构成的三角形与原三角形对应高的比是( )A .1:4B .1:3C .1:2D .11.用一放大镜看一个直角三角形ABC ,该三角形的边长放大到原来的10倍后, 下列结论中错误的是( ) A .斜边上的中线是原来的10倍 B .斜边上的高是原来的10倍 C .周长是原来的10倍 D .最小内角是原来的10倍12.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m )成反比例函数关系.已知400-度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数解析式为( ) A .400y x=-B .14y x=-C .100y x=-D .1400y x=-13.如图所示,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( ) A .2E K ∠=∠ B .2BC HI =C .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .2ABCDEF GHIJKL S S =六边形六边形14.如图所示,等边三角形ABC 的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=︒,则CD 的长为( )A .32 B .23C .12D .34二、填空题(每小题3分,共24分)15.在对物体做功一定的情况下,力F (单位:N )与此物体在力的方向上移动的距离s (单位:m )成反比例函数关系,其图象如图所示,点(5,1)P 在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是__________m .16.若正方形AOBC 的边OA ,OB 在坐标轴上,顶点C 在第一象限且在反比例函数1y x=的图象上,则点C 的坐标是__________.17.如图所示,双曲线(0)ky k x=>与O e 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线.已知点P 的坐标为(1,3),则图中阴影部分的面积为__________.18.函数为1(0)y x x =…,29(0)y x x=>的图象如图所示,有下列结论: ①两函数图象的交点A 的坐标为(3,3);②当3x >时,为21y y >; ③当1x =时,8BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大面减小。

其中正确结论的序号是____________________.19.如图所示,在ABD △中,AB AD =,AC BD ⊥,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13EBC AEG G S S =四边形△,则CFAB=__________.20.如图所示,在ABC △中,P 为AB 上一点,在下列四个条件中:①APC B ∠=∠:②APC ACB ∠=∠;③2AC AP AB =⋅;④AB CP AP CB ⋅=⋅.能满足APC △与ACB △相似的条件是__________.(只填序号)21.如图所示,在Rt ABC △中,90C ∠=︒,6AC =,8BC =.把ABC △绕AB 边上的点D 顺时针旋转90︒得到''A B C △,'A C 交AB 于点E .若AD BE =,则'A DE △的面积是__________.22.如图所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射在桌面上后在地面上形成阴影(圆形)的示意图.已知来面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面上阴影部分的面积为__________.三、解答题(共54分)28.(7分)宽与长之比为51:1-的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,如图所示,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.24.(9分)如图所示,在等腰梯形ABCD 中,AD BC ∥, 3 cm AD =,7 cm BC =,60B ∠=︒,P 为下底BC 上一点(不与点B ,C 重合),连接AP ,过点P 作PE 交DC 于点E ,使得APE B ∠=∠. (1)求证:ABP PCE △≌△. (2)求等腰梯形的腰AB 的长.(3)在底边BC 上是否存在一点P ,使得:5:3DE EC =?如果存在,求BP 的长;如果不存在,请说明理由.25.(9分)如图所示,一次函y kx b =+的图象与反比例函数my x=的图象交于(2,1)A -,(1,)B n 两点。

(1)试确定上述反比例函数和一次函数的解析式; (2)求AOB △的面积.26.(9分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把21 200 m 的生活垃极运走. (1)假如每天能运3 m x ,所需时间为y 天,写出y 与x 之间的函数解析式。

(2)若每辆拖拉机一天能运212 m ,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?27.(10分)如图所示,ABC △是等边三角形,CE 是外角平分线,点D 在AC 上,连接BD 并延长与CE 交于点E .(1)求证:ABD CED △∽△;(2)若6AB =,2AD CD =,求BE 的长.28.(10分)如图所示,已知(4,2)A -,(,4)B n -是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点。

(1)求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.期中测试 答案解析1.【答案】A【解析】在反比例函数图象的每一支曲线上,y 都随x 的增大而减小,根据反比例函数的性质,得30k ->,即3k >. 2.【答案】C【解析】设气球内气体的气压kPa p ()和气体体积()3V m 的解析式为kp V=,因为图象过点(1.6,60),所以60 1.6k =,所以96k =,所以96p V=.因为在第一象限内,p 随V 的增大而减小,所以当120p ≤时,9645V p =…. 3.【答案】A【解析】设反比例函数解析式为ky x=,将点(2,3)-的坐标代人解析式得236k =-⨯=-,符合题意的点只有点:236A k =⨯-=-(). 4.【答案】C【解析】A .把点(2,1)--的坐标代人反比例函数2y x =得212-=-正确;B .因为20k =>,所以图象在第一、三象限,正确;C .当0x >时,y 随x 的增大而减小,不正确;D .当0x <时,y 随x 的增大而减小,正确.5.【答案】B【解析】因为20xy =,所以20(0,0)y x y x=>>. 6.【答案】C【解析】当0a >时,1y ax =+的图象过一、二、三象限,ay x=的x 图象过一、三象限;当0a <时,1y ax =+的图象过一、二、四象限,y=-的图象过二、四象限. 7.【答案】A【解析】设第三边长为x ,因为1==2x =即x 8.【答案】A【解析】如图所示,则312y y y <<.9.【答案】D【解析】因为AB CD ∥, 所以A DOC O OB O =即7253OA OA =-, 所以17.5OA =. 10.【答案】C【解析】因为顺次连接三角形三边的中点,所构成的三角形与原三角形相似,相似比为1:2,所以对应高的比为1:2. 11.【答案】D【解析】因为用放大镜看三角形与原三角形相似,所以对应角相等.边长扩大到原来的10倍,即相似比为10.故A ,B ,C 均正确,D 错误. 12.【答案】C【解析】因为近视眼镜的度数y (度)与镜片焦距() m x 成反比例函数关系,所以ky x=,又当0.25x =时,400y =-,所以()0.25400100k =⨯-=-,所以100y x=-. 13.【答案】B【解析】A .因为六边形ABCDEF ∽六边形GHIJKL ,所以E K ∠=∠,故本选项错误;B .因为六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,所以2BC HI =,故本选项正确;C .因为六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,所以六边形ABCDEF =六边形GHIJKL 的周长的2倍,故本选项错误;D .因为六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,所以4ABCDEF GHIKL S S =六边形六边形,故本选项错误. 14.【答案】B【解析】在ABP △与PCD △中,60B C ∠=∠=︒,且60APD ∠=︒,180120BAP APB B ∠+∠=︒-∠=︒∴;180120APB DPC APD ∠+∠=︒-∠=︒,BAP DPC ∠=∠∴.ABP PCD ∴△∽△,AB PCBP CD =∴. 又3AB =,1BP =,2PC BC BP =-=,321CD =∴,23CD =∴.15.【答案】0.5【解析】设力() N F 与此物体在力的方向上移动的距离() m s 的函数解析式为kF s=,把点(5,1)P 的坐标代入得5k =,故当10 N F =时,0.5 m s =.16.【答案】(1,1)【解析】设点C 的坐标为(,)x y ,因为四边形AOBC 是正方形,所以OB OA =,即x y =.因为点C 在第一象限且在反比例函数1y x=的图象上,所以21x =,所以1x =(1x =-舍去),所以点C 的坐标是(1,1). 17.【答案】4【解析】因为O e 在第一象限关于直线y x =对称,(0)ky k x=>的图象也关于直线y x =对称,又因为点P 的坐标是(1,3),所以点Q 的坐标是(3,1),所以13132114S =⨯+⨯-⨯⨯=阴影. 18.【答案】①③④【解析】①根据题意列方程组9y xy x =⎧⎪⎨=⎪⎩,解得1133x y =⎧⎨=⎩,2233x y =-⎧⎨=-⎩,故这两个函数在第一象限内的交点A 的坐标(3,3),正确.②当3x >时,1y x =的图象在29y x=的图象的上方,故12y y >,错误; ③当1x =时,11y =,2991y ==,即点C 的坐标为(1,1),点B 的坐标为(1,9),所以918BC =-=,正确; ④由于1(0)y x x =…的图象自左向右呈上升趋势,故1y 随x 的增大而增大,29(0)y x x=>的图象自左向右呈下降趋势,故y 为随x 的增大而减小,正确.因此①③④正确,②错误.19.【答案】12【解析】13AEG EBOG S S =△四边形∵,14ABG ABC S S =△△∴. 又EF BD ∥,AEG ABC ∴∽△,且相似比为1:2.12AF AG AD AC ==∴,F ∴为AD 中点. AB AD =∵,AC BD ⊥,C ∴为BD 中点,CF AB ∴∥,12CF AB =. 20.【答案】②③【解析】因为APC B ∠∠>,所以①错误;若APC ACB ∠=∠,又因为A A ∠=∠, 所以APC ACB △∽△,所以②正确;若2AC AP AB =⋅,所以AC ABAP AC=, 又A A ∠=∠,所以APC ACB △∽△,所以③正确; 若AB CP AP CB ⋅=⋅,所以AB APCB CP=, 因为AB 与CB 的夹角B ∠和AP 与CP 的夹角APC ∠不相等,所以APC △与ACB △不相似,所以④错误. 21.【答案】6在Rt ABC △中,由勾股定理得10AB ==.由旋转的性质,设'AD A D BE x ===,则102DE x =-.因为ABC △绕AB 边上的点D 顺时针旋转90︒得到'''A B C △,所以'A A ∠=∠,'90A DE C ∠=∠=︒,所以'A DE ACB △∽△,所以'DE BC A D AC =,即10286x x -=,解得3x =.所以'11'(1023)3622A DE S DE A D =⋅=⨯-⨯⨯=△. 22.【答案】20.81 π m【解析】设阴影的面积为2 m x ,因为圆桌与阴影是相似图形,所以22π0.623x ⨯⎛⎫= ⎪⎝⎭,所以0.81 πx =. 23.【答案】解:留下的矩形CDFE 是黄金矩形. 证法1:∵四边形ABEF 是正方形,AB DC AF ==∴.又12AB AD =,12AF AD =∴ 即点F 是线段AD 的黄金分割点.FD AF AF AD ==∴,即FD DC ∴矩形CDFE 是黄金矩形. 证法2:∵四边形ABEF 是正方形,AB DC AF ==∴.AB AD =∵,111FD AD AF AD AD DC DC DC AB -==-=-==∴ ∴矩形CDFE 是黄金矩形.24.【答案】(1)证明:APC B BAP ∠=∠+∠∵,B APE ∠=∠,APC APE CPE ∠=∠+∠,BAP CPE ∠=∠∴.又在等腰梯形ABCD 中,B C ∠=∠,ABP PCE ∴△∽△. (2)解:过点A 作AF BC ⊥于点F (图略),则 2 cm 2BC ADBF -== 在Rt ABF △中,由60B ∠=︒,得 4 cm AB =.(3)解:假设在底边BC 上存在一点P ,使:5:3DE EC =,则 1.5 cm CE =.设 cm BP x =, 由(1)得BP AB CE PC =,即41.57x x=-,解得1x =或6. 1 cm BP =∴或6 cm .∴在底边BC 上存在一点P ,使得:5:3DE EC =,此时 1 cm BP =或6 cm .25.【答案】解:(1)∵点(2,1)A -在反比例函数my x=的图象上, (2)12m =-⨯=-∴反比例函数的解析式为2y x=-. ∵点(1,)B n 也在反比例函数2y x=-的图象上, 2n =-∴,即(1,2)B -.把点(2,1)A -,(1,2)B -的坐标分别代人一次函数y kx b =+中, 得212k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--.(2)∵在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(1,0)C -.∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BDC S S S =+=-⨯⨯+⨯⨯=+=△△△∴ 26.【答案】解:(1)1200(0)y x x=> (2)12560x =⨯=,代人函数解析式得 1 2002060y ==(天). 答:要用20天才能运完.(3)运了8天后剩余的垃圾是()31 200860720m -⨯=.剩下的任务要在不超过6天的时间完成,每天至少运()37206120 m ÷=, 则需要的拖拉机数是1201210÷=(辆),则至少需要增加1055-=(辆)这样的拖拉机才能按时完成任务.27.【答案】(1)证明:ABC ∵△是等边三角形, 60BAC ACB ∠=∠=︒∴,120ACF ∠=︒∴.CE ∵是外角平分线,60ACE ∠=︒∴.BAC ACE ∠=∠∴.又ADB CDE ∠=∠,ABD CED ∴△∽△.(2)解:如图所示,过点B 作BM AC ⊥于点M .6AC AB ==∵,3AM CM ==∴,BM =. 2AD CD =∵,2CD =∴,4AD =,1MD =.在Rt BDM △中,BD =由(1)ABD CED △∽△,得BD AD ED CD=2=,得ED =.BE BD ED =+=∴28.【答案】解:(1)把点(4,2)A -的坐标代入m y x =得428m =-⨯=-, 所以反比例函数的解析式为8y x =-把点(,4)B n -的坐标代入8y x =-得148n -=-,解得2n =, 所以点B 的坐标为(2,4)-.把点(4,2)A -,(2,4)B -的坐标分别代人y kx b =+得4224k b k b -+=⎧⎨+=-⎩, 解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--. (2)40x -<<或2x >.。

相关文档
最新文档