Materials-Studio软件CASTEP模块知识分享

合集下载

CASTEP概述

CASTEP概述

选择Properties标签,可从中指定我们想要计算的属性。选中Band structure和Density of states。另外,我们也可以具体指明job control选项,例如实时更新等。
CASTEP概述
关于CASTAP
CASTAP是特别为固体材料学而设计的一个现代的量子力学基本 程序,其使用了密度泛函(DFT)平面波赝势方法,进行第一原理量 子力学计算,以探索如半导体,陶瓷,金属,矿物和沸石等材料的 晶体和表面性质。
典型的应用包括表面化学,键结构,态密度和光学性质等研究, CASTAP也可用于研究体系的电贺密度和波函数的3D形式。此外, CASTAP可用于有效研究点缺陷(空位,间隙和置换杂质)和扩展 缺陷(如晶界和位错)的性质。
加到指定的位置,其对话框如下:
在Add Atoms对话框中选择Options标签,确定Coordinate system为Fractional。如上所示。选择Atoms标签,在Element文
本框中键入Al,然后按下Add按钮。铝原子就添加到结构中了。
在Element文本框中键入As。在a, b, c文本框中键入0.25。按 Add按钮。关闭对话框。
注意: CASTAP仅能在3D周期模型文件基础上进行计算,必须构建超单胞,以便研 究分子体系。
提示: CASTAP计算所需时间随原子数平方的增加而增加。因此,建议是用最小的初
晶胞来描述体系,可使用Build\Symmetry\Primitive Cell菜单选项来转换成初晶胞。
➢ 计算设置:合适的3D模型文件一旦确定,必须选择计算类型 和相关参数,例如,对于动力学计算必须确定系综和参数,包括温 度,时间步长和步数。选择运行计算的磁盘并开始CASTAP作业。

中科大 Materials Studio 培训教程7(包你学会!)

中科大 Materials Studio 培训教程7(包你学会!)

创建一个表面是一个两步过程。首先是要切出一个表面,其次就是创建一个包 含了表面的真空层。 从菜单栏里选择Build | Surfaces / Cleave Surface。把Cleave plane (h k l) 从 (-1 0 0) 改为(1 1 0),按下TAB 键。把Fractional Thickness 提高至1.5。按下 Cleave 按钮,关闭此对话框。
6 7
显示出bulk Pd的结构,我们把显示方式改为Ball and Stick。在Pd 3D Model document中右键单击,选择Display Style,在Atoms标签中选择Ball and Stick,关闭对
话框。
现在使用CASTEP来优化 bulk Pd。为了减少计算量, 将晶胞转换为原胞。
(4). 把CO 分子添加到1 x 1 Pd(110)表面并优化此结构 现在的工作对象是(1x1) Co on Pd(110)文件夹内的结构。在Project Explorer 内,打开(1x1) CO on Pd(110)文件夹内的(1x1) CO on Pd(110).xsd 文件。现在把CO 分子添加到短桥键位置的上方。上一讲已根据实验事实来确 定了键的长度,这里直接使用已有的结构数据。
工作递交后,开始运行。结束后出现提示 信息。选择File / Save Project保存项目, Window / Close all关闭工作窗口 。
在Project Explorer中打开位于Pd CASTEP GeomOpt文件夹中的Pd.xsd, 显示的即为Pd优化后的原胞结构。由下面步骤恢复Pd优化后的晶胞结构。
点击选上碳原子,按下SHIFT 键,点击氧原子。 在Edit Sets 对话框里,点击New。在Define New Set 对话框里,输入CO DensityDifference, 按下OK。

第六讲第一原理计算方法简介及MaterialsStudio中Castep使用案例

第六讲第一原理计算方法简介及MaterialsStudio中Castep使用案例

Http Gateway Ftp
Module
parallel Windows Linux Linux IA32 IA64
Module
parallel Windows
Linux IA32
Linux IA64
Materials Visualizer Adsorption Locator Amorphous Cell Blends CASTEP and NMR CASTEP √
计算:允许选择计算选项(如基集,交换关联势和收敛判据),作业控制 和文档控制。
分析:允许处理和演示CASTEP计算结果。这一工具提供加速整体直观化以 及键结构图,态密度图形和光学性质图形。
CASTEP的任务
CASTEP计算包括单点的能量计算,几何优化或分子动 力学。可提供这些计算中的每一个以便产生特定的物理性 能。 在CASTAP计算中有很多运行步骤,可分为如下几组: 结构定义:必须规定包含所感兴趣结构的周期性的3D模型 文件,有大量方法规定一种结构:可使用构建晶体 (Build Crystal)或构建真空板(Build Vacuum Stab)来 构建,也可从已经存在的结构文档中引入,还可修正已存 在的结构。 注意: CASTEP仅能在3D周期模型文件基础上进行计算, 必须构建超单胞,以便研究分子体系。
提示: CASTAP计算所需时间随原子数平方的增加而增加。 因此,建议是用最小的初晶胞来描述体系,可使用 Build\Symmetry\Primitive Cell菜单选项来转换成初晶
CASTEP的任务
计算设置:合适的3D模型文件一旦确定,必须选择计算类型 和相关参数,例如,对于动力学计算必须确定系综和参数, 包括温度,时间步长和步数。选择运行计算的磁盘并开始 CASTEP作业。 结果分析:计算完成后,相关的CASTEP作业的文档返回用户, 在项目面板适当位置显示。这些文档进一步处理能获得所需 的观察量如光学性质。 CASTAP中选择一项任务 1 从模块面板(Module Explorer)选择CASTAP\Calculation 2 选择设置表 3 从任务列表中选择所要求的任务

初学Materials Studio-CASTEP问题整理

初学Materials Studio-CASTEP问题整理

问题如下1.CASTEP caculation对话框中的TAST中的"Energy,Geometry Optimization,Dynamic, Elastic Constants"各有什么计算意义,尤其是Energy和Geometry的计算上的区别。

答:Energy指的就是单点能的计算,或则说能量的计算。

Geometry optimization指的是结构优化,而优化的依据主要就是能量,所以,在Geometry optimization的过程中,CASTEP在调整结构,每得到一个结构就会计算它的能量,最终找到一个能量最低的结构。

CASTEP在执行Energy和Geometry optimization计算时都会计算体系的能量,而我们知道,体系的所有性能,包括电子结构、力学性质、热力学性质、光学性质等等,所有我们在properties里面可以勾选的性质选项都是在体系能量确定之后得到的,所以在CASTEP的操作中,当你选择Energy或者Geometry optimization时,都可以同时在properties里面勾选要计算的性质,不过,当选择Geometry optimization时,程序计算的是优化得到的稳定结构所对应的性质。

CASTEP的TASK中还有一个properties的选项,这个选项是用来直接计算体系性质的,但前提是你已经做过Energy或Geometry optimization计算,体系的能量已经确定,这时候可以通过properties直接计算体系的各种性质,这个选项主要是为了方便使用者,不必每次计算性质都要从新计算体系的能量。

Dynamic是做动力学模拟,也就是基于牛顿运动方程研究体系中各个原子在指定热力学条件下如何运动,它与常说的分子动力学相比,最大的区别在于原子间相互作用是通过量子力学计算,或则说求解薛定谔方程确定的,而通常的分子动力学方法是通过基于经验参数的力场来描述原子间的相互作用。

Materials-Studio软件CASTEP模块知识分享

Materials-Studio软件CASTEP模块知识分享
?能量本征值不发生变化?价电子波函数在rc外的分布不变?在rc处的电子波函数对数的倒数不变化只适用于周期性体系ks求解近似处理方法赝势castep将外层电子波函数通过平面波函数展开将原子实近似为新的核pseudowavefunctionpseudopotentialrclogo16ks求解近似处理方法赝势赝势设置?ultrasoftusp超软推荐用精度好效率高?normconservingncp模守恒拉曼光谱计算不支持usp选用ncp为了与已发表文献比较采用ncpms80之后新增加的onthefly精度最高推荐使用logoyxjxj1x1xn17动能截断energycutoffcastep中用平面波展开波函数截断能数值的高低控制平面波的数目截断能太低会影响计算结果的精度甚至正确性截断能过高会增大计算量降低计算效率
18
K点取样
K点是倒易空间的基本构成点,总 能量的计算就是对布里渊区内均匀分布 的部分特殊K点的积分后加权重求和完 成的。
y y=(x)
V
b1 b2 a1 b 3(a2
2 a2 a3
2 a3V a1
2
a1
V
a2
a3 )
V 原胞体积
o x0 x1
……
xn
x
Logo
19
K点取样设置
Logo
Logo
27
偶极修正
通过剪切体相结构构建表面的时候应当尽量使上下表面的终 端原子相同,但是这种情况一般不会实现。所获得的表面为不对 称表面,两层表面之间会产生偶极场作用,影响后续的表面能、 吸附能等能量的计算。
在切得的表面不对称或者表面 有分子吸附时,能量的计算过程中 应当加入偶极修正。
推荐选用Self-consistent(自洽) 偶极修正,只有在自洽迭代不收敛 的时候才建议选用Non selfconsistent(非自洽)偶极修正。

【Materials_Studio】Castep说明

【Materials_Studio】Castep说明
CASTEP 也支援較傳統電子之平衡狀態的恢復,它用到了對總能的極小化。電子 波函數是以平面波基底來表示並且展開係數會被變化以便達到最小的總能。此一 極小化可利用每個波函數被獨立的最佳化的 band-by-band 的技術,或允許同時更 新所有波函數的 all-band 方法來達成(只有 all-band 方式支援 USP 的使用)。此一 方式用了如 Payne 等人所提出的預先調節式的共軛梯度技術。
你的 CASTEP run 一跑完,你就可以使用 CASTEP 模組的分析工具來抽取及檢視 由 CASTEP 所產生的原始輸出資料。這原始輸出結果藉由大量的數據來描述你 模型的性質。
動態使用介面
雖然機制羯大部份是明顯的,Cerius2 透過由使用者介面建立的好幾個 CASTEP 輸出輸入的資料檔來與 CASTEP 產生聯繫。你所要執行的 job 上設定的選項會被 用來產生一個檔案,此檔案會被傳送到 CASTEP 做為輸入。
膺勢
電子-離子間的交互作用可以用膺勢的觀念來描述。對於每種元素而言,CASTEP 提供了一套的的位勢:
位勢 延伸檔名
ultrasoft .usp
norm-conserving potential 使用 Lin et al.最佳化方法來產生 .recpot
norm-conserving potential 使用 Troullier-Martins 最佳化方法來產生 .pspnc
在 CASTEP 裡預設的設定是 GGA,它在很多狀況下被知道是比較好的方法。梯 度修正的方法在研究表面的過程、小分子的性質、氫鍵晶體以及有內部空間的晶 體(費時)是比較精確的。眾所皆知,LDA 會低估分子的鍵長(or 鍵能)以及 晶體的晶格參數,而 GGA 通常會補救這缺點。然而,有許多證據顯示 GGA 會 在離子晶體過度修正 LDA 結果;當 LDA 與實驗符合得非常好的時候,GGA 會 高估晶格長度。因此要推薦一個對所有系統都是最好的特定方法是很困難的。

第一原理计算方法及MaterialsStudio中Castep使用

第一原理计算方法及MaterialsStudio中Castep使用

第一原理常用计算软件
根据对势函数及内层电子的处理方法不同 主要分为两大类,一种是波函数中包含了 高能态和内层电子,而势函数只是原子核 的贡献,这称为全电子(all electron calculation)法,另一种处理方法是势函 数为原子核和内层电子联合产生的势,称 为离子赝势,波函数只是高能态电子的函 数,这称为赝势(pseudo-potential)法。
b. Born-Oppenheimer近似,核固定近似 中子/质子的质量是电子质量的约1835倍,即电子的运 动速率比核的运动速率要高3个数量级,因此可以实现 电子运动方程和核运动方程的近似脱耦。这样,电子可 以看作是在一组准静态原子核的平均势场下运动。
c.单电子近似 把体系中的电子运动看成是每个电子在其余电子的平均 势场作用中运动,从而把多电子的薛定谔方程简化单电 子方程。
在CASTAP计算中有很多运行步骤,可分为如下几组:
结构定义:必须规定包含所感兴趣结构的周期性的3D模型 文件,有大量方法规定一种结构:可使用构建晶体 (Build Crystal)或构建真空板(Build Vacuum Stab)来 构建,也可从已经存在的结构文档中引入,还可修正已存 在的结构。
注意: CASTEP仅能在3D周期模型文件基础上进行计算, 必须构建超单胞,以便研究分子体系。
Pseudo
Pseudo
Pseudo, PAW all-electron
操作系统
Linux
Web Site
www.abinit. org
Windows Linux
Linux
www.tcm.ph / castep/
www.pwscf.o rg/
Linux Linux
cms.mpi.un ivie.ac.at/v asp

castep

castep

The predicted enthalpy differences of TiC in NaCl, CsCl and WC phase as a function of pressure.
五、弹性常数计算
加压优化
பைடு நூலகம்
高压下弹性常数
弹性常数分析
分析数据(txt文件)
通过弹性常数可以得到
谢谢大家!!!
b.确定声子计算方法,其中的一些q值是由特殊文字 符号所代表的,是布里渊区内的一些特定对称点, 声子谱会依此q值的连线而展开。 这里我们采用 预设值,不作任何修改 。
c.在Job Control中来选择所要跑的Gateway location,如果要让任务在服务器上跑,就点击 files作为输入文件提交到服务器上
CASTEP学习总结报告
CASTEP 程序
一、CASTEP简介
CASTEP(Cambridge Sequential Total Energy Package 的缩写) 是Materials Studio (MS) 中的计算包之一,是特别为固体材料学而设 计的一个现代的量子力学基本程序,其使用了密度泛函(DFT)平面波 赝势方法,进行第一性原理量子力学计算。
3、显示声子散射和能态密度
4、显示热力学性质
5、数据处理-python
输入文件
输入数据并注意单位换算 能量 (eV → Ry) 态密度 1/cm-1 体积 (Ǻ → a.u.) 频率 cm-1
输出文件
七、今后的工作
1、TiN的力学性质
2、TiC的力学性质
3、声子的计算

CASTEP可以模拟固体、界面和表面的性质,适用于多种材料体系, 包括陶瓷、半导体、金属、矿物和沸石等。典型的应用包括表面化学, 键结构,态密度和光学性质等研究, CASTAP也可用于研究体系的电 荷密度和波函数的3D形式。此外, CASTAP可用于有效研究点缺陷 (空位,间隙和置换杂质)和扩展缺陷(如晶界和位错)的性质。适 用于固体物理,材料科学,化学以及化工领域。

关于CASTEP

关于CASTEP

关于CASTEPCASTEP是特别为固体材料学而设计的一个现代的量子力学基本程序,其使用了密度泛函(DFT)平面波赝势方法,进行第一原理量子力学计算,以探索如半导体,陶瓷,金属,矿物和沸石等材料的晶体和表面性质。

典型的应用包括表面化学,键结构,态密度和光学性质等研究, CASTEP也可用于研究体系的电荷密度和波函数的3D形式。

此外, CASTEP可用于有效研究点缺陷(空位,间隙和置换杂质)和扩展缺陷(如晶界和位错)的性质。

Material Studio使用组件对话框中的CASTEP选项允许准备,启动,分析和监测CASTEP 服役工作。

计算:允许选择计算选项(如基集,交换关联势和收敛判据),作业控制和文档控制。

分析:允许处理和演示CASTEP计算结果。

这一工具提供加速整体直观化以及键结构图,态密度图形和光学性质图形。

CASTEP的任务CASTEP计算是要进行的三个任务中的一个,即单个点的能量计算,几何优化或分子动力学。

可提供这些计算中的每一个以便产生特定的物理性能。

性质为一种附加的任务,允许重新开始已完成的计算以便产生最初没有提出的额外性能。

在CASTEP计算中有很多运行步骤,可分为如下几组:* 结构定义:必须规定包含所感兴趣结构的周期性的3D模型文件,有大量方法规定一种结构:可使用构建晶体(Build Crystal)或构建真空板(Build Vacuum Stab)来构建,也可从已经存在的的结构文档中引入,还可修正已存在的结构。

注意: CASTEP仅能在3D周期模型文件基础上进行计算,必须构建超单胞,以便研究分子体系。

提示: CASTEP计算所需时间随原子数平方的增加而增加。

因此,建议是用最小的初晶胞来描述体系,可使用Build\Symmetry\Primitive Cell菜单选项来转换成初晶胞。

* 计算设置:合适的3D模型文件一旦确定,必须选择计算类型和相关参数,例如,对于动力学计算必须确定系综和参数,包括温度,时间步长和步数。

1-Materials Studio 与 CASTEP 快速入门

1-Materials Studio 与 CASTEP 快速入门

unit_MS_quick-start打開 Materials Sautio,它會問是要開始一個新的 project 還是要打開一個前次的 project。

如果是第一次用的話要選開啟新的 project ,如果一旦這樣回答的話,它還問你是什麼 project,那我們就給它一個 project 的名稱。

我們現在要以氯化鈉為例,你可以給任何名稱,但是我現在要以 NaCl 為名稱。

一開始進來要先介紹幾個重要的視窗,它們關係到我們進行模擬計算時所會處理及操作到的對象。

姑且可以分為這三類:一、進行計算的工作,己跑完的、正在跑的都算;二、計算工作總是有各有些不同的輸入與輸出檔案,我們經常會需要審視結果、修改輸出入的相關設定;三、材料的原子及電子結構 3D 模型帶有很多我們想要知道之關於這個材料的物性資料,例如晶體的晶胞邊長、原子的元素種類等等。

從 Veiw 的 Explorer ,它有三個 Explorer,job Exploroer、project exploroer、property explorer 。

job explorer 的開跟關是這樣按一次它就開起來。

這個是你跑什麼 job 近端遠端它都可以顯示,跑完了沒有、要不要把它移除等等,在這邊都可以操作,有很多 job 的時候會很好用。

project explorer 預設值是開著的,就是靠左邊垂直的這一塊,裡面對於跑 project 的相關物件,如文字輸出、3D結構等等都是在這裡選取,很像微軟視窗 (MS Windows) 裏頭的『檔案總管』。

要做東西總是需要選取一個 job 相關的目錄等等,所以 job explorer 在操作上來講是很重要的。

另外我也常常會打開的是 property explorer ,property explorer 在 MS 是新的東西,相對 Cerius2 而言是新的東西。

在 Cerius2 裡如果你想要知道一些 3D 物件的屬性,像是鍵長、鍵角,晶胞內原子數,就要分別去打開一些相關的表單,它才會印給你看,然而初學者還得學會這些表單藏在那裏。

Materials Studio软件CASTEP模块

Materials Studio软件CASTEP模块

Logo
4
矿物晶体结构搭建
• (3)外部数据库导入结构
无机晶体学数据库ICSD
American Mineralogist Crystal Structure Database
可输入矿物名称、作者、化学元素、晶胞参数及对称性等关 键词查找,可直接获得.cif结构文件和XRD检测数据,还可 以预览3D模型。
输出结果
9
K-S求解近似处理方法-交换相关泛函


2 2

q
Zq r Rq

(r)
r r
dr VXC (r) i


i i (r)
电 动, 常数 一次迭代确定
核-电
电-电库伦作 用能
电-电交换相 关能
赝势处理
局域密度近似 LDA 广义梯度近似 GGA
决定
微观的电子结构
获 取
密度泛函
求解多粒子系统的薛定谔方程
H=E
近似求解多粒子系统薛定谔方程
Logo
7
密度泛函理论内容
[
1 2
2

Veff
(r )]
i
(r)

ii
(r
)
N
n(r) i (r) 2 i 1
Kohn-Sham方程
简化哈密顿算符
得 到
E() () Vne () Vee () Vnn
Logo
11
交换相关泛函-广义梯度近似GGA
GGA克服了LDA在描述真实体系在电子密度变化剧烈的情 况下的缺陷,提高了交换相关能计算结果的精度,也提高了密 度泛函方法计算的精度。
非定域泛函:
HF HF-LDA sX sX-LDA PBE0 B3LYP……

1-Materials Studio 与 CASTEP 快速入门

1-Materials Studio 与 CASTEP 快速入门

unit_MS_quick-start打开 Materials Sautio,它会问是要开始一个新的 project 还是要打开一个前次的 project。

如果是第一次用的话要选开启新的 project ,如果一旦这样回答的话,它还问你是什么 project,那我们就给它一个 project 的名称。

我们现在要以氯化钠为例,你可以给任何名称,但是我现在要以 NaCl 为名称。

一开始进来要先介绍几个重要的窗口,它们关系到我们进行模拟计算时所会处理及操作到的对象。

姑且可以分为这三类:一、进行计算的工作,己跑完的、正在跑的都算;二、计算工作总是有各有些不同的输入与输出档案,我们经常会需要审视结果、修改输出入的相关设定;三、材料的原子及电子结构 3D 模型带有很多我们想要知道之关于这个材料的物性数据,例如晶体的晶胞边长、原子的元素种类等等。

从 View(查看)的 Explorer(资源管理器),它有三个 Explorer,job Explorer、project explorer、property explorer 。

job explorer 的开跟关是这样按一次它就开起来。

这个是你跑什么 job 近端远程它都可以显示,跑完了没有、要不要把它移除等等,在这边都可以操作,有很多 job 的时候会很好用。

project explorer 默认值是开着的,就是靠左边垂直的这一块,里面对于跑 project 的相关对象,如文字输出、3D结构等等都是在这里选取,很像微软窗口 (MS Windows) 里头的『档案总管』。

要做东西总是需要选取一个 job 相关的目录等等,所以 job explorer 在操作上来讲是很重要的。

另外我也常常会打开的是 property explorer ,property explorer 在 MS 是新的东西,相对 Cerius2 而言是新的东西。

在 Cerius2 里如果你想要知道一些 3D 对象的属性,像是键长、键角,晶胞内原子数,就要分别去打开一些相关的窗体,它才会印给你看,然而初学者还得学会这些窗体藏在那里。

最新对于初学Materials-Studio-CASTEP问题整理

最新对于初学Materials-Studio-CASTEP问题整理

问题如下1、Symmetry 下的unbuild crystal, Nonperiodic, Superstructure, Make P1, Redefine options各有什么作用?答:Unbuild crystal:得到最小非对称单元的结构Nonperiodic:去掉结构的周期性,形象地说就是把盒子去掉。

Superstructure:构建超晶胞结构,也就是扩大最小重复单元(或则说晶胞)Make P1:去掉晶体结构中的所有点对称操作,只保留其平移对称性Redefine lattice:重新定义晶胞中基矢的方向2、图表的含义是什么?Atomic Populations (Mulliken)Species Ion s p d f Total Charge (e)O 1 1.91 4.99 0.00 0.00 6.90 -0.90O 2 1.91 4.99 0.00 0.00 6.90 -0.90O 3 1.91 4.99 0.00 0.00 6.90 -0.90O 4 1.91 4.99 0.00 0.00 6.90 -0.90O 5 2.01 5.08 0.00 0.00 7.08 -1.08O 6 1.84 4.87 0.00 0.00 6.71 -0.71Ca 1 2.14 6.00 0.47 0.00 8.61 1.39Ti 1 2.32 6.24 2.22 0.00 10.78 1.22Ti 2 2.32 6.24 2.22 0.00 10.78 1.22Ba 1 1.76 6.01 0.70 0.00 8.46 1.54答:以O为例子Species Ion s p d f Total Charge (e)O 1 1.87 4.79 0.00 0.00 6.65 -0.65计算以前O的电子结构是2s2 2p4,Total =6(e )计算后O的结构变为2s1.872p4.79,Total =6.65(e )-0.65 表明优化以后,O得到0.65(e )如果考虑的是纯离子,当然就是+4和-2了。

materialstudio一些基础设置问题

materialstudio一些基础设置问题

CASTEP的任务1. CASTEP能量任务CASTEP能量任务允许您计算指定系统的总能量,以及它的物理性质。

除了总能量,原子上的力也会在计算结束时报告。

还创建了一个电荷密度文件,允许使用可视化工具直接观察电荷密度的空间分布。

还报告了在计算中使用的monkhorst - pack k点的电子能量,以便在CASTEP分析过程中生成态密度图。

能量任务对于研究可靠的结构信息体系的电子特性是非常有用的。

只要指定了应力特性,它也可以用来计算没有内部自由度的高对称系统的状态方程(即压力体积和/或能量-体积依赖)。

注意:在具有内部自由度的系统中,可以利用几何优化任务得到状态方程。

CASTEP的能量的默认单位是电子伏特(eV)。

1 eV= 0.036749308 Ha =23.0605 kcal/mole =96.4853 kJ/mole2. CASTEP几何优化任务CASTEP几何优化任务允许优化几何结构,以获得一个稳定的结构或多态性。

这是通过执行一个迭代的过程来完成的,在这个过程中,原子的坐标和可能的原胞参数被调整,从而使结构的总能量是最小的。

CASTEP几何优化是基于减小计算力和应力的大小,直到它们变得小于定义的收敛误差。

此外,还可以指定一个外部应力张量,来模拟在张力、压缩、剪切等情况下系统的行为。

在这些情况下,内部应力张量是迭代的,直到它等于施加的外部应力。

几何优化的过程一般会产生一个与实际结构相似的模型结构。

用CASTEP计算的晶格参数的准确性如图1所示(Milman等,2000)。

Figure 1. Experimental vs. CASTEP calculated lattice parameters状态方程的计算应用流体静压法的几何优化可用于确定材料的体积模量,B,压力导数、B ' = dB / dP。

这个过程包括计算状态方程(EOS),它描述了细胞体积对外部流体静压的依赖。

该方法与实际实验非常相似:在几何优化对话框中使用最小化选项键确定外部压力,通过对CASTEP进行几何优化来确定压力的单元体积。

Materials Studio软件常见问题与解答

Materials Studio软件常见问题与解答

目 录Q1:为什么使用Discover进行Dynamics计算时,如果设定了Pressure=1GPa,在计算结果中会出现Pressure等于0,而Stress的XX、YY、ZZ方向为1GPa的情况? (4)Q2:如何在Discover计算中分别对相同环境原子分配不同力场类型? (4)Q3:如何在CASTEP计算中限制某个原子的移动方向? (4)Q4:在安装新的MS时,事先没有停掉License Server,在卸载、安装MS后,发现MS的License Server 无法正常启动。

(5)Q5:如何修改Windows或者Linux下的端口号: (5)Q6:如何使用DMol3进行动力学计算? (6)Q7:如何让Discover程序输出.arc文件? (7)Q8:如何使用rattle关键词来限制水分子的几何结构? (7)Q9,如何使用Standalone方式运行DMol程序? (7)Q10:如何在DMol中加入外界电场? (7)Q12,如何以Standalone方式运行Discover作业? (8)Q13:为什么我在QSAR模块中无法找到新加入的Jurs和DMol3描述符? (8)Q14:如何在DMol模块中,对某一分子只允许其沿着Z方向进行优化,而XY方向则不变? (8)Q15:如果CASTEP计算过程中断电,怎么能够重新开始计算呢?在Keywords中有两个关键词Reuse 和Continuation,它们有什么差异呢? (8)Q16:如果我在Cleave一个平面的时候,选择的是(111)面,或者该晶体原来就是一个三斜晶胞,我怎么才能切出一个长方形的表面来呢? (9)Q17:在使用DMol进行结构优化的时候失败,通过对轨迹的回放发现,整个分子在平面上下进行翻转,并由此导致能量振荡,这种情况应当如何处理? (9)Q18:如何使用XRD数据快速建立相关的晶体结构。

(9)Q19:如何在DMol中考虑溶剂化效应? (10)Q20:如何使用MS软件计算高分子的玻璃化温度? (11)Q21:在使用MS进行计算的时候,中间的xcd文件无法及时更新,而其他文件则能正常显示,为什么? (12)Q22:怎么样在MesoDyn中加入各种不同的限制? (12)Q23:MS给出的DOS和能带图不是很清楚,我能不能自己来做图? (12)Q24:怎么样能让CASTEP在并行计算时更有效? (12)Q25:在使用DMol计算过渡态结构时,经常会发现出现不止一个虚频,怎么回事? (13)Q26:怎么在Altix350上安装MS的Castep和DMol的补丁加速运算速度? (13)Q27:为什么我在Linux下安装license的时候,总是报错呢? (13)Q28:在使用SGI Altix350,打补丁后运行RunCASTEP.sh –np n seedname的时候,出现错误:MPI:asgetnetinfo_array('(null)') failed : array services not available,怎么解决? (14)Q29:MS的GFA是怎么对参数进行杂交的?参数多少与内存有无关系? (14)Q30:DFT方法对计算量和内存的要求是什么样的? (15)Q31:为什么当DMol3在我机器上运行过的时候,总是出现以下错误:floating-point assist fault? (16)Q32:在使用DMol3算频率的时候,突然断电了,怎么才能继续算频率呢? (16)Q33:在Castep模块中,Electronic中的Pseudopotential representation,有Real Space和Reciprocal space,如何取舍? (17)Q34:如何从Discover的输出文件中查看每桢中原子的坐标以及速率等信息? (17)Q35:我使用的是Standalone方式进行Castep和DMol3计算,完成后怎么才能看到最终结构和轨迹呢? (17)Q36:DMol中有TS Conformation也有TS Optimization,应该选取哪一个来搜索过渡态? (17)Q37:在使用CASTEP进行过渡态(TS)搜索时,当用reaction preview产生一个轨迹文件之后,对该轨迹文件进行TS search 运算时,在本机直接计算可以进行,但是进行save files时,却无法完成提示Unable to set UserID. Trajectory file will be invalid. (18)Q38:在Castep中,怎样输出电荷密度?相关数据的单位是什么? (18)Q39:如何在Discover中使用BTCL语言进行多步MD计算? (18)Q40:如何用Dmol3计算Overlay Matrix,并进一步分析? (21)Q41:如何使用Castep程序计算IR振动,为什么计算老是说不收敛? (22)Q42:为什么我在手工使用Castep计算能带结构、态密度或者声子谱的时候,程序始终提示没有Check文件? (22)Q43:Discover的Non-bond中Summation的三种方法有什么区别? (22)Q44:Castep中的Empty Band有何用处?怎么设置? (25)Q45:CASTEP中如何控制能带结构的精细程度? (25)Q46:如何在MS中加入非限制性约束条件,例如约束两个原子间距离? (26)Q47:如何在DMol3中显示大于999号轨道的Homo和Lumo轨道? (27)Q1:为什么使用Discover进行Dynamics计算时,如果设定了Pressure=1GPa,在计算结果中会出现Pressure等于0,而Stress的XX、YY、ZZ方向为1GPa的情况?A1:这是由于在进行Dynamics计算时,选用的Ensemble不相同,如果选用了Parrinello方法,将使用Stress来进行判断,此方法允许晶胞形状与大小都发生变化,已形成剪切,从而使内部的Stress 与外部Pressure相等。

materials studio 学习整理知识点

materials studio 学习整理知识点

materials studio 学习整理知识点materialsstudio学习整理知识点1.CASTEP用平面波赝势展开波函数,DMol用原子轨道的线性组合处理(CASTEP采用基于平面波赝势的方法,DMol基于分子轨道理论)castep算周期性结构的体系,dmol适合于分子,团簇,分子筛,分子晶体,聚合物等开放结构。

也就是说对空体积较大的晶体,原子轨道在稀填充体系(原子、分子、团簇、低维周期体系、沸石...)的计算上比平面波有优势。

CASTEP是一个基于密度泛函方法的从头算量子力学程序。

总能量包括动能、静电能和交换关联能。

能量的每一部分都可以表示为密度函数。

它适用于各种固体材料、界面和表面性质。

基于全能量平面波赝势理论,研究内容包括:结构对称性、晶格参数、键长、键角、能带结构、态密度、布图数、光学性质等。

castep模m允s你使用含有性的分子模型工具CASTEP主要用于大规模l相系统y,也可用于构建具有超晶格的妙娜毕达C分子。

CASTEP只能基于三维周期模型文件进行计算。

为了研究分子系统,必须构建超级细胞。

CASTEP默认使用BFGS几何优化方法,即拟牛顿算法castep的几何优化过程的本质是期望利用一个迭代过程来完成优化任务,在进行迭代的过程中,通过调整原子坐标和晶胞参数使结构的总能量最小化。

castep几何优化的核心是通过不断的减小计算力和应力的数量级,直至小于所规定的收敛误差。

当然,也可能给定外部应力张量来对拉应力,压应力和切应力等作用下的体系行为模型化。

在这些情况下反复迭代内部应力张量直到与所施加的外部应力相等CASTEP的默认能量单位为EV,换算关系为1eV=0.036749308ha=23.0605kcal/mole=96.4853kj/m2、energycutoff截断能SCF容差:迭代标准,即每两部分之间的计算标准(SCF:自洽场。

在求解薛定谔方程时,波函数一开始是未知的,因此无法获得所需的电子密度;因此,可以先用一个解进行迭代运算,直到最终得到所需的结果)kpointset:k点设置(布里渊区的点数选择,就像你选样本来看产品的合格率一样,选的多就会慢,但会更准确一些)3.建模过程中添加杂质原子的方法:方法一:用鼠标点上将要被取代得原子(点上后原子颜色将变成黄色),在窗口的右边属性栏中,将会显示这个原子的相关属性,并告诉你这个原子的元素种类(比方是al吧),然后点这个元素种类al,将出现一个元素周期表,选择你要掺杂得原子,确定就可以了!方法二:在未掺杂的晶胞建立后,选择超级晶胞,然后选择要替换的原子进行掺杂。

第六讲第一原理计算方法简介及MaterialsStudio中Castep使用案例

第六讲第一原理计算方法简介及MaterialsStudio中Castep使用案例

密度泛函理论
Hohenberg-Kohn第一定理指出体了以基态密度为变量,将体系能 量最小化之后就得到了基态能量。 根据以上两定理,将薛定谔方程转变为Kohn-Sham 方程
密度函数
电子与原子核间的库仑势
电子间的库仑势
交换关联势 (未知)
密度泛函理论 LDA和GGA近似 Kohn-Sham方程原则是精确的,但遗憾 的是交换关联势是未知的。要进行具体计 算,就必须使用近似方法求出交换关联势。 常用的近似方法有局域密度近似(Local Density Approximation)和广义梯度近 似(Generalized Gradient Approximation),在某些情况下,广义梯 度近似改善了局域密度近似的计算结果, 但它并不总是优于局域密度近似。
提示: CASTAP计算所需时间随原子数平方的增加而增加。 因此,建议是用最小的初晶胞来描述体系,可使用 Build\Symmetry\Primitive Cell菜单选项来转换成初晶
CASTEP的任务
计算设置:合适的3D模型文件一旦确定,必须选择计算类型 和相关参数,例如,对于动力学计算必须确定系综和参数, 包括温度,时间步长和步数。选择运行计算的磁盘并开始 CASTEP作业。 结果分析:计算完成后,相关的CASTEP作业的文档返回用户, 在项目面板适当位置显示。这些文档进一步处理能获得所需 的观察量如光学性质。 CASTAP中选择一项任务 1 从模块面板(Module Explorer)选择CASTAP\Calculation 2 选择设置表 3 从任务列表中选择所要求的任务
密度泛函理论 基组(basis set) 求解Kohn-Sham方程,选取适当的基组, 将波函数对其展开,将方程求解转化为线 性代数问题。 一般选用如下基组展开:

Dmol3、Castep的基本原理和参数设置-materials studio

Dmol3、Castep的基本原理和参数设置-materials studio
在DMol3模块中,常用的两种LDA方法是VWN和PWC: VWN:最常用的LSD (Local spin density)相关势函数。用来拟和电子气的精 确数值结果。 PWC:近期发展PWC泛函是在对VWN泛函的某些错误校正后的结果,是DMol3模块 的默认泛函。 LSD方法可以精确预测共价体系的结构预测、频率计算和相关能量。但是,键 能往往会高估。LDA方法不能用于处理弱健体系,如氢键。 LDA的这些缺陷,可以使用更大展开的Exc处理来校正。也称之为梯度校正方法。
i
cij j (r)
j
j(r) R n (lr)Y lm (,)
Rcut
lm
周期性和非
Radial portion
Angular
周期性体系
atomic DFT eqs.
Portion
numerically
适合于分子、团簇、分子筛、分子晶体、聚合物等“开放类结构”
Tips:对于空体积较大的晶体,使用DMol3的效率要高于Castep
各个原子轨道的半径设置 More …
精品课件
Core Treatment?
Core treatment参数控制那些原子轨道上的电子需要进 行处理。默认的设置是对于所有的电子进行处理。对于重原子而 言,内核电子的速率接近光速,就必须考虑到相对论效应。
精品课件
DMOL: 参数设置
Electronic options
Integration: 各个基函数的 精度
SCF tolerance:SCF迭代误 差
K-points :布里渊区采样 Core treatment (all
electron, PP,…) Basis set:基组选择 Orbital cutoff quality:

Materials Studio的模块

Materials Studio的模块

Materials Studio的模块Materials Studio是一个全尺度材料模拟平台。

平台以可视化视窗界面Materials visualizer为核心,在其上共整合了24个功能模块,囊括了量子力学方法、经典模拟方法、介观模拟方法、有限元模拟等各种常见分子模拟方法,以及晶体结构解析、晶体形貌预测、定量构效关系分析等实用工具,实现了从电子结构解析到宏观性能预测的跨尺度研究。

Materials visualizerMaterials visualizer是Materials Studio的图形化界面,也是整个平台的核心。

Materials visualizer的功能包括:●搭建、调整各类三维可视的结构模型,包括晶体、小分子、聚合物、纳米材料、团簇、表界面以及各种缺陷结构;●提供模块参数设置、结果分析的视窗界面;提供结构文件、参数文件以及结果文件的管理界面;提供计算进程的监控界面;●对模拟结果进行各种分析,可与结构模型相结合进行数据的二维、三维显示,可以给出数据的图表,可以对特定的结果进行动画演示或给出矢量图;Materials visualizer的特性包括:●支持多种结构、图形、文本文件格式的输入和输出;●支持不同功能模块间结构数据的共享;●提供Perl语言环境,以及脚本编译工具;●提供不规则多面体表面积、体积的计算工具。

量子力学方法量子力学方法(Quantum Mechanics)是一种能够对材料体系电子结构特点进行解析的方法,精度高且几乎不依赖于任何经验参数,因此被广泛应用在各类材料的模拟研究中。

半经验量子力学方法(Semi-empirical Quantum Mechanics)同样能够对材料体系电子结构特点进行解析,但是包含有更多的经验参数以及数学、物理近似,因此,计算效率相比于纯粹的量子力学更高,但是精度会略低。

量子力学以及半经验量子力学方法均以定态薛定谔方程为核心,计算原子核满足特定排列、堆积时,核外电子的空间、能量分布,并由此进一步得到体系的电学性质、磁学性质、光学性质、热力学性质、力学性质,所能研究的材料体系类型包括:各类晶体材料及可能的各种缺陷结构,各种维度的纳米材料,各种分子及团簇材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理1:多电子体系的基态总能量 是电子密度的唯一函数
定理2:电子密度确定,体系的基 态性质就唯一确定
多电子运动状态→电子密度分布状态
Logo
8
K-S方程自洽迭代求解过程
nstart(r) 生成KS势 求解KS方程
得到新nout(r) 和之前的n(r)比较
Logo
收敛与否 ?
Density Mixing:推 荐使用 All Bands/EDFT: 速度慢,占内存 。当使用DM计算 金属体系SCF不 收敛时推荐使用
决定
微观的电子结构
获 取
密度泛函
求解多粒子系统的薛定谔方程
H=E
近似求解多粒子系统薛定谔方程
Logo
7
密度泛函理论内容
[
1 2
2
Veff
(r )]
i
(r)
ii
(r
)
N
n(r) i (r) 2 i 1
Kohn-Sham方程
简化哈密顿算符
得 到
E() () Vne () Vee () Vnn
CASTEP中用平面波展开波函数,截断能数值 (r)
的高低控制平面波的数目
C ei(kG)r
G i,kG
截断能太低会影响计算结果的精度甚至正确性,截断能过高会增大计算量,降 低计算效率。
y
x1 xj xj+1 xn
Logo
17
动能截断测试
以不同动能截断值为单一变量做收敛性测试,选取最优值
输出结果
9
K-S求解近似处理方法-交换相关泛函
2 2
q
Zq r Rq
(r)
r r
dr VXC (r) i
i i (r)
电 动, 常数 一次迭代确定
核-电
电-电库伦作 用能
电-电交换相 关能
赝势处理
局域密度近似 LDA 广义梯度近似 GGA
Logo
10
交换相关泛函-局域密度近似LDA
假设原子核外电子云均匀分布
Logo
3
矿物晶体结构搭建
• (2)自助搭建结构
对于结构库中没有的晶体结构,要从文献、XRD软件 标准卡片等资料中查找参数自行搭建。
如:AlAs晶体结构
空间群 F-43m(代号216) 晶格参数 a=b=c=5.6622Å α=β=γ=90o 原子占位 Al(0 0 0) As(0.25 0.25 0.25)
(r)
C ei(kG)r
G i,kG
赝势
Rc
有效的减少平面波数目
pseudo wave function pseudopotential
其合理性在于,采用赝势前后: 能量本征值不发生变化 价电子波函数在Rc外的分布
不变 在Rc处的电子波函数对数的
倒数不变化
只适用于周期性体系
Logo
15
K-S求解近似处理方法-赝势
Logo
13
K-S求解近似处理方法-赝势
2 2
q
Zq r Rq
(r)
r r
dr VXC (r) i
i i (r)
电 动, 常数 一次迭代确定
核-电
电-电库伦作 用能
电-电交换相 关能
赝势处理
局域密度近似 LDA 广义梯度近似 GGA
Logo
14
K-S求解近似处理方法-赝势
CASTEP将外层电子波函数通过平面波函数 展开,将原子实近似为新的“核”dio软件CASTEP模块 ——架构原理及主要参数意义
主要内容
1 矿物晶体结构搭建 2 CASTEP整体架构、其中假设 3 CASTEP参数设置及其意义
Logo
2
矿物晶体结构搭建
• (1)从MS数据库中引入结构
MS数据库中为用户提供了较为常见的结构模型:
Catalysts 催化剂 Ceramics 陶瓷 Glasses 玻璃 Metal-oxides 金属氧化物 Metals 金属 Minerals 矿物 Molecular-crystals 分子晶体 Nanotubes 纳米管
Organics 有机物 Polymers 聚合物 Repeat-units 重复单元 Semiconductors 半导体 Zeolites 沸石族
Logo
4
矿物晶体结构搭建
• (3)外部数据库导入结构
无机晶体学数据库ICSD
American Mineralogist Crystal Structure Database
可输入矿物名称、作者、化学元素、晶胞参数及对称性等关 键词查找,可直接获得.cif结构文件和XRD检测数据,还可 以预览3D模型。
赝势设置
➢ Ultrasoft (USP) 超软 推荐用,精度好,效率高
➢ Norm-conserving (NCP) 模守恒 拉曼光谱计算不支持USP,选用NCP 为了与已发表文献比较,采用NCP
MS 8.0之后新增加的 On the fly 精度最高,推荐使用
Logo
16
动能截断Energy cutoff
LDA适用的情况: (1)电荷密度变化缓慢的体系(如金属) (2)电荷密度较高的体系(如过渡金属) (3)适用于大多数晶体结构(对晶胞参数描述准确)
真实情况下原子核外电子并非均匀分布
LDA不适用的情况: (1)电子分布定域性较强,电荷密度分布不均匀(化学反应中的过度态) (2)体系束缚能绝对值估计不准确 (3)低估禁带宽度的绝对值(固有缺陷)
Logo
5
矿物晶体结构搭建
注意:引入结构或网上查找参数及结构文件时,注意 识别需要的结构构型或数据,有的结构是人工合成 的或者经过高温、高压处理的,不能采用,如MS 库中的ZnO
Logo
6
CASTEP整体架构、其中假设
CASTEP的整体构架就是基于密度泛函理论求解K-S方程的一种方法
基本物理性质
Logo
11
交换相关泛函-广义梯度近似GGA
GGA克服了LDA在描述真实体系在电子密度变化剧烈的情 况下的缺陷,提高了交换相关能计算结果的精度,也提高了密 度泛函方法计算的精度。
非定域泛函:
HF HF-LDA sX sX-LDA PBE0 B3LYP……
一般研究半导体材料采用,精度有所提高,但运算量是LDA和GGA的几十 到几百倍,在计算精度与计算时间二者中做出取舍,一般没有必要采用
Logo
12
交换相关泛函的选择
虽然GGA方法弥补了LDA的缺陷,提高了计算精度,但也 很难说GGA一定优于LDA,不能说对于某一体系哪一种方法一 定适用。
实际使用过程中交换相关泛函的选择方法有两种: (1)阅读文献,根据他人已发表的成功经验直接选择, 这种方法最省时省力 (2)以交换相关泛函为单一变量做收敛性测试,与试验 结果比较,权衡计算精度与计算成本择优选用
相关文档
最新文档