代数式的概念知识点总结及习题

合集下载

初一数学:代数式知识点和题型

初一数学:代数式知识点和题型

代数式知识点和题型一、代数式的概念(非常重要)代数式:没有等号、没有不等号。

整式:首先必须是代数式,其次,分母中无字母,根号下无字母。

【字母的确定】①如果代数式中既有x, V,也有其他字母,一般只把x, y当做字母,其他的(比如a、b、c、d)当做数字②如果代数式中没有x, v,只有a、b、c、d等,这些都当做字母来看待。

③题目中明确说是关于那几个字母的代数式。

单项式:没有涉及字母的加减运算,或者合并同类项之后,没有涉及字母的加减运算。

比如:3ab、2x、2x &多项式:有涉及字母的加减运算2a 5b比如:一-——、3 4y、2x 7y单项式次数:所有字母的次数和。

单项式系数:单项式中的数字部分(包含正负号)。

多项式次数:多项式中次数最高的单项式的次数。

多项式项数:多项式中包含的单项式个数。

同类项:字母相同,同一个字母的次数也相同(合并同类项)二、题型1、列代数式(非常重要)利润问题:利润、价格、打折数字位数问题:数字x位数值(例如:1234 = 1 X 1000+2 X 100+3 X 10+4 X 1)面积体积问题:面积公式(圆、三角形、长方形、正方形、梯形),体积公式分段收费问题:2、同类项判断:已知两个单项式是同类型,计算参数值【方法:】根据同类项定义,写出等式。

(字母相同,同一个字母的次数也相同。

)例如:已知3a2m1b3和5a4b n 2是同类项,写出2m 1 4, n 2 3,计算即可(如果题目中说,两个单项式的和还是单项式,或者两个单项式可以合并成一项,本质上还是在说,这两个单项式是同类项,解题方法完全一样)几次几项式判断,方法类似。

缺项计算:先化简、缺哪一项,哪一项的系数值为零。

3、整式运算①合并同类项和加减运算。

去括号运算,括号前面是负号,去括号之后,每个数都变号。

②先化简再求值。

(非常重要)例如:先化简,再求值:(a26ab 9) 2(a2 4ab 4.5),其中|a 1| 屈一2 0【方法:】无论题目中是否明确说,先化简再求值。

《2.1 代数式的概念和列代数式》 知识清单

《2.1 代数式的概念和列代数式》 知识清单

《2.1 代数式的概念和列代数式》知识清单《21 代数式的概念和列代数式》知识清单一、代数式的概念在数学中,代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

单独的一个数或者一个字母也叫做代数式。

例如:5,a,3x + 2y,ab 等都是代数式。

需要注意的是,代数式中不含有关系符号(如等号、大于号、小于号)。

像 3 = x ,x > 5 这样的式子就不是代数式。

代数式可以分为有理式和无理式。

有理式包括整式和分式。

整式是指只包含加、减、乘运算的代数式,且除数不能为字母。

像 3x,x² 2x + 1 等都是整式。

分式则是指除数中含有字母的有理式,例如 2 / x ,(x + 1) /(x 1) 等。

无理式是指被开方数含有字母的代数式,如√x ,³√(x + y) 等。

二、列代数式列代数式就是把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来。

1、抓住关键词语在列代数式时,要认真审题,抓住题目中的关键语句,准确理解数量关系。

例如,“x 的 3 倍与 5 的差”,其中“x 的 3 倍”表示为 3x ,“差”用减法,所以代数式为 3x 5 。

2、明确运算顺序在列代数式时,要注意运算顺序。

一般先读的先写,后读的后运算。

比如,“x 与 y 的和的平方”,先算和,即 x + y ,再平方,所以代数式为(x + y)²。

3、正确使用括号当需要改变运算顺序时,要正确使用括号。

比如,“a 减去 b 与 c 的和”,先算 b 与 c 的和,即 b + c ,所以代数式为 a (b + c) 。

4、注意单位在列代数式时,如果遇到单位名称,要根据具体情况添加括号。

例如,“小明跑步的速度是 a 米/秒,他跑了 5 分钟,所跑的路程是多少?”因为 5 分钟= 300 秒,所以路程为 300a 米。

5、多种情况分别列式当问题中涉及到多种情况时,要分别列式。

初一数学第三章《代数式》知识点及测试题

初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由或的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5 a。

·单项式的系数:单式项中的叫做单项式的系数。

·单项式的次数:单项式中叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例:232a b-的系数是________,次数是_______。

②多项式:几个的和叫做多项式。

其中,每个单项式叫做多项式的,不含字母的项叫做。

·多项式的次数:多项式里的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n-+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

七年级代数式知识点及例题

七年级代数式知识点及例题

七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。

本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。

一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。

其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。

二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。

同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。

将同类项相加或相减得到的结果称为合并同类项。

例如:2x²+3x²=5x²,6xy-2xy=4xy。

2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。

例如:3(x+2)=3x+6。

3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。

三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。

将给定的数值代入代数式中,然后通过基本运算得出最终结果。

例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。

2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。

例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。

四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。

解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。

2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。

解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。

将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。

3. 求解未知数:已知3x+2=8,求x的值。

专题16代数式(4个知识点2种题型1个易错点1个中考考点)(原卷版)

专题16代数式(4个知识点2种题型1个易错点1个中考考点)(原卷版)

专题16代数式(4个知识点2种题型1个易错点1个中考考点)【目录】 倍速学习四种方法【方法一】 脉络梳理法知识点1.代数式的概念(重点) 知识点2.列代数式表示数量关系(重点)(难点)知识点3.代数式表示的实际意义 【方法二】 实例探索法题型1.用代数式表示面积题型2.列代数式表示实际问题【方法三】差异对比法易错点: 列代数式时对题目中的数量关系理解有误,弄错运算顺序 【方法四】 仿真实战法考法. 列代数式【方法五】 成果评定法【学习目标】1. 了解代数式的概念,会用代数式表示简单的数量关系。

2. 能解释一些简单代数式的实际背景或几何意义。

3. 能分析实际问题中的数量关系,并用代数式表示,提高数学应用意识。

【倍速学习五种方法】【方法一】脉络梳理法知识点1.代数式的概念(重点)如:16n ,2a+3b ,34 ,2n ,2)(b a 等式子,它们都是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的,像这样的式子叫做代数式,单独的一个数或一个字母也是代数式.【例1】下列是代数式的是( )A .02<B .210xC .3-D .1x y +=【变式】(2023上·福建南平·七年级统考期中)下列说法中不能表示代数式“5x ”意义的是( ) A .x 的5倍 B .5个x 相乘 C .5个x 相加 知识点2.列代数式表示数量关系(重点)(难点)【例2】(2023上·山西运城·七年级统考期中)由白色小正方形和灰色小正方形组成的图形如图所示,则知识点3.代数式表示的实际意义 生活中我们常用图形或字母表示一些特定含义,比如停车场P ,KFC 等,数学中可用字母表示未知数,数学公式,运算律,数量关系等,复习常见小学所学规则图形的面积(三角形,正方形,长方形,平行四边形,梯形,圆,后续会用到:将不规则面积转化为规则图形面积)【例3】(2023上·河北石家庄·七年级石家庄市第四十一中学校考期中)代数式3x -的意义可以是( ) A .3-与x 的和 B .3-与x 的差 C .3-与x 的积 D .3-与x 的商【变式】(2023上·河南濮阳·七年级统考期中)请仔细分析下列赋予4a 实际意义的例子,其中错误的是( )A .若a 表示一个正方形的边长,则4a 表示这个正方形的周长B .若一个两位数的十位数字是4,个位数字是a ,则4a 表示这个两位数C .若阳光玫瑰的价格是4 元/千克,则4a 表示购买a 千克该种阳光玫瑰的金额D .若一辆汽车行驶速度是a 千米/小时,则4a 表示这辆汽车行驶4小时的路程【方法二】实例探索法题型1.用代数式表示面积1.(2023上·广东河源·七年级校联考期中)如图是一个长方形,分别以它的两个顶点为圆心以b 为半径作两个四分之一圆:(1)用代数式表示阴影部分的面积;(2)当10a =,4b =时,求阴影部分的面积(结果保留π).2..(湖南省娄底市20232024学年七年级上学期期中数学试题)如图,四边形ABCD 是一个长方形.(1)DF = (用含x 的代数式)(2)根据图中数据,用含x 的代数式表示阴影部分的面积S ;(3)当2x =时,求S 的值.题型2.列代数式表示实际问题3.(2023上·辽宁鞍山·七年级统考期中)某服装店新进一款服装,第一天销售了m 件,第二天的销售量是第一天的2倍少3件,第三天比第二天少销售5件,则第三天的销售量是( )A .()5m -件B .()22m -件C .()28m -件D .()22m +件4.(2023上·吉林松原·七年级统考期中)如图,一个窗户的上部为半圆形,下部是由边长为cm a 的4个小正方形组成的大正方形,求这个窗户的外框总长.【方法三】差异对比法易错点: 列代数式时对题目中的数量关系理解有误,弄错运算顺序1.(2023上·安徽安庆·七年级安徽省安庆市外国语学校校考期中)今年春季,果园喜获丰收,某批发公司组织10辆汽车装运甲,乙两种水果去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种水(1)求这10辆汽车共装运水果的数量(用含有x 的式子表示);(2)求销售完装运的这批水果后所获得的总利润(用含有x 的式子表示);(3)现为了促销,公司决定甲种水果每吨让利m 元,乙种水果每吨利润不变,若无论装运甲种水果的汽车为多少辆,这10辆车装运的水果销售完后,总利润都保持不变,求m 的值.【方法四】 仿真实战法考法. 列代数式1.(2023·吉林长春·统考中考真题)2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程【方法五】 成果评定法一、单选题1.(2023上·辽宁鞍山·七年级统考期中)用含有字母的式子表示下列数量关系“a 的3倍与b 的差的平方”,正确的是( )A .23a b -B .()23a b -C .()23a b -D .()23a b - 2.(2023上·湖南怀化·七年级统考期中)一台学习机的成本价是a 元,销售价比成本价增加了25%,因库存积压,所以就按销售价降价30%出售,那么每台学习机的实际售价是( ) A .(125%30%)a +-元B .30%(125%)a -元C .(125%)(130%)a ++元D .(125%)(130%)a +-元4.(2023上·广东广州·七年级校联考期中)火车站和机场为旅客提供大包服务,如果长、宽、高分别为x ,y ,z 的箱子按如图的方式打包,则打包带的长至少为( )A .4410x y z ++B .23x y z ++C .246x y z ++D .686x y z ++6.(2023上·四川宜宾·七年级校联考期中)a 是三位数,b 是一位数,如果把b 放在a 的左边,那么所成的四位数应表示为( )A .baB .100b a +C .10b a +D .1000b a +7.(2023上·山西晋中·七年级统考期中)某商场书包原价为m 元,在9月份开学之季,商家开展优惠活动,现售价为()0.830m -元,则下列说法中,符合题意的是( )A .原价减30元后再打8折B .原价打8折后再减30元C .原价打2折后再减30元D .原价减30元后再打2折8.(2023上·湖北十堰·七年级校考期中)十堰市出租车的收费标准是:起步价6元(含3千米),当路程超过3千米时,超过部分每千米收费1.5元.如果某出租车行驶路程为P 千米()3P >,则司机应收费为(单位:元)( )A .6 1.5P +B .6 1.5P -C .1.5 1.5P +D .()6 1.53P --9.(2023上·内蒙古包头·七年级包钢第三中学校考期中)小兰房间窗户的装饰物如图所示,该装饰物由两10.(2023上·广东广州·七年级广州市骏景中学校考期中)用代数式表示语句“比x 的2倍大3的数”正确的是( )A .23x +B .23x -C .26x -D .23x > 二、填空题11.(2023上·安徽合肥·七年级合肥市五十中学西校校考期中)甲、乙两地相距200km ,汽车从甲地到乙三、解答题19.(2023上·江西萍乡·七年级校考期中)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1, 2.5-,3-,观察数轴,A ,B 两点之间的距离为________.(2)若将数轴折叠,使得点A与点C重合,则与点B重合的点表示的数是________;若此数轴上M,N两点之间的距离为2023(M在N的左侧),且当点A与点C重合时,点M与点N也恰好重合,则点M表示的数是________,点N表示的数是________.(3)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q两点的距离相等,将数轴折叠,当点P与点Q重合时,点P表示的数是________,点Q表示的数是________(用含a,b的式子表示).20.(2023上·河南商丘·七年级统考期中)某校计划在元旦期间举办一场以“红色文化”为主题的元旦晚会,并打算为参加红歌大合唱的学生订购表演服装(包含服装和帽子),已知该服装每套定价80元,帽子每个定价10元某服装店向该校提供两种优惠方案:①买一套服装送一个帽子;②服装和帽子都按定价的80%付款.x>)现统一要到该服装店购买服装30套,帽子x个(30(1)若该校按方案①购买,需付款元(用含x的代数式表示);若该校按方案②购买,需付款元(用含x的代数式表示);(2)若30x=,通过计算说明此时按哪种方案购买较为合算?21.(2023上·四川自贡·七年级校考期中)小方家的住房户型呈长方形,长为22,宽为18,平面图如下(单位:米).现准用木地板铺设卧室.(1)求a的值;(2)铺设卧室地面需要木地板多少平方米?(用含x的代数式表示)(3)按市场价格,木地板单价为300元/平方米.装修公司有活动方案:木地板打八折,总安装费2000x=,则小方家铺设卧室地面总费用(含材料费及安装费)多少?元.已知622.(2023上·湖北十堰·七年级校考期中)如图,一扇窗户如图①,所有窗框(包含内部框架和外部框架)为铝合金材料,其下部是边长相同的四个小正方形,上部是半圆形,已知下部小正方形的边长是a 米,窗户(包括上部和下部)全部安装透明玻璃,现在按照图②的方式,在阴影部分的位置上全部安装窗帘,图②中窗帘下部分是两个以a米为直径的半圆形,没有窗帘的部分阳光可以照射进来.(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含a的代数式表示,π取3)(2)求照进阳光的面积是多少平方米?(用含a的代数式表示,π取3)(3)某公司需要购进20扇窗户,按照图②的方式安装窗帘,厂家报价:铝合金每米100元,窗帘每平方米40元,透明玻璃每平方米90元,当1a =时,计算该公司总花费多少元?23.(2023上·广东汕头·七年级林百欣中学校考期中)如图,四边形ABCD 和四边形ECGF 都是正方形,边长分别为a 和6,点D 在边EC 上.求阴影部分图形的面积.(用含a 的代数式表示)24.(2023上·陕西榆林·七年级统考期中)将每张长为40cm ,宽为15cm 的长方形白纸,按如图所示的方法黏合起来,黏合重叠部分的宽为5cm .(1)分别求出5张白纸和10张白纸黏合后的总长度;(2)求出n 张白纸黏合后的总长度.(用含n 的代数式)25.(2023上·江苏盐城·七年级校考期中)已知图① 、图② 分别由两个长方形拼成.(1)用含a ,b 的代数式表示这两个图形的面积:图① :_____,图② :_____;(2)由(1)可以得到等式:_______;(3)请运用上述发现计算:2220242023-26.(2023上·江西赣州·七年级统考期中)已知一个三角形的第一条边长为(3)a b +厘米,第二条边比第一条边短(1)b -厘米,第三条边比第二条边要长3厘米,请用式子表示该三角形的周长.。

代数知识点总结及答案

代数知识点总结及答案

代数知识点总结及答案代数是数学中的一个重要分支,研究和运用数与数的关系和运算的一门学科。

在代数中,我们使用符号和变量来表达数学问题,通过运算和推理来解决问题和探索数学规律。

代数知识是数学学习的基础,也是后续学习高等数学和其他数学分支的重要基础。

下面我们将对代数知识点进行总结。

一、代数基础知识1. 简单代数式代数式是由运算符号和字母(或数字)组成的表达式。

例如,3x-2y+5z就是一个代数式,其中x、y、z是变量,3、-2、5是系数,x、y、z和数之间的运算符是运算符号。

代数式中的字母表示未知数,用于表达一般的数值,而不是特定的数值。

2. 多项式多项式是由一系列代数式按照一定的规则相加或相乘得到的代数式。

例如,2x^2-3x+5就是一个多项式,其中2x^2、-3x和5都是代数式,它们用加法连接在一起形成了一个多项式。

3. 方程和不等式方程是一个数学等式,指出两个代数式是相等的。

例如,2x+3=7就是一个方程,通过求解x的值可以找到方程的解。

不等式是用来比较两个代数式大小关系的数学式子。

例如,2x+3>7就是一个不等式,它表示2x+3的值大于7。

4. 代数运算代数运算包括加法、减法、乘法、除法和乘方等。

这些运算符号在代数中有着特定的规则和性质,掌握这些性质对于解决代数问题至关重要。

二、代数方程与不等式1. 一次方程一次方程是一个未知数的最高次数为1的方程,一般可以表示为ax+b=0。

其解的求解方法包括移项、合并同类项和化简等步骤。

2. 二次方程二次方程是一个未知数的最高次数为2的方程,一般可以表示为ax^2+bx+c=0。

其解的求解方法包括配方法、公式法和因式分解等多种方法。

3. 不等式不等式表示了两个代数式的大小关系,包括大于、小于、大于等于和小于等于等关系。

解不等式的方法需要根据不同的情况进行分类讨论。

4. 绝对值不等式绝对值不等式是一个未知数的绝对值与一个常数之间的大小关系式。

解绝对值不等式的关键是对不等式进行分段讨论。

初一代数式常识总结(题型全面)

初一代数式常识总结(题型全面)
整式的乘除法: am an amn (m, n都是正整数) a m a n a mn (m, n都是正整数, a 0)
乘方运算:(a m)n a mn (m, n都是正整数) (ab)n a nbn (n都是正整数)
重要公式: (a b)(a b) a 2 b2
(a b)2 a 2 2ab b2
(a b)2 a 2 2ab b2
注意:(1)单项式乘单项式:系数(包括符号)与系数相乘,字母与字母相乘,其结果仍然是单项 式。
——————————————————————————————————————————————————-— 1 不积跬步,无以致千里;不积小流,无以成江海
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们社邓新。出寻始会小的邓(找终主平关小1一代义)坚键平种表的我2持在对能.1中本国把科人社9够国质社5发学才会从4先,会展社年,主更进是主作会,人义深生解义为主毛才本层产放制执义在的质次1力生度政理《成所.认社1的产还兴论论长作.识会 发发力刚国和十靠的社主 展展,刚的实大教概会义 才要发建第践关坚育括主本 是求展立一的系2持。,义质 硬、,生,要基》以人一,理 道发大产还务本重发才方从论 理展力力没是成要展资面而把 ,才促,有由果讲社的源强为我 把是进消完中,话会办是调中四们 发(硬先灭全国抓中主法第必国、对 展2道进剥建共住提三义解一)须的科社 生理生削立产“出、经决资采解社学会 产,产,党什(代济前源取放会技主 力是力消还的么1表基进。从和主术义 作)对的除不执是中础科低发义是1的 为吧社3发两完政社9国基的学级展.建第发认 社二国5会展极全地会先本问技到6生设一展识 会、内主,年分巩位主进建题术高产在生才提 主发外义是底化固所义生立,实级力改产是高 义1展一时中我,的决邓产的是力9,革力硬到 建是切间5国最思定怎小力同实和国另3开道了 设党积经共对终想年的样平的时行国家一放理一 的执极验产农达。1,建一发,改民资方中2,个 根政因教党业到(是设月再展我革教本面探是新 本兴素训站、共2对社,强要国开育主指索)适的 任国都的在手一同执会毛调求的放水义出出第创应科 务在的调深时工、富1政主泽,政以平的4了一三造.时学 ,社第动刻坚代.业发裕规义东中一治来,过2解条节性代水 符会一起总持前.和展。律”关社 国个领我始度放发、地主平 合阶要来结社列资才”认这于会 社公域们终形和展社提题。 马级务为。会,本是1识个总主 会有也党是式发更会9出变社 克二关中主保硬的根8路义 主制发的衡。展快主了化会 思6、系国义持道3深本线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要本 基.主变事所平化向业1也,整度 制,大要小国家的享本9义。质 本义化业有方建的是深5的度一变经平力资手受社任理 原6本的服问法设根社对刻表确 的个化验年提和本段到会 1务论 理第质同务题进与本会一党揭.述立 确共,。出社主社和社主基的 ,二理时的行社体主、实示:, 立同确苏“会义会目会3义本提 是节论,基关改会现义社现了.从为 ,富立共社文,社主的主一改矛出 巩、的我本键造主和改会其社中当 使裕了二会明就会义。义、造盾, 固对重国方是。义根造之所会华代 占,中十主程是主基建中的和为 和第社要针这改本基一承主人中 世这国大义度在义本设国基两进 发一会意。靠不造要本本担义民国 界是共以财的国基制内成特本类一 展节主义的(自仅同求完质的本共一 人我产后富重家本度涵果色完矛步 社、义主2己保时。成理历质和切 口们党毛属要直)制的包最伴社成盾推 会中本要的证并,论史,国发 四必领泽于标接正度确括大随会,的进 主国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学改 义特理盾展2社。志五提需是立进 之坚的提民。制处确是1.能社义我说采革 制色论也。会实着章)出要对,步 一持人出,和理立中够会建国,取开 度社的发的践中把。马到奠 的民要社支经,国社充经设强积放 的会提生稳证国解克社定 东民“会配济是历会分济道调极和 必主出了定明历放思会了 方主以下建4广史主体制路要引社 然义变,.史和主主把制 大专苏义的设大上义现度初严导会 要二建化而党上发义义对度 国政为的资和劳最的出和步经格、主 求设。且坚长展的改企基 进党的鉴致本社动深本对社探济区逐义 。确道人极持达生重造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产大基的。 了过本会,是义发民最和本经的构过代社的对的会千力逐发本改社渡原主探全经展真伟根主济理发正渡化会初于促主年概步展完造会时则义索民济中正大本义结论生确的建新主步经进义的括实,成和主期。基自共的成任优构成了处方设中义探济了改阶为现对,对义总本己同国一为社务越的果根理式提国基索文社造级国于这人制 社路政的致家系国会性根本两。供的本化会与剥家建是的度 会线治道富资列家变的一本变类中了成制迅主社削的设一改的 ,第制路。本重的革道、变化不国强立度速义会制社中个造建 这三主度。社大主,路社化,同这大,的发事主度的会国过结立 是节要。会义关人也,1会社性场的标重展业义的本主特.渡合极 世、内人主有系解和是奠主我会质巨思志大的的工结(质义色时起大 界社容民义初。决社2定义国主的大想着意需发业束30。工社期来地 社(会被民原级了会)世了基社义矛而武我义要展化,(业会。,提 会2主概则和3在生把纪理本会经盾深器国同),同实2化主党把高 主对义括专,高一产资中)论制的济,刻。新经遵改总时现新是义在对了 义手制为政第级个资本国强基度阶成在特的通民济循革之并了民党具这资工 运二七度“实一形以料主又调础的级分新别社过主文自4过,举由主在有个本人 动、届 业在一质是式农的.(义一消,初关已民是它会(没主化愿于和的新主过重过主阶 史新社二 的中化上发之民主1工次灭开步系占主要是变4收义不互集平方民()义渡大渡义级 上民会中 社国三已展)分为人商划剥阔确也绝主正中革官能利中改针主3用社时的时工和 又主全 会的改成生坚。主)业时削了立发对义确国,僚命满、的造,主和会期理期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义平的论.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向赎五总和总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3买种路实路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会的经线践线成人 性理历中 ,化级是导的义后1农为巨极。√的会内体对革成本要的和如刻主)方济的意和为民 的论史国 党”专共、工的村自变分邓中主指部实生命的结建国初实的义积法成主义总自的 伟是经“ 和即政同稳家商半的食。化小国义导矛际产在走社束状设家步现社的极改分体。任食积 大以验稳 政社;致步资业殖阶其们平社革。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步

第三章--《代数式》知识点及测试题

第三章--《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由 或 的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5a 。

·单项式的系数:单式项中的 叫做单项式的系数。

·单项式的次数:单项式中 叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例: 232a b -的系数是________,次数是_______。

②多项式:几个 的和叫做多项式。

其中,每个单项式叫做多项式的 ,不含字母的项叫做 。

·多项式的次数:多项式里 的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n -+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a -++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即x b a bxax )(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

八上代数知识点总结

八上代数知识点总结

八上代数知识点总结第一章代数式与方程1.1 代数式的概念代数式是由数字、字母和运算符号组成的式子。

其中有字母的式子叫代数式。

代数式中的字母表示数,这个数可以是任意的,因此代数式表示的是一类数。

代数式是数学中的一个重要概念,它是使数学运算变得简便、通用的一个中心概念。

1.2 乘法公式乘法公式是一种特殊乘法法则,用字母表示着与数量关系的代数式。

乘法公式包括前联系乘法公式、分配律乘法公式、完全平方公式。

1.3 方程的概念代数式中含有未知数的等式叫方程。

方程是数学中的一个重要概念,它是用来研究未知数之间的数量关系的一个数学工具。

方程就是两个代数式相等的语句,方程中含有未知数。

方程是一种数学语言,它是表示两个量相等或两个代数式相等的数学关系。

方程的解叫方程根。

1.4 一元一次方程一元一次方程是对称数学问题的数量关系,具有很好的性质。

一元一次方程既有代数式的形式,又有两边相等的几何意义。

由于一元一次方程是数学中的一类非常重要的代数式,所以必须认真对待,掌握其相关的知识和技能。

第二章一元一次方程2.1 解一元一次方程的基本思路解一元一次方程的基本思路就是在若干次有效的方程变形中逐次减少方程中未知数的数量,直至变成未知数出现在等式左边的情况!。

全篇都围绕着如何解一元一次方程体现了变形“曲线教学”的基本理念。

2.2 化简方程化简方程,既是为了消减进行解方程的复杂程度,又是为了更深入地理解方程的解出现的位置。

化简方程实际上是在消除方程中的冗余部分,使最终不必要的部分都集中后更加直观的观察方程的根所在。

2.3 判断等式成立的条件只要样本所满足的等式成立的条件与原样本结构的关系和样本的特定性有关系关系着,就说明了在样本满足获得的条件的基础上一定要完成符合样本本身特点的前提下。

因此,如果不具备样本的特点就很难得出样本确实等式成立的个性化依据,也就是综合了样本等式能否成立的原因。

2.4 解一元一次方程解一元一次方程是含有未知数的一个等式,其特征是方程左右两边只有一个未知数。

最新代数式的概念知识点总结及习题

最新代数式的概念知识点总结及习题

第12讲 代数式【知识要点】 1、 代数式代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。

如:3,),(2,,),1(),1(34a ts n m ab b a x x x x +++++-+等等。

代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; (4)带分数化成假分数。

2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。

【典型例题】【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么?【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式?哪些不是代数式?(1)123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)27;(6)5332>。

【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 2438-中,符合代数式书写要求的有 。

【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱?【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。

【课堂练习】 一、填空三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、某长方形的长是宽的23倍,且长是a cm ,则该长方形的周长是 cm ; 六、棱长是a cm 的正方体的体积是 cm 3 ; 七、产量由m kg 增长10%,就达到 kg ;八、学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,注意:单独一个数或一个字母也是代数式。

在捐给社区的图书为 册;九、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。

初一数学《代数式》知识点精讲

初一数学《代数式》知识点精讲

初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。

特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a 米,(2a-b)kg。

六、系数与次数单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

七年级上代数式知识点梳理+例题讲解+测试题

七年级上代数式知识点梳理+例题讲解+测试题

知识梳理用字母表示数:示出来。

代数式:1.用基本运算符号(+.-为代数式。

注:单独一个数或一个字母也是代数式。

Π是数字不是字母。

2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。

多项式:1.几个单项式的和叫做多项式。

计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。

解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。

【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。

代数式知识点、经典例题、习题及标准答案

代数式知识点、经典例题、习题及标准答案

1.2代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。

2、用代数式表示实际问题中的数量关系,求代数式的值。

【知识梳理】1、代数式:指含有字母的数学表达式。

2、一个代数式由数、表示数的字母、运算符号组成。

单个字母或数字也是代数式。

3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或 100•a,na或 n•a。

(3)、后面接单位的相加式子要用括号括起来。

如:(5s)时(4)、除法运算写成分数形式。

(5)、带分数与字母相乘时,带分数要写成假分数的形式。

5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。

“倍”“几分之几”等词语与代数式中的运算符号之间的关系。

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。

(3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。

其中第①个图形一共有2 个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2, 4,6,…,6,4,2,故第⑥个图形中五角星的个数为 2+4+6+8+10+12+10+8+6+4+2=72。

答案:D【例 2】(2011 甘肃兰州,20,4 分)如图,依次连接第一个矩形各边的中点得到一个菱形, 再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积 为 1,则第 n 个矩形的面积为.1 【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的 ,故21后一个矩形的面积是前一个矩形的 ,所以第 n 个矩形的面积是第一个矩形面积的4 1 1 1 n 1 2 2 2n 2n ,已知第一个矩形面积为 1,则第 n 个矩形的面积为 。

代数式知识点及专项训练(含答案解析)

代数式知识点及专项训练(含答案解析)

代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。

如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。

知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。

5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。

9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

2. 代数式的值的求解步骤:一是代入,二是计算。

在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。

数学代数式知识点

数学代数式知识点

数学代数式知识点一、知识概述《数学代数式知识点》①基本定义:代数式呢,就是用运算符号(像加、减、乘、除、乘方、开方)把数和表示数的字母连接而成的式子。

比如3x,这里的3和x通过乘号连接起来就成了代数式;再比如a + b,也是代数式,就是字母a和b用加号连起来。

还有单独的一个数或者一个字母也是代数式,像5或者m都是。

②重要程度:在数学里那可太重要了。

它就像是数学表达的一种“语言”。

从简单的算术题到复杂的方程求解、函数研究都离不开代数式。

在中学数学里,整个代数的基础就是建立在代数式这个概念之上的。

③前置知识:得先知道数字的一些基本运算(加、减、乘、除、乘方、开方这些),还有字母可以代表数这个概念。

就像学走路要先学会站立一样,这些前置知识就是学会代数式的基础。

④应用价值:在实际生活里很多。

比如去商店买东西,一个苹果x元,买了3个就是3x元。

家里装修算面积,正方形房间边长是a米,那面积就是a²平方米,这些都是代数式实实在在的用处。

二、知识体系①知识图谱:代数式在数学这棵大树里就像是树干的一部分分枝。

它和数论、方程式、函数等知识都有密切联系。

方程就是代数式加上等号组成的等式,函数是以代数式为表达式的一种特殊关系。

②关联知识:跟整数、有理数、实数这些数的概念有联系,因为代数式中的数经常是这些类型的数。

也和运算律相关,因为代数式运算时也遵循这些运算律。

像乘法分配律对于代数式ax + bx = (a + b)x这个变形就非常关键。

③重难点分析:重点是理解代数式的概念和它包含的各种运算。

难点说实话是在复杂代数式的化简和求值计算中,因为可能涉及到很多运算步骤和规则。

比如说式子(2x + 3y)²,展开的时候既要有乘方运算,又要注意各项的系数和符号,特别容易出错。

④考点分析:在考试里经常出现。

从填空、选择考查基本概念,比如判断一个式子是不是代数式;到解答题考查代数式的化简求值,像已知x = 2时,求2x²- 3x + 1的值这种题型。

代数式10大必考考点精讲精练

代数式10大必考考点精讲精练

2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题1.2代数式10大必考考点精讲精练(知识梳理+典例剖析+变式训练)【目标导航】【知识梳理】1.代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|-2.25|等.2.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.3.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.4.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.6.数字的变化规律探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x ,再利用它们之间的关系,设出其他未知数,然后列方程.【典例剖析】【考点1】用字母表示数【例1】(2021秋•江都区期中)用代数式表示“m 的7倍与n 的差的平方”,正确的是( )A .7m ﹣n 2B .(m ﹣7n )2C .7(m ﹣n )2D .(7m ﹣n )2【分析】表示出m 的7倍为7m ,与n 的差,再减去n 为7m −n ,最后是平方,于是答案可得.【解答】解:用代数式表示“m 的7倍与n 的差的平方”为(7m −n )2,故选:D .【变式1.1】(2022秋•高港区期中)下列式子,符合代数式书写格式的是( )A .a +bB .113a C .a ×8D .b a【分析】根据代数式的书写要求判断各项即可.【解答】解:A .正确,符合题意;B .113a 的正确书写格式是43a ,故错误,不符合题意;C .a ×8的正确书写形式是8a ,故错误,不符合题意;D .ba后面加(a ≠0),符合代数式的书写要求,故本选项正确;故选:A .【变式1.2】(2022秋•梁溪区期中)若n 是整数,则n +1,n +3表示( )A .两个奇数B .两个偶数C .两个整数D .两个正整数【分析】根据代数式、整数的定义解答即可.【解答】解:因为n 是整数,所以n +1,n +3是两个整数,可能是两个奇数,也可能是两个偶数;可能正数,也可能是负数.故选:C.【变式1.3】(2019秋•淮安区期中)代数式a2―1b的正确解释是( )A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:代数式a2―1b的正确解释是a的平方与b的倒数的差.故选:D.【考点2】列代数式【例2】(2020秋•江苏省江阴市期中)如图是一个长为a,宽为b的长方形,两个阴影图形的一组对边都在长方形的边上,其中一个是宽为1的长方形,另一个是一边长为1的平行四边形,则长方形中空白部分的面积等于( )A.ab﹣a﹣b B.ab﹣a﹣b+1C.ab﹣a﹣b﹣1D.ab﹣a+b﹣1【分析】根据图形,可以用含a、b的代数式表示出空白部分的面积.【解析】由图可得,长方形中空白部分的面积等于ab﹣a×1﹣1×(b﹣1)=ab﹣a﹣b+1,即长方形中空白部分的面积等于ab﹣a﹣b+1.故选:B.【变式2.1】(2022秋•扬州期中)为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A.8(100﹣x)元B.8x元C.10(100﹣x)元D.8(100﹣10x)元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:A.【变式2.2】(2022秋•梁溪区校级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m,丙没有与乙重叠的部分的长度为4m.若乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,则乙的长度为(用含有x、y的代数式表示)( )A.(x﹣y+7)m B.(x+y+7)m C.(2x+y﹣7)m D.(x+2y﹣7)m 【分析】设乙的长度为am,则甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(a﹣x﹣3)+(a﹣y﹣4)=a,即可解答.【解答】解:设乙的长度为am,∵乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,∴甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,∴甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a﹣x﹣3)+(a﹣y﹣4)=a,a﹣x﹣3+a﹣y﹣4=a,a+a﹣a=x+y+3+4,a=x+y+7,∴乙的长度为:(x+y+7)m.故选:B.【变式2.3】(2022秋•玄武区期中)某船在相距skm的A、B两个码头之间航行,若该船在静水中的速度是50km/h,水流速度是akm/h,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少( )A.(s50a―s50a)h B.(2s50a―2s50a)hC.(s50a ―s50a)h D.(2s50a―2s50a)h【分析】根据路程÷速度分别求出该船从B到A逆水行驶的时间和从A到B顺水行驶的时间,再相减即可求解.【解答】解:依题意有:该船从B到A逆水行驶的时间为s50ah,从A到B顺水行驶的时间为s50ah,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少(s50a―s50a)h.故选:C .【考点3】单项式的有关概念【例3】(2021秋•苏州期中)若单项式﹣的系数是m ,次数是n ,则m +n 等于( )A .B .C .D .【分析】根据单项式的次数与系数的定义解决此题.【解答】解:由题意得:m =,n =3.∴m +n ==.故选:C .【变式3.1】(2022秋•宜兴市期中)在代数式1x,2x +y ,13a 2b ,x y π,0.5,a 中,单项式的个数是( )A .2个B .3个C .4个D .5个【分析】根据单项式的定义,数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行判断.【解答】解:单项式有13a 2b ,0.5,a ,共三个,故选:B .【变式3.2】(2022秋•海安市期中)下列四个单项式的系数、次数,正确的是( )A .πa 2b 系数为1,次数为3B .―15xy 系数为15,次数为3C .xy2系数为1,次数为2D .﹣5xy 2系数为﹣5,次数为3【分析】根据单项式的系数和次数的概念判断即可.【解答】解:A 、πa 2b 系数为π,次数为3,故本选项说法错误,不符合题意;B 、―15xy 系数为―15,次数为2,故本选项说法错误,不符合题意;C 、xy 2的系数为12,次数为2,故本选项说法错误,不符合题意;D 、﹣5xy 2系数为﹣5,次数为3,本选项说法正确,符合题意;故选:D .【变式3.3】(2022秋•宜兴市期中)如果单项式2a n b 2c 是六次单项式,那么n 的值取( )A .6B .5C .4D .3【分析】直接利用单项式的次数确定方法得出n 的值即可.【解答】解:∵单项式2a n b 2c 是六次单项式,∴n +2+1=6,解得:n =3,故n 的值取3.故选:D .【考点4】多项式的有关概念【例4】(2020秋•江苏省宝应县期中)下列说法中正确的个数是( )(1)a 和0都是单项式;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是三次四项式;(3)单项式―xy 29的系数为﹣9;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2.A .1个B .2个C .3个D .4个【分析】根据单项式和多项式的相关定义解答即可.【解析】(1)a 和0都是单项式,原说法正确;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是四次四项式,原说法错误;(3)单项式―xy 29的系数为―19,原说法错误;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2,原说法正确.说法中正确的个数是2个,故选:B .故选:C .【变式4.1】(2022秋•通州区期中)一次项系数为3的多项式可以是( )A .a 2+3B .3a 2+2a ﹣1C .13a 2+2a +3D .2a 2+3a【分析】先找出多项式的一次项,再找出项的系数即可.【解答】解:A .一次项系数为0,选项错误,不符合题意;B .一次项系数为2,选项错误,不符合题意;C .一次项系数为2,选项错误,不符合题意;D .一次项系数是3,选项正确,符合题意;故选:D .【变式4.2】(2022秋•高港区期中)下列说法正确的是( )A .多项式a 3+b ﹣1有3项,其中有一项是1B .单项式12πmn 3的次数是5次C .单项式12πmn 3的系数是12D .多项式―12x ﹣x 2y +2π是3次3项式【分析】根据单项式与多项式的定义解答即可.【解答】解:A 、多项式a 3+b ﹣1有3项,其中有一项是﹣1,不合题意;B 、单项式12πmn 3的次数是4次,不合题意;C 、单项式12πmn 3的系数是12π,不合题意;D 、多项式―12x ﹣x 2y +2π是3次3项式,符合题意.故选:D .【变式4.3】(2022秋•东海县期中)关于整式3x 2﹣y +3xy 3+x 3﹣1,理解错误的是( )A .它属于多项式B .它是三次五项式C .它的常数项是﹣1D .它的最高次项的系数是3【分析】先根据多项式的有关定义进行判断,不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.【解答】解:∵3x 2﹣y +3xy 3+x 3﹣1的最高次项是3xy 3,次数为4,常数项为﹣1,它的最高次项的系数是3,∴它是四次五项式,∴A 不符合题意;B 符合题意;C 不符合题意;D 不符合题意;故选:B .【考点5】同类项【例5】(2020秋•江苏省阜宁县期中)如果单项式2x m y 2与12y n +4x 5是同类项,那么n m 等于( )A .﹣32B .﹣1C .2D .32【分析】根据同类项的定义即可求出答案.【解析】由题意可知:m =5,2=n +4,∴m =5,n =﹣2,∴原式=(﹣2)5=﹣32,故选:A.【变式5.1】(2022秋•盐都区期中)若单项式﹣3x m y2与7xy n是同类项,则m+n的值是( )A.2B.3C.4D.5【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,由此求出m,n的值,即可解答.【解答】解:∵﹣3x m y2与7xy n是同类项,∴m=1,n=2,∴m+n=3,故选:B.【变式5.2】(2022秋•启东市期中)若5a3b n与―52a m b2是同类项,则mn的值为( )A.3B.4C.5D.6【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.【解答】解:∵5a3b n与―52a m b2是同类项,∴m=3,n=2,∴mn=3×2=6.故选:D.【变式5.3】(2021秋•泗阳县期末)下列两个项是同类项的是( )A.ab2与a2b B.4a与﹣24C.2a2bc与2ab2c D.﹣4xy与2yx【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A.所含相同字母的指数不相同,故A不符合题意;B.所含字母不相同,故B不符合题意;C.所含相同字母的指数不尽相同,故C不符合题意;D.所含字母相同且相同字母的指数也相同,故D符合题意;故选:D.【考点6】合并同类项【例6】(2019秋•江苏省江阴市期中)已知关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式.(1)求(8m﹣25)2020(2)已知其和(关于x、y的单项式)的系数为2,求(2a+3b﹣3)2019的值.【分析】(1)根据合并同类项和同类项的定义得到m=2m﹣3,然后求出m后再利用乘方的意义计算代数式的值;(2)利用合并同类项得到2a+3b=2,然后利用整体代入的方法和乘方的意义计算代数式的值.【解析】(1)∵关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式;∴m=2m﹣3,解得m=3,∴原式=(8×3﹣25)2020=1;(2)根据题意得2a+3b=2,所以原式=(2﹣3)2019=﹣1.【变式6.1】(2022秋•睢宁县期中)已知x a+3y3+(―13xy3)=23xy3,则a的值是( )A.﹣3B.﹣4C.0D.﹣2【分析】根据同类项的定义解答即可.【解答】解:由题意可得:x a+3y3与―13xy3是同类项,∴a+3=1,∴a=﹣2,故选:D.【变式6.2】(2022秋•建湖县期中)代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关【分析】先找同类项,再根据合并同类项法则进行合并,然后得出答案即可.【解答】解:5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3=5a3﹣7a3﹣4a3b+4a3b+3a2b﹣3a2b+2a2=﹣2a3+2a2,则代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值只与a有关;故选:B.【变式6.3】(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为( )A.﹣8B.6C.﹣6D.8【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,求出m,n的值,然后代入式子中进行计算即可解答.【解答】解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.【考点7】去括号【例7】(2020秋•江苏省清江浦区期中)计算:(1)﹣5a+b+(6a﹣9b);(2)﹣5(3m+4n)+8(3m+4n).【分析】(1)先去括号,然后合并同类项即可解答本题;(2)先去括号,然后合并同类项即可解答本题.【解析】(1)﹣5a+b+(6a﹣9b)=﹣5a+b+6a﹣9b=a﹣8b;(2)﹣5(3m+4n)+8(3m+4n)=﹣15m﹣20n+24m+32n=9m+12n.【变式7.1】(2022秋•玄武区期中)下列去括号正确的是( )A.a2﹣(2a﹣b2)=a2﹣2a﹣b2B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a﹣(﹣4a2+1﹣3a)=4a2﹣1+2a【分析】根据去括号法则逐个判断即可.【解答】解:A.a2﹣(2a﹣b2)=a2﹣2a+b2,故本选项不符合题意;B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故本选项不符合题意;C.2x2﹣3(x﹣5)=2x2﹣3x+15,故本选项不符合题意;D.﹣a﹣(﹣4a2+1﹣3a)=﹣a+4a2﹣1+3a=4a2+2a﹣1,故本选项符合题意;故选:D.【变式7.2】(2022秋•江都区期中)若1﹣x=2,则﹣[﹣(﹣x)]= 1 .【分析】先求出x的值,再去括号,把x的值代入求解即可.【解答】解:∵1﹣x=2,∴x=﹣1,∴原式=﹣[x]=﹣x=1.故答案为:1.【变式7.3】(2016秋•泗洪县校级期中)﹣2x+3x2﹣5=﹣ (2x﹣3x2+5) ;5x2﹣2(3y2﹣3)= 5x2﹣6y2+6 .【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:﹣2x+3x2﹣5=﹣(2x﹣3x2+5);5x2﹣2(3y2﹣3)=5x2﹣6y2+6.故答案为:(2x﹣3x2+5),5x2﹣6y2+6.【考点8】代数式求值问题【例8】(2021秋•姜堰区期中)当x=2时,代数式mx2﹣2x+n的值为2,则当x=﹣2时,这个代数式的值为 .【分析】把x=2代入代数式得到4m+n=6,然后整体代入求值即可得出答案.【解答】解:当x=2时,mx2﹣2x+n=4m﹣4+n=2,∴4m+n=6,当x=﹣2时,mx2﹣2x+n=4m+4+n=6+4=10,故答案为:10.【变式8.1】(2022秋•盐城期中)多项式x2+x的值为4,则多项式2x2+2x﹣5的值为 3 .【分析】根据x2+x的值是4,然后应用整体代入法即可求出2x2+2x﹣3的值.【解答】解:∵x2+x=4,∴2x2+2x﹣3=2(x2+x)﹣3=2×4﹣5=3,故答案为:3.【变式8.2】(2022秋•盐都区期中)若代数式a2﹣3b的值为11,则代数式2a2+3﹣6b的值为 25 .【分析】根据代数式a2﹣3b的值为11,可得2a2﹣6b的值,进一步计算即可.【解答】解:∵代数式a2﹣3b的值为11,∴2a2﹣6b=2(a2﹣3b)=2×11=22,∴2a2+3﹣6b=22+3=25,故答案为:25.【变式8.3】(2022秋•睢宁县期中)如图所示是计算机程序计算,若开始输入x=﹣3,则最后输出的结果是 ﹣9 .【分析】利用程序图中的程序进行运算即可.【解答】解:开始输入x=﹣3,∵(﹣3)2﹣10=9﹣10=﹣1>﹣2,∴重新输入x=﹣1,∵(﹣1)2﹣10=1﹣10=﹣9<﹣2,∴最后输出的结果是﹣9.故答案为:﹣9.【考点9】整式的加减【例9】(2021秋•丹阳市期中)化简:(1)5x+y﹣x+2y;(2)4(5a2﹣a)﹣(a﹣2a2);(3)2(3x2﹣y2)﹣3(y2﹣2x2);(4)﹣2(﹣3xy+2z)+5(﹣2xy﹣5z)+4z.【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.【解答】解:(1)原式=(5﹣1)x+(1+2)y =4x+3y;(2)原式=20a2﹣4a﹣a+2a2=22a2﹣5a;(3)原式=6x2﹣2y2﹣3y2+6x2=12x2﹣5y2;(4)原式=6xy﹣4z﹣10xy﹣25z+4z=﹣4xy﹣25z.【变式9.1】(2022秋•宝应县期中)化简:(1)6a﹣7b﹣5a+3b;(2)2(a2+3b3)―13(9a2﹣12b3).【分析】(1)利用合并同类项的法则进行运算即可;(2)先去括号,再合并同类项即可.【解答】解:(1)6a﹣7b﹣5a+3b =(6a﹣5a)+(﹣7b+3b)=a﹣4b;(2)2(a2+3b3)―13(9a2﹣12b3)=2a2+6b3﹣3a2+4b3=﹣a2+10b3.【变式9.2】(2022秋•丹徒区期中)化简:(1)x﹣y2+x﹣y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2.【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【解答】解:(1)x﹣y2+x﹣y2=2x﹣2y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2=3m2﹣6m﹣3﹣2m2+3m+2=m2﹣3m﹣1.【变式9.3】(2022秋•盐都区期中)已知代数式M、N满足:M=2a2﹣3b+6,N=a2﹣2b+4.(1)计算:M﹣2N;(用含a,b的代数式表示)(2)对于M﹣2N的值,下列结论:①比﹣2大;②比﹣2小;③比b大;④比b 小.其中正确的结论是 ④ .(填序号)【分析】(1)根据整式的加减运算法则即可求出答案.(2)根据M﹣2N的化简式即可判断是否比﹣2大或比b大.【解答】解:(1)M﹣2N=(2a2﹣3b+6)﹣2(a2﹣2b+4)=2a2﹣3b+6﹣2a2+4b﹣8=b﹣2.(2)由于M﹣2N=b﹣2<b,故答案为:④.【考点10】整式的化简求值【例10】(2020秋•江苏省东台市期中)已知A=2x2+xy+3y,B=x2﹣xy.若(x+2)2+|y﹣3|=0;(1)求x,y的值.(2)求A﹣2B的值,【分析】(1)直接利用非负数的性质得出x,y的值;(2)直接合并同类项进而把(1)中所求代入求出答案.【解析】(1)∵(x+2)2+|y﹣3|=0,∴x+2=0,y﹣3=0,∴解得:x=﹣2,y=3;(2)A﹣2B=2x2+xy+3y﹣2(x2﹣xy)=2x2+xy+3y﹣2x2+2xy=3xy+3y,当x=﹣2,y=3时,原式=3xy+3y=3×(﹣2)×3+3×3=﹣9.【变式10.1】(2022秋•宝应县期中)先化简.再求值;5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=12,b=―13.【分析】先将原式化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=12,b=―13时,原式=12×14×(―13)―6×14×19=﹣1―1 6=―7 6.【变式10.2】(2022秋•高港区期中)已知单项式4x a+1与﹣2x2y3b﹣1是同类项.(1)填空:a= 1 ,b= 13 ;(2)先化简,在(1)的条件下再求值:(5a2﹣3ab)﹣6(a2―13 ab).【分析】(1)根据同类项的概念可得a+1=2,3b﹣1=0,求出a、b的值即可;(2)先去括号合并同类项化简整式,然后代入a和b的值求值即可.【解答】解:(1)由题意,得a+1=2,3b﹣1=0,解得a=1,b=1 3.故答案为:1,1 3;(2)(5a2﹣3ab)﹣6(a2―13 ab)=5a2﹣3ab﹣6a2+2ab =﹣a2﹣ab,当a=1,b=13时,原式=﹣a2﹣ab=﹣1﹣1×13=―43.【变式10.3】(2022秋•丹徒区期中)已知:A=x2+2x﹣1,B=3x2﹣2ax+1.(1)当x=1,a=﹣3时,求B的值;(2)用含a,x的代数式表示3A﹣B;(3)若3A﹣B的值与x无关,求a的值.【分析】(1)直接把x=1,a=﹣3代入B,求值即可;(2)先把A、B表示的代数式代入,然后去括号,合并同类项;(3)根据代数式的值与x无关,得到关于a的方程,求解即可.【解答】解:(1)当x=1,a=﹣3时,B=3×12﹣2×(﹣3)×1+1=3+6+1=10;(2)3A﹣B=3(x2+2x﹣1)﹣(3x2﹣2ax+1)=3x2+6x﹣3﹣3x2+2ax﹣1=6x+2ax﹣4;(3)∵3A﹣B的值与x无关,∴6x+2ax=0∴6+2a=0.∴a=﹣3.。

代数式的运算与计算

代数式的运算与计算

代数式的运算与计算一、代数式的基本概念1.代数式的定义:用运算符号(加、减、乘、除、乘方、开方等)把数字与字母连接而成的式子。

2.代数式的组成:数字、字母、运算符号。

3.代数式的分类:单项式、多项式、分式。

二、单项式的运算与计算1.单项式的定义:数与字母的乘积。

2.单项式的系数:数的部分。

3.单项式的字母:字母的部分。

4.单项式的次数:字母的指数。

5.单项式的运算:加、减、乘、除。

6.单项式的计算法则:a)系数相乘,字母相加;b)同类项相加减,系数相加减,字母及其指数不变;c)单项式与单项式相乘,系数相乘,字母及其指数相加。

三、多项式的运算与计算1.多项式的定义:若干个单项式的和。

2.多项式的项:单项式。

3.多项式的次数:最高次单项式的次数。

4.多项式的运算:加、减、乘。

5.多项式的计算法则:a)同类项相加减,系数相加减,字母及其指数不变;b)多项式与多项式相加减,先合并同类项,再进行运算;c)多项式与单项式相乘,分别与每个单项式相乘,再合并同类项。

四、分式的运算与计算1.分式的定义:两个整式的比。

2.分式的分子:上面的整式。

3.分式的分母:下面的整式。

4.分式的次数:分子和分母的次数。

5.分式的运算:加、减、乘、除。

6.分式的计算法则:a)分式相加减,先通分,再进行运算;b)分式与分式相乘除,先约分,再进行运算;c)分式与整式相乘除,分别与分子和分母相乘除,再约分。

五、代数式的化简与求值1.代数式的化简:将代数式中的同类项合并,简化表达式。

2.代数式的求值:将代数式中的字母替换为具体的数值,进行计算。

六、代数式的应用1.解一元一次方程:将方程化为代数式,求解未知数的值。

2.解二元一次方程组:将方程组化为代数式,求解未知数的值。

3.函数的表达式:用代数式表示函数的关系。

七、代数式的运算与计算注意事项1.注意运算顺序:先算乘方、开方,再算乘除,最后算加减;同级运算,从左到右依次进行;如果有括号,先算括号里面的。

代数式知识点总结归纳

代数式知识点总结归纳

代数式知识点总结归纳一、代数式的概念。

1. 定义。

- 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

例如:3x + 2y,(a)/(b),x^2-y^2等都是代数式。

单独的一个数或者一个字母也是代数式,比如5,a等。

2. 代数式与等式、不等式的区别。

- 等式是用等号“=”表示左右两边相等关系的式子,如2x+3 = 5x - 1;不等式是用不等号(>、<、≥、≤、≠)表示左右两边大小关系的式子,如3x - 2>x + 1。

而代数式不含有等号或不等号,它只是一个表达式。

二、代数式的分类。

1. 整式。

- 单项式。

- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:-2x,5y^2,a,-3等都是单项式。

- 系数:单项式中的数字因数叫做这个单项式的系数。

例如在单项式-2x 中,系数是-2;在单项式5y^2中,系数是5。

- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如在单项式3x^2y中,x的次数是2,y的次数是1,所以这个单项式的次数是2 + 1=3。

- 多项式。

- 定义:几个单项式的和叫做多项式。

例如:2x+3y是由单项式2x和3y组成的多项式;x^2-2x + 1是由单项式x^2、-2x和1组成的多项式。

- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如在多项式x^2-2x + 1中,x^2、-2x、1都是它的项,其中1是常数项。

- 次数:多项式里,次数最高项的次数,就是这个多项式的次数。

例如在多项式2x^3-3x^2+x - 5中,次数最高的项是2x^3,其次数为3,所以这个多项式的次数是3。

2. 分式。

- 定义:一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如:(x)/(y),(2x + 1)/(x - 3)等都是分式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 代数式
【知识要点】 1、 代数式
代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。

如:3
,),(2,,),1(),1(34a t
s n m ab b a x x x x +++++-+等等。

代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号;
^
(4)带分数化成假分数。

2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。

【典型例题】
【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么

【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式哪些不是代数式 (1)
123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)2
7
;(6)5332>。

@
【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 24
38-中,符合代数式书写要求的有 。

【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱
`
【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。


注意:单独一个数或
一个字母也是代数式。

【课堂练习】 一、填空
三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、
六、某长方形的长是宽的2
3
倍,且长是a cm ,则该长方形的周长是 cm ;
七、棱长是a cm 的正方体的体积是 cm 3 ; 八、产量由m kg 增长10%,就达到 kg ; 九、【
十、
学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,在
捐给社区的图书为 册;
十一、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。

十二、农民张大伯因病住院,手术费用为a 元,其他费用为b 元,由于参加农村合作医疗,手术费用报销85%,其他费用报销60%,则张大伯此次住院可报销 元,他自己应付 元。

二、
三、
选择题
(1)某商场将一种商品按标价9折又优惠20元出售,若标价a 元,则售价为( )
}
A 、(9a-20)元
B 、(9a-20)元
C 、(+20)元
D 、()元
(2)当2x =-,3y =时,代数式
22x y
x y
-+的值是( ) A 、-8 B 、8 C 、5 D 、-5
(3)观察给出的三个数:10+,20+1,30+,按此规律得到的第五个数是()
A、50+2
B、40+
C、50+
D、60+3

(4)在一次考试中,某班28名男生的总分是m分,26名女生的平均分是n分,这个班的平均分是()
A、2826
54
m n
+
分B、
26
54
m n
+
C、
54
m n
+
D、
28()
54
m n
+
.
四、下图是由若干盆花组成的形如三角形的图案,每条边(包括两个端点)有n (n>1)盆花,每个图案花盆的总数是S,按此规律推断S和n的关系式。

n=2,S=3 n=3,S=6 n=4,S=9
七、
填写下表,并观察下列两个代数式的值的变化情况。

(1) 随着m 的值逐渐变大,两个代数式的值如何变化 (2) 估计一下,哪个代数式的值先超过200
@
八、用代数式表示:(1)a ,b 两数的立方的和除以5的商;
(2)a ,b 两数和的立方除5的商。

(3)a 与b 的2倍的和除c 的商
~
九、 求代数式的值。

(1)x 是
1
2
的倒数的相反数,y 是绝对值为3的数,且22(1)0m n -+-=,求22x mn y -+的值。

]
(2)当2x =时,3()9a b x +-的值为7,当2x =-时,3()9a b x +-的值为多少
七、如下图所示,在一块长为2x ,宽为y (2x>y )的长方形铁片的四个角上,分别截取半径为2y 的圆的4
1
,完成下列计算: (1)
(2)
求剩余铁片的面积(阴影部分);
(3)$
(4)
当x=6,y=8时,剩余铁片的面积是多少(14.3≈π)
【课后作业】
1、长方形的长为a,面积为S,则它的宽为
2、如果甲数为x,且甲数为乙数的3倍,那么乙数是
3、如右图所示,阴影部分面积是。

相关文档
最新文档