000-Gambit网格划分(自己重新排版)
Gambit网格划分的一点技巧(二)---分块网格
圆平面
点3
图(30)
图(31)
创建一个圆面 → 点击体命令 → 点击分割实体
图(32)
CFD→ 选择要分割的实体→
在 Split with 后面选择 Faces(real),如图(32)→ 选择前面创建的圆平面 → 点击 Apply,如图(33)。至此,圆柱段和锥段已经分开了。
ao 注意:用这种方法分割的两个实体是相互有联系的,在划分网格的时候,公共面 muerxi 上的节点是一一对齐的。
相对叶轮和蜗壳而言,进水段虽然比较简单,但是由于挡板形状的影响,也
o 不能直接划分六面体网格。如果把挡板分离出来,划分六面体网格就容易很多了。
ia 把实体导入 gambit → 删除叶轮和蜗壳实体 → 点击点命令
→右
rx 键单击“坐标点”命令按钮,选择“点在线上”命令 e坐标点
mu 点在线上
,如图(29)→ 在要
过分块的方法,把叶轮的部分地方划分为六面体网格,如图(13)所示分块。
由于三维软件建模比较方便,我们可以在三维软件里面建立我们需要的分割平
面,如图(50)。
14
用于分块的 平面
图(50) 按照前面的方法分割叶轮 → 合并各部分实体上的小曲面,如图(51)→
选择如图(52)所示的 6 个曲面划四边形网格,网格设置如图(53)→ 选取图
图(48)
图(49)
D 进水段边界条件设置要注意的问题:1)选择如图(50)所示两个面做 interface 。
CF 2)同时选择三块实体做流体域。
rxiao图(50) ue 2、叶轮 m 叶轮是离心泵的心脏,叶轮网格的质量、数量和分布对计算精度的影响是很
大的。虽然利用 Gambit 对整个叶轮划分六面体网格是困难的,但是我们可以通
Gambit网格划分
1.基本几何结构的创建和网格化本章介绍了GAMBIT中一个简单几何体的创建和网格的生成。
在本章中将学习到:z启动GAMBITz使用Operation工具箱z创建一个方体和一个椭圆柱体z整合两个几何体z模型显示的操作z网格化几何体z检查网格的品质z保存任务和退出GAMBIT1.1 前提在学习本章之前,认为用户还没有GAMBIT的使用经验,不过,已经学习过前一章“本指南的使用”,并且熟悉GAMBIT界面以及本指南中所使用的规约。
1.2 问题描述本模型由两个相交的方体和椭圆柱体构成,其基本图形形状如图1-1所示。
图1-1:问题说明1.3策略本章介绍使用GAMBIT生成网格的基本操作,特别地,将介绍:z如何使用“top-down”固体建模方法来方便地创建几何体z如何自动生成六面体网格“top-down”方法的意思是用户可以通过生成几何体(如方体、柱体等)来创建几何结构,然后,对它们进行布尔操作(如整合、剪除等),以这种方式,用户不用首先去创建作为基础的点、边和面,就可以快速创建出复杂的几何形体。
一旦创建出一个有效的几何模型,网格就可以直接并且自动地(很多情况下)生成。
在本例子中,将采用Cooper网格化算法来自动生成非结构化的六面体网格。
更复杂的几何结构在生成网格之前可能还需要进行手工分解,这将在后面进行介绍。
本章的学习步骤如下:z创建两个几何体(一个方体和一个椭圆柱体)z整合两个几何体z自动生成网格z检查网格的品质为了使本章的介绍尽量简短,一些必要的步骤被省略了:z调节几何体单边上节点的分布z设置连续介质类型(例如,标识哪些网格区是流体,哪些网格区是固体)和边界类型这些方面的详细内容,也包括其他方面,在随后的章节将涉及到。
1.4步骤输入gambit -id basgeom启动GAMBIT。
这就打开了GAMBIT的图形用户界面(GUI)(图1-2)。
GAMBIT把设定的名称(本例子中为basgeom)作为她将创建的所有文件的词头,如:basgeom.jou。
第二章 Gambit划分网格
1)应用分级设定的边
2)分级方案
3)网格节点步长(间隔数目) 4)边网格划分选项
线网格划分
2)分级方案 Gambit 提供了以下类型的边网格划分分级方案:
• • • • • •
•
Successive Ratio First Length Last Length First Last Ratio Last First Ratio Exponent Bi-exponent Bell Shaped
非对称格式,产生的分级 形式不需要关于边的中心对称
对称格式,限制关于边 中心对称的分级类型
•
线网格划分
• 狭长型网格长宽比不要超过5; • 燃烧反应的区域网格尽量细化。
3、面网格划分
进行一个面网格划分,用户必须 设定以下参数:
1)要网格划分的面
2)网格划分的形式 3)网格节点的间距 4)面网格划分选项
体网格光顺化
• Smooth Volume Meshes 在一个或多个体积上光顺化网格节点。 1、选择要光顺化的体积; 2、光顺化方案 L-W Lapiacian:使每个节点 周围单元平均边长; Equipotential:使节点周围单元体积相等。
体网格划分技巧
• 首先画线网格和部分面网格; • 尽量采用五面体和六面体网格,以控制网 格数量; • 复杂结构考虑分块画网格,避免把所有几 何组合成一个整体;
平整面网格
Smooth Faces Meshes命令 将调整一个或者多个面网格节点的位置 用户需设定以下参数: 1)要平整的网格面 2)平整方式 L-W Laplalian :在每个节点周围使用单元的平均变长(趋向平 均单元 边长)
Centroid Area :平衡相邻单元的面积
GAMBIT网格划分 教程详细版
MESH
-每 EDGE
立釐s键 E量钮釐s
-每 MESH EDGES
a) 而键附ft-首釐ft-那首附那题 E温
必 度拉
必 度拉
边) 而键附ft-首釐ft-那首附那题 EB框
那)
温pp首y
量) 置at附o 釐)
度密必拉
跟)
联长隐ft
定
过)
App首y 定
度-把定
如
定
4板 定 度定 必定 您定 4定
度-把板
定
定 定
定 定
把定
G首o过跟首 点ont鼠o首
板GA立演的能 定
4定
联状种状点能 素网状联状能 点类算现的G节网A能的类算 度-描定
定
度-描板
描定
定
跟)
检
过)
定
操定 G首o过跟首 点ont鼠o首
类网的状算能 立类熟状种
定
如 点鼠鉴跟t 网鉴跟首 演鼠隐速题
定
量) 点鼠鉴跟t 网鉴跟首 演鼠隐速题
如GA立演的能
鉴) 点鉴nt鉴鼠鉴量 定
f)
点鉴nt鉴鼠鉴量
g) App首y定
菜隐量t长 菜隐量t长
定
度-您板
度0如熟鉴pt长 定
描如略鉴隐g长t
vo首u骤鉴定度 定
度-您板
(
)
必板
定
跟)
点网状A能 范类种节立状
过) 点网状A能状 网状A种 点藐种的算熟状网
e)
Apply
Copy Translate
0 12 0
f)
FIT TO WINDOW
g)
h) Global
i)
Apply
gambit二维喷射管网格划分
MODELING A MIXING ELBOW (2-D)2. MODELING A MIXING ELBOW (2-D)In this tutorial, you will use GAMBIT to create the geometry for a mixing elbow and then generate a mesh. The mixing elbow configuration is encountered in piping systems in power plants and process industries. It is often important to predict the flow field and temperature field in the neighborhood of the mixing region in order to properly design the location of inlet pipes.In this tutorial you will learn how to:•Create vertices using a grid system•Create arcs by selecting the center of curvature and the endpoints of the arc•Create straight edges between vertices•Split an arc using a vertex point•Create faces from edges•Specify the distribution of nodes on an edge•Create structured meshes on faces•Set boundary types•Prepare the mesh to be read into FLUENT 4•Export a mesh2.1 PrerequisitesThis tutorial assumes that you have worked through Tutorial 1 and you are consequently familiar with the GAMBIT interface.© Fluent Inc., Mar-06 2-1Problem Description MODELING A MIXING ELBOW (2-D)2.2 Problem DescriptionThe problem to be considered is shown schematically in Figure 2-1. A cold fluid enters through the large pipe and a warmer fluid enters through the small pipe. The two fluids mix in the elbow.Figure 2-1: Problem specification2-2 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Strategy2.3 StrategyIn this tutorial, you will build a 2-D mesh using a “bottom-up” approach (in contrast to the “top-down” approach used in Tutorial 1). The “bottom-up” approach means that you will first create some vertices, connect the vertices to create edges, and connect the edges to make faces (in 3-D, you would stitch the faces together to create volumes). While this process by its very nature requires more steps, the result is, just as in Tutorial 1, a valid geometry that can be used to generate the mesh.The mesh created in this tutorial is intended for use in FLUENT 4, so it must be a single block, structured mesh. However, this mesh can also be used in any of the other Fluent solvers. This type of mesh is sometimes called a mapped mesh, because each grid point has a unique I, J, K index. In order to meet this criterion, certain additional steps must be performed in GAMBIT and are illustrated in this tutorial. After creating the straight edges and arcs that comprise the geometry, you will create two faces: one for the main flow passage (the elbow) and one for the smaller inlet duct. The mesh is generated for the larger face using the Map scheme; this requires that the number of grid nodes be equal on opposite edges of the face. You will force GAMBIT to use the Map scheme to mesh the smaller face as well.Several other features are also demonstrated in this tutorial:•Using a background grid and “snap-to-grid” to quickly create a set of vertices.•Using “pick lists” as an alternative to mouse clicks for picking entities.•Specifying a non-uniform distribution of nodes on an edge.•Setting boundary types.•Exporting a mesh for a particular Fluent solver (FLUENT 4 in this case).© Fluent Inc., Mar-06 2-3Procedure MODELING A MIXING ELBOW (2-D)2.4 ProcedureStart GAMBIT.Step 1: Select a Solver1.Choose the solver you will use to run your CFD calculation by selecting the followingfrom the main menu bar:Solver →FLUENT 4This selects the FLUENT 4 solver as the one to be used for the CFD calculation.The choice of a solver dictates the options available in various forms (for example, the boundary types available in the Specify Boundary Types form). The solver currently selected is indicated at the top of the GAMBIT GUI.2-4 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Procedure © Fluent Inc., Mar-06 2-5 Step 2: Create the Initial Vertices1. Create vertices to define the outline of the large pipe of the mixing elbow.TOOLS →COORDINATE SYSTEM →DISPLAY GRIDThis command sequence opens the Display Gridform.a) Check to ensure that Visibility is selected.This ensures that the background grid will be visible when it is created.b) Select X (the default) to the right of Axis .c) Enter a Minimum value of –32, a Maximum value of 32, and an Increment of 16. d) Click the Update list button.Procedure MODELING A MIXING ELBOW (2-D) This creates a background grid with four cells in the x direction and enters thex coordinates in the XY_plane X Values list.e)Select Y to the right of Axis.f)Enter a Minimum value of –32, a Maximum value of 32, and an Increment of 16.g)Click the Update list button.This creates a background grid with four cells in the y direction and enters they coordinates in the XY_plane Y Values list.h)Check that Snap is selected under Options.The vertices you create later in this step will be “snapped” to points on thegrid where the grid lines intersect.i)Select Lines (the default) to the right of Grid.The grid will be displayed using lines rather than points.j)Click Apply.GAMBIT creates a four-by-four grid in the graphics window. To see thewhole grid, you must zoom out the display (see Figure 2-2). You can zoom outthe display by pressing and holding down the right mouse button while movingthe cursor vertically upward in the graphics window.2-6 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Procedure© Fluent Inc., Mar-062-7Figure 2-2: Four-by-four grid to be used for creating vertices NOTE: You cannot use the FIT TO WINDOWcommand button (located on the Global Control toolpad) to zoom out the display because GAMBIT does not treat the grid as a model component to be fit within the graphics window.k) Ctrl -right-click the nine grid points shown in Figure 2-3.“Ctrl -right-click” indicates that you should hold down the Ctrl key on the keyboard and click on the point at which the vertex is to be created using the right mouse button.You can use the UNDOcommand buttonif you create any of the verticesincorrectly.Procedure MODELING A MIXING ELBOW (2-D)2-8 © Fluent Inc., Mar-06 A DC BF GE H IFigure 2-3: Create vertices at grid pointsl) Unselect the Visibility check box in the Display Grid form and click Apply .The grid will be removed from the graphics window and you will be able to clearly see the nine vertices created, as shown in Figure 2-4.MODELING A MIXING ELBOW (2-D) Procedure© Fluent Inc., Mar-062-9Figure 2-4: Vertices for the main pipeProcedure MODELING A MIXING ELBOW (2-D) 2-10 © Fluent Inc., Mar-06 Step 3: Create Arcs for the Bend of the Mixing Elbow1. Create an arc by selecting the following command buttons in order:GEOMETRY →EDGE →CREATE EDGERThis command sequence opens the Create Circular Arcform.a) Retain the default Method .Notice that the Center list box is yellow in the Create Circular Arc form at this point. The yellow color indicates that this is the active field in the form, and any vertex selected will be entered into this box on the form.b) Shift -left-click the vertex in the center of the graphics window (vertex E in Figure2-5).The selected vertex will appear red in the graphics window and its name will appear in the Center list box under Vertices in the form.D B F GEFigure 2-5: Vertices used to create arcsc)Left-click in the list box to the right of End-Points to accept the selection of vertexE and make the End-Points list box active.!Alternatively, you could continue to hold down the Shift key and click the right mouse button in the graphics window to accept the selection of thevertex and move the focus to the End-Points list box.Note that the End-Points list box is now yellow—that is, this is now the activelist box, and any vertex selected will be entered in this box.d)Shift-left-click the vertex to the right of the center vertex in the graphics window(vertex F in Figure 2-5).The vertex will turn red.e)Select the vertex directly below the one in the center of the graphics window(vertex D in Figure 2-5).f)Click Apply to accept the selected vertices and create the arc.© Fluent Inc., Mar-06 2-112-12 © Fluent Inc., Mar-062. Repeat the above steps to create a second arc. The center of the arc is the vertex in thecenter of the graphics window (vertex E in Figure 2-5). The endpoints of the arc are the vertices to the right and below the center vertex that have not yet been selected(vertices G and B, respectively, in Figure 2-5). The arcs are shown in Figure 2-6.Figure 2-6: Vertices and arcsStep 4: Create Straight Edges 1.Create straight edges for the large pipe.GEOMETRY →EDGE →CREATE EDGERThis command sequence opens the Create Straight Edgeform.a)Shift -left-click the left endpoint of the smaller arc (vertex D in Figure 2-7).A DCB F G H IFigure 2-7: Vertices used to create straight edgesb)Shift-left-click the vertices marked C, A, and B in Figure 2-7, in order.© Fluent Inc., Mar-06 2-132-14 © Fluent Inc., Mar-06c) Click Apply to accept the selection of the vertices.Three straight edges are drawn between the vertices.d) Shift -left-click the vertices marked F, H, I, and G in Figure 2-7, in order.e) Click Apply to accept the selection of the vertices.The graphics window with the arcs and straight edges is shown in Figure 2-8.Figure 2-8: Arcs and edgesStep 5: Create the Small Pipe for the Mixing ElbowIn this step, you will create vertices on the outer radius of the bend of the mixing elbow and split the large arc into three smaller arcs. Next, you will create vertices for the inlet of the small pipe. Finally, you will create the straight edges for the small pipe.1.Create vertices on the outer radius of the bend, and split the large arc into threesections.GEOMETRY →EDGE →SPLIT/MERGE EDGESThis command sequence opens the Split Edgeform.a)Select the large arc as the edge to split by using the Edge pick list.Note that you could select the edge in the graphics window; a pick listprovides an alternate way of picking an element.i.Left-click the black arrow to the right of the Edge list box in the Split Edgeform.© Fluent Inc., Mar-06 2-15This action opens the Edge List form. There are two types of pick-listforms: Single and Multiple. In a Single pick-list form, only one entity canbe selected at a time. In a Multiple pick-list form, you can select multipleentities.ii.Select edge.2 under Available in the Edge List form.!Note that the Available names may be different in your geometry,depending on the order in which you created the edges.iii.Click the −−−> button to pick edge.2.edge.2 will be moved from the Available list to the Picked list. The large arcis the edge that should be selected and shown in red in the graphicswindow.iv.Close the Edge List form.This method of selecting an entity can be used as an alternative to Shift-left-click in the graphics window. See the GAMBIT User’s Guide formore information on pick lists.2-16 © Fluent Inc., Mar-06b)Select Real connected (the default) under Type in the Split Edge form.You should select this option because the edge you selected is real geometry,not virtual geometry, and because you want the two edges created by the splitto share the vertex created when GAMBIT does the split. See the GAMBITModeling Guide for more information on real and virtual geometry.c)Select Point (the default) to the right of Split With.You will split the edge by creating a point on the edge and then using thispoint to split the edge.d)Select Cylindrical from the Type option menu.You can now use cylindrical coordinates to specify where GAMBIT shouldsplit the edge.e)Input a value of –39.93 degrees next to t under Local.This is the angle between the horizontal direction and the position of the right-hand side of the opening of the small pipe on the bend of the mixing elbow, asshown in Figure 2-1.f)Click Apply.The large arc is split into two smaller arcs and a vertex is created.g)Use the Edge List form (or Shift-left-click in the graphics window) to select thelarger of the two arcs just created (edge.9).h)Input a value of –50.07 degrees next to t under Local.This is the angle between the horizontal direction and the position of the left-hand side of the opening of the small pipe on the bend of the mixing elbow (-90° + 39.93°), as shown in Figure 2-1.i)Click Apply.The arc is split into two parts and a second vertex is created on the bend ofthe mixing elbow, as shown in Figure 2-9.© Fluent Inc., Mar-06 2-172-18© Fluent Inc., Mar-06Figure 2-9: Vertices created on outer radius of mixing elbow bend2. Create points at the small inlet.GEOMETRY →VERTEX →MOVE/COPY VERTICESThis command sequence opens the Move / Copy Vertices form.© Fluent Inc., Mar-062-19a) Select the second vertex created on the bend of the mixing elbow.b) Select Copy under Vertices in the Move / Copy Vertices form.c) Select Translate (the default) under Operation .d) Enter the translation vector (0, -12, 0) under Global to create the new vertex at aposition 12 units below the vertex you selected.The inlet is 12 units below the second point created on the outer radius of the bend.Note that GAMBIT automatically fills in the values under Local as you enter values under Global .e) Click Apply .2-20 © Fluent Inc., Mar-06 f) Click the FIT TO WINDOWcommand button at the top left of the GlobalControl toolpad to scale the model to fit into the graphics window.g) Select the vertex just created in the graphics window.h) Enter the translation vector (4, 0, 0) under Global in the Move / Copy Vertices formto create the new vertex at a position 4 units to the right of the vertex you selected. i) Click Apply .The vertices are shown in Figure 2-10.Figure 2-10: Vertices to define the small pipe3. Create straight edges for the small pipe.GEOMETRY →EDGE →CREATE EDGEThis command sequence opens the Create Straight Edge form.© Fluent Inc., Mar-062-21a) Create straight edges for the small pipe by selecting the vertices marked K, L, M, and J in Figure 2-11, in order, and accepting the selection. K JMLFigure 2-11: Vertices to be used to create small pipeThe small pipe is shown (with the large pipe) in Figure 2-12.2-22© Fluent Inc., Mar-06Figure 2-12: Completed small pipeStep 6: Create Faces From Edges 1.Create a face for the large pipe.GEOMETRY →FACE →FORM FACEThis command sequence opens the Create Face From Wireframeform.a)Shift-left-click each edge of the large pipe, in turn, to form a continuous loop.!The large pipe is created from the 10 edges shown in Figure 2-13. If you select an incorrect edge, click Reset in the Create Face From Wireframe formto unselect all edges, and then reselect the correct edges.© Fluent Inc., Mar-06 2-232-24© Fluent Inc., Mar-06Figure 2-13: Edges used to create face for large pipeNote that the edges must form a continuous loop, but they can be selected in any order. An alternative method to select several edges is to Shift -left-drag a box around the edges. The box does not have to completely enclose the edges; it only needs to enclose a portion of an edge to select it. The edges will be selected when you release the mouse button.b) Click Apply to accept the selected edges and create a face.The edges of the face will turn blue.2. Create a face for the small pipe by selecting the four edges shown in Figure 2-14 andthen accepting the selected edges.© Fluent Inc., Mar-062-25Figure 2-14: Edges used to create face for small pipeStep 7: Specify the Node DistributionThe next step is to define the grid density on the edges of the geometry. You will accomplish this graphically by selecting an edge, assigning the number of nodes, and specifying the distribution of nodes along the edge.1.Specify the node density on the inlet and outlet of the large pipe.MESH →EDGE →MESH EDGESThis command sequence opens the Mesh Edgesform.a)Shift-left-click the edge marked EA in Figure 2-15.2-26 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-27 EAED ECEG EH EIEJ EBEFEEFigure 2-15: Edges to be meshedThe edge will change color and an arrow and several circles will appear on the edge.b) Shift -left-click the edge marked EB in Figure 2-15.c) Check that Apply is selected to the right of Grading in the Mesh Edges form andthat Successive Ratio is selected in the Type option menu.The Successive Ratio option sets the ratio of distances between consecutive points on the edge equal to the specified Ratio .d) Enter 1.25 in the text entry box to the right of Ratio .Alternatively, you can slide the Ratio slider box (the small, gray rectangle with a vertical line in its center that is located on the slider bar) until 1.25 is displayed in the Ratio text box.2-28 © Fluent Inc., Mar-06e) Select the Double sided check box under Grading .If you specify a Double sided grading on an edge, the element intervals are graded in two directions from a starting point on the edge. GAMBIT determines the starting point such that the intervals on either side of the point are approximately the same length.Note that Ratio changes to Ratio 1 and Ratio 2 when you select the Double sided check box. In addition, the value you entered for Ratio is automatically entered into both the Ratio 1 and the Ratio 2 text entry boxes.f) Select Interval count from the option menu under Spacing and enter a value of 10 inthe text entry box. Check that Apply is selected to the right of Spacing .GAMBIT will create 10 intervals on the edge.g) Click the Apply button at the bottom of the form. Figure 2-16 shows the mesh on the inlet and outlet edges of the large pipe. EAED ECEG EH EIEJ EFEE EBFigure 2-16: Edge meshing on inlet and outlet of large pipe© Fluent Inc., Mar-06 2-29 2. Mesh the four straight edges of the large pipe.a) Select the edges marked EC, ED, EE, and EF in Figure 2-16.b) Check that Apply is selected to the right of Grading in the Mesh Edges form andclick the Default button to the right of Grading .GAMBIT will unselect the Double sided check box and set the Ratio to 1.c) Check that Apply is selected to the right of Spacing and select Interval count fromthe option menu.d) Enter a value of 15 in the text entry box below Spacing and click the Apply buttonat the bottom of the form. Figure 2-17 shows the mesh on the straight edges of the large pipe. EAED ECEG EH EIEJ EFEE EBFigure 2-17: Mesh on the straight edges of the large pipe3.Mesh the edge connecting the two pipes.a)Select the edge marked EG in Figure 2-17.b)Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 1 for the Ratio.c)Check that Apply is selected to the right of Spacing, select Interval count from theoption menu, and enter a value of 6 in the text entry box below Spacing.d)Click the Apply button at the bottom of the form.4.Mesh the two edges on the outer radius of the bend of the mixing elbow.a)Select the edge marked EH in Figure 2-17. The arrow should point towards thesmall pipe. Shift-middle-click the edge to reverse the direction of the arrow if necessary.!The arrow is small and you may have to zoom into the edge to see it. It is located near the center of the edge.b)Select the edge marked EI in Figure 2-17. The arrow should point towards thesmall pipe. Shift-middle-click the edge to reverse the direction of the arrow if necessary.c)Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 0.9 for the Ratio.d)Check that Apply is selected to the right of Spacing, select Interval count from theoption menu, and enter a value of 12 in the text entry box below Spacing.e)Click the Apply button at the bottom of the form.The mesh on the two edges on the outer radius of the bend is shown in Figure2-18.2-30 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-31 EAED ECEG EH EIEJ EFEE EBFigure 2-18: Mesh on outer bend of pipe5. Set the grading for the inner bend of the mixing elbow.a) Select the edge marked EJ in Figure 2-18.b) Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 0.85 for the Ratio .c) Select the Double sided check box.d) Unselect the Apply check box to the right of Spacing .You will not set a spacing on this edge, instead you will let GAMBIT calculate the spacing for you when it meshes the face. You will mesh the face using a mapped mesh, so the number of nodes on the inner bend of the mixing elbow must equal the number of nodes on the outer bend, and GAMBIT will determine the correct number of nodes for you automatically.2-32© Fluent Inc., Mar-06e) Unselect the Mesh check box under Options and click the Apply button at thebottom of the form.You unselected the Mesh check box because at this point you do not want to mesh the edge; you only want to apply the Grading to the edge. GAMBIT will mesh the edge using the specified Grading when it meshes the large pipe of the mixing elbow in the next step.Figure 2-19 shows the edge meshing for the mixing elbow geometry.© Fluent Inc., Mar-062-33Figure 2-19: Edge meshing for the mixing elbowStep 8: Create Structured Meshes on Faces 1.Create a structured mesh for the large pipe.MESH →FACE →MESH FACESThis command sequence opens the Mesh Facesform.a)Shift-left-click the large pipe in the graphics window.Note that four of the vertices on this face are marked with an “E” in thegraphics window; they are End vertices. Therefore, GAMBIT will select theMap Type of Scheme in the Mesh Faces form. See the GAMBIT ModelingGuide for more information on Map meshing.b)Click the Apply button at the bottom of the form.GAMBIT will ignore the Interval size of 1 under Spacing, because the mappedmeshing scheme is being used and the existing edge meshing fully determinesthe mesh on all edges.2-34 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-35 Notice that GAMBIT calculates the number of nodes on the inner bend of the mixing elbow and displays these nodes before creating the mesh on the face.The face will be meshed as shown in Figure 2-20.Figure 2-20: Structured mesh on the large pipe of the mixing elbow2. Mesh the small pipe of the mixing elbow.a) Select the small pipe in the graphics window.You will force GAMBIT to use the Map scheme to mesh the smaller face.b) In the Mesh Faces form, select Quad from the Elements option menu underScheme and Map from the option menu to the right of Type .This is an example of “enforced mapping”, where GAMBIT automatically modifies the face vertex type on the face to satisfy the chosen meshing scheme. See the GAMBIT Modeling Guide for more information on face vertex types.c) Retain the default Interval size of 1 under Spacing and click the Apply button at thebottom of the form.The structured mesh for the entire elbow is shown in Figure 2-21.2-36© Fluent Inc., Mar-06Figure 2-21: Structured mesh for the mixing elbowStep 9: Set Boundary Types1.Remove the mesh from the display before you set the boundary types.This makes it easier to see the edges and faces of the geometry. The mesh is not deleted, just removed from the graphics window.a)Click the SPECIFY DISPLAY ATTRIBUTEScommand button at the bottom of the Global Control toolpad.b)Select the Off radio button to the right of Mesh near the bottom of the form.c)Click Apply and close the form.2.Set boundary types for the mixing elbow.ZONES →SPECIFY BOUNDARY TYPESThis command sequence opens the Specify Boundary Types form.© Fluent Inc., Mar-06 2-372-38© Fluent Inc., Mar-06Note that FLUENT 4 is shown as the chosen solver at the top of the form. The Specify Boundary Types form displays different Type s depending on the solver selected.a) Define two inflow boundaries.i. Enter the name inflow1 in the Name text entry box.If you do not specify a name, GAMBIT will give the boundary a defaultname based on what you select in the Type and Entity lists.ii. Select INFLOW in the Type option menu.iii.Change the Entity to Edges by selecting Edges in the option menu below Entity.iv.Shift-left-click the main inflow for the mixing elbow in the graphics window (marked EA in Figure 2-22) and click Apply to accept the selection.EBEAEKFigure 2-22: Boundary types for edges of mixing elbowThis edge will be set as an inflow boundary.v.Enter inflow2 in the Name text entry box.vi.Check that INFLOW is still selected in the Type option menu and select the edge marked EK in Figure 2-22 (the inlet for the small pipe). Click Apply to acceptthe selection of the edge.b)Define an outflow boundary.i.Enter outflow in the Name text entry box.ii.Change the Type to OUTFLOW by selecting OUTFLOW in the option menu below Type.iii.Select the main outflow for the mixing elbow (the edge marked EB in Figure 2-22) and click Apply to accept the selection.© Fluent Inc., Mar-06 2-392-40 © Fluent Inc., Mar-06 The inflow and outflow boundaries for the mixing elbow are shown in Figure 2-23. (NOTE: To display the boundary types in the graphics window, select the Show labels options on the Specify Boundary Typesform.)Figure 2-23: Inflow and outflow boundaries for the mixing elbowNote that you could also specify the remaining outer edges of the mixing elbow as wall boundaries. This is not necessary, however, because when GAMBIT saves a mesh, any edges (in 2-D) on which you have not specified a boundary type will be written out as wall boundaries by default. In addition, when GAMBIT writes a mesh, any faces (in 2-D) on which you have not specified a continuum type will be written as FLUID by default. This means that you do not need to specify a continuum type in the Specify Continuum Types form for this tutorial.MODELING A MIXING ELBOW (2-D) Procedure © Fluent Inc., Mar-06 2-41 Step 10: Export the Mesh and Save the Session1. Export a mesh file for the mixing elbow.File → Export → Mesh…This command sequence opens the Export Mesh File form. Note that the File Type is Structured FLUENT 4 Grid.a) Enter the File Name for the file to be exported (2delbow.GRD ).b) Click Accept .The file will be written to your working directory.2. Save the GAMBIT session and exit GAMBIT.File → ExitGAMBIT will ask you whether you wish to save the current session before youexit.Click Yes to save the current session and exit GAMBIT.Summary MODELING A MIXING ELBOW (2-D)2.5 SummaryThis tutorial shows you how to generate a 2-D mesh using the “bottom-up” approach. Since the mesh is to be used in FLUENT 4, it was generated in a single block, structured fashion. Several other features that are commonly used for 2-D mesh generation were also demonstrated, including entering vertices using a background grid, creating straight edges and arcs, and specifying node distributions on individual edges. As compared to Tutorial 1, which omitted some details, all steps required to create a mesh ready to read into the solver were covered, including how to set boundary types, choose a specific Fluent solver, and finally write out the mesh file.2-42 © Fluent Inc., Mar-06。
第三章:gambit划分网格——(第三节)面网格划分
顶点类型
为了能够用 Quad-Map 方案划分网格,面必须描绘出一个逻辑的矩形(此判据的例外情 况见下面部分的“注一”。)。为了描绘出一个逻辑的矩形,一个面必须包括四个端点类型(END TYPE)的顶点,同时其它所有的面上的顶点必须指定为侧边类型(SIDE TYPE)的顶点。
Quad-Map 网格划分方案(meshing scheme)
当对一个面采用 Quad-Map 网格划分方案,GAMBIT 采用规则的四边形面网格元素对 面进行网格划分,如图 3-22 所示:
图 3-22:Quad-Map 面网格划分方案(scheme)-网格例子
本文由 wyxpuma 提供,不足之处欢迎指正
图 3-23 画出了四个平面,其中两个可以采用(Quad)Map 方案划分网格,另两个则 不行。图(a)和(c)是可以的,因为每个平面中都有四个端点类型的顶点(End type vertex), 而其它顶点为侧边类型的顶点(Side type vertex)。图(b)无法用 Map 方法,因为该平面只 包含了三个端点型顶点;图(d)也无法采用 Map 方法,因为该平面上的某个顶点被指定为 反向型(Reversal)顶点。
创建或删除面与面间的硬链接
将网格化的边转化为拓扑的边,将面沿着由网 格节点定义的边界进行分割
在图形窗口中显示网格信息,概述面网格质量 信息
删除存面上在的网格节点 以及(或者)元素
3.3.1 对面进行网格划分
“Mesh Face”命令可用来对模型中的一个或多个截面创建网格。当对面划分网格时, GAMBIT 根据当前指定的(划分网格)参数在面上创建网格节点。 要对一个面划分网格,需要确定以下(划分网格)参数
Gambit体网格划分
GAMBIT 网格划分第四节体网格划分FEBRUARY 26, 20144.4 体网格划分命令(Volume Meshing Commands)在Mesh/Volume 子面板中有(subpad)以下命令下文描述了以上列出的各命令的功能和操作4.4.1 为体划分网格(Mesh Volumes )Mesh Volumes 命令允许你为一个或多个体创建网格。
当你为一个体划分网格时,GAMBIT 会根据当前设定的参数在整个体中创建网格节点。
要mesh 一个体,需要设定以下参数•待划分网格的体•网格划分方案(Meshing scheme )•网格节点间距(Mesh node spacing )•网格划分选项(Meshing options )指定体(Specifying the Volume)GAMBIT 允许你在网格划分操作中指定任何体,但是,何种网格划分方案(meshing scheme)能应用于这个体,则决定于体的拓扑特性、形状,以及体的面上的顶点的类型。
指定网格划分方案(Specifying the Meshing Scheme)指定网格划分方案需要设定以下两个参数•元素(Elements)•类型(Type)Elements参数用于定义(应用于该体的)体网格元素的形状;Type 参数定义网格划分算法,因此也决定了体中所有网格元素的模式。
下文将介绍上面列出的参数的功能,以及它们对体网格产生的效果。
指定方案元素(Specifying Scheme Elements)GAMBIT 允许你指定下表列出的任何一个体网格Elements(元素)选项以上列出的每个Elements 选项都有一套特定的Type(类型)选项(一个或多个)相对应(见下)指定方案类型(Specifying Scheme Type)GAMBIT 提供以下体网格划分的Type 选项正如上文提到的,每个Elements选项都有一套特定的Type(类型)选项(一个或多个)相对应。
利用Gambit 划分网格
利用Gambit 划分网格以课上实例(8*20mm的区域)为例1.运行Gambit. 第一次可修改工作目录working directory:如下2.Run后进入作图的主页面3.创建4个点四个点的坐标分别为(0,0),(20,0),(0,8)和(20,8)。
只需要在Global栏填入数值4.利用右下角的工具Fit to window按钮可以使所有几何点出现在视图区。
5.创建4条线利用按钮,出现此时按住shift键,用鼠标左键点击一个点,此时该点变为红色(表面已选择),如:,同样方法再选择一个点,然后按Apply 即将这两点连成一条线,如下图最终四个建立4条边线,如下图6.建立一个面(这就是要求解的区域)点击工具栏中的建立面。
按住shift键,用鼠标左键点击一条线,此时该线条变为红色(表面已选择),依次再选择另3条线(此时按住shift键不动)。
然后按Apply即将这4条线组成一个面。
7.进行网格划分选择右上角中的面网格划分选择仅有的一个面face1, 方法是按住shift键,用鼠标左键点击面的任一条线,此时面的四条线改为红色,表示已选择。
将步长值改为0.5。
空间步长越小,网格数越多,计算可能更准确,但是计算时间越长。
然后点击Apply 得到下面的网格8.初步指定边界的类型点击区域命令按钮,再点击下面左侧的指定边界类型按钮。
选定一个边,可打开向上箭头,将列表中选,也可利用前面的方法,按住shift键,用鼠标左键点击一条线,此时该线条变为红色(表面已选择)。
为选定的边输入一个名字,本问题中我选择的四个边的名字分别为left、up、down和right。
4个边的类型均为默认的Wall。
9.指定求解区域为固体材料点击区域命令按钮选择face1,为选定的面输入一个名字,如zone,将区域的类型由Fluid 改为Soild。
10.导出网格由File中的Export,再选择Mesh. 更改默认的文件名,如改为fin.msh点击Export 2-D(X-Y)mesh 按钮,显示为红色。
Gambit网格划分(体)
体网格划分1体网格划分命令(Volume Meshing Commands)在Mesh/Volume子面板中有(subpad)以下命令下文描述了以上列出的各命令的功能和操作1.1为体划分网格(Mesh Volumes)Mesh Volumes命令允许你为一个或多个体创建网格。
当你为一个体划分网格时,GAMBIT会根据当前设定的参数在整个体中创建网格节点。
要mesh一个体,需要设定以下参数•待划分网格的体•网格划分方案(Meshing scheme)•网格节点间距(Mesh node spacing)•网格划分选项(Meshing options)指定体(Specifying the Volume)GAMBIT允许你在网格划分操作中指定任何体,但是,何种网格划分方案(meshing scheme)能应用于这个体,则决定于体的拓扑特性、形状,以及体的面上的顶点的类型。
指定网格划分方案(Specifying the Meshing Scheme)指定网格划分方案需要设定以下两个参数•元素(Elements)•类型(Type)Elements参数用于定义(应用于该体的)体网格元素的形状;Type参数定义网格划分算法,因此也决定了体中所有网格元素的模式。
下文将介绍上面列出的参数的功能,以及它们对体网格产生的效果。
指定方案元素(Specifying Scheme Elements)GAMBIT允许你指定下表列出的任何一个体网格Elements(元素)选项以上列出的每个Elements选项都有一套特定的Type(类型)选项(一个或多个)相对应(见下)指定方案类型(Specifying Scheme Type)GAMBIT提供以下体网格划分的Type选项正如上文提到的,每个Elements选项都有一套特定的Type(类型)选项(一个或多个)相对应。
下表示出了体网格划分时Elements选项和Type(类型)选项之间的对应关。
最新GAMBIT软件网格的划分
G A M B I T软件网格的划分模型的网格划分当用户点击Operation工具框中的Mesh命令按钮时,GAMBIT将打开Mesh 子工具框。
Mesh子工具框包含的命令按钮允许用户对于包括边界层、边、面、体积和组进行网格划分操作。
与每个Mesh子工具框命令设置相关的图标如下。
图标命令设置Boundary LayerEdgeFaceVolumeGroup本章以下部分将详细说明与上面列举的每个命令按钮相关的命令。
3.1 边界层3.1.1 概述边界层确定在与边和/或者面紧邻的区域的网格节点的步长。
它们用于初步控制网格密度从而控制相交区域计算模型中有效信息的数量。
示例作为边界层应用的一个示例,考虑包括一个代表流体流过管内的圆柱的计算模型。
在正常环境下,很可能在紧靠管道壁面的区域内流体速度梯度很大,而靠近管路中心很小。
通过对壁面加入一个边界层,用户可以增大靠近壁面区域的网格密度并减小靠近圆柱中心的网格密度——从而获得表征两个区域的足够的信息而不过分的增大模型中网格节点的总数。
一般参数要确定一个边界层,用户必须设定以下信息:•边界层附着的边或者面•确定边界层方向的面或者体积•第一列网格单元的高度•确定接下来每一列单元高度的扩大因子•确定边界层厚度的总列数用户还可以设定生成过渡边界层——也就是说,边界层的网格节点类型随着每个后续层而变化。
如果用户设定了这样一个边界层,用户必须同时设定以下信息:•边界层过渡类型•过度的列数3.1.2 边界层命令以下命令在Mesh/Boundary Layer子工具框中有效。
图标命令详细说明Create Boundary Layer建立附着于一条边或者一个面上的边界层Modify Boundary Layer更改一个现有边界层的定义Modify Boundary LayerLabel更改边界层标签Summarize BoundaryLayers在图形窗口中显示现有边界层Delete BoundaryLayers删除边界层生成边界层Create Boundary Layer命令允许用户在一条边或者一个面附近定义网格节点步长。
GAMBIT划分泵网格教程
本教程以离心泵为例,详细地介绍了如何应用GAMBIT进行泵网格划分和质量检查。
本文中的离心泵实体采用Pro/E造型,并导出一个stp格式副本作为GAMBIT导入文件。
基本步骤:1、启动GAMBIT。
2、导入*.stp格式文件。
2、进行碎面合并操作以提高网格质量。
3、网格划分。
4、网格质量检查。
5、边界条件设置。
6、保存和导出文件。
1、启动GAMBIT。
双击GAMBIT快捷方式,弹出下列对话框,首先点击“Browse”设置GAMBIT 运行目录,以后你的相关文件都将会在这个目录里。
建议大家养成设置目录好习惯。
设置好目录好,点击“Run”就启动GAMBIT了。
GAMBIT启动后的界面如下图所示。
2、导入*.stp格式文件。
(1)选择File-import-STEP菜单,就会弹出导入stp文件对话框,建议大家最好把“Stand-aloneGeometry”选项下面的4个选项全部选中,让后点击“Browse”开始寻找stp文件(如果第一步设置了目录,这里就会自动进入相应的目录,非常方便)。
点击“Browse”后弹出的对话框如下如所示,在“File”中找到自己的文件,让后点击Accept”,再点击上图对话框的“Accept”就导入了stp文件。
导入过程中GAMBIT的菜单栏位置会显示红色进度条,显示导入进度,如下图所示。
导入后GAMBIT中就会显示相应的实体造型,刚导入后,GAMBIT显示的是曲线,右键点击上图中右下角的蓝圈所示按钮,然后左键可以选择显示方式,可以切换到实体显示,如下图所示。
(2)进行碎面合并操作以提高网格质量。
一般泵三维造型导入GAMBIT后都会产生很多小面,称之为碎面。
这些面如果不合并会对网格质量有非常大的影响。
当然也有一些泵造型导入后是基本没有碎面的,那这一步就可以省略了。
一般进行体操作时,如果叶轮和蜗壳都显示会很麻烦,也不容易看清楚每个体上的面。
这时点击上图右下角的蓝色按钮,弹出下面左面的对话框,进行隐藏或显示体设置。
GAMBIT扇形面网格划分方法
GAMBIT扇形面网格划分方法
1 Quad-Pave:各角点类型均为End,各边种子数均为20.
下图第一个图是第一次生成的,如果不想要这样的网格,可以Undo,然后再仍然用此策略生成,这次生成的可能就是第二个图的网格。
GAMBIT比较邪门,哈哈。
2 Quad-Pave:各角点类型均为End,两半径边种子数均为20,圆弧边种子数为30.
3 Quad-Pave:各角点类型均为End,两半径边种子数均为20,圆弧边种子数为10.
5 Quad/Tri-Map,各角点类型均为End,两半径边种子数均为20,圆弧边种子数为80.
5 Quad/Tri-Map,各角点类型均为End,两半径边种子数均为20,圆弧边种子数为20.
7 Quad/Tri-Wedge Primitive,各角点类型均为End,两半径边种子数均为20,圆弧边种子数为20.
8 采用“钱币原理”划分网格,首先将1/4圆面Split成下图形状。
这两个分块的面,其中的小正方形很容易使用Quad-Map策略划分网格,另外一部分可能稍微有点麻烦,方法为,首先确保这部分的五个角点的类型为4个End和1个Side;而后在边上布种子,四条小短边的种子数应相等,例子中为10,圆弧段的种子数为20;划分出
来的网格如图:
总结:我个人比较推荐使用Quad网格,可以采用Quad-Pave策略,最好采用最后一种的方法,划分出的网格质量比较好。
圆柱绕流中的圆柱附近网格划分方法
首先布种子,四条短边均为20个,然后修改角点类型,以得到4个End和1个Side;然后直接使用Quad-Map策略划分。
Gambit中钱币网格的划分方法
GAMBIT圆柱体的高质量网格划分(钱币划分)(1)先在opteration--geometry-volumn中创建了一个高为100,半径15的圆柱体。
然后再圆柱的底面建立了一个边长为8的正方形,将正方形旋转45度,使正方形的一个顶点跟底面圆的点对齐,然后将圆周分割为4等分,将这4个顶点和正方形的四个顶点连成线,效果如图所示:
(2)然后用这四条线沿Z轴正向的矢量方向长出4个面,效果如图:
(3)用正方形去分割底面圆,注意选择connected选项,再用刚才形成的四个面去分割那个古钱形的底面,把它分成4部分,效果如图所示:
(4)下面就是把对应边划分网格,注意正方形每条边对应的圆弧边划分的网格份数是一样的,效果如图:
(5)划分面网格,选择map结构的四边形网格,效果如:
(6)最后划分体网格,按照cooper方式的六面体网格来划分,效果如图:。
Gambit体网格划分
GAMBIT 网格划分第四节体网格划分FEBRUARY 26, 20144.4 体网格划分命令(Volume Meshing Commands)在Mesh/Volume 子面板中有(subpad)以下命令下文描述了以上列出的各命令的功能和操作4.4.1 为体划分网格(Mesh Volumes )Mesh Volumes 命令允许你为一个或多个体创建网格。
当你为一个体划分网格时,GAMBIT 会根据当前设定的参数在整个体中创建网格节点。
要mesh 一个体,需要设定以下参数•待划分网格的体•网格划分方案(Meshing scheme )•网格节点间距(Mesh node spacing )•网格划分选项(Meshing options )指定体(Specifying the Volume)GAMBIT 允许你在网格划分操作中指定任何体,但是,何种网格划分方案(meshing scheme)能应用于这个体,则决定于体的拓扑特性、形状,以及体的面上的顶点的类型。
指定网格划分方案(Specifying the Meshing Scheme)指定网格划分方案需要设定以下两个参数•元素(Elements)•类型(Type)Elements参数用于定义(应用于该体的)体网格元素的形状;Type 参数定义网格划分算法,因此也决定了体中所有网格元素的模式。
下文将介绍上面列出的参数的功能,以及它们对体网格产生的效果。
指定方案元素(Specifying Scheme Elements)GAMBIT 允许你指定下表列出的任何一个体网格Elements(元素)选项以上列出的每个Elements 选项都有一套特定的Type(类型)选项(一个或多个)相对应(见下)指定方案类型(Specifying Scheme Type)GAMBIT 提供以下体网格划分的Type 选项正如上文提到的,每个Elements选项都有一套特定的Type(类型)选项(一个或多个)相对应。
gambit离心水泵叶轮网格划分
LOW-SPEED CENTRIFUGAL COMPRESSOR9. LOW-SPEED CENTRIFUGAL COMPRESSORThis tutorial employs the configuration of a low-speed, centrifugal compressor blade to demonstrate the use of imported geometry and the turbo volume decomposition operation. It illustrates how to adjust decomposition split points and employs a structured hexahedral mesh.In this tutorial, you will learn how to:•Create a turbo volume based on imported ACIS geometry•Decompose a turbo volume9.1 PrerequisitesTo understand this tutorial, you should review and understand the steps, principles, and procedures outlined in Tutorials 1, 2, 3, 4, and 8.© Fluent Inc., Mar-06 9-1Problem Description LOW-SPEED CENTRIFUGAL COMPRESSOR9.2 Problem DescriptionFigure 9-1 shows the turbomachinery configuration to be modeled and meshed in this tutorial. The configuration represents the rotor of a low-speed centrifugal compressor containing 20 identical, highly skewed blades, each of which is spaced equidistant from the others on the rotor hub. The configuration is designed such that the angles of the inlet and outlet flow directions are offset from each other by 90º.Outlet flowInlet flowFigure 9-1: Low-speed centrifugal compressor rotor9-2 © Fluent Inc., Mar-06LOW-SPEED CENTRIFUGAL COMPRESSOR Strategy9.3 StrategyThe GAMBIT turbo modeling procedure includes seven basic steps:1)Creating or importing edge data that describes the turbo profile2)Creating the turbo profile3)Creating the turbo volume4)Assigning zone types to regions of the turbo volume5)Decomposing the turbo volume6)Meshing the turbo volume7)Viewing the turbo volumeThis tutorial illustrates all of the steps listed above. In this example, the edge data that describes the turbo profile is imported from an ACIS file, and edges of the turbo volume are pre-split in the zone-type assignment step (Step 4) to facilitate decomposition (Step 5). NOTE: In this tutorial, the turbo-volume viewing operation (Step 7, above) is illustrated in conjunction with the mesh examination step (see “Step 10:Examine the Mesh,” below).© Fluent Inc., Mar-06 9-3Procedure LOW-SPEED CENTRIFUGAL COMPRESSOR 9.4 Procedure1.Copy the filepath/Fluent.Inc/gambit2.x/help/tutfiles/lscc-smooth.sat (where 2.x is the GAMBIT version number) from the GAMBIT installation area in the directory path to your working directory.2.Start GAMBIT using the session identifier “LS_Centrifugal_Comp”.Step 1: Select a Solver1.Choose the solver from the main menu bar:Solver → FLUENT 5/6The choice of solver affects the types of options available in the Specify Boundary Types form (see below). For some systems, FLUENT 5/6 is the default solver. The currently selected solver is shown at the top of the GAMBIT GUI.9-4 © Fluent Inc., Mar-06LOW-SPEED CENTRIFUGAL COMPRESSOR Procedure © Fluent Inc., Mar-06 9-5 Step 2: Import ACIS GeometryTo create a turbo model, GAMBIT requires the specification of a set of edges that define the shapes of the turbo hub and casing and the cross-sectional shapes of the turbo blade(s). In this tutorial, the edge specification data is imported from an ACIS file.1. Select the Import ACIS File option from the main menu bar.File → Import → ACISThis command sequence opens the Import ACIS Fileform.2. Click the Browse... button.This action opens the Select File form.Procedure LOW-SPEED CENTRIFUGAL COMPRESSOR9-6© Fluent Inc., Mar-06a)In the Files list, select lscc-smooth.sat.b)On the Select File form, click Accept.3.On the Import ACIS File form, click Accept.GAMBIT reads the information contained in the ACIS file and constructs the geometry shown in Figure 9-2.LOW-SPEED CENTRIFUGAL COMPRESSOR ProcedureBlade cross sectionsHub edgeCasing edgeFigure 9-2: Imported ACIS geometry for low-speed centrifugal compressor© Fluent Inc., Mar-06 9-7Procedure LOW-SPEED CENTRIFUGAL COMPRESSOR 9-8 © Fluent Inc., Mar-06Step 3: Create the Turbo ProfileThe turbo profile defines the basic characteristics of the turbo volume. In GAMBIT , the edges that describe the hub, casing, and blade cross sections are defined by means of their inlet endpoint vertices.1. Specify the hub, casing, and blade-cross-section edges of the turbo profile.TOOLS →TURBO →CREATE PROFILEThis command sequence opens the Create Turbo Profileform.In this step, you will specify vertices that define the hub, casing, and blade cross-sections. In addition, you will specify the axis of revolution for the turbo configu-ration. All instructions listed in this step refer to the vertex labels shown in Figure 9-3.LOW-SPEED CENTRIFUGAL COMPRESSOR Procedure© Fluent Inc., Mar-06 9-9 Casing InletHub InletBlade Tips BA D ECFigure 9-3: Vertices used to specify the turbo profilea) Activate the Hub Inlet list box on the Create Turbo Profile form.b) Select vertex A .c) Activate the Casing Inlet list box.d) Select vertex B .e) Activate the Blade Tips list box.f) Select (in order) vertices C , D , and E .! The order in which the Blade Tips vertices are selected is important to thedefinition of a turbo profile. Specifically, the Blade Tips vertices must beselected in order from hub to casing.g) Click Apply to accept the vertex selections and create the turbo profile.GAMBIT creates the turbo profile shown in Figure 9-4.Procedure LOW-SPEED CENTRIFUGAL COMPRESSORBAFigure 9-4: Turbo profile for low-speed centrifugal compressor blade The turbo profile for this tutorial includes six (real) rail edges and three (virtual) medial edges, each of which corresponds to one of the turbo blade cross sections.9-10 © Fluent Inc., Mar-06Step 4: Modify the Inlet and Outlet Vertex Locations It is often useful to control the shape of the turbo volume such that its inlet and outlet surfaces represent smooth flow transitions to and from the inlet and outlet ends, respectively, of the turbo blade. In GAMBIT, you can control the shape of the turbo volume by adjusting the positions of the medial-edge endpoint vertices prior to con-structing the volume.1.Open the Slide Virtual Vertex form.TOOLS →TURBO →SLIDE VIRTUAL VERTEXThis command sequence opens the Slide Virtual Vertexform.a)Select the inlet endpoint vertex of the medial edge for the hub blade cross section(vertex A in Figure 9-4, above).b)In the U Value field, enter the value 0.962.As an alternative to entering a value in the U Value field, you can select thevertex in the graphics window and drag it along its host rail edge until the UValue field value is 0.962.c)Retain the (default) Move with links option.© Fluent Inc., Mar-06 9-119-12 © Fluent Inc., Mar-06The Move with links option specifies that GAMBIT is to apply the current Slide Virtual Vertex specifications to all medial-edge inlet endpoint vertices in addi-tion to the selected vertex.d) Click Apply to accept the new position of the medial-edge inlet endpoint vertices. e) Select the outlet endpoint vertex of the medial edge for the casing blade crosssection (vertex B ).f) In the U Value field, enter the value 0.981.g) Retain the Move with links option.h) Click Apply to accept the new position of the medial-edge outlet endpoint vertices.The modified turbo profile appears as shown in Figure 9-5.Figure 9-5: Turbo profile with modified inlet and outlet vertex locationsStep 5: Create the Turbo VolumeThe turbo volume characteristics are determined by the turbo profile and by specifi-cation of the number of blades on the rotor (or angle between blades), the tip clear-ance, and the number of spanwise sections. This example does not include either a tip clearance or spanwise sectioning.1.Specify the pitch for the turbo volume.TOOLS →TURBO →CREATE TURBO VOLUMEThis command sequence opens the Create Turbo Volumeform.a)In the Pitch text box, enter 20.b)On the Pitch option button (located to the right of the Pitch text box), select theBlade count option.c)In the Spanwise Sections text box, enter 1.d)Click Apply.Figure 9-6 shows the resulting turbo volume.© Fluent Inc., Mar-06 9-139-14 © Fluent Inc., Mar-06 Casing faceHub faceInlet face Outlet faceBladepressuresideBladesuction sideFigure 9-6: Turbo volume for low-speed centrifugal compressor bladeStep 6: Define the Turbo ZonesThis step assigns standard zone types to surfaces of the turbo volume. The zone-type specifications determine which faces are linked for meshing. In addition to assigning zone types, this step employs pre-decomposition options that presplit periodic surfaces in order to facilitate turbo volume decomposition (see “Step 8:Decompose the Turbo Volume,” below).1.Specify the faces that constitute the hub, casing, inlet, and outlet of the turbo volume,as well as the pressure and suction sides of the turbo blade.TOOLS →TURBO →DEFINE TURBO ZONESThis command sequence opens the Define Turbo Zonesform.a)Activate the Hub list box, and select the bottom (hub) face of the turbo volume.b)Activate the Casing list box, and select the top (casing) face of the turbo volume.c)Activate the Inlet list box, and select the inlet face of the turbo volume.d)Activate the Outlet list box, and select the outlet face of the turbo volume.e)Activate the Pressure list box, and select the front two faces (excluding the flat,trailing-tip face) on the inner-curve (pressure side) of the turbo blade.f)Activate the Suction list box, and select the front two faces (excluding the flat,trailing-tip face) on the outer-curve (suction side) of the turbo blade.© Fluent Inc., Mar-06 9-15The flat edges on the trailing tips of the blade cross sections are not included in the definitions of the pressure and suction surfaces; therefore, they will not be merged into their respective surfaces in the decomposition step.g)In the Pre-decompose section, select both the Link spanwise and Split edges options.The Pre-decompose options specify that GAMBIT is to merge the pressure and suction surfaces of the blade, link the spanwise (hub and casing) faces of the turbo volume, and split the periodic edges of the hub and casing faces to facilitate decomposition of the turbo volume. The split locations for the peri-odic faces are determined by a set of default variables that can be modified by means of the Edit Defaults form (see Section 4.2.4 in the GAMBIT User’s Guide).h)Click Apply.GAMBIT assigns the zone types and splits the blade and periodic edges as shown in Figure 9-7.AEC BDFFigure 9-7: Turbo volume with pre-decomposition splitsBecause the flat trailing edges are not included in the pressure and suction surface definitions, the sharp edges at the trailing tip of the edge are maintained and are used for the turbo decomposition.9-16 © Fluent Inc., Mar-06Step 7: Adjust Edge Split PointsIt is often useful to modify the default split-point locations prior to decomposing the turbo volume. Such adjustments can facilitate success of the decomposition operation and the creation of spanwise faces that can be meshed with high-quality elements.You can adjust the split-point locations either before or after decomposition, but the adjustment process is less time-consuming if it is performed prior to decomposition, because it does not involve updating the face and volume configurations associated with each adjustment.In this step, you will adjust the turbo blade split points such that they are close to, but not coincident with, the leading edge vertex.1.Open the Slide Virtual Vertex form.TOOLS →TURBO →SLIDE VIRTUAL VERTEXThis command sequence opens the Slide Virtual Vertexform.a)Select the suction-side, upstream split-point vertex on the casing face turbo bladecross section (vertex A in Figure 9-7, above).b)In the U Value field, enter the value 0.003.© Fluent Inc., Mar-06 9-17As an alternative to entering a value in the U Value field, you can select thevertex in the graphics window and drag it along its host rail edge until the UValue field value is 0.003.c)Retain the Move with links option.The Move with links option specifies that GAMBIT is to apply the current SlideVirtual Vertex specifications to all linked vertices in addition to the selectedvertex. In this case, the suction-side split-point vertex on the casing face turboblade cross section is linked to a corresponding vertex on the hub face turboblade cross section.d)Click Apply to accept the new split-point location.e)Select the pressure-side, upstream split-point vertex on the casing face turbo bladecross section (vertex B).f)In the U Value field, enter the value 0.997.g)Click Apply to accept the new split-point location.h)Select the pressure-side, upstream split-point vertex on the casing face periodicedge (vertex C).i)Unselect the Move with links option.Because the leading edge of the blade is swept backwards from hub to casing,it is appropriate to move this vertex independently of the corresponding hubvertex (vertex D). This independent movement is accomplished by unselectingthe Move with links option. (NOTE: In all subsequent Slide Virtual Vertexoperations, the Move with links option will remain unselected.) j)In the U Value field, enter the value 0.238.k)Click Apply to accept the new split-point location.l)Select the pressure-side, upstream split-point vertex on the hub face periodic edge (vertex D).m)In the U Value field, enter the value 0.812.n)Click Apply to accept the new split-point location.o)Select the pressure-side, downstream split-point vertex on the casing face periodic edge (vertex E).9-18 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 9-19 p) In the U Value field, enter the value 0.812.q) Click Apply to accept the new split-point location.r) Select the pressure-side, downstream split-point vertex on the hub face periodicedge (vertex F ).s) In the U Value field, enter the value 0.156.t) Click Apply to accept the new split-point location.Figure 9-8 shows the turbo volume configuration with the adjusted split points.Figure 9-8: Turbo volume with adjusted split points9-20 © Fluent Inc., Mar-06 Step 8: Decompose the Turbo VolumeThe decomposition step splits the turbo volume into four geometric volumes the topologies of which are suitable for the creation of structured hexahedral meshes.1. Decompose the turbo volume.TOOLS →TURBO →DECOMPOSE TURBO VOLUMEThis command sequence opens the Decompose Turbo Volumeform.a) Retain the (default ) Type:H option, and click Apply .GAMBITdecomposes the volume as shown in Figure 9-9.Figure 9-9: Decomposed turbo volume for low-speed centrifugal compressorStep 9: Mesh the VolumesThe decomposition step (above) automatically sets the interval count and grading on the edges according to the turbo decomposition defaults. In addition, the decomposi-tion sets face vertex types so that the volume is ready to mesh.1.Mesh all of the volumes.TOOLS →TURBO →MESH EDGES/FACES/VOLUMES RThis command sequence opens the Mesh Volumes form.a)Activate the Volumes list box.b)Select all four volumes.GAMBIT automatically selects the Scheme:Elements:Hex and Scheme:Type:Map options.c)Retain the automatically selected Scheme options.© Fluent Inc., Mar-06 9-219-22 © Fluent Inc., Mar-06d) On the Spacing option button, select Interval size .e) In the Spacing text box, enter a value of 10.f) Click Apply .Figure 9-10 shows the final meshed turbo volume.Figure 9-10: Meshed turbo volume for low-speed centrifugal compressorStep 10: Examine the Mesh1.Select the EXAMINE MESHcommand button at the bottom right of the GlobalControl toolpad.This action opens the Examine Meshform.a)Click Update at the bottom of the Examine Mesh form.© Fluent Inc., Mar-06 9-239-24 © Fluent Inc., Mar-06GAMBIT does not automatically update the graphics display when you open the Examine Mesh form or modify its specifications, such as Display Type or Quality Type . To update the graphics display, you must click the Update pushbutton located at the bottom of the form. GAMBIT displays the Update pushbutton label in red lettering whenever the display needs to be updated to reflect the current Examine Mesh specifications.Some Examine Mesh operations automatically update the graphics display. For example, if you select the Display Type:Range option and click one of the histogram bars, GAMBIT automatically updates the display.The Examine Mesh form allows you to view various mesh characteristics for the 3-D mesh. For example, Figure 9-11 displays hexahedral volume mesh elements for which the EquiSize Skewparameter is between 0.2 and 0.3 for this example.Figure 9-11: Hexahedral mesh elements—EquiSize Skew = 0.2–0.32. Display the casing surface in a cascade turbo view.TOOLS →TURBO →VIEW TURBO VOLUMEThis command sequence opens the View Turbo Volume form.© Fluent Inc., Mar-069-25a) Select the Cascade surface:Casing option.The Cascade surface specifications described above specify a flattened, 2-D display of the casing surface.b) Click Apply .Figure 9-12 displays an enlarged view of the quadrilateral face mesh elements near the blade tip on the casing surface for this example. In this case, the mesh elements are colored to represent the value of the EquiSize Skew parameter. (NOTE: To view the 2-D face elements shown in Figure 9-12, select the Display Type: 2D Element option on the Examine Mesh form, and specify the display of quadrilateral () elements.)9-26© Fluent Inc., Mar-06Figure 9-12: Quadrilateral mesh elements near blade tip—EquiSize Skew = 0–1c) Select the Off option and click Apply to turn off the cascade turbo view beforespecifying zone types.Step 11: Specify Zone TypesYou can use the Specify Boundary Types command to apply solver-specific boundary zone specifications to surfaces of the turbo volume. For some solver options, includ-ing Fluent 5/6, GAMBIT automatically assigns such boundary zone specifications. 1.Check the automatically applied boundary zone types.ZONES →SPECIFY BOUNDARY TYPESThis command sequence opens the Specify Boundary Typesform.© Fluent Inc., Mar-06 9-27Step 12: Export the Mesh and Exit GAMBIT1.Export a mesh file.a)Open the Export Mesh File formFile → Export → Mesh…This command sequence opens the Export Mesh Fileform.i.Enter the File Name for the file to be exported—for example, “ls_cc.msh”.ii.Click Accept.GAMBIT writes the mesh file to your working directory.2.Save the GAMBIT session and exit GAMBITa)Select Exit from the File menu.File → Exitform.This action opens the Exitb)Click Yes to save the current session and exit GAMBIT.9-28 © Fluent Inc., Mar-069.5 SummaryThis tutorial demonstrates the use of ACIS geometry import and turbo decomposition operations in GAMBIT turbo modeling. In this example, edge data imported from an ACIS file were used to define a turbo profile, which, in turn, was used to create a turbo volume representing the flow region surrounding one blade of a low-speed centrifugal compressor. The turbo zones were assigned, the turbo volume was pre-split, and the split-point locations on the blade and periodic edges were adjusted to facilitate decomposition and meshing. The final, decomposed turbo volume consisted of four volumes, each of which could be meshed using a structured, hexahedral meshing scheme.© Fluent Inc., Mar-06 9-29。
GAMBIT网格划分
详细说明
Hex
指定网格仅仅包含六面体网格单元
Hex/Wedge
指定网格主要有六面体网格单元组成但是也包括在适当地位置的楔形网格
Tet/Hybird
指定网格主要由四面体网格构成但是在适当的位置可以包含六面体、锥形和楔形网格单元
GAMBIT提供了以下体网格划分Type选项
选项
详细说明
Map
生成一般六面体结构化网格单元
TGrid
√
Stairstep
√
Submap
将一个不可图示的面分成可图示区域并在每个区域生成结构化网格单元网格
Pave
生成非结构化网格单元网格
Tri Primitive
将一个二侧面分成二个四边形区域并在每个区Байду номын сангаас生成可图示的网格
Wedge Primitive
在楔形面的尖部生成二角形网格单元并从尖部向外生成放射状网格
GAMBIT提供了以下面网格划分Type选项
Submap
将一个不可图示化体积分割成可图示化区域并在每个区域生成六面体结构化网格单元
Tet Primitive
将一个四个侧面的体积分成四个六面体区域并在每个区域生成可图示化网格
Cooper
扫描整个体积的指定的源面的网格节点类型
Tet/Hybird
指定该网格主要包含四面体网格单元但是在合适的位置也可以包含六面体、锥体和楔形单元
Stairstep
生成普通六面体网格和一个与原是提及形状近似的平滑的体积
体网格划分Elements和Type选项之间的关系如下表。(其中:“√”表示允许组合)
Elements选项
Type选项
Hex
Hex/Wedge
Gambit网格划分实例
GAMBIT圆/圆柱体的高质量网格划分(钱币划分)1)先在opteration--geometry-volumn中创建了一个高为100,半径15的圆柱体。
然后再圆柱的底面建立了一个边长为8的正方形,将正方形旋转45度,使正方形的一个顶点跟底面圆的点对齐,然后将圆周分割为4等分,将这4个顶点和正方形的四个顶点连成线,效果如图所示:2)然后用这四条线沿Z轴正向的矢量方向长出4个面,效果如图:3)用正方形去分割底面圆,注意选择connected选项,再用刚才形成的四个面去分割那个古钱形的底面,把它分成4部分,如果做到这一步,基本难的地方就过去了,效果如图所示:4)下面就是把对应边划分网格,注意正方形每条边对应的圆弧边划分的网格份数是一样的,效果如图:5)划分面网格,选择map结构的四边形网格,效果如图:6)最后划分体网格,按照cooper方式的六面体网格来划分,效果如图:如何用gambit生成机翼结构网格现在很多新手在用gambit划分网格的时候,习惯性的直接生成体网格,这样做确实简单,但是简单省力的同时就蕴藏着风险,当遇到复杂外形的时候,就长不了结构网格或者是生成的网格质量很差,为什么会这样?因为要划分一套高质量的网格,在gambit中直接划分体网格是不恰当滴。
那如何在gambit中划分结构网格呢?了解pointwise或者icem的同学都知道,这些牛b软件划分网格的思路都是分区,所以要在gambit中划分结构网格,其基本思路也是要分区,想偷懒直接划分体网格是行不通的哦。
下面开始讲课:1.导入实体2.将面移动至中心位置3.在yz平面生成一个圆4.将圆绕着x轴旋转90°5.将圆周split6.生成如图的两条线7.将圆面删除,删除的时候将lower geometry去掉,这样删除之后就还能剩下线8.选择如图中的四条边,生成面9.同上10.查看该点的位置,显示其x坐标为15411.选择刚刚生成的两个面,选择copy,并沿着x轴移动15412.同上,复制面到翼端面处,同时沿着z轴调整面,使机翼的控制面位于圆面的中心位置左右13.生成如图所示的线14.生成封闭的面,在gambit中有些面没有生成很难看出来,可以将面用阴影来显示查看是否有漏生成面。
Gambit网格划分实例
GAMBIT圆/圆柱体的高质量网格划分(钱币划分)1)先在opteration--geometry-volumn中创建了一个高为100,半径15的圆柱体。
然后再圆柱的底面建立了一个边长为8的正方形,将正方形旋转45度,使正方形的一个顶点跟底面圆的点对齐,然后将圆周分割为4等分,将这4个顶点和正方形的四个顶点连成线,效果如图所示:2)然后用这四条线沿Z轴正向的矢量方向长出4个面,效果如图:3)用正方形去分割底面圆,注意选择connected选项,再用刚才形成的四个面去分割那个古钱形的底面,把它分成4部分,如果做到这一步,基本难的地方就过去了,效果如图所示:4)下面就是把对应边划分网格,注意正方形每条边对应的圆弧边划分的网格份数是一样的,效果如图:5)划分面网格,选择map结构的四边形网格,效果如图:6)最后划分体网格,按照cooper方式的六面体网格来划分,效果如图:如何用gambit生成机翼结构网格现在很多新手在用gambit划分网格的时候,习惯性的直接生成体网格,这样做确实简单,但是简单省力的同时就蕴藏着风险,当遇到复杂外形的时候,就长不了结构网格或者是生成的网格质量很差,为什么会这样?因为要划分一套高质量的网格,在gambit中直接划分体网格是不恰当滴。
那如何在gambit中划分结构网格呢?了解pointwise或者icem的同学都知道,这些牛b软件划分网格的思路都是分区,所以要在gambit中划分结构网格,其基本思路也是要分区,想偷懒直接划分体网格是行不通的哦。
下面开始讲课:1.导入实体2.将面移动至中心位置3.在yz平面生成一个圆4.将圆绕着x轴旋转90°5.将圆周split6.生成如图的两条线7.将圆面删除,删除的时候将lower geometry去掉,这样删除之后就还能剩下线8.选择如图中的四条边,生成面9.同上10.查看该点的位置,显示其x坐标为15411.选择刚刚生成的两个面,选择copy,并沿着x轴移动15412.同上,复制面到翼端面处,同时沿着z轴调整面,使机翼的控制面位于圆面的中心位置左右13.生成如图所示的线14.生成封闭的面,在gambit中有些面没有生成很难看出来,可以将面用阴影来显示查看是否有漏生成面。
利用Gambit划分网格
利用Gambit划分网格利用Gambit 划分网格以课上实例(8*20mm的区域)为例1.运行Gambit. 第一次可修改工作目录working directory:如下2.Run后进入作图的主页面3.创建4个点四个点的坐标分别为(0,0),(20,0),(0,8)和(20,8)。
只需要在Global栏填入数值4.利用右下角的工具Fit to window按钮可以使所有几何点出现在视图区。
5.创建4条线利用按钮,出现此时按住shift键,用鼠标左键点击一个点,此时该点变为红色(表面已选择),如:,同样方法再选择一个点,然后按Apply 即将这两点连成一条线,如下图最终四个建立4条边线,如下图6.建立一个面(这就是要求解的区域)点击工具栏中的建立面。
按住shift键,用鼠标左键点击一条线,此时该线条变为红色(表面已选择),依次再选择另3条线(此时按住shift键不动)。
然后按Apply即将这4条线组成一个面。
7.进行网格划分选择右上角中的面网格划分选择仅有的一个面face1, 方法是按住shift键,用鼠标左键点击面的任一条线,此时面的四条线改为红色,表示已选择。
将步长值改为0.5。
空间步长越小,网格数越多,计算可能更准确,但是计算时间越长。
然后点击Apply 得到下面的网格8.初步指定边界的类型点击区域命令按钮,再点击下面左侧的指定边界类型按钮。
选定一个边,可打开向上箭头,将列表中选,也可利用前面的方法,按住shift键,用鼠标左键点击一条线,此时该线条变为红色(表面已选择)。
为选定的边输入一个名字,本问题中我选择的四个边的名字分别为left、up、down和right。
4个边的类型均为默认的Wall。
9.指定求解区域为固体材料点击区域命令按钮选择face1,为选定的面输入一个名字,如zone,将区域的类型由Fluid 改为Soild。
10.导出网格由File中的Export,再选择Mesh. 更改默认的文件名,如改为fin.msh点击Export 2-D(X-Y)mesh 按钮,显示为红色。
000Gambit网格划分
000Gambit网格划分一、Gambit的操作界面 (2)二、二维建模 (5)(一)计算域的确立 (5)(二)创建点(vertex) (5)(三)线的创建(Line) (8)(四)面(Face)的创建 (9)三、网格的划分 (10)(一)边界层网格的创建 (10)(二)创建边上的网格点数 (11)(三)划分面的网格 (12)(四)边界的定义 (14)(五)储存与输出 (15)四、三维建模 (16)(一)三视图的使用 (16)(二)基本三维模型的建立 (17)(三)引入CAD图形 (21)五、二维轴对称维多辛斯基曲线喷嘴 (22)(一)在Autocad中创建维多辛斯基曲线 (22)(二)输出为ACIS的.sat文件 (22)(三)在gambit 中输入.sat文件 (22)(五)划分网格 (23)(六)定义边界条件 (24)六、三维双孔喷嘴 (26)(一)创建几何体 (26)(二)重新划分几何体 (28)(三)划分网格 (29)一、Gambit的操作界面网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <filemane>,文件名假如已经存在,要加上参数-old。
如图1.1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗与视图操纵面板。
图1.1 Gambit操作界面【文件栏】文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as与Export等命令。
这些命令的使用与通常的软件一样。
Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件(file/export)。
【视图与视图操纵面板】Gambit中可显示四个视图,以便于建立三维模型。
同时我们也能够只显示一个视图。
视图的坐标轴由视图操纵面板来决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视图控制面板中常用的命令有:
全图显示 选择显示视图 选择视图坐标
选择显示项目 渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
【命令面板】
命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
【视图和视图控制面板】
Gambit中可显示四个视图,以便于建立三维模型。同时我们也可以只显示一个视图。视图的坐标轴由视图控制面板来决定。图1.2显示的是视图控制面板。
视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。
在面的创建中,有一个布尔运算的操作,可以使我们创建不规则形状的面(见图1.17)。布尔运算包括三种方式:加、减、交。
三、
在命令面板中单击Mesh按钮,就可以进入网格划分命令面板。在Gambit中,我们可以分别针对边界层、边、面、体和组划分网格。图2.1所示的五个按钮分别对应着这五个命令。
Boundary Layer
图2.8
(三)划分面的网格
Gambit对于二维面的网格的划分提供了三种网格类型:四边形、三角形和四边形/三角形混合,同时还提供了五种网格划分的方法。表1、2分别列举了五种网格划分的方法以及它们的适用类型。
表1
方法
描述
Map
创建四边形的结构性网格
Submap
将一个不规则的区域划分为几个规则区域并分别划分结构性网格。
边上的网格点的分布可分为两种情况,一种是单调递增或单调递减,一种是中间密(疏)两边疏(密)。下面依然结合实例介绍边上网格点的创建。
1.单击命令面板中的 按钮,进入Edge网格创建面板(见图2.5)。
图2.5
2.在图13中选择线段2。
3.在命令面板中单击Double Side按钮,设置Radio1和Radio2为1.05。
Undo命令可以消除上一步操作的内容,但需要注意的是,在Gambit中只有Undo命令而没有Redo命令。
Del
Del命令用来删除一些误操作或不需要的对象。单击Del按钮,在视图中选择需要删除的对象,再单击Apply按钮即可。
(三)
在命令面板中单击Edge按钮,就可以进行线的创建和编辑(见图2.8)。
4.在命令面板中单击Interval Size按钮,选择Interval Count选项。
5.在Interval Count按钮的左边输入参数值为20。
6.单击Apply按钮,观察视图中边上的网格点的生成(见图2.6)。
图2.6
7.选择视图中的线段3,取消对Double Side按钮的选择,设置Radio为1.01,Interval Count为80,观察视图中网格点的分布情况。视图中选中线段上的红色箭头代表了Edge上网格点分布的变化趋势。如果Radio大于1,则沿箭头方向网格点的分布变疏,小于1,则沿箭头方向网格点的分布变密。如果发现网格点的分布情况与预计的相反,可以采用两种方法解决:
同时,我们还可以选择边界层网格创建的形式。在命令面板的Transition Pattern区域,系统给我们提供了四种创建方式(见图2.3)。
图2.3
【创建一个边界层网格】
以上述二维轴对称圆孔射流的计算模型为例,介绍边界层网格的生成。
(1)单击Mesh按钮,选择Boundary layer选项,进入边界层网格创建命令面板。
图1.3显示的就是Gambit的命令面板。
图1.3 Gambit的命令面板
从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。Operation中的第四个命令按钮Tools则是用来定义视图中的坐标系统,一般取默认值。命令面板中的各个按钮的含义和使用方法将在以后的具体例子中介绍。
(1)按住Shift按钮,在所选择的线段上单击鼠标中键改变箭头的方向;
(2)在命令面板中单击Invert按钮,将Radio值变为其倒数值。
图2.7
8.依次选择视图中的线段4、5、6、1,设置合理的网格点分布。
注意:在设置网格点分布的时候,一个封闭面的最后一条线段的网格点的分布可以通过系统自动计算得到。
Gambit网格划分
一、
网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <filemane>,文件名如果已经存在,要加上参数-old。
如图1.1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。
Pave
创建非结构性网格
Tri Primitive
将一个三角形区域划分为三个四边形区域并划分规则网格。
Wedge Primitive
在一个楔形的尖端划分三角形网格,沿着楔形向外辐射,划分四边形网格。
表2
适用类型
方法
Quad
Tri
Quad/Tri
Map
Submap
Pave
Tri Primitive
Wedge Primitive
图2.4点的创建
在Gambit中点的创建方式有四种:根据坐标创建、在线上创建、在面上创建和在体上创建。我们可以根据不同的需要来选择不同的创建方式(见图2.5)。
图2.5点的创建方式
Vertex中常用的命令还有:Move/Copy、Undo和Del。
Move/Copy命令
图2.6显示的是Move/Copy Vertex对话框。
(边界层)
Edge
(边)
Face
(面)
Volume
(体)
Group
(组)
图2.1图2.2
(一)边界层网格的创建
在命令面板中单击 按钮,即可进入边界层网格创建(见图2.2)。
边界层网格的创建需要输入四组参数,分别是第一个网格点距边界的距离(First Row),网格的比例因子(Growth Factor),边界层网格点数(Rows,垂直边界方向)以及边界层厚度(Depth)。这四个参数中只要任意输入三组参数值即可创建边界层网格。
8.选择Edge3,定义边界条件为轴对称条件(Axis),取名为Axis。
图2.13
(五)保存和输出
1.在菜单栏中选择File/Save as,在对话框中输入文件的路径和名称。(注意:在Gambit中要往一个文本框中输入文字或数字,必须先将鼠标在文本框中单击选中文本框)
图2.6Move/Copy Vertex对话框
当我们要复制或移动一个点时,首先要选择需要作用的点。在命令面板中单击Vertices右边的输入栏,输入栏以高亮黄色显示,表明可以选择需要的点。
在Gambit中选择一个对象的方法有两种:
(1)按住Shift键,用鼠标左键单击选择的对象,该对象被选中,以红色显示。
(2)按住Shift按钮,用鼠标左键单击图形中的线段1,选择其为创建对象。
(3)输入参数值为:First Row:0.05,Growth Factor:1.01,Rows:10,选择创建形式为1:1,单击Apply按钮完成创建工作(见图2.4)。
图2.4
(二)创建边上的网格点数
当我们划分的网格需要在局部加密或者划分不均匀网格时,我们首先要定义边上的网格点的数目和分布情况。
图1.5命令解释窗
二、二维建模
划分网格的第一步就是要建立模型。在命令面板中单击Geometry按钮,进入几何体面板。图2.1显示了几何体面板中的从左往右依次是创建点、线、面、体和组的命令。
对于二维网格的建立,一般要遵循从点到线,再从线到面的原则。
以二维轴对称单孔喷嘴的网格划分为例介绍二维网格的生成。
图2.11
4.选择Element类型为Tri,单击Apply按钮,观察网格的生成(见图2.12)。
图2.12
(四)
在Gambit中,我们可以先定义好各个边界条件的类型,具体的边界条件取值在Fluent中确定。
1.在菜单栏中选择Fluent/Fluent5。这个步骤是不可缺少的,它相当于给Gambit定义了一个环境变量,设置完之后,定义的边界条件类型和Fluent5中的边界类型相对应。
5.选择Edge2,定义边界条件为压力入流条件(Pressure Inlet),取名为Inflow。
6.选择Edge4,定义边界条件为压力出流条件(Pressure Outlet),取名为Outflow。
7.选择Edge5、6,定义边界条件为远场压力条件(Pressure Far-field),取名为Outflow1。
图1.15图1.16图1.17
Edge命令中常用的还有合并 、分离 等命令,即可以把两条线段合成一条,也可以将一条线段分成两条,这些可以为面的创建和网格划分提供方便。因为面的创建需要一个封闭的曲面。
(四)面(
面的创建工作十分简单,只须选择组成该面的线,单击Apply按钮即可(见图1.16)。需要注意的是这些线必须是封闭的,同时我们要创建一个二维的网格模型,就必须创建一个面,只有线是不行的。同样的道理,在创建三维的网格模型的时候,就必须创建体。
(2)单击输入栏右方的向上箭头,就会出现一个对话框,从对话框中可以选择需要的点的名称(见图2.7)。为了便于记忆,建议在创建对象的时候要起一个便于记住的名字。
图2.7
同时,Gambit还为我们提供了三种不同的坐标系,即直角坐标系、柱坐标和球坐标。在命令面板的坐标类型中,可以选择不同的坐标系。
Undo
图1.1 Gambit操作界面