神经网络应用于手写数字识别-matlab说课讲解
小波神经网络在手写数字识别中研究与应用
l 引言
字符识别 技术是 模式 识别 领域研 究 的热点 问题 , 目的是 利用计算 机对 印刷或手 写字符 进行 自动识 别 和分类 。数 字识 别是字符 识别领 域 的一个 重要 分支 ,在 邮件 自动分 拣 、银 行 票据 处理 、财 务账单 处 理等 方 面有很 高 的应 用价 值 。 目前 , 手写数字 识别 的方法 主要 有 :模板 匹配法 、逻 辑推理 法 、模 糊 判别 法 和神经 网络法 等 。现行 的识 别技 术存 在 误识 率 高 、 识 别速度 慢等 问题 ,因此 ,设 计速度 快 、精度 高 的数 字识 别
系统 是 努 力 的 目标 。
再对 ( t )进行伸缩 与平 移变换 ,可以得到小波基函数。
(
式 中 ,a 为尺度伸 缩因子 ,b为 时间平移 因子 ,a ,b∈R,
a≠ 0。
小 波分析 中所用 到 的小波 函数具 有多样 性 ,常用 的小 波 函数有 Ha 小 波 、Moe 小波 、 M xcn小 波 ( r r rt eia 简称 Mar r 小 波 ) ab cis 波 ( 、D u ehe 小 简称 d b小波 )等 ,在 此设计 中选 用 Mol 小波 函数作 为神 经网络隐层的激励 函数。 rt e
神 经 网络 技术是 人工 智能研 究领 域 的一个 重要分 支 ,它
具 有 自组 织 、 自学习 、分 布式存 储和 并行 处理 等特点 ,广 泛 应用在模式识别 、 自动控制 和专 家系统等方面 。 对数 字识别 技术详 细研 究 的基础 上 ,提 出将 小波 神经 网 络应用 于手写数字识别技术 中 ,克服 了传 统 B P算法容易 陷入 局部极小点和 收敛速度慢等 缺点 ,提高了识别速度和识别率 。
在Matlab中实现神经网络的方法与实例
在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
使用神经网络进行手写数字识别的方法
使用神经网络进行手写数字识别的方法随着人工智能的发展,神经网络在图像识别领域发挥了重要作用。
其中,手写数字识别是神经网络应用的一个重要方向。
本文将介绍使用神经网络进行手写数字识别的方法。
一、神经网络的基本原理神经网络是一种模仿人脑神经元网络结构和工作方式的计算模型。
它由输入层、隐藏层和输出层组成,每一层都由多个神经元节点组成。
神经网络通过对输入数据进行加权和激活函数处理,从而输出预测结果。
在手写数字识别中,我们可以将每个手写数字图像作为输入数据,每个像素点的灰度值作为输入特征。
神经网络通过学习大量已标记的手写数字图像,调整权重和偏置,从而实现对手写数字的准确识别。
二、数据预处理在使用神经网络进行手写数字识别之前,需要对数据进行预处理。
首先,我们需要将手写数字图像转换为灰度图像,以减少输入特征的维度。
其次,对图像进行归一化处理,将像素值缩放到0到1之间,以便神经网络更好地学习和处理数据。
除了对图像进行处理,还需要对标签进行处理。
手写数字识别通常使用独热编码(One-Hot Encoding)对标签进行表示。
例如,对于数字0,其独热编码为[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],对于数字1,其独热编码为[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],以此类推。
三、神经网络的构建在构建神经网络时,我们可以选择不同的网络结构和参数设置。
常见的神经网络结构包括多层感知机(Multilayer Perceptron,MLP)、卷积神经网络(Convolutional Neural Network,CNN)等。
以多层感知机为例,我们可以选择输入层节点数、隐藏层节点数、隐藏层数量和输出层节点数等。
通过调整网络结构和参数,可以提高神经网络的准确率和泛化能力。
四、神经网络的训练神经网络的训练是指通过大量的已标记数据,调整网络的权重和偏置,使其能够准确地预测未标记数据的标签。
训练神经网络通常采用反向传播算法(Backpropagation),该算法通过计算预测结果与实际标签之间的误差,然后根据误差调整网络的权重和偏置。
利用Matlab神经网络工具箱在VC++.net中进行手写体数字识别
Ab t a t A meh d i + . e a r s n e sr c : t o n VC + n tw s p e e td.wh c s c ri d o t t t b e gn al g te i h i a r u h Ma l n i e c l n e wi a i h f n t n r vd d b t b n u a ew r o l o .h a d r t n d gt lr c g i o s i l - u c i s p o i e y Mal e r l n t o k t ob xT e h n w t ii e o n t n wa mp e o a i e a i me td w t h d a tg s o h o ru n e a e p o r mmi g c p b l y i n e i t e a v n a e f t e p we l i tr c r g a h f f n a a i t n VC+ n ta d t e i +.e n h f n t n d ai g w t o l a e r b e t b t r g a i t r c iey i + .e n t b u ci e l i c mp i t d p o l msi Ma l p o m e a t l VC +n t d Mal . o n h c n a o r n v n a a Ke r s C+ . e ;n u a ewo k;Mal b e gn y wo d :V + n t e r ln t r t n i e;h n w t n d gt l e o n t n a a d r t ii c g i o i e a r i
基于Matlab的神经网络数字识别系统实现
写体 数 字 字符 有 所 限制 , 即 需要 有 一 定 的 工 整 度 。 通 过 对 真 实 图 片 的 处 理 , 本 系统 可对 印 刷 体 数 字 达 到 近 百 分之 百 的 识
别率 ,对较工 整的手 写体 数字 能到达近 百分之八 十 的识别 率。 关键 词:M t b al 编程 ;数字识别 ; 图像预处理 ;特征提取 a
摘
一
要:通过 M t b al 编程 能形 成一种 可 以识 别扫描 到 计算机 里的 图片上 的数字 的神经 网络 数字识 别 系统 ,此 系统 能达 到 a 定的识别精度 ,其 有别于一般 的数字识 别 系统 将印刷体和 手写体 字符分开 考虑 ,而是 将 两者 结合 在一起 考虑 ,并对手
D : 1 .9 9 Ji n1 71 5 62 1 .9 0 OI 3 6 / .s.6 —6 9 .0 1 . 1 0 s 0 1
l 系统实现思想 字符识别系 统一般分为预处理 、特征提取和 分类 器三
部 分 。 其 中 , 预 处 理 包 括 将 图 片 从 模 拟 图像 到 进 行 二 值 化 、 字 符 分 割 、 归一 化 等 过 程 ; 特 征 提 取 和 分 类 器 的 设 计 是 整 个 系 统 的核 心 部 分 。 通 过 对 各 个 部 分 分 别 进 行 编 程 处 理 来 实 现 ,将 每 部 分 编 为 可 调 用 的 函数 ,最 后 统 一 对 函 数 进 行 调 用 , 清 晰 方 便 。下 面 分 别 对 每 部 分 模 块 实现 进 行 介
一
9 c t* O ) : :n 2 l) )
l t ( c t 1 * + n 2 = u ( t m ) e t (n - ) 5 c t ) s m A e p ;
基于MATLAB手写体数字识别程序设计
• 139•基于MATLAB手写体数字识别程序设计广东工业大学自动化学院 刘思慧 江 维手写体识别由于其实用性,一直处于研究进步的阶段,本文主要针对的是对0-9十个手写数字体脱机识别,在Matlab中对样本部分为进行16特征的提取,分别采用最小距离法,最近邻法,KNN法以及BP神经网络算法进行0-9十个数字进行识别,得到每类的分类结果以及各种方法的识别准确率,比较各种方法的优缺点,最后分析比较结果,得出分类结论。
1.引言本文先是以统计学的方法进行数字识别。
识别的数字是从0到9并利用图象处理软件把这些数字处理成相同大小32*32的二值图。
将图像转换为文本格式存储,文档中只包含0和1,共计1934个样本,每类样本数目大致200个,测试样本共计946个。
读取txt文档后,从生成的矩阵中提取16个特征,然后先用统计学的理论,用最小距离法,最近邻法和KNN法,在Matlab中编写相关程序,得出相关的分类结果和错误率。
然后再使用BP神经网络,确定输入,输出节点数和隐藏层节点数,对0-9的样本特征进行训练,得到训练后的网络进行样本测试。
将基于BP神经网络的识别结果和错误率和基于统计学的方法的结果进行比较,最终得出分类的结论。
2.数字识别本文是对手写数字识别,即对0-9十个数字进行识别,我们将存储0-9十个数字的图片利用图像处理软件处理成大小相同的(32*32)的二值图,然后将图像转化成文本格式。
总共有1934个训练样本,946个测试样本。
对每个样本提取特征,这儿我们选用提取了16个特征,然后应用最小距离法,KNN在K=1,K=3,K=5时,以及神经网络,在Matlab环境下,编程分别对训练样本进行训练,测试样本进行测试识别,得到分类结果和错误率,然后对每种结果进行对比,分析错误率和分类结果,比较几种方法的优点和缺点,最终得出结论。
2.1 字符特征选择与提取特征提取是为了去除信息中对分类没有帮助的部分,将信息集中到有代表性的几个特征上来的过程。
基于MLP神经网络的手写数字识别
基于MLP神经网络的手写数字识别随着人工智能的兴起,机器学习已经成为了人们日常工作中不可或缺的一部分,其中基于神经网络的算法模型最常被使用。
在许多应用场景中,手写字体识别被广泛运用,如验票、银行卡读取等。
本文将详细讨论基于MLP神经网络的手写数字识别的工作原理、实现方法以及实验结果。
1. 工作原理手写数字识别的原理主要基于神经网络的模型,具体来说,是多层感知器(MLP)神经网络。
多层感知器是一种前馈多层神经网络的模型,它的每个节点只连接前一层的节点和后一层的节点。
多层感知器训练中采用反向传播算法,也叫误差反向传播算法,是利用梯度下降法对网络进行训练的常用方法。
MLP神经网络的输入层输入手写数字的像素值,中间隐藏层对输入值进行处理,最后输出层将处理后的结果分类为0-9十个数字。
为了使得模型更为准确,可以采用交叉验证的方法来对模型进行评估和优化,梯度下降法可以在训练中找到最优的权值和偏置,确保模型识别率尽可能高。
2. 实现方法(1)数据准备:首先需要准备手写数字的图像数据集,可以通过在网上下载典型的手写数字数据集,目前比较流行的有MNIST数据集、SVHN数据集等。
如果想要提高识别精度,可以自己编写程序进行手写数字的录入,通过对训练数据进行处理和augmentation也可以使得模型更为准确。
(2)数据预处理:在进行训练之前,需要对数据进行预处理。
将彩色图像转换成灰度图像,可以采用灰度化的公式将彩色图像转换为灰度图像,减少特征维度;将图像像素值归一化到[0, 1],简化计算过程并保证处理效率。
(3)构建模型:通过kera、TensorFlow等框架编写MLP神经网络模型,如果想要模型更准确,可以在中间隐藏层添加dropout层、正则化、增加层数等方式。
同时要避免过拟合问题,在训练过程中加入early stopping等机制,避免过多的训练数据。
(4)模型训练:采用交叉验证方式对模型进行训练,将数据集分为训练集和测试集,建议将数据集按照7:3的比例进行随机划分,训练过程中实时监测损失函数值和准确率的变化情况,及时调整模型参数。
MATLAB神经网络工具箱的使用指南
MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。
而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。
本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。
一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。
神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。
神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。
二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。
安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。
2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。
点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。
接下来,可以通过拖拽节点和连接来构建网络。
此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。
3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。
MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。
导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。
4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。
常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。
MATLAB中的神经网络算法详解
MATLAB中的神经网络算法详解一、引言神经网络是一种模拟生物神经元工作原理的计算模型,具有模式识别、分类、优化等各种应用。
在日常生活和工业生产中,我们经常会遇到需要处理大量数据并进行复杂计算的问题。
而神经网络算法正是为了解决这些问题而设计的。
MATLAB作为一种功能强大的数值计算软件,提供了丰富的神经网络算法库。
本文将通过对MATLAB中神经网络算法的详细解释,展示其在数据处理和分析方面的广泛应用。
二、神经网络基础1. 神经网络结构神经网络由神经元(或称为节点)和连接这些神经元的权重组成。
一般而言,神经网络通过层与层之间的连接来进行信息传递。
常见的神经网络结构包括前馈神经网络和循环神经网络。
前馈神经网络是最常见的神经网络结构之一。
它的信息传递是单向的,不会存在回路。
循环神经网络则允许信息在网络中进行循环传递,这使得它能够处理具有时序特点的数据。
2. 权重与偏置在神经网络中,每个连接都有一个权重,用来表示两个神经元之间的关系强度。
权重值可以是正、负,以及接近于零的任意值。
权重值越大,表示两个神经元之间的相关性越强。
除了权重,神经网络中还存在一个偏置值,用来表示神经元的激活阈值。
3. 激活函数激活函数决定了神经元的输出结果。
常见的激活函数包括Sigmoid函数、ReLU函数等。
激活函数的引入可以使神经网络模型拟合非线性问题。
三、MATLAB中的神经网络算法1. 建立神经网络模型在MATLAB中,可以利用神经网络工具箱来建立神经网络模型。
首先,我们需要确定网络的架构,包括输入层的节点数、隐藏层的节点数、输出层的节点数等。
然后,我们可以使用MATLAB提供的函数创建一个神经网络对象,设定各层的节点数以及激活函数类型。
2. 训练神经网络神经网络的训练过程是一个优化问题。
训练过程中,我们需要定义一个损失函数来衡量模型在训练数据上的拟合程度。
MATLAB提供了多种优化算法,如反向传播算法、遗传算法等,用于调整网络中的权重和偏置,从而最小化损失函数。
基于MATLAB的手写体数字识别算法的实现与分析毕业论文
基于MATLAB的手写体数字识别算法的实现与分析摘要手写体数字识别是利用计算机自动辨认手写体阿拉伯数字的一种技术,是光学字符识别技术的一个分支。
手写体数字识别在邮政编码、财务报表、银行票据、各种凭证以及调查表格的识别等等方面有着重要应用,由于数字识别经常涉及财会、金融领域,其严格性更是不言而喻的。
所以,对识别系统的可靠性和识别率要求很高,构成了手写体数字识别面临的主要困难,大批量数据处理对系统速度又有相当高的要求。
本文基于MNIST数据集,通过Matlab平台,对决策树算法、SVM算法和人工神经网络(ANN)算法进行实现,并对分类算法的准确率进行评估。
实验结果表明,人工神经网络(ANN)的准确率最高,为99.69%,SVM算法次之,准确率为94.53%,决策树算法的准确率为83.53%。
三种分类算法中,决策树算法的速度最快,SVM算法的速度最慢。
另外,针对每一种分类算法在MNIST数据集上的实验结果,本文还得出以下结论:第一,MNIST数据集的归一化与否对决策树的分类效果几乎没有影响;对SVM的分类效果影响较大,未归一化时的准确率为11.35%,归一化之后的准确率为94.53%;对人工神经网络的分类效果影响较小,未归一化时的准确率为82.11%,归一化之后的准确率为99.69%。
这说明三种分类算法对数据的不平衡分布的敏感程度各不相同。
第二,对于SVM分类算法,当训练数据集的样本容量小于60000(MNIST训练数据集的最大样本容量)时,该算法对测试数据集分类预测的准确率随样本容量的增大而增大。
第三,针对人工神经网络,数据类标签的表示形式对分类预测的准确率的影响较大。
使用10位数据表示类标签是的准确率为99.69%,远远高于使用1位数据表示类标签时的准确率60.24%。
关键词:手写体数字识别;决策树算法;SVM算法;人工神经网络算法ABSTRACTHandwritten numeral recognition is a technique that uses computer to recognize handwritten Arabic numerals automatically and is a branch of optical character recognition technology. Handwritten numeral recognition has important applications in postal codes, financial statements, bank notes, various kinds of vouchers and the identification of survey forms. Since digital identification often involves accounting and finance, its strictness is self-evident. The demand for identification system of the reliability and recognition rate is very high, constituting a handwritten digital identification facing major difficulties, high-volume data processing on the system speed and a very high demand.In this paper, we use Matlab to implement decision tree algorithm, SVM algorithm and artificial neural network (ANN) algorithm based on MNIST dataset, and the accuracy of classification algorithms is calculated by using the real data tag. Experimental results show that the artificial neural network (ANN) the highest accuracy rate for 99.69%, SVM algorithm, followed by 94.53 percent accuracy rate, decision tree algorithm accuracy is 83.53%. In terms of speed, decision tree algorithm is the fastest, SVM algorithm is the slowest. In addition, for each classification algorithm we also concluded that:Firstly, whether or not the MNIST dataset is normalized has no effect in the classification tree; While it has a great impact on SVM classification. When it is not normalized the accuracy is 11.35%, and after normalized the accuracy is 94.53% ; The artificial neural network classification is less affected, and when it is not normalized the accuracy is 82.11% while after normalized the accuracy is 99.69%. This shows the sensitivity of the three classification algorithms to unbalanced distribution of data.Secondly, for the SVM classification algorithm, when the sample size is less than 60,000(maximum size of MNIST test data set), the accuracy increases with the increasing of sample size.Thirdly, for the artificial neural network, the impact of class label representation is large on the classification accuracy. When using 10 bits to represent class labels, the accuracy is 99.69%, far higher than the accuracy of 60.24% when using 1 bit to represent data labels.KEY WORDS: Handwritten numeral recognition; Decision tree algorithm; SVM algorithm; Artificial neural network algorithm目录ABSTRACT (II)1. 引言 (1)1.1 手写数字识别 (1)2. 分类算法 (1)2.1 决策树算法 (2)2.1.1 ID3算法 (2)2.1.2 C4.5算法 (3)2.1.3 CART算法 (3)2.1.4 SLIQ算法 (3)2.1.5 SPRINT算法 (3)2.1.6 经典决策树算法的比较 (4)2.2 支持向量机 (4)2.3 人工神经网络 (6)2.3.1人工神经网络的原理 (6)2.3.2反向传播网络(BP) (6)2.3.3 Hopfield网络 (8)3 实验过程与结果分析 (10)3.1 实验环境 (10)3.2实验数据集 (10)3.3数据预处理 (10)3.4决策树分类实验 (11)3.4.1实验过程 (11)3.4.2实验结果 (12)3.5 SVM分类实验 (13)3.5.1实验过程 (13)3.5.2实验结果 (14)3.6人工神经网络分类实验 (14)3.6.1实验过程 (14)3.6.2实验结果 (15)4 结论 (19)4.1 三种分类算法的比较 (19)4.2 决策树算法的分析 (19)4.3 SVM算法分析 (19)4.4 神经网络算法分析 (20)参考文献 (21)1.引言1.1手写数字识别手写数字识别是模式识别领域的一个重要分支,它研究的核心问题是:如何利用计算机自动识别人手写在纸张上的阿拉伯数字。
MATLAB中的神经网络工具箱详解
MATLAB中的神经网络工具箱详解神经网络是一种模拟人脑神经系统工作方式的计算模型,广泛应用于科学、工程和金融等领域。
而在MATLAB软件中,也有专门的神经网络工具箱,提供了丰富的功能和算法,用于实现神经网络的建模、训练和应用。
本文将对MATLAB中的神经网络工具箱进行详细的解析和介绍。
一、神经网络基础知识在深入了解MATLAB神经网络工具箱之前,我们首先来了解一些神经网络的基础知识。
1. 神经元和激活函数神经元是神经网络的基本单位,它接收来自其他神经元的输入,并通过激活函数将输入转化为输出。
在MATLAB中,可以使用`newff`函数创建一个前馈神经网络,可以通过`sim`函数进行网络的模拟和计算。
2. 训练算法神经网络的训练是指通过一系列的输入和输出样本来调整网络的参数,使得网络能够正确地学习和推断。
常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。
在MATLAB中,可以使用`train`函数进行网络的训练,可以选择不同的训练算法和参数。
二、MATLAB神经网络工具箱的使用1. 创建神经网络对象在MATLAB中,可以使用`newff`函数创建一个前馈神经网络对象,该函数的参数包括网络的结构、激活函数等。
例如,`net = newff(input, target, hiddenSize)`可以创建一个具有输入层、隐藏层和输出层的神经网络对象。
2. 设置神经网络参数创建神经网络对象后,可以使用`setwb`函数设置网络的权重和偏置值,使用`train`函数设置网络的训练算法和参数。
例如,`setwb(net, weights, biases)`可以设置网络的权重和偏置值。
3. 神经网络的训练神经网络的训练是通过提供一系列的输入和输出样本,调整网络的参数使得网络能够正确地学习和推断。
在MATLAB中,可以使用`train`函数进行网络的训练,该函数的参数包括训练集、目标值、训练算法和其他参数。
BP神经网络对0-9数字识别
3.编程实现BP网络,并利用该程序实现数字(0-9)图片的识别。
解:采用BP进行数字(0-9)图片的识别,并使用MATLAB编程实现。
BP算法原理:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。
1)算法步骤:1.利用BP神经网络对阿拉伯数字进行识别前,应先对阿拉伯数字位图样本进行预处理,即先将256色位图转为灰度图,然后二值化,最后进行归一化处理,然后进行特征向量提取。
大小为20×20像素。
图像是二值图。
下一步建立神经网络,如图1所示。
2.建立BP网络,训练BP网络。
本设计采用40个训练样本训练BP网络。
训练流程如下:3. 训练完BP网络,就可以用数据进行识别。
识别流程图如下。
图3 数字识别流程2)matlab 代码%预处理clear all;for pcolum=0:39p1=ones(30,30); %建立全为1的样本矩阵m=strcat(‘C:\Users\91082\Desktop\yangben\num\’,int2str(pcolum ),’.jpg’);I=imread(m); %循环读入0-39个样本数字文件I1=im2bw(I,0.3); %对输入图像进行二值化处理采用全局阈值0.3[m,n]=find(I1==0);rowmin=min(m);rowmax=max(m);colummin=min(n);colummax=max(n);I2=I1(rowmin:rowmax,colummin:colummax); %截取是入图像中的数字部分rate=30/max(size(I2));I3=imresize(I2,rate); %对输入文件变尺寸处理[I,j]=size(I3);row=round((30-i)/2);colum=round((30-j)/2);p1(row+1:row+I,colum+1:colum+j)=I3; %建立起30*30的矩阵p1=-1*p1+ones(30,30); %反色处理for hh=1:30p((hh-1)*30+1:(hh-1)*30+30,pcolum+1)=p1(hh,1:30);end %将处理的源样本输入供神经网络训练的样本% pcolum是样本数循环变量switch pcolumcase {0,10,20,30}t(pcolum+1)=0; %数字0case{1,11,21,31}t(pcolum+1)=1 ; %数字1case{2,12,22,32}t(pcolum+1)=2 ; %数字2case{3,13,23,33}t(pcolum+1)=3; %数字3case{4,14,24,34}t(pcolum+1)=4; %数字4case{5,15,25,35}t(pcolum+1)=5 ; %数字5case{6,16,26,36}t(pcolum+1)=6 ; %数字6case{7,17,27,37}t(pcolum+1)=7 ; %数字7case{8,18,28,38}t(pcolum+1)=8 ; %数字8case{9,19,29,39}t(pcolum+1)=9 ; %数字9end %建立与训练样本对应的输出值t endsave 51ET p t;%训练网络代码clear all;load 51ET p t; %加载样本pr(1:900,1)=0;pr(1:900,2)=1;net=newff(pr,[25 1],{'logsig' 'purelin'},'traingdx','learngdm');%创建BP网络net.trainParam.epochs=3000; %设置训练步数net.trainParam.goal=0.005; %设置训练目标net.trainParam.show=10; %设置训练显示格数net.trainParam.lr=0.05; %设置训练学习率net=train(net,p,t); %训练BP网络save ET51net net;%识别0-9过程clear allfor m=0:9c=m;%m=input('请输入测试样本(C:\Users\91082\Desktop\yangben\try\):');I=strcat('C:\Users\91082\Desktop\yangben\try\',int2str(m),'.jpg');U=imread(I);imtool(U); %通过键盘输入添加试验样本load ET51net net; %加载以训练好的BP神经网络p=zeros(900,1); %建立输入样本的空矩阵p1=ones(30,30); %建立临时存放样本的30*30的矩阵I1=im2bw(U,0.3); %对输入图像进行二值化处理采用全局阈值0.3[m,n]=find(I1==0);rowmin=min(m);rowmax=max(m);colummin=min(n);colummax=max(n);I2=I1(rowmin:rowmax,colummin:colummax); %截取是入图像中的数字部分rate=30/max(size(I2));I3=imresize(I2,rate); %对输入文件变尺寸处理[i,j]=size(I3);row=round((30-i)/2);colum=round((30-j)/2);p1(row+1:row+i,colum+1:colum+j)=I3; %建立起30*30的矩阵p1=-1*p1+ones(30,30); %反色处理for hh=1:30p((hh-1)*30+1:(hh-1)*30+30,1)=p1(hh,1:30);end %将处理的源样本输入供神经网络训练的样本x=sim(net,p); %测试网络x=round(x); %输出网络识别结果fprintf('第%d 图片是数字:%d\n',c,x)end3)运行结果及分析训练网络结果如下图:由图可知,训练70次就达到训练目标。
如何使用MATLAB进行神经网络建模
如何使用MATLAB进行神经网络建模使用MATLAB进行神经网络建模神经网络是一种模拟人脑神经系统运作的数学模型,它能够模拟人类的感知、学习和决策过程。
在现代科学和工程领域,神经网络被广泛应用于诸如模式识别、图像处理、时间序列预测等问题的解决中。
而MATLAB作为科学计算和数据分析的常用工具,也提供了一系列强大的神经网络建模工具。
接下来,我们将介绍如何使用MATLAB进行神经网络建模。
一、准备工作在使用MATLAB进行神经网络建模之前,我们需要准备一些必要的工作。
首先,需要安装MATLAB软件,并确保安装的是最新版本。
其次,需要了解MATLAB中神经网络建模的基本原理和概念。
二、数据准备与预处理在进行神经网络建模之前,我们首先需要准备好用于训练和测试的数据集。
通常情况下,我们需要将数据集分为训练集和测试集两部分。
训练集用于神经网络的训练,而测试集则用于评估神经网络的性能。
在准备好数据集后,我们还需要对数据进行一些预处理操作,例如数据归一化、数据标准化等。
这些操作有助于提高神经网络的性能和收敛速度。
三、神经网络建模使用MATLAB进行神经网络建模的核心步骤包括网络设计、网络训练和网络评估。
首先,我们需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。
这需要根据具体问题的需求和特点进行调整。
然后,我们可以使用MATLAB提供的神经网络工具箱来建立神经网络模型。
根据问题的不同,有多种神经网络模型可供选择,例如前馈神经网络、递归神经网络、自适应神经网络等。
在建立好神经网络模型后,我们还需要选择合适的训练算法对网络进行训练。
常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。
最后,我们使用测试集对训练好的神经网络进行评估,得到模型的性能指标,如准确率、误差等。
四、模型调优与改进神经网络建模是一个不断调优与改进的过程。
在建立好初始模型后,我们可以通过修改网络结构、调整训练参数等方式来改进模型的性能。
基于matlab的手写体数字识别系统研究
基于matlab的手写体数字识别系统研究作者:丁禹鑫丁会张红娟杨彤彤来源:《无线互联科技》2017年第18期摘要:随着科学技术的发展,机器学习成为一大学科热门领域,是一门专门研究计算机怎样模拟或实现人类的学习行为的交叉学科。
文章在matlab软件的基础上,利用BP神经网络算法完成手写体数字的识别。
关键词:机器学习;手写体数字识别;BP神经网络机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织己有的知识结构,使之不断改善自身的性能。
实现机器学习的方法多种多样,常见到的主要有神经网络算法、CNN卷积神经网络算法、RNN循环神经网络算法、EM算法、贝叶斯算法、聚类算法、回归算法、SVM等。
本文将利用BP神经网络算法来完成手写体数字的识别[1]。
1总体方案1.1题目分析手写体数字识别的实现相对于其他元素的识别,具有许多优势。
主要表现在以下几个方面:(1)涉及的识别元素数目少,仅有0〜9共10个元素;(2)训练集合背景多为纸张,受到的环境干扰小;(3)识别元素笔画简单,便于识别;(4)训练集合便于采集。
在此基础上,之所以选取BP神经网络作为工具来实现手写体数字识别,其优势主要体现在:(1)BP神经网络算法具有很强的非线性拟合能力,可以影射任何的非线性复杂关系;(2)学习规则简单,便于计算机实现[2]。
1.2总体方案设计本次试验是识别手写体数字,大体上可以分为两个阶段来实行,分别是训练神经网络和利用神经网络进行识别(预测)。
要进行本次试验,首先要下载一个手写体数字素材库,将随机选取素材库中的一部分素材作为训练样本,提取训练样本的特征并以此对神经网络进行训练,这一阶段过后,会得到一个训练成型的神经网路模型。
然后利用总样本除去训练样本所剩下的预测样本进行准确度的检验,观察预测的输出是否符合客观实际,多大程度上符合客观实际。
如果得到的最终结果具有比较大的准确度,那么本次试验即成功完成。
matlab神经网络原理与实例精解
matlab神经网络原理与实例精解Matlab神经网络原理与实例精解。
神经网络是一种模仿人脑神经元网络结构和工作原理的计算模型,它具有自适应、并行处理、学习能力强等特点,被广泛应用于模式识别、数据挖掘、人工智能等领域。
Matlab作为一种强大的科学计算软件,提供了丰富的神经网络工具箱,可以用于神经网络的建模、训练和应用。
神经网络的原理主要包括神经元模型、网络拓扑结构、激活函数、权值更新算法等。
在Matlab中,可以通过简单的代码实现神经网络的构建和训练。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元个数,然后选择合适的激活函数和权值更新算法。
接下来,利用Matlab提供的训练函数,可以对神经网络进行训练,并通过验证集和测试集来评估网络的性能。
除了理论知识,本文还将介绍一些实际的案例,以帮助读者更好地理解神经网络在Matlab中的应用。
例如,我们可以利用Matlab实现手写数字识别的神经网络模型,通过训练和测试来验证模型的准确性。
另外,我们还可以使用Matlab进行时间序列预测、图像识别等实际问题的建模与求解,从而更深入地了解神经网络的实际应用。
在实际应用中,神经网络的性能往往受到许多因素的影响,如数据质量、网络结构、参数选择等。
因此,我们需要在实践中不断调整和优化神经网络模型,以获得更好的性能。
Matlab提供了丰富的工具和函数,可以帮助我们对神经网络进行调试和优化,从而更好地满足实际问题的需求。
总之,本文将全面介绍Matlab神经网络的原理与实例,帮助读者深入理解神经网络的工作原理和在Matlab中的应用。
通过学习本文,读者可以掌握神经网络的基本原理,了解Matlab神经网络工具箱的使用方法,掌握神经网络模型的建立、训练和优化技巧,从而更好地应用神经网络解决实际问题。
希望本文能对读者有所帮助,欢迎大家阅读和交流讨论。
matlab神经网络43个案例分析
matlab神经网络43个案例分析Matlab神经网络43个案例分析。
Matlab是一种强大的科学计算软件,它在神经网络建模和分析方面有着广泛的应用。
在本文中,我们将介绍Matlab神经网络工具箱中的43个案例分析,涵盖了神经网络在不同领域的应用,包括模式识别、预测分析、控制系统等方面。
首先,我们将介绍神经网络在模式识别方面的应用。
通过Matlab神经网络工具箱,我们可以实现对图像、声音、文本等数据的分类和识别。
例如,我们可以利用神经网络对手写数字进行识别,实现自动化的数字识别系统。
此外,神经网络还可以用于人脸识别、指纹识别等领域,为安防系统和身份识别提供支持。
其次,神经网络在预测分析方面也有着重要的应用。
通过训练神经网络模型,我们可以实现对股票价格、气温变化、销售额等数据的预测。
这些预测模型可以帮助企业和个人做出更准确的决策,提高效率和减少风险。
另外,神经网络还可以用于控制系统的建模和优化。
通过神经网络模型,我们可以实现对复杂系统的建模和仿真,进而设计出更加高效和稳定的控制策略。
这在工业自动化、交通系统、机器人控制等领域都有着重要的应用。
除此之外,神经网络还可以用于数据挖掘、信号处理、优化算法等方面。
通过Matlab神经网络工具箱提供的丰富功能和实例,我们可以更加深入地理解神经网络的原理和应用,为自己的研究和工作提供更多的可能性。
总的来说,Matlab神经网络工具箱中的43个案例分析涵盖了神经网络在各个领域的应用,为用户提供了丰富的实例和经验。
通过学习这些案例,我们可以更好地掌握神经网络建模和分析的方法,为自己的研究和实践提供更多的灵感和支持。
希望本文能够对大家有所帮助,谢谢阅读!。
基于神经网络的在线手写签名识别技术
基于神经网络的在线手写签名识别技术近年来,随着科技的不断进步,人工智能技术的应用越来越广泛,其中基于神经网络的在线手写签名识别技术在多个领域得到了广泛应用。
这项技术的发展为人们的生活带来了便利,也为个人身份认证和信息安全提供了有效的保障。
本文将就基于神经网络的在线手写签名识别技术进行详细探讨。
一、技术原理神经网络是一种模拟人脑神经元网络结构的计算模型,它拥有自主学习和适应环境的能力。
基于神经网络的在线手写签名识别技术,是通过收集用户手写签名数据,并将其转化为数字信号,进而利用人工神经网络模型进行训练和识别,实现对用户签名的快速准确的识别。
具体来说,该技术包括三个阶段:采样、预处理和识别。
采样阶段是指利用数码板或触控屏等设备对用户手写签名进行采样,并将采样结果存储在计算机中。
预处理阶段则是对采样结果进行数字信号的转化、滤波、去噪等处理,以生成合适的输入信号。
在识别阶段,将处理后的输入信号输入到事先训练好的人工神经网络模型中,进行识别输出。
二、应用场景基于神经网络的在线手写签名识别技术已经得到了广泛应用,尤其在口头承诺、交易确认、信息认证等需要身份验证的场景中,该技术发挥了重要作用。
其中,电子合同中的在线签名便是一个重要应用场景。
以国内电子合同平台“合同锁”为例,其在线手写签名识别技术可以实现对用户签名的快速识别,并在多个企业间验证签名的合法性,从而大大提高了电子合同的安全性和可靠性。
此外,基于神经网络的在线手写签名识别技术也被广泛应用于人脸识别、银行卡支付、智能门禁等领域,并在追踪罪犯和预防欺诈等领域中发挥了重要作用。
三、技术优势相比传统的手写签名识别技术,基于神经网络的在线手写签名识别技术具有以下明显优势:(1)数据量大:与传统手写识别技术相比,基于神经网络的识别技术可以接受更多的训练数据,从而提高了模型的识别能力和准确度。
(2)误差率低:由于神经网络具有学习和适应环境的特点,其可以在多方面进行优化,从而降低了识别误差率,提高了识别的精度和准确度。
基于卷积神经网络的手写数字识别系统
基于卷积神经网络的手写数字识别系统随着人工智能和深度学习的发展,计算机视觉技术在许多领域中得到了广泛应用。
其中,手写数字识别系统是一个典型的应用场景,它可以识别用户手写的数字,为各种数字输入场景提供了便利。
在这篇文章中,我们将介绍基于卷积神经网络的手写数字识别系统,并讨论其原理、方法和应用。
一、手写数字识别系统的背景和挑战手写数字识别系统是一个基于计算机视觉技术的应用场景,它可以将用户手写的数字转换为计算机可识别的数字。
手写数字识别系统可以应用于各种数字输入场景,比如数字支付、手写笔记、手写地址录入等。
然而,手写数字识别系统需要克服多种挑战,其中最主要的问题是手写数字的多样性和不规则性。
手写数字的多样性是指用户手写出来的数字可能存在多种形态和样式。
这些样式可能受到用户写作习惯、书写工具、写作速度等多种因素的影响,因此手写数字的形态和样式可能存在较大的差异。
而手写数字的不规则性则是指手写数字的形态可能出现不规则的线条和边缘,这使得手写数字的识别更加困难。
为了克服这些挑战,计算机视觉技术需要结合多种算法和技术,其中基于卷积神经网络的手写数字识别系统就是一种重要的技术手段。
二、基于卷积神经网络的手写数字识别系统原理手写数字识别系统的核心原理是利用计算机视觉技术将用户手写的数字转换为计算机可识别的数字。
在基于卷积神经网络的手写数字识别系统中,这一过程主要包括三个步骤:预处理、特征提取和分类识别。
预处理是将用户手写的数字图像转换为计算机可以处理的数字图像,过程包括图像的灰度化、二值化等处理。
特征提取是将数字图像提取出来的特征转换为计算机可识别的特征,过程包括特征提取方法的选择和特征向量的构建。
分类识别是将特征向量与训练样本进行比对,识别出输入图像中的数字。
在以上过程中,卷积神经网络被广泛应用于特征提取和分类识别。
这是因为卷积神经网络具有自学习能力、对图片特征有显著的提取效果、对图像的位置和形态变化不敏感等特点。
【论文】基于MATLAB的手写体数字识别算法的实现与分析毕业论文
【关键字】论文基于MATLAB的手写体数字识别算法的实现与分析摘要手写体数字识别是利用计算机自动辨认手写体阿拉伯数字的一种技术,是光学字符识别技术的一个分支。
手写体数字识别在邮政编码、财务报表、银行票据、各种凭证以及调查表格的识别等等方面有着重要应用,由于数字识别经常涉及财会、金融领域,其严格性更是不言而喻的。
所以,对识别系统的可靠性和识别率要求很高,构成了手写体数字识别面临的主要困难,大批量数据处理对系统速度又有相当高的要求。
本文基于MNIST数据集,通过Matlab平台,对决策树算法、SVM算法和人工神经网络(ANN)算法进行实现,并对分类算法的准确率进行评估。
实验结果表明,人工神经网络(ANN)的准确率最高,为99.69%,SVM算法次之,准确率为94.53%,决策树算法的准确率为83.53%。
三种分类算法中,决策树算法的速度最快,SVM算法的速度最慢。
另外,针对每一种分类算法在MNIST数据集上的实验结果,本文还得出以下结论:第一,MNIST数据集的归一化与否对决策树的分类效果几乎没有影响;对SVM的分类效果影响较大,未归一化时的准确率为11.35%,归一化之后的准确率为94.53%;对人工神经网络的分类效果影响较小,未归一化时的准确率为82.11%,归一化之后的准确率为99.69%。
这说明三种分类算法对数据的不平衡分布的敏感程度各不相同。
第二,对于SVM分类算法,当训练数据集的样本容量小于60000(MNIST训练数据集的最大样本容量)时,该算法对尝试数据集分类预测的准确率随样本容量的增大而增大。
第三,针对人工神经网络,数据类标签的表示形式对分类预测的准确率的影响较大。
使用10位数据表示类标签是的准确率为99.69%,远远高于使用1位数据表示类标签时的准确率60.24%。
关键词:手写体数字识别;决策树算法;SVM算法;人工神经网络算法ABSTRACTHandwritten numeral recognition is a technique that uses computer to recognize handwritten Arabic numerals automatically and is a branch of optical character recognition technology. Handwritten numeral recognition has important applications in postal codes, financial statements, bank notes, various kinds of vouchers and the identification of survey forms. Since digital identification often involves accounting and finance, its strictness is self-evident. The demand for identification system of the reliability and recognition rate is very high, constituting a handwrittendigital identification facing major difficulties, high-volume data processing on the system speed and a very high demand.In this paper, we use Matlab to implement decision tree algorithm, SVM algorithm and artificial neural network (ANN) algorithm based on MNIST dataset, and the accuracy of classification algorithms is calculated by using the real data tag. Experimental results show that the artificial neural network (ANN) the highest accuracy rate for 99.69%, SVM algorithm, followed by 94.53 percent accuracy rate, decision tree algorithm accuracy is 83.53%. In terms of speed, decision tree algorithm is the fastest, SVM algorithm is the slowest. In addition, for each classification algorithm we also concluded that:Firstly, whether or not the MNIST dataset is normalized has no effect in the classification tree; While it has a great impact on SVM classification. When it is not normalized the accuracy is 11.35%, and after normalized the accuracy is 94.53% ; The artificial neural network classification is less affected, and when it is not normalized the accuracy is 82.11% while after normalized the accuracy is 99.69%. This shows the sensitivity of the three classification algorithms to unbalanced distribution of data.Secondly, for the SVM classification algorithm, when the sample size is less than 60,000(maximum size of MNIST test data set), the accuracy increases with the increasing of sample size.Thirdly, for the artificial neural network, the impact of class label representation is large on the classification accuracy. When using 10 bits to represent class labels, the accuracy is 99.69%, far higher than the accuracy of 60.24% when using 1 bit to represent data labels.KEY WORDS: Handwritten numeral recognition; Decision tree algorithm; SVM algorithm; Artificial neural network algorithm目录1. 引言 (1)1.1 手写数字识别 (1)2. 分类算法 (1)2.1 决策树算法 (2)2.1.1 ID3算法 (2)2.1.2 C4.5算法 (3)2.1.3 CART算法 (3)2.1.4 SLIQ算法 (3)2.1.5 SPRINT算法 (3)2.1.6 经典决策树算法的比较 (4)2.2 支持向量机 (4)2.3 人工神经网络 (6) (6) (6)2.3.3 Hopfield网络 (8)3 实验过程与结果分析 (10)3.1 实验环境 (10)3.2实验数据集 (10)3.3数据预处理 (10)3.4决策树分类实验 (11) (11) (12)3.5 SVM分类实验 (13) (13) (14)3.6人工神经网络分类实验 (14) (14) (15)4 结论 (19)4.1 三种分类算法的比较 (19)4.2 决策树算法的分析 (19)4.3 SVM算法分析 (19)4.4 神经网络算法分析 (20)参考文献 (21)1.引言1.1手写数字识别手写数字识别是模式识别领域的一个重要分支,它研究的核心问题是:如何利用计算机自动识别人手写在纸张上的阿拉伯数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络应用于手写数字识别-m a t l a b
实验报告
实验课程:管理运筹学
实验名称:神经网络应用于手写数字识别-matlab 学生姓名:
指导教师:
实验时间: 2018年1月16日
实验要求:
运用matlab编程进行神经网络进行手写数字识别。
小组成员:
姓名学号
实验过程:
一、BP神经网络
神经网络是由很多神经元组成,可以分为输入,输出,隐含层。
BP神经网络的特点:信号前向传递,信号反向传播。
若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。
在用BP神经网络进行预测之前要训练网络训练过程如下:
1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。
2.计算隐含层输出
3.计算输出层输出
4.误差计算
5.权值更新
6.阈值更新
7.判断迭代是否结束
二、模型建立
数据集介绍:
数据集包含0-9这10个数字的手写体。
是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。
识别流程:
首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。
为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。
训练
运行流程:
1.确定神经网络的输入,输出。
输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。
预处理有二值化,裁剪掉空白的区域,然后再统一大小为70*50为特征提取做准备。
特征提取采用的是粗网格特征提取,把图像分成35个区域,每个区域100像素,统计区域中1像素所占的比例。
经过预处理特征提取后,28*28图像转成1*35的特征矢量。
提取完5000张图片后,依次把所有的特征存于一个矩阵(35*5000)中。
2.神经的网络的训练
用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为0.1,隐藏层激励函数为sigmoid函数。
随机抽取4500张图片提取特征后输入,按照公式计算隐含层和输出层输出,误差,更新网络权值。
3.神经网络的预测
训练好神经网络之后,用随机抽取的500个数字字符对网络进行预测,输入特征向量,计算隐含层和输出层输出,得到最后预测的数据。
同时计算每个数字的正确率和全体的正确率。
最后得到的总体正确率为0.8620。
主函数:
批量读取图片函数:
文件存放特点:在data下有10个子文件夹,每个子文件夹下有500张图片。
函数可以利用于任何批量图片的读取,传入的是文件夹路径,输出的是一个n(对应图片数目)维cell,每个cell存放的是图片的数据。
if strcmp(in_filelist(j).name,'.')|| strcmp(in_filelist(j).name,'..')|| strcmp(in_filelist(j).name,'De sktop_1.ini')|| strcmp(in_filelist(j).name,'Desktop_2.ini')
else
tempind=tempind+1;
imglist{tempind}=imread(strcat(rootpath,'/',in_filelist(j).name));
end
end
end
end
end
特征提取函数:
提取所有图像的特征,二值化—resize-提取特征
function feature = feature_lattice(img)
% 输入:黑底白字的二值图像。
输出:35维的网格特征
% ======提取特征,转成5*7的特征矢量,把图像中每10*10的点进行划分相加,进行相加
成一个点=====%
%======即统计每个小区域中图像象素所占百分比作为特征数据====%
for i=1:length(img);
bw2=im2bw(img{i},graythresh(img{i}));
bw_7050=imresize(bw2,[70,50]);
for cnt=1:7
for cnt2=1:5
Atemp=sum(bw_7050(((cnt*10-9):(cnt*10)),((cnt2*10-9):(cnt2*10))));%10*10box
lett((cnt-1)*5+cnt2)=sum(Atemp);
end
end
lett=((100-lett)/100);
lett=lett';
feature(:,i)=lett;
end
构造标签:
要构造出适合神经网络的标签,在这个例子中有10个类,若为某个标签,那么这个位置的值为1,其余为0。
BP神经网络创建,训练和测试:
主要是几个参数的设置,layer隐含层的神经元个数。
trainFcn:训练算法
实验结果:。