物理 法拉第电磁感应定律的专项 培优练习题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理法拉第电磁感应定律的专项培优练习题附答案解析

一、法拉第电磁感应定律

1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:

(1)拉力做功的功率P;

(2)ab边产生的焦耳热Q.

【答案】(1)P=

222

B L v

R

(2)Q=

23

4

B L v

R

【解析】

【详解】

(1)线圈中的感应电动势

E=BLv 感应电流

I=E R

拉力大小等于安培力大小

F=BIL 拉力的功率

P=Fv=

222 B L v R

(2)线圈ab边电阻

R ab=

4

R 运动时间

t=L v

ab边产生的焦耳热

Q=I2R ab t =

23 4

B L v

R

2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:

(1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】

(1)由B =(2+0.2t )T 得磁场的变化率为

0.2T/s B

t

∆=∆ 则磁通量的变化率为:

0.04Wb/s B

S t t

∆Φ∆==∆∆ 根据E n

t

∆Φ

=∆可知回路中的感应电动势为: 4V B

E n

nS t t

∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:

112

2.4V ab E

R R R U =+=

答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。

3.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为

0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下

滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取2

10/(m s 忽略ab 棒运动过程中对原磁场的影响).

()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;

()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.

【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】

()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。 ()2当金属棒匀速下落时,由共点力平衡条件得:mg BIL =

金属棒产生的感应电动势为:E BLv = 则电路中的电流为:E

I R r

=+ 由图象可得:11.27.0

/7m /s 2.1 1.5

x v m s t -=

==-n n 代入数据解得:0.1T B =

()3在0 1.5s ~,以金属棒ab 为研究对象,根据动能定理得:

21

2

mgh Q mv =+

解得:0.455J Q =

则电阻R 上产生的热量为:0.26J R R

Q Q R r

=

=+

4.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫

=-

⎪⎝⎭

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

5.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.

(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;

(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .

(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.

相关文档
最新文档