高二数学选修2-1第三章 空间向量与立体几何练习题及答案
数学选修2-1空间向量与立体几何练习题含答案
![数学选修2-1空间向量与立体几何练习题含答案](https://img.taocdn.com/s3/m/dbb19225ba0d4a7303763a35.png)
24.已知向量 , ,若向量 与 共线,则 ________;若 ,则 ________.
25.在正方体 中:
(1)分别给出直线 , 的一个方向向量;
(2)分别给出平面 ,平面 ,平面 的一个法向量.
26.如图,边长为 的正方形 中, , 分别是边 , 上的点, .将 , 分别沿着 , 折起,使 , 重合于点 ,且二面角 为直二面角.
B
【考点】
平面的法向量
向量方法证明线、面的位置关系定理
直线的方向向量
【解析】
由已知可得: ,因此 ,再利用线面垂直的判定即可得出.
【解答】
解:∵直线 的方向向量为 ,
平面 的法向量 , ,
∴ ,
∴ .
故选 .
二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )
11.
【答案】
【考点】
空间直线的向量参数方程
直线的方向向量
【解析】
设直线 的一个方向向量为 ,运用向量垂直的条件:数量积为 ,化简可得所求向量.
【解答】
解:设直线 的一个方向向量为 ,
由两平面 与 分别以 与 为其法向量,
可得 , ,
可得 , ,
可设 ,则 , ,
可得 .
故答案为: .
16.
【答案】
【考点】
用空间向量求平面间的夹角
数学选修2-1空间向量与立体几何练习题含答案
学校:__________ 班级:__________ 姓名:__________ 考号:__________
1.已知 是空间的一组单位正交基底,而 是空间的另一组基底.若向量 在基底 下的坐标为 ,则向量 在基底 下的坐标为()
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
![高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/9b101ed83186bceb19e8bbe1.png)
第三章 空间向量与立体几何 3.3 异面直线的距离(补充)
一、学习任务 介绍异面直线距离的概念,会计算简单的异面直线距离的问题,加深对空间位置关系的理解. 二、知识清单
异面直线的距离
三、知识讲解
1.异面直线的距离 描述: 设直线 a ,b 是异面直线,则存在直线 l 与直线 a ,b 均相交且垂直,此时直线 l 称为异面直 线 a ,b 的公垂线,直线 l 夹在直线a ,b 之间的部分称为异面直线a ,b 的公垂线段.异面直线 a, b 的公垂线段的长度称为异面直线 a ,b 的距离. 例题: 如图,长方体 ABCD − A 1 B 1 C1 D 1 中, AB = BC = 1,AA 1 = 2 ,求直线 A 1 C1 与 B 1 B 之间的距离.
B 1 D 所在的直线上.
3. 正方体 ABCD − A 1 B 1 C1 D 1 的棱长为 a ,那么 (1)直线 BA 1 与 CC1 所成角的大小为 (2)直线 BA 1 与 B 1 C 所成角的大小为 (3)异面直线 BC 与 AA 1 的距离为 (4)异面直线 BA 1 与 CC1 的距离为
答案:
. . . .
45∘ ;60∘ ;a ;a
.
4. 已知正方体 ABCD − A 1 B 1 C1 D 1 的棱长是 1 ,则直线 DA 1 与 AC 间的距离为
答案:
√3 3
解析:
3
以 A 为原点, AB 为 x 轴正方向建立空间直角坐标系, M , N 分别是 A 1 D , AC 上的 点,且 MN 是 DA 1 与 AC 间的垂线段. 可设 M (0, m, 1 − m) , N (t, t, 0) ,利用 MN ⊥ A 1 D 且 MN ⊥ AC 可求得 M , N 坐标, 从而求出 DA 1 与 AC 间的距离.
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
![高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/34c4d13fb90d6c85ec3ac6e1.png)
描述:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.1 空间向量及其运算一、学习任务1. 了解空间向量与平面向量的联系与区别;了解向量及其运算由平面向空间推广的过程.2. 了解空间向量、共线向量、共面向量等概念;理解空间向量共线、共面的充要条件;了解空间向量的基本定理及其意义;理解空间向量的正交分解及其坐标表示.3. 理解空间向量的线性运算及其性质;理解空间向量的坐标运算.4. 理解空间向量的夹角的概念;理解空间向量的数量积的概念、性质和运算律;掌握空间向量的数量积的坐标形式;能用向量的数量积判断两非零向量是否垂直.二、知识清单空间向量的概念与表示空间向量的坐标运算三、知识讲解1.空间向量的概念与表示空间向量的概念及表示方法与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量(space vector),向量的大小叫做向量的长度或模(modulus).向量可以用有向线段来表示,也可用 , 等表示,还可以用有向线段的起点与终点字母表示,如 .长度为 的向量叫做零向量(zero vector),记为 .模为 的向量称为单位向量(unitvector).与向量 长度相等而方向相反的向量,称为 的相反向量,记为 .方向相同且模相等的向量称为相等向量(equal vector).空间向量的加减运算①空间向量的加减运算满足三角形法则和平行四边形法则;②空间向量的加 减运算满足交换律及结合律:,.空间向量的数乘运算与平面向量一样,实数 与空间向量 的乘积 仍然是一个向量,称为向量的数乘(multiplication of vector by scalar).当 时, 与向量 方向相同;当 时, 与向量 方向相反; 的长度是 的长度的 倍.空间向量的数乘运算满足分配律及结合律:分配律:,结合律:.空间向量基本定理(1)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量(colliner vectors)或平行向量(parallel vectors).a →b →AB −→−00→1a →a →−a →+=+a →b →b →a →(+)+=+(+)a →b →c →a →b →c →λa →λa →λ>0λa →a →λ<0λa →a →λa →a →|λ|λ(+)=λ+λa →b→a →b →λ(μ)=(λμ)a →a →vector).(1);(2);(3)AP N A 1,则 ∠BA =∠DA =A 1A 16013−−√23−−√高考不提分,赔付1万元,关注快乐学了解详情。
高二数学选修2-1第三章 空间向量与立体几何练习题及答案
![高二数学选修2-1第三章 空间向量与立体几何练习题及答案](https://img.taocdn.com/s3/m/8164d42d78563c1ec5da50e2524de518974bd357.png)
第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
![高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/00d52024cfc789eb172dc8e1.png)
描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。
2021高中数学人教A版选修2-1(第三章+空间向量与立体几何)章节练习试题(含详细解析)
![2021高中数学人教A版选修2-1(第三章+空间向量与立体几何)章节练习试题(含详细解析)](https://img.taocdn.com/s3/m/16cac6f976c66137ef06192a.png)
2021年09月30日试卷一、单选题(共25题;共0分)1、(0分)如图,已知二面角 α- PQ - β的大小为60°,点 C 为棱 PQ 上一点, A ∈ β , AC =2,∠ ACP =30°,则点 A 到平面 α的距离为( )A. 1B. 12C.√32D. 322、(0分)在正三棱柱 ABC −A 1B 1C 1中,若AB=2, AA 1=1,则点A 到平面 A 1BC 的距离为( )A.√34B.√32C.3√34D. √33、(0分)正方体ABCD-A 1B 1C 1D 1中,BB 1与平面ACD 1所成的角的余弦值为( )A.√23B.√33C. 23D.√634、(0分)已知m 、n 、l 是三条不同的直线, α、 β、 γ是三个不同的平面,给出以下命题:①若 m ⊂α,n ∥α , 则 m ∥n ; ②若 m ⊂α,n ⊂β,α⊥β,α∩β=l,m ⊥l , 则 m ⊥n ;③若 n ∥m , m ⊂α , 则 n ∥α;④若 α∥γ,β∥γ , 则 α∥β 其中正确命题的序号是( )A. ②④B. ②③C. ③④D. ①③5、(0分)下列各组向量不平行的是( ) A. a →=(1,0,0),b →=(−3,0,0) B. a →=(0,1,0),b →=(1,0,1)C. a →=(0,1,−1),b →=(0,−1,1)D. a →=(1,0,0),b →=(0,0,0)6、(0分)若平面α,β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ). A. α∥βB. α⊥βC. α,β相交但不垂直D. 以上均不正确7、(0分)如图,半径为√3的扇形AOB 的圆心角为120∘,点C 在AB 上,且∠COB =30∘,若OC →=λOA →+μOB →,则λ+μ=( )A. √3B.√33C.4√33D. 2√38、(0分)已知a=(cos θ,1,sin θ),b=(sin θ,1,cos θ),则向量a+b 与a-b 的夹角是( ).A. 0°B. 30°C. 60°D. 90°9、(0分)正方体ABCD −A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( )A. [π4,π3]B. [π4,π2]C. [π6,π2]D. [π6,π3]10、(0分)点 P 是棱长为 1 的正方体 ABCD −A 1B 1C 1D 1 的底面 ABCD 上一点,则 PA →⋅PC 1→的取值范围是 ( )A. [−1,−14] B. [−12,−14]C. [−1,0]D. [−12,0]11、(0分)在正三棱柱 ABC −A 1B 1C 1中,若AB=2, AA 1=1则点A 到平面 A 1BC 的距离为( )A.√34B.√32C.3√34D. √312、(0分)已知平面向量a 、b ,|a|=1,|b|= √3 , 且|2a +b|= √7 , 则向量a 与向量a +b 的夹角为( )A. π2B. π3C. π6D. π13、(0分)设 α、 β是两个不同的平面, l 是一条直线,以下命题:①若 l ⊥α , α⊥β , 则 l ⊂β;②若 l ∥α , α∥β , 则 l ⊂β; ③若 l ⊥α , α∥β , 则 l ⊥β;④若 l ∥α , α⊥β , 则 l ⊥β。
高二数学选修2-1第三章空间向量与立体几_知识点+习题+答案
![高二数学选修2-1第三章空间向量与立体几_知识点+习题+答案](https://img.taocdn.com/s3/m/00eba736376baf1ffc4fad33.png)
空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB+A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠A O B 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则c o s ,a b ab 〈〉称为a ,b 的数量积,记作a b ⋅.即c o s ,a b a bab ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()82cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.--=23B.OC OB OA OM 513121++=C.0=+++D.0=++3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则⋅等于A.41B.41-C.43D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=,)8,2,3(=,)0,1,0(=,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为55210.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A BC D -是正方体,其中2,AB PA ==,则1B 到平面PAD 的距离为 .三、解答题(共80分)俯视图正(主)视图 侧(左)视图15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F,正视图MPD C BA分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;D 'C 'B'A'PD C BA俯视图侧视图正视图ED CBA P (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.参考答案 一、选择题PBECDFA1.)(21111A B B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x OC z OB y OA x OM C B A M 且四点共面、、、由于C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴DC BD DC BD DC EF 故选B.4.B5.B6.D7.D8.D9.D 10.4,cos ==><=AC AB ,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-⋅=⋅=⋅===DB AC DB CD CD AC0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离15B A m d m⋅==三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于23)]110(2211[41)](2[41)(412222222=+-+++=⋅+⋅-⋅-+++=++-=c b c a b a c b a c b a2626的长为,BM ∴=. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=. (3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面ACD ,EF ⊄面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵BD ⊂面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -. 则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.A C D E F GA 'B 'C 'D '在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m = 解得2m=,所以21DH ⎛⎫= ⎪⎪⎝⎭.(1)因为0011cos DH CC ++⨯'<>==, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC +⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30.19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===- 设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角.在Rt EAH △中,AE = 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan AE EHA AH ∠===因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角,在Rt AOE△中,3sin302EO AE==3cos302AO AE==,又F是PC 的中点,在Rt ASO△中,3sin454 SO AO==,又SE==Rt ESO△中,cos SOESOSE∠===即所求二面角的余弦值为5.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又EF,分别为BC PC,的中点,所以(000)10)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以31(300)12AE AF⎛⎫== ⎪⎪⎝⎭,,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PAAC A=,所以BD⊥平面AFC,故BD为平面AFC的一法向量.又(0)BD=,,所以cos55BDBDBD<>===,mmm.因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.空间向量与立体几何2B一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g 2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b aλ,且a 与b 的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( )A .21B .22 C .-21 D .07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//n C .α⊥m ,β//m , 则βα⊥ D .n //m ,α⊥m , 则 α⊥n8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ). A .3 B .362 C .2 D .22 9、如图,将无盖正方体纸盒展开,直线AB,CD 在原正方体中的位置关系是( ) A .平行 B .相交且垂直ABC DDCABC . 异面D .相交成60°10、点P 在平面ABC 外,若PA=PB=PC ,则点P 在平面ABC 上的射影 是△ABC 的 ( )A .外心 B.重心 C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )(A)2(B)12 (C)22+ (D)112、已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( ) (A )2对 (B )3对 (C )4对 (D )5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。
高中数学选修2-1第三章《空间向量与立体几何》典型练习题(含答案)
![高中数学选修2-1第三章《空间向量与立体几何》典型练习题(含答案)](https://img.taocdn.com/s3/m/be5a80dbbe23482fb5da4c06.png)
高中数学选修2-1第三章《空间向量与立体几何》典型练习题一、选择题1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b a ρρB .)0,0,3(),0,0,1(-==d c ρρC .)0,0,0(),0,3,2(==f e ρρD .)40,24,16(),5,3,2(=-=h g ρρ2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b a ρρλ,且a ρ与b ρ的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A ρ取最小值时,x 的值等于( )A .19B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC u u u r u u u r>的值是( )A .21B .22C .-21D .0二、填空题1.若向量)2,3,6(),4,2,4(-=-=b a ρρ,则(23)(2)a b a b -+=r r rr g __________________。
2.若向量,94,2k j i b k j i a ρρρρρρρρ++=+-=,则这两个向量的位置关系是___________。
3.已知向量),2,4(),3,1,2(x b a -=-=ρρ,若a ⊥r b ρ,则=x ______;若//a r b ρ则=x ______。
高二数学 人教版选修2-1习题 第3章 空间向量与立体几何 3.2 第2课时 Word版含答案
![高二数学 人教版选修2-1习题 第3章 空间向量与立体几何 3.2 第2课时 Word版含答案](https://img.taocdn.com/s3/m/3bd1ef2825c52cc58bd6beeb.png)
第三章 3.2 第2课时一、选择题1.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为(1,12,2),则m 为( )A .-4B .-6C .-8D .8[答案] C[解析] ∵l ∥α,∴l 与平面α的法向量垂直. 故2×1+12×m +1×2=0,解得m =-8,故选C.2.若n =(1,-2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是( )A .(1,-2,0)B .(0,-2,2)C .(2,-4,4)D .(2,4,4) [答案] C[解析] ∵(2,-4,4)=2(1,-2,2)=2n , ∴(2,-4,4)可作为α的一个法向量.3.如图所示,在空间直角坐标系中BC =2,原点O 是BC 的中点,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°,则向量OD →的坐标为(A.⎝⎛⎭⎫-32,-12,0 B .⎝⎛⎭⎫0,-12,32C.⎝⎛⎭⎫-12,-32,0D .⎝⎛⎭⎫0,12,-32[答案] B[解析] 如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BCD 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin30°=32,OE =OB -BD ·cos60°=1-12=12. ∴D 点坐标为(0,-12,32),即向量OD →的坐标为(0,-12,32).4.如图,在三棱锥A -BCD 中,DA 、DB 、DC 两两垂直,且DB =DC ,E 为BC 中点,则AE →·BC →等于( )A .0B .1C .2D .3[答案] A[解析] 如图,建立空间直角坐标系,设DC =DB =a ,DA =b ,则B (a,0,0)、C (0,a,0)、A (0,0,b ),E (a 2,a2,0),所以BC →=(-a ,a,0),AE →=(a 2,a 2,-b ),AE →·BC →=-a 22+a 22+0=0.5.四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1),则直线P A 与底面ABCD 的关系是( )A .平行B .垂直C .在平面内D .成60°角[答案] B[解析] 设平面ABCD 的一个法向量n =(x ,y ,z ), ⎩⎪⎨⎪⎧AB →·n =0AD →·n =0⇒⎩⎪⎨⎪⎧2x -y -4z =04x +2y =0令x =1则y =-2,z =1∴平面的一个法向量n =(1,-2,1) 而AP →∥n ,∴P A ⊥平面ABCD ,选B.6.如图所示,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别在A 1D 、AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D 、AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面 [答案] B[解析] 解法一:设AC ∩BD =O ,AD 1∩A 1D =O 1,作EG ⊥AD 于G ,FK ⊥AD 于K , ∴GF ∥DO ,DO ⊥AC ,∴GF ⊥AC ,∵EG ⊥平面ABCD ,由三垂线定理EF ⊥AC ,同理EF ⊥A 1D ,∴EF 是A 1D ,AC 公垂线,选B. 解法二:如图建立空间直角坐标系设正方体棱长为3则E (1,0,1),F (2,1,0),A 1(3,0,3),A (3,0,0),C (0,3,0),D (0,0,0) ∴EF →=(1,1,-1),AC →=(-3,3,0),A 1D →=(-3,0,-3) ∴EF →·AC →=0,EF →·AD →=0, ∴EF ⊥AC ,EF ⊥A 1D ,故选B. 二、填空题7.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4)、AD →=(4,2,0)、AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.[答案] ①②③[解析] AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →. AP →·AD →=4×(-1)+2×2+0=0,则AP →⊥AD →, ∵AP →⊥AB →,AP →⊥AD →,AB →∩AD →=A ,∴AP →⊥平面ABCD ,故AP →是平面ABCD 的一个法向量. BD →=A D →-A B →=(2,3,4),显然B D →∥AP →.8.已知△ABC 是∠B 为直角顶点的等腰直角三角形,其中BA →=(1,m,2)、BC →=(2,m ,n )(m 、n ∈R ),则m +n =________.[答案] -1[解析] 由题意得BA →·BC →=0,且|BA →|=|BC →|,∴⎩⎪⎨⎪⎧ 2+m 2+2n =01+m 2+4=4+m 2+n 2,∴⎩⎪⎨⎪⎧m =0n =-1.∴m +n =-1. 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2,BC =22,E 、F 分别是AD 、PC 的中点,求证:PC ⊥平面BEF .[解析] 如图,以A 为坐标原点,AB 、AD 、AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵AP =AB =2,BC =AD =22, 四边形ABCD 是矩形,∴A (0,0,0)、B (2,0,0)、C (2,22,0)、D (0,22,0)、P (0,0,2). 又E 、F 分别是AD 、PC 的中点, ∴E (0,2,0)、F (1,2,1).∴PC →=(2,22,-2)、BF →=(-1,2,1)、EF →=(1,0,1), ∴PC →·BF →=-2+4-2=0,PC →·EF →=2+0-2=0, ∴PC →⊥BF →,PC →⊥EF →,∴PC ⊥BF ,PC ⊥EF . 又BF ∩EF =F ,∴PC ⊥平面BEF .10.如图, 正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别是棱AB 、BC 的中点,EF ∩BD =G .求证:平面B 1EF ⊥平面BDD 1B 1.[证明] 以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,由题意知:D (0,0,0)、B 1(22,22,4)、E (22,2,0)、F (2,22,0),B 1E →=(0,-2,-4)、EF →=(-2,2,0). 设平面B 1EF 的一个法向量为n =(x ,y ,z ). 则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0. 解得x =y ,z =-24y ,令y =1得n =(1,1,-24),又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+(-24)×0=0,即n ⊥AC →.∴平面B 1EF ⊥平面BDD 1B 1.一、选择题1.已知A (3,0,-1)、B (0,-2,-6)、C (2,4,-2),则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 [答案] C[解析] AB →=(-3,-2,-5),AC →=(-1,4,-1),则 AB →·AC →=-3×(-1)-2×4+5=0. ∴AB →⊥AC →,故△ABC 为直角三角形. 又|AB →|≠|AC →|故选C.2.已知矩形ABCD ,P A ⊥平面ABCD ,则以下等式中可能不成立的是( )A.DA →·PB →=0 B .PC →·BD →=0 C.PD →·AB →=0 D .P A →·CD →=0[答案] B[解析] ①⎭⎪⎬⎪⎫DA ⊥AB DA ⊥P A ⇒DA ⊥平面P AB ⇒DA ⊥PB ⇒DA →·PB →=0;②同①知AB →·PD →=0;③P A ⊥平面ABCD ⇒P A ⊥CD ⇒P A →·CD →=0; ④若BD →·PC →=0,则BD ⊥PC ,又BD ⊥P A ,∴BD ⊥平面P AC ,故BD ⊥AC , 但在矩形ABCD 中不一定有BD ⊥AC ,故选B.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),点P (x,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A .(1,0,-2)B .(1,0,2)C .(-1,0,2)D .(2,0,-1) [答案] C[解析] 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ), 又P A ⊥平面ABC ,所以AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0.①AC →·AP →=(2,0,1)·(x ,-1,z )=0, 得2x +z =0,②联立①②得x =-1,z =2, 故点P 的坐标为(-1,0,2).4.已知直线l 1的方向向量是a =(2,4,x ),直线l 2的方向向量是b =(2,y,2).若|a |=6,且a·b =0,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1 [答案] A[解析] 由题意知|a |=22+42+x 2=6,解得x =±4, 由a·b =4+4y +2x =0得,x =-2y -2. 当x =4时,y =-3,所以x +y =1. 当x =-4时,y =1,所以x +y =-3. 综上,x +y =-3或1. 二、填空题5.已知空间三点A (0,0,1)、B (-1,1,1)、C (1,2,-3),若直线AB 上一点M ,满足CM ⊥AB ,则点M 的坐标为________.[答案] (-12,12,1)[解析] 设M (x ,y ,z ),又AB →=(-1,1,0),AM →=(x ,y ,z -1),CM →=(x -1,y -2,z +3), 由题意得⎩⎪⎨⎪⎧1-x +y -2=0x =-yz -1=0,∴x =-12,y =12,z =1,∴点M 的坐标为(-12,12,1).6.同时垂直于a =(2,2,1)、b =(4,5,3)的单位向量是________.[答案] (13,-23,23)或(-13,23,-23)[解析] 设所求向量为c =(x ,y ,z ),则⎩⎪⎨⎪⎧2x+2y+z=04x+5y+3z=0x2+y2+z2=1,解得⎩⎪⎨⎪⎧x=13y=-23z=23,或⎩⎪⎨⎪⎧x=-13y=23z=-23.三、解答题7.如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.(1)求证:BC1⊥AB1;(2)求证:BC1∥平面CA1D.[证明]如图,以C1点为原点,C1A1、C1B1、C1C所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AC=BC=BB1=2,则A(2,0,2)、B(0,2,2)、C(0,0,2)、A1(2,0,0)、B1(0,2,0)、C1(0,0,0)、D(1,1,2).(1)∵BC1→=(0,-2,-2)、AB1→=(-2,2,-2),∴BC1→·AB1→=0-4+4=0,∴BC1→⊥AB1→,∴BC1⊥AB1.(2)取A1C的中点E,∵E(1,0,1),∴ED→=(0,1,1),又BC1→=(0,-2,-2),∴ED→=-12BC1→,且ED和BC1不共线,则ED∥BC1.又ED⊂平面CA1D,BC1⊄平面CA1D,故BC1∥平面CA1D.8.在棱长AB=AD=2,AA1=3的长方体ABCD-A1B1C1D1中,点E是平面BCC1B1上的动点,点F是CD的中点.试确定点E的位置,使D1E⊥平面AB1F.[解析]建立空间直角坐标系如图,则A(0,0,0)、F(1,2,0)、B1(2,0,3)、D1(0,2,3),设E(2,y,z),则D1E→=(2,y-2,z-3)、AF→=(1,2,0)、AB1→=(2,0,3),∵D 1E ⊥平面AB 1F , ∴⎩⎪⎨⎪⎧D 1E →·AF →=0D 1E →·AB 1→=0,即⎩⎪⎨⎪⎧2+2(y -2)=04+3(z -3)=0,解得⎩⎪⎨⎪⎧y =1z =53.∴E (2,1,53)即为所求.。
高二数学人教版选修2-1习题第3章空间向量与立体几何3.1.5Word版含答案
![高二数学人教版选修2-1习题第3章空间向量与立体几何3.1.5Word版含答案](https://img.taocdn.com/s3/m/d10944f3a45177232f60a2b8.png)
二、填空题
7.已知 a= (2,- 3,0)、 b= (k,0,3), <a,b>= 120 °,则 k= ________.
[答案 ] - 39
[解析 ] ∵ a·b= 2k, |a|= 13, |b|= k2+ 9,
∴cos120°=
2k
,
13× k2+ 9
∴k=- 39.
8.已知 a= (2,- 1,3)、b= (- 1,4,- 2)、c= (7,7,λ),若 a、b、c 共面, 则实数 λ=________. [答案 ] 9
z),A→C= (-
1,0,2),D→C
=
(- x,-y,2- z),
A→B= (- 1,1,0) .
因为 D→B ∥ A→C, D→C∥ A→B,
- x, 1- y,- z = m -1, 0, 2
所以
,
- x,- y, 2- z = n - 1,1, 0
x=- 1 解得 y= 1 .
z= 2
即 D (- 1,1,2) . (2)依题意 A→B=( -1,1,0) 、 A→C= (- 1,0,2) 、B→C= (0,- 1,2), 假设存在实数 α、 β,使得 A→C = αA→B+ βB→C成立,则有 (- 1,0,2)= α(- 1,1,0)+ β(0,- 1,2) = (- α, α- β, 2β),
∴O→C= 23(- 3,7,- 5)=
- 2,14,- 10
3
3
.
故选 B.
2.设
M
(5,-
1,2)
、
A(4,2,-
1),若
→ OM
=
A→B,则点
B 应为 (
)
新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.1.4
![新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.1.4](https://img.taocdn.com/s3/m/6e0bee8ec77da26925c5b0fb.png)
3.1.4空间向量的正交分解及其坐标表示课时过关·能力提升基础巩固1下列说法正确的是()A.任何三个不共线的向量可构成空间向量的一个基底B.空间的基底有且仅有一个C.两两垂直的三个非零向量可构成空间的一个基底D.基底{a,b,c}中基向量与基底{e,f,g}中基向量对应相等项中应是不共面的三个向量构成空间向量的基底;B项,空间基底有无数个;D项中因为基底不唯一,所以D错.故选C.2已知点A在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则点A在基底{i,j,k}下的坐标是()A.(12,14,10)B.(10,12,14)C.(14,12,10)D.(4,3,2)=8a+6b+4c=8(i+j)+6(j+k)+4(k+i)=12i+14j+10k.3在空间直角坐标系Oxyz中,下列说法正确的是()⃗⃗⃗⃗⃗ 与点B的坐标相同A.向量AB⃗⃗⃗⃗⃗ 与点A的坐标相同B.向量ABC.向量AB⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ 的坐标相同 D.向量AB ⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ 的坐标相同4点A (-1,2,1)在x 轴上的投影点和在xOy 平面上的投影点的坐标分别为( ) A.(-1,0,1),(-1,2,0)B.(-1,0,0),(-1,2,0)C.(-1,0,0),(-1,0,0)D.(-1,2,0),(-1,2,0)A 在x 轴投影知y=0,z=0,由点A 在xOy 平面投影知z=0.故选B .5设{i ,j ,k }是空间的一个单位正交基底,a =2i -4j+5k ,b=i+2j-3k ,则向量a ,b 的坐标分别为 , .-4,5) (1,2,-3)6已知{a ,b ,c }是空间的一个基底,下列向量可以与p =2a -b ,q =a +b 构成空间的另一个基底的是 (填序号).①2a ②-b ③c ④a +c7如图,在边长为2的正方体ABCD-A 1B 1C 1D 1中,取点D 为原点建立空间直角坐标系,已知O ,M 分别是AC ,DD 1的中点,写出下列向量的坐标.AM ⃗⃗⃗⃗⃗⃗ = ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ = .-2,0,1) (1,1,2)8如图,在梯形ABCD 中,AB ∥CD ,AB=2CD ,点O 为空间任一点,设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,则向量OD ⃗⃗⃗⃗⃗⃗ 用a ,b ,c 表示为 .-12b +c9如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,建立适当的空间直角坐标系,求BD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.1⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ .以AB ⃗⃗⃗⃗⃗ ,A D ⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ 为单位正交基底,建立空间直角坐标系,如图所示,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1).10已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA=AD=1,如图所示,设DA ⃗⃗⃗⃗⃗ =e 1,AB ⃗⃗⃗⃗⃗ =e 2,AP ⃗⃗⃗⃗⃗ =e 3,以{e 1,e 2,e 3}为单位正交基底建立空间直角坐标系Axyz ,求向量MN ⃗⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的坐标.DC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =e 2. ∵PC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =e 2-e 1-e 3, ∴MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12PC ⃗⃗⃗⃗⃗=-12e 2+e 3+12(e 2-e 1-e 3)=-12e 1+12e 3.∴MN ⃗⃗⃗⃗⃗⃗⃗ =(-12,0,12),DC ⃗⃗⃗⃗⃗ =(0,1,0). 能力提升1有下列叙述:①在空间直角坐标系中,x 轴上的点的坐标一定是(0,b ,c );②在空间直角坐标系中,在yOz 平面上点的坐标一定可写成(0,b ,c ); ③在空间直角坐标系中,在z 轴上的点的坐标可记作(0,0,c ); ④在空间直角坐标系中,在xOz 平面上点的坐标是(a ,0,c ).其中正确的个数是( ) A.1B.2C.3D.4错,x 轴上的点的坐标应是(a ,0,0).②③④正确.2如图,在长方体ABCD-A 1B 1C 1D 1中,AC 与BD 的交点为M ,设A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ,则下列向量中与B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是 ( )A.-12a +12b +cB.12a +12b +cC.12a -12b +cD.-12a -12b +c1M =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=c +12(-a +b )=-12a +12b +c .3设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.4如图,在空间四边形OABC 中,OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,点M 在OA 上,且OM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,N 是BC 的中点,MN ⃗⃗⃗⃗⃗⃗⃗ =x a +y b +z c ,则x ,y ,z 的值为( ) A.12,-23,12B.-23,12,12C.12,12,-23 D.23,23,-125已知向量AB ⃗⃗⃗⃗⃗ =(-4,-3,-1),把AB ⃗⃗⃗⃗⃗ 按向量(2,1,1)平移后所得向量的坐标是 .-4,-3,-1)6设{i ,j ,k }是空间向量的单位正交基底,a =3i+2j-k ,b=-2i+4j+2k ,则向量a ,b 的关系是 .a ·b =-6i 2+8j 2-2k 2=-6+8-2=0,∴a ⊥b .⊥b7已知在空间四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =a-2c ,CD ⃗⃗⃗⃗⃗ =5a+6b-8c ,对角线AC ,BD 的中点分别为E ,F ,则EF⃗⃗⃗⃗⃗ = .EF ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ ,且EF ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ,∴两式相加,得2EF ⃗⃗⃗⃗⃗ =(EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +(BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ).∵E 为AC 的中点,F 为BD 的中点,∴EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =0.∴2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(a-2c )+(5a+6b-8c )=6a+6b-10c .∴EF ⃗⃗⃗⃗⃗ =3a+3b-5c .a+3b-5c8已知向量p 在基底{a ,b ,c }下的坐标是(2,3,-1),求p 在基底{a ,a +b ,a +b +c }下的坐标.p =2a +3b -c .设p =x a +y (a +b )+z (a +b +c )=(x+y+z )a +(y+z )b +z c ,则有{x +y +z =2,y +z =3,z =-1,解得{x =-1,y =4,z =-1,故p 在基底{a ,a +b ,a +b +c }下的坐标为(-1,4,-1).9已知正方体ABCD-A'B'C'D',点E 是上底面A'B'C'D'的中心,求AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA '⃗⃗⃗⃗⃗⃗ 中x ,y ,z 的值.⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +A'E ⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12A 'C '⃗⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12(A 'B '⃗⃗⃗⃗⃗⃗⃗ +A 'D '⃗⃗⃗⃗⃗⃗⃗ ) =AA '⃗⃗⃗⃗⃗⃗ +12A 'B '⃗⃗⃗⃗⃗⃗⃗ +12A 'D '⃗⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +AA '⃗⃗⃗⃗⃗⃗.∵AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA'⃗⃗⃗⃗⃗⃗ ,∴x=12,y=12,z=1.★10如图,在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,把向量EF ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 1和B 1C ⃗⃗⃗⃗⃗⃗⃗ 分别用a ,b ,c 表示出来,证明A F ⃗⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0即可.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,有a ·b =0,a ·c =0,b ·c =0. 则EF ⃗⃗⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =12(BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =12(-a +b +c ),AB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =a +b . ∴EF ⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =12(-a +b +c )·(a +b ) =12(|b |2-|a |2)=0.∴EF ⃗⃗⃗⃗⃗ ⊥AB 1⃗⃗⃗⃗⃗⃗⃗ ,即EF ⊥AB 1. 同理EF ⊥B 1C.∵AB 1∩B 1C=B 1,∴EF ⊥平面B 1AC.。
人教版 选修2-1 第三章 空间向量试卷(含答案)
![人教版 选修2-1 第三章 空间向量试卷(含答案)](https://img.taocdn.com/s3/m/4bcfd3dd84254b35eefd34c8.png)
第三章 空间向量与立体几何(时间:120分钟,满分:150分)第I 卷(选择题)班别 姓名 成绩一、选择题(本大题共12小题,每小题5分,共60分)A.15,12 B .5,2 C .-15,-12D .-5,-2 解析:选A.a ∥b ,则存在m ∈R ,使得a =m b ,又a =(λ+1,0,2λ),b =(6,2μ-1,2),则有⎩⎪⎨⎪⎧λ+1=6m ,0=m (2μ-1),2λ=2m ,可得⎩⎨⎧λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形解析:选A .AB →=(3,4,-8),BC →=(2,-3,1),CA →=(-5,-1,7), ∴BC →·CA →=-10+3+7=0.∴BC ⊥CA. ∴△ABC 是直角三角形.3.已知向量(1,1,0)a = ,(1,0,2)b =-,且ka b + 与2a b - 互相垂直,则k 的值是( )A .1B 【答案】D 试题分析:依题意可得(1,,2),2(3,2,2)ka b k k a b +=--=-,由()(2)k a b a b +⊥- 可得()(2)0ka b a b +⋅-= ,所以3(1)240k k -+-=,解得 D.4.已知a =(1,0,1),b =(-2,-1,1),c =(3,1,0)2c |等于( )A .310B .210 C.10 D .5 解析:选A.|a -b +2c |=(a -b +2c )2,∵a -b +2c =(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0), ∴|a -b +2c |=92+32+0=310. 5.给出下列命题: ①已知a ⊥b ,则a ·(b +c )+c ·(b -a )=b ·c ;②A 、B 、M 、N 为空间四点,若BA →、BM →、BN →不能构成空间的一个基底,则A 、B 、M 、N 四点共面; ③已知a ⊥b ,则a ,b 与任何向量都不能构成空间的一个基底;④已知{a ,b ,c }是空间的一个基底,则基向量a ,b 可以与向量m =a +c 构成空间另一个基底. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 解析:选C.当a ⊥b 时,a ·b =0,a ·(b +c )+c ·(b -a )=a ·b +a ·c +c ·b -c ·a =c ·b =b ·c ,故①正确;当向量BA →、BM →、BN →不能构成空间的一个基底时,BA →、BM →、BN →共面,从而A 、B 、M 、N 四点共面,故②正确;当a ⊥b 时,a ,b 不共线,任意一个与a ,b 不共面的向量都可以与a ,b 构成空间的一个基底,故③错误;当{a ,b ,c }是空间的一个基底时,a ,b ,c 不共面,所以a ,b ,m 也不共面,故a ,b ,m 可构成空间的另一个基底,故④正确.6.已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则与的夹角θ的大小是( )(A) (B)π (C) (D)π 【答案】B 【解析】由题意知=(-2,-1,3),=(-1,3,-2),故cos θ===-, 所以θ=π.7.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)解析:选A.逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.8.已知在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC中点,则MN →等于( )A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D.23a +23b -12c 解析:选B.因MN →=ON →-OM →=12(OB →+OC →)-23OA →=12b +12c -23a .考点:1.空间向量的坐标运算;2.空间向量垂直的条件;3.空间向量的数量积.9.已知非零向量a,b 及平面α,若向量a 是平面α的法向量,则a ·b=0是向量b 所在直线平行于平面α或在平面α内的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】C【解析】∵a,b 是非零向量,且a 是平面α的法向量,∴当a ·b=0时,向量b 所在的直线平行于平面α或在平面α内,反之也成立.10.已知(2,2,5)u =- ,(6,4,4)v =-,u ,v 分别是平面α,β的法向量,则平面α,β的位置关系式 A .平行 B .垂直 C .所成的二面角为锐角 D .所成的二面角为钝角 【答案】B试题分析:由(2,2,5)u =- ,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯= ,所以u v ⊥ ,而u ,v分别是平面α,β的法向量,所以αβ⊥,选B.考点:空间向量在解决空间垂直中的应用.11.在正方体ABCD-A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是( )(A) (B) (C) (D) 【答案】D【解析】结合图形建立空间直角坐标系,通过向量的坐标运算可知AM ⊥OP 恒成立,即AM 与OP 所成的角为. 12.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G 分别是线段AE,BC 的中点,则AD 与GF 所成的角的余弦值为( )(A) (B)- (C) (D)-【答案】A【解析】如图, 正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G 分别是线段AE,BC 的中点.以C 为原点建立空间直角坐标系Cxyz,A(0,2,0),B(2,0,0),D(0,0,2),G(1,0,0),F(0,2,1),=(0,-2,2),=(-1,2,1),∴||=2,||=,·=-2, ∴cos<,>==-.∴直线AD 与GF 所成角的余弦值为. 【误区警示】本题容易忽视异面直线所成角的范围而误选B.第II 卷(非选择题)二.填空题(每题5分,总20分)13.已知向量a =(2,-1),b =(-1,m),c =(-1,2),若(a +b )∥c ,则m =________. 【答案】-1【解析】∵a =(2,-1),b =(-1,m),∴a +b =(1,m -1),∵(a +b)∥c ,c =(-1,2),∴1×2-(-1)(m -1)=0,∴m =-114.在空间直角坐标系O xyz -中,设点M 是点(2,3,5)N -关于坐标平面xoy 的对称点,则线段MN 的长度等于 .【答案】10 【解析】试题分析:点(2,3,5)N -关于坐标平面xOy 的对称点()2,3,5M --,故线段10MN =. 考点:空间中的距离.15.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成的角的余弦值是________.16.若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 .以b a ,为邻边的平行四边形的面积为三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)17.如图,在平行六面体ABCD -A 1B 1C 1D 1中,CM =2MA ,A 1N =2ND ,且AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示向量MN →.解:∵MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(AB →+AD →)+AA 1→+23(A 1A →+A 1D 1→)=-13AB →-13AD →+13AA 1→+23AD →=-13a +13b +13c ,∴MN →=-13a +13b +13c .18.在正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,M 为四边形ABCD 的中心.求证:对A 1B 1上任一点N ,都有MN ⊥AP.证明:建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则A(1,0,0),P ⎝⎛⎭⎫0,0,12, M ⎝⎛⎭⎫12,12,0,N(1,y,1). ∴AP →=⎝⎛⎭⎫-1,0,12, MN →=⎝⎛⎭⎫12,y -12,1. ∴AP →·MN →=(-1)×12+0×⎝⎛⎭⎫y -12+12×1=0, ∴AP →⊥MN →, 即A 1B 1上任意一点N 都有MN ⊥AP. 19.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且|'|3|'|A N NC =,试求MN 的长.O'N M D'C'B'A'CBA Dz yx【答案】64a 试题分析:解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 中点O',所以M ,O'a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分,从而N 为''O C 的中点,故a ).根据空间两点距离公式,可得20.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 1和CC 1的中点. (1)求证:EF ∥平面ACD 1;(2)求异面直线EF 与AB 所成的角的余弦值;解:如图,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,由已知得D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、B 1(2,2,2)、E(1,0,2)、F(0,2,1).(1)证明:易知平面ACD 1的一个法向量DB 1→=(2,2,2). ∵EF →=(-1,2,-1),∴EF →·DB 1→=-2+4-2=0, ∴EF →⊥DB 1→,而EF ⊄平面ACD 1,∴EF ∥平面ACD 1.(2)∵AB →=(0,2,0), ∴cos 〈EF →,AB →〉=EF →·AB →|EF →||AB →|=426=63,∴异面直线EF 与AB 所成的角的余弦值为63.21、如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M.(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成角的余弦值.解:(1)证明:∵PA ⊥平面ABCD ,AB ⊂平面ABCD , ∴PA ⊥AB.∵AB ⊥AD ,AD ∩PA =A , ∴AB ⊥平面PAD.∵PD ⊂平面PAD ,∴AB ⊥PD ,又∵BM ⊥PD ,AB ∩BM =B , ∴PD ⊥平面ABM.∵AM ⊂平面ABM ,∴AM ⊥PD.(2) 如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz , 则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0). ∵AM ⊥PD ,PA =AD ,∴M 为PD 的中点,∴M 的坐标为(0,1,1). ∴AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0y +z =0,令z =1,得x =2,y =-1.∴n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α,则sin α=|CD →·n ||CD →|·|n |=63.∴cos α=33,即直线CD 与平面ACM 所成角的余弦值为33.22.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD. (1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值. 解:(1)证明:因为∠DAB =60°,AB =2AD , 由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD. 又因为PD ⊥底面ABCD ,可得BD ⊥PD. 又因为AD ∩PD =D ,所以BD ⊥平面PAD ,故PA ⊥BD.(2)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz ,则A(1,0,0),B(0,3,0), C(-1,3,0),P(0,0,1), AB →=(-1,3,0),PB →=(0,3,-1), BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0,因此可取n =(3,1,3). 设平面PBC 的法向量为m ,则 ⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3),〈m ,n 〉等于二面角A -PB -C 的平面角,cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.。
(word完整版)高中数学选修2-1第三章+空间向量与立体几何+测试题(含详解)
![(word完整版)高中数学选修2-1第三章+空间向量与立体几何+测试题(含详解)](https://img.taocdn.com/s3/m/de1cf39d011ca300a7c39021.png)
高中数学选修2-1第三章+空间向量与立体几何+测试题(时间:120分钟,满分:150分)5分,满分60分•在每小题给出的四个选项中,有且只有一项答案 B3.设11的方向向量为a = (1,2, — 2),12的方向向量为b = (— 2,3, m ),若11丄12,则实数m 的值为( )1 A . 3 B .2 C . 1D.2解析 • h 丄 12,a 丄 b ,二 a b = 0, — 2+ 6 — 2m = 0, m = 2.答案 B4 .若a , b 均为非零向量,则 a b = |a||b|是a 与b 共线的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解析 ■/ a b = |a||b|cos 〈 a , b>,而 a b = ••• cos 〈 a , b > = 1, ••• 〈 a , b > = 0.••• a 与b 共线.反之,若 a 与b 共线,也可能a b =— |a| |b|,因此应选B. 答案 Bf f f f5 .在△ ABC 中,AB = c , AC = b.若点 D 满足 BD = 2DC ,则 AD =()1.向量a =(2x,1,3), b = (1, — 2y,9), 右a 与b 共线,则 ( )11A . x = 1, y = 1B . x =2, y =- 2112C . x = 6y = — 2D . x =— 6,y ==3解析由 a // b 知,a = ?b , • 2x =入1 =—2入y3= 9入 ;1 1 入 =3 x=6,y =答案 C2 .已知a =(—3,2,5), b = (1, x ,— 1 ),且a b = 2,贝U x 的值是()A . 6B . 5C . 4D . 3是符合题目要求的)3 2.解析 a b =— 3 + 2x — 5 = 2,二 x = 5. 、选择题(本大题共12小题,每小题2 1A.3b+ 3C2 1C.3b —3c1 2D.3b+3c解析 BC 的中点D 的坐标为(2,1,4),T••• AD = (— 1,— 2,2).T• |AD |= - . 1 + 4 + 4= 3. 答案 B&与向量a = (2,3,6)共线的单位向量是( )2 3 6 236A . (7, 7, 7)B . (—7,— 7,— ?)ff解析如图,AD = AB + BDT T2=AB + 3BC3T T T2=AB + 3(AC — AB)T T1 2=3AB+ 3AC1 2 =3c + 3b 答案 A起构成空间的另一个基底的是() A . a B.bC . cD .以上都不对 解析 I a , b,c 不共面,•- a + b ,a — b, c 不共面, • p , q , c 可构成空间的一个基底 7 .已知△ ABC 的三个顶点 A(3,3,2), B(4, — 3,7), C(0,5,1),贝U BC 边上的中线长为(厂64D. 657解析 设平面ABC 的一个法向量为 n = (x , y , z),v AB= (— 5, — 1,1), AC = (— 4, — 2, — 1),f f由 n AB = 0 及 n AC = 0,得 —5x — y + z = 0,令 z = 1,—4x — 2y — z = 0, 得 x = 2 y =— 3• n = g — |, 1).f又AD = (— 2,— 1,3),设AD 与平面ABC 所成的角为0,则2 3 6 2 3 6 2 3 6 2 3 6 C - (7,- 7,— 7)和(—7,7,7) D . (7,7 7)和(_■?,— 7,— 7)解析|a|=- ‘22 + 32 + 62= 7, •••与a 共线的单位向量是 £(2,3,6),故应选D. 答案 D9.已知向量 a = (2,4, x), b = (2, y,2),若 |a|= 6 且 a 丄b ,则 x + y 为( )A . -3 或 1B . 3 或—1C . -3D . 1解析由|a|= 6, a 丄b ,4+ 16+ /= 36, 得 4+ 4y + 2x = 0,x = 4, 解得y = — 3,x = — 4, 或y = 1.•- x + y = 1,或一3.答案 A 10.已知 a = b = (3,2 — x , x 2),且a 与b 的夹角为钝角,则实数 x 的取值范围是()A . x>4x< — 4C . 0<x<4D . — 4<x<0.解析 ■/〈 a , b 〉为钝角,• a b = |a||b|cos 〈 a , b > <0, 即 3x + 2(2 — x)<0 , - - x< — 4.答案 B11. 已知空间四个点 A(1,1,1), B(— 4,0,2), C(— 3,— 1 , 的角为()0), D( — 1,0,4),则直线 AD 与平面ABC 所成 A . 30 °B . 45 °C . 60 °D . 90 °sin 0=IAD n|f12, |AD||n|—1 +1 + 3••• 0= 30°答案 A12.已知二面角 a — l - B 的大小为50 ° P 为空间中任意一点,则过点 P 且与平面a 和平面B 所成的角都是25°的直线的条数为()A . 2B . 3C . 4D . 5解析 过点P 分别作平面 a, B 的垂线l i 和|2,则11与12所成的角为130或50 °问题转化为过点 P与直线l i , |2成65。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,_ _ D_ A_ P_ N _ B_ M0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.C 1 B 1 A 1B A3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42B .32C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ _ A_S_ F_ B参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,EN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x +-=,则2320x x --=,解得1x =,或23x =-(舍去), 111,.A C C BD ∴=⊥1CD 时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示_ C_ D_ A_P_ N _ B_ M _ EA1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0) A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有13(,0,0)2MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=∴<1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t =设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅7可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)3,0),3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,3BC n AC n BC ⋅=⋅==-又(,,),303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DS a =,平面DAC 的一个法向量600a OS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且2626),(0,)DS CS ==(. 设,CE tCS = 则226((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.作 者 于华东 责任编辑 庞保军_ C_ A_S_ F_ BO。