解读《美国国家BIM标准》-BIM能力成熟度模型(二)(1)(1)

合集下载

BIM工程师之BIM工程师练习题(二)及答案

BIM工程师之BIM工程师练习题(二)及答案

BIM工程师之BIM工程师练习题(二)及答案单选题(共60题)1、下列选项不属于族样板分类的是(),A.基于主体的族样板B.基于线的族样板C.基于面的族样板D.基于点的族样板【答案】 D2、关于LOD建模深度标准的说法错误的是()。

A.LOD的定义可以用于两种途径:确定模型阶段输出成果以及分配建模任务B.LOD分为五个等级C.LOD100等同于概念设计D.LOD400等同于方案设计或扩展设计【答案】 D3、室内声学设计主要包括建筑声学设计和()两部分。

A.电声设计B.结构声学设计C.室外声学设计D.室内声学设计【答案】 A4、在日光路径设置中不属于日光研究方式的是()。

A.一天B.多天C.照明D.多云【答案】 D5、钢结构深化设计因为其(),在BIM应用软件出现之前,平面设计软件很难满足要求。

A.高成本B.国内应用少C.空间几何造型特征D.节点数量多【答案】 C6、BIM是以()为基础,集成了建筑工程项目各种相关信息的工程数据模型,是对工程项目设施实体与功能特性的数字化表达。

A.三维数字技术B.信息集成技术C.可视化技术D.全周期管理【答案】 A7、BIM信息的保持特征表示该信息必须保留的()。

A.用途B.时间C.方式D.位置【答案】 B8、下列选项关于BIM组织架构说法不正确的是()。

A.BIM组织架构的建立即B.IM团队的构建,是项目目标能否实现的重要影响因素B领导层主要设置行政主管,其主要负责该项目的对外沟通协调,包括与甲方互动沟通、与项目其他参与方协调等C.管理层主要设置技术主管,其主要负责将BIM项目经理的项目任务安排落实到B.IM操作人员,同时对BIM项目在各阶段实施过程中进行技术指导及监督D.作业层主要设置建模团队、分析团队和咨询团队【答案】 B9、从项目管理的角度,BIM技术与项目管理的集成应用在现阶段主要IPD模式和()模式。

A.EPCB.VDC.IFCD.IDM【答案】 B10、以下说法错误的是?()A.参照线主要用于控制角度参变B.族的创建过程中,实体与“参照平面”对齐并锁定或者不锁定,都可以实现“参照平面”驱动实体C.族的创建过程中,“参照平面”和“参照线”用途很广泛D.对于参照平面,“是参照”是最重要的属性【答案】 B11、关于管道系统分类,系统类型和系统名称说法正确的是?()A.系统分类、系统类型和系统名称都是Revit预设,用户无法添加B.系统分类和系统类型是Revit预设用户无法添加的,系统名称用户可以添加C.系统分类是Revit预设用户无法添加的,用户可以添加系统类型和系统名称D.用户可以添加系统分类、系统类型和系统名称【答案】 C12、一般BIM模型拆分要求,根据一般电脑配置要求分析,多专业模型宜控制在()内,单个文件不大于100MB。

美国bim国家标准

美国bim国家标准

美国bim国家标准美国BIM国家标准。

BIM(Building Information Modeling)即建筑信息模型,是一种基于数字化技术的建筑设计、施工和管理方法。

在过去的几年里,BIM已经成为建筑行业的标准工具,其在设计、协作、施工和运营管理方面的优势日益凸显。

为了规范和推动BIM技术在美国的应用,美国国家标准制定了一系列BIM国家标准,以指导和规范建筑行业的BIM应用。

首先,美国BIM国家标准明确了BIM的定义和范围。

BIM不仅仅是一种软件工具,更是一种建筑设计和管理的理念和方法。

BIM国家标准对BIM的定义进行了详细的解释,并明确了BIM在建筑设计、施工和管理各个阶段的应用范围。

其次,BIM国家标准规定了BIM在建筑设计和施工中的数据标准和交换格式。

在BIM中,各种建筑数据需要进行标准化和统一的交换格式,以便不同软件之间的数据互操作和共享。

BIM国家标准对建筑数据的标准化和交换格式进行了详细的规定,确保了建筑设计和施工中各种数据的准确、高效交换和共享。

此外,BIM国家标准还规定了建筑项目中BIM的应用流程和协作机制。

在建筑项目中,各个参与方需要进行协作和配合,BIM国家标准规定了建筑项目中BIM的应用流程和各个参与方之间的协作机制,以确保建筑项目的高效、协调进行。

最后,BIM国家标准还规定了BIM在建筑运营管理中的应用标准。

建筑的运营管理是建筑整个生命周期中非常重要的一个环节,BIM国家标准对建筑运营管理中BIM的应用标准进行了详细的规定,以提高建筑的运营效率和管理水平。

总的来说,美国BIM国家标准对BIM在建筑设计、施工和管理各个阶段的应用进行了全面规范和指导,为建筑行业的BIM应用提供了强有力的支持和指导。

随着BIM技术的不断发展和完善,相信BIM国家标准将会在建筑行业中发挥越来越重要的作用,推动建筑行业的数字化转型和升级。

[1]二建网教《BIM技术应用》(5)

[1]二建网教《BIM技术应用》(5)

BIM技术应用专题1 BIM的概念一、单选1、BIM是以建筑工程项目的(A)作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。

A. 各项相关信息数据B. 设计模型C. 建筑模型D. 设备信息2、以下关于BIM的概念的表述,正确的是(D)。

A. BIM是一类系统B. BIM是一套软件C. BIM是一个平台D. BIM是一种解决方案的集合3、BIM最大的意义在于(D)。

A. 模型应用B. 信息使用C. 平台价值D. 全生命周期应用4、BIM让人们将以往的线条式的构件形成一种三维的立体实物图形展示在人们的面前,这体现了BIM的(A)特点。

A. 可视化B. 协调性C. 优化性D. 可出图性二、多选1、以下关于BIM的概念的表述,正确的是(DE)。

A. BIM是一类系统B. BIM是一套软件C. BIM是一个平台D. 一种解决方案的集合E. BIM是一种基于数字化的工作模式2、BIM具有(ABCDE)特点。

A. 可视化B. 协调性C. 优化性D. 可出图性E. 模拟性三、判断1、美国国家BIM标准(NBIMS 2002)提出了BIM概念产生的背景。

(B) A.正确 B.错误2、BIM的可视化是一种能够同构件之间形成互动性和反馈性的可视。

(A) A.正确 B.错误3、BIM建筑信息模型可在建筑物建造前期对各专业的碰撞问题进行协调,生成协调数据。

(A) A.正确 B.错误4、BIM包含项目建设周期中所有的真实相关信息。

(A) A.正确 B.错误专题2 BIM的发展现状一、单选1、最早关于BIM 的概念是(B)年提出的。

A.1948.0B.1975.0C.1998.0D.2002.02、(C)的颁布,标志着BIM 技术真正成为我国建筑信息化的主线,也成为我国的“BIM 元年”。

A. 《建设领域信息化工作基本要点》B. 《建筑对象数字化定义》C. 《2011-2015 年建筑业信息化发展纲要》D. 《PBIMS标准》3、BIM技术最先从(B)发展开来。

BIM技术应用习题及答案(2017年二建继续教育)

BIM技术应用习题及答案(2017年二建继续教育)

BIM技术应用习题及答案1.BIM是以建筑工程项目的()作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。

A•A. 各项相关信息数据•B. 设计模型•C. 建筑模型•D. 设备信息2.以下关于BIM的概念的表述,正确的是(D)。

•A. BIM是一类系统•B. BIM是一套软件•C. BIM是一个平台•D. BIM是一种解决方案的集合3.BIM最大的意义在于(D)。

•A. 模型应用•B. 信息使用•C. 平台价值•D. 全生命周期应用4.BIM让人们将以往的线条式的构件形成一种三维的立体实物图形展示在人们的面前,这体现了BIM的(A )特点。

•A. 可视化•B. 协调性•C. 优化性•D. 可出图性5.BIM是以建筑工程项目的(A )作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。

•A. 各项相关信息数据•B. 设计模型•C. 建筑模型•D. 设备信息6.以下关于BIM的概念的表述,正确的是(DE)。

•A. BIM是一类系统•B. BIM是一套软件•C. BIM是一个平台•D. BIM是一种解决方案的集合7.BIM最大的意义在于(D )。

•A. 模型应用•B. 信息使用•C. 平台价值•D. 全生命周期应用8.BIM让人们将以往的线条式的构件形成一种三维的立体实物图形展示在人们的面前,这体现了BIM的(A)特点。

•A. 可视化•B. 协调性•C. 优化性•D. 可出图性9.以下关于BIM的概念的表述,正确的是(DE)。

•A. BIM是一类系统•B. BIM是一套软件•C. BIM是一个平台•D. 一种解决方案的集合•E. BIM是一种基于数字化的工作模式10.BIM具有(ABCDE)特点。

•A. 可视化•B. 协调性•C. 优化性•D. 可出图性•E. 模拟性11.以下关于BIM的概念的表述,正确的是(DE)。

•A. BIM是一类系统•B. BIM是一套软件•C. BIM是一个平台•D. 一种解决方案的集合•E. BIM是一种基于数字化的工作模式12.美国国家BIM标准(NBIMS 2002)提出了BIM概念产生的背景。

美国国家BIM标准(NBIMS)第一版_(一)

美国国家BIM标准(NBIMS)第一版_(一)

ForewordNational Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .ForewordThe construction industry is in the middle of a growing crisis worldwide. With 40% of the world’s raw materials being consumed by buildings, the industry is a key player in global economics and politics. And, since facilities consume 40% of the world’s energy and 65.2% of total U.S.electrical consumption, the construction industry is a key player in energy conservation, too! With facilities contributing 40% of the carbon emissions to the atmosphere and 20% of material waste to landfills, the industry is a key player in the environmental equation. Clearly, the construction industry has a responsibility to use the earth’s resources as efficiently as possible.Construction spending in the United States is estimated to be $1.288 trillion for 2008. The Construction Industry Institute estimates there is up to 57% non-value added effort or waste in our current business models. This means the industry may waste over $600 billion each year.There is an urgent need for construction industry stakeholders to maximize the portion of services that add value in end-products and to reduce waste.Another looming national crisis is the inability to provide enough qualified engineers. Someestimate the United States will be short a million engineers by the year 2020. In 2007, the United States was no longer the world’s largest consumer, a condition that will force United States industry to be more competitive in attracting talented professionals. The United States construction industry must take immediate action to become more competitive.The current approach to industry transformation is largely focused in efforts to optimize design and construction phase activities. While there is much to do in those phases, a lifecycle view is required. When sustainability is not adequately incorporated, the waste associated with current design, engineering, and construction practices grows throughout the rest of the facility’s lifecycle. Products with a short life add to performance failures, waste, recycling costs, energyconsumption, and environmental damage. Through cascading effects, these problems negatively affect the economy and national security due to dependence on foreign petroleum, a negative balance of trade, and environmental degradation. To halt current decline and reverse existing effects, the industry has a responsibility to take immediate action.While only a very small portion of facility lifecycle costs occur during design and construction, those are the phases where our decisions have the greatest impact. Most of the costs associated with a facility throughout its lifecycle accrue during a facility’s operations and sustainment. Carnegie-Mellon University research has indicated that an improvement of just 3.8% in productivity in the functions that occur in a building would totally pay for the facility’s design, construction, operations and sustainment, through increased efficiency. Therefore, as industry focuses on creating, maintaining, and operating facilities more efficiently, simultaneous action is required to ensure that people and processes supported by facilities are optimized.BIM stands for new concepts and practices that are so greatly improved by innovative information technologies and business structures that they will dramatically reduce the multiple forms of waste and inefficiency in the building industry. Whether used to refer to a product – Building Information Model (a structured dataset describing a building), an activity – Building Information Modeling (the act of creating a Building Information Model), or a system – Building Information Management (business structures of work and communication that increase quality andefficiency), BIM is a critical element in reducing industry waste, adding value to industry products, decreasing environmental damage, and increasing the functional performance of occupants.ForewordNational Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .The National Building Information Model Standard™ (NBIMS) is a key element to building industry transformation. NBIMS establishes standard definitions for building information exchanges to support critical business contexts using standard semantics and ontologies. Implemented in software, the Standard will form the basis for the accurate and efficientcommunication and commerce that are needed by the building industry and essential to industry transformations. Among other benefits, the Standard will help all participants in facilities-related processes achieve more reliable outcomes from commercial agreements.Thus, there is a critical need to increase the efficiency of the construction process. Today’s inefficiency is a primary cause of non-value added effort, such as re-typing (often with a new set of errors) information at each phase or among participants during the lifecycle of a facility or failing to provide full and accurate information from designer to constructor. With the implementation of this Standard, information interoperability and reliability will improve significantly. Standard development has already begun and implementable results will beavailable soon. BIM development, education, implementation, adoption, and understanding are intended to form a continuous process ingrained evermore into the industry. Success, in the form of a new paradigm for the building construction industry, will require that individuals andorganizations step up to contribute to and participate in creating and implementing a commonBIM standard. Each of us has a responsibility to take action now.David A. Harris, FAIAPresidentNational Institute of Building SciencesTable of ContentsNational Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .ForewordTable of ContentsSection 1 – Introduction to the National Building InformationModeling Standard™ Version 1 - Part 1: Overview,Principles, and MethodologiesChapter 1.1 Executive SummaryChapter 1.2 How to Read Version 1 -Part 1 of the NBIMStandard Navigation guide for readers with varied interests, responsibilities, and experience with BIM.Section 2 – Prologue to the National BIM StandardChapter 2.1 BIM Overall Scope An expansive vision for building informationmodeling and related concepts.Chapter 2.2 Introduction to the National BIM Standard Committee The Committee’s vision and mission,organization model, relationships to otherstandards development organizations,philosophical position, and the Standardproduct.Chapter 2.3 Future Versions Identifies developments for upcoming versionsof the Standard including sequence ofdevelopments, priorities, and planned releasedates.Section 3 – Information Exchange ConceptsChapter 3.1 Introduction to ExchangeConcepts What is an information exchange? Theory and examples from familiar processes.Chapter 3.2 Data Models and the Role of Interoperability.High level description of how BIM informationwill be stored in operational and projectsettings. Compares and contrasts integrationand interoperability and the NBIM Standardrequirement for interoperability.Chapter 3.3 Storing and SharingInformation Description of conceptual need for a shared, coordinated repository for lifecycle information.Presents an approach to providing the sharedinformation for a BIM which can be used byinformation exchangesTable of ContentsNational Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .Chapter 3.4 Information Assurance Discusses means to control information inputand withdrawal from a shared BIM repository.Section 4 – Information Exchange ContentChapter 4.1 BIM MinimumDefines quantity and quality of information required for a defined BIM. Chapter 4.2 Capability Maturity Model Building on the BIM Minimum chapter, furtherdefines a BIM and informs planning to improvethe capability to produce a mature BIM.Section 5 – NBIM Standard Development ProcessChapter 5.1 Overview of ExchangeStandard Developmentand Use ProcessDiagrams and describes major components in NBIM Standard development process. Chapter 5.2 Workgroup Formationand RequirementsDefinition Introduces the concept of forums and domain interest groups forming around needed exchange definitions. Discusses theInformation Delivery Manual (IDM) process andtools for requirements definition activities.Chapter 5.3 User-Facing Exchange Models Covers the IDM requirements for IFC-independent data model views.Chapter 5.4 Vendor-Facing Model View Definition, Implementation and Certification Testing Explains Model View Definition (MVD)requirements for schema-specific modeldefinition and the NBIMS Committee’s role infacilitating implementation and certificationtesting.Chapter 5.5 Deployment Discusses Project Agreements and use ofGeneric BIM Guides associated with BIMauthoring (creating a BIM) using certifiedapplications, validating the BIM construction,validating data in the BIM model, and using theBIM model in certified products to accomplishproject tasks through interoperable exchanges.Chapter 5.6 Consensus-Based Approval MethodsDescribes various methods of creating,reviewing, and approving the NBIM StandardExchange Requirements, Model ViewDefinitions, Standard Methods, Tools, andReferences used by and produced by theNBIMS Committee.Table of ContentsNational Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .AcknowledgementsReferencesGlossaryAppendicesIntroduction to AppendicesAppendix A Industry Foundation Classes(IFC or ifc) IFC define the virtual representations of objects used in the capital facilitiesindustry, their attributes, and theirrelationships and inheritances.Appendix B CSI OmniClass ™OmniClass is a multi-table facetedclassification system designed for useby the capital facilities industry to aidsorting and retrieval of informationand establishing classifications forand relationships between objects ina building information model.Appendix C International Framework for Dictionaries (IFDLibrary ™)A schema requires a consistent set ofnames of things to be able to work.Each of these names must have acontrolled definition that describeswhat it means and the units in which itmay be expressed.Section 1 – Introduction to the National BIM Standard V 1 - Part 1Chapter 1.1National Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .Chapter 1.1 Executive SummaryNational Building Information Modeling Standard™ Version 1 - Part 1:Overview, Principles, and MethodologiesIntroductionThe National Building Information Modeling Standard (NBIMS) Committee is a committee of the National Institute of Building Sciences (NIBS) Facility Information Council (FIC). The vision for NBIMS is “an improved planning, design, construction, operation, and maintenance process using a standardized machine-readable information model for each facility, new or old, which contains all appropriate information created or gathered about that facility in a format useable by all throughout its lifecycle.”1 The organization, philosophies, policies, plans, and working methods that comprise the NBIMS Initiative and the products of the Committee will be the National BIM Standard (NBIM Standard), which includes classifications, guides, recommended practices, and specifications.This publication is the first in a series intended to communicate all aspects of the NBIMS Committee and planned Standard, which will include principles, scope of investigation,organization, operations, development methodologies, and planned products. NBIMS V1-P1 is a guidance document that will be followed by publications containing standard specifications adopted through a consensus process .Wherever possible, international standards development processes and products, especially the NIBS consensus process, American Society for Testing and Materials (ASTM), AmericanNational Standards Institute (ANSI), and International Standards Organization (ISO) efforts will be recognized and incorporated so that NBIMS processes and products can be recognized as part of a unified international solution. Industry organizations working on open standards, such as the International Alliance for Interoperability (IAI), the Open Geospatial Consortium (OGC), and the Open Standards Consortium for Real Estate (OSCRE), have signed the NBIMS Charter inacknowledgement of the shared interests and commitment to creation and dissemination of open, integrated, and internationally recognized standards. Nomenclature specific to North American business practices will be used in the U.S. NBIMS Initiative. Consultations with organizations in other countries have indicated that the U.S.-developed NBIM Standard, once it is localized, will be useful internationally as well. Continued internationalization is considered essential to growth of the U.S. and international building construction industries.BIM Overall Scope and DescriptionBuilding Information Modeling (BIM) has become a valuable tool in some sectors of the capital facilities industry. However in current usage, BIM technologies tend to be applied within vertically integrated business functions rather than horizontally across an entire facility lifecycle. Although the term BIM is routinely used within the context of vertically integrated applications, the NBIMS Committee has chosen to continue using this familiar term while evolving the definition and usage to represent horizontally integrated building information that is gathered and applied throughout the entire facility lifecycle, preserved and interchanged efficiently using open and interoperable technology for business, functional and physical modeling, and process support and operations. 1 Charter for the National Building Information Modeling (BIM) Standard, December 15, 2005, pg.1. See /bim/pdfs/NBIMS_Charter.pdf .Section 1 – Introduction to the National BIM Standard V 1 - Part 1Chapter 1.1National Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .NBIM Standard Scope and DescriptionThe NBIMS Initiative recognizes that a BIM requires a disciplined and transparent data structure supporting all of the following.x A specific business case that includes an exchange of building information. x The users’ view of data necessary to support the business case. x The machine interpretable exchange mechanism (software) for the required information interchange and validation of results.This combination of content selected to support user needs and described to support open computer exchange form the basis of information exchanges in the NBIM Standard. All levels must be coordinated for interoperability, which is the focus of the NBIMS Initiative. Therefore, the primary drivers for defining requirements for the National BIM Standard are industry standard processes and associated information exchange requirements.In addition, even as the NBIM Standard is focused on open and interoperable informationexchanges, the NBIMS Initiative addresses all related business functioning aspects of the facility lifecycle. NBIMS is chartered as a partner and an enabler for all organizations engaged in the exchange of information throughout the facility lifecycle.Data Modeling for BuildingsKey to the success of a building information model is its ability to encapsulate, organize, and relate information for both user and machine-readable approaches. These relationships must be at the detail level, relating, for example, a door to its frame or even a nut to a bolt, whilemaintaining relationships from a detailed level to a world view. When working with as large a universe of materials as exists in the built environment, there are many traditional verticalintegration points (or stovepipes) that must be crossed and many different languages that must be understood and related. Architects, engineers, as well as the real estate appraiser or insurer must be able to speak the same language and refer to items in the same terms as the first responder in an emergency situation. Expand this to the world view where systems must be interoperable in multiple languages in order to support the multinational corporation. Over time ontologies will be the vehicles that allow cross communication to occur. In order to standardize these many options, organizations need to be represented and solicited for input. There are several, assumed to be basic, approaches in place that must come together in order to ensure that a viable and comprehensive end-product will be produced.The Role of InteroperabilitySoftware interoperability is seamless data exchange at the software level among diverseapplications, each of which may have its own internal data structure. Interoperability is achieved by mapping parts of each participating application’s internal data structure to a universal data model and vice versa. If the employed universal data model is open, any application canparticipate in the mapping process and thus become interoperable with any other application that also participated in the mapping. Interoperability eliminates the costly practice of integrating every application (and version) with every other application (and version).The NBIM Standard maintains that viable software interoperability in the capital facilities industry requires the acceptance of an open data model of facilities and an interface to that data model for each participating application. If the data model is industry-wide (i.e. represents the entire facility lifecycle), it provides the opportunity to each industry software application to become interoperable.Section 1 – Introduction to the National BIM Standard V 1 - Part 1Chapter 1.1National Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .Storing and Sharing InformationOne of the innovations, demonstrated by some full-service design and engineering firms and several International Alliance for Interoperability (IAI) demonstration projects, has been the use of a shared repository of building information data. A repository may be created by centralizing the BIM database or by defining the rules through which specific components of BIM models may be shared to create a decentralized shared model. As BIM technology and use matures, thecreation of repositories of project, organization, and/or owner BIM data will have an impact on the framework under which NBIMS operates. Owners are likely to create internally as-built and as-maintained building model repositories, which will be populated with new and updated information supplied via design/construction projects, significant renovations, and routine maintenance and operations systems.Information AssuranceThe authors caution that, while a central (physical or virtually aggregated) repository of information is good for designing, constructing, operating, and sustaining a facility, and therepository may create opportunities for improved efficiency, data aggregation may be a significant source of risk.Managing the risks of data aggregation requires advanced planning about how best to control the discovery, search, publication, and procurement of shared information about buildings and facilities. In general, this is addressed in the data processing industry through digital rights management. Digital rights management ensures that the quality of the information is protected from creation through sharing and use, that only properly authorized users are granted access, and only to that subset of information to which they should have access. There is a need toensure that the requirements for information are defined and understood before BIMs are built, so that facility information receives the same protection that is commonplace in world-wide personnel and banking systems.Minimum BIM and the Capability Maturity ModelThe NBIM Standard Version 1 - Part 1 defines a minimum standard for traditional vertical construction, such as office buildings. It is assumed that developing information exchange standards will grow from this minimum requirement.The Standard also proposes a Capability Maturity Model (CMM) for use in measuring the degree to which a building information model implements a mature BIM Standard. The CMM scores a complete range of opportunity for BIMs, extending from a point below which one could say the data set being considered is not a BIM to a fully realized open and interoperable lifecycle BIM resource.The U.S. Army Corps of Engineers BIM Roadmap 2 is presented as a useful reference for building owners seeking guidance on identifying specific data to include in a BIM from a design or construction perspective.2 See https:///default.aspx?p=s&t=19&i=1 for the complete roadmap.Section 1 – Introduction to the National BIM Standard V 1 - Part 1Chapter 1.1National Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .NBIM Standard Process DefinitionProposals for the processes the NBIMS Committee will employ to produce the NBIM Standard and to facilitate productive use are discussed. A conceptual diagram to orient the user is provided. Components of this diagram correspond to section 5 chapters.Both the process used to create the NBIM Standard and the products are meant to be open and transparent. The NBIMS Committee will employ consensus-based processes to promote industry-wide understanding and acceptance. Additionally, the Committee will facilitate the process whereby software developers will implement standard exchange definitions and implementations tested for compliance. Finally, the NBIMS Committee will facilitate industry adoption and beneficial use through guides, educational activities, and facilitation of testing by end users of delivered BIMs.The Information Exchange Template, BIM Exchange Database, the Information Delivery Manual (IDM), and Model View Definition (MVD) activities together comprise core components of the NBIM Standard production and use process. The Information Exchange Template and BIM Exchange Database are envisioned as web-based tools to provide search, discovery, and selection of defined exchanges as well as a method of providing initial information necessary to propose and begin a new exchange definition discussion. The NBIMS workgroup formation phase teams will use the IDM, adapted from international practices, to facilitate identification and documentation of information exchange processes and requirements. IDM is the user-facing phase of NBIMS exchange standard development with results typically expressed in human-readable form. MVD is the software developer-facing phase of exchange standard development. MVD is conceptually the process which integrates Exchange Requirements (ERs) coming from many IDM processes to the most logical Model Views that will be supported by softwareapplications. Implementation-specific guidance will specify structure and format for data to be exchanged using a specific version of the Industry Foundation Classes (IFC or ifc) specification. The resulting generic and implementation-specific documentation will be published as MVDs, as defined by the Finnish Virtual Building Environment (VBE) project,3 the Building Lifecycle Interoperability Consortium (BLIS),4 and the International Alliance for Interoperability (IAI).5 The Committee will work with software vendors and the testing task team members to plan and facilitate implementation, testing, and use in pilot projects. After the pilot phase is complete, the Committee will update the MVD documents for use in the consensus process and ongoing commercial implementation. Finally, after consensus is reached, MVD specifications will be incorporated in the next NBIMS release.NBIMS AppendicesReference standards in the NBIM Standard provide the underlying computer-independent definitions of those entities, properties, relationships, and categorizations critical to express the rich language of the building industry. The reference standards selected by the NBIMSCommittee are international standards that have reached a critical mass in terms of capability to share the contents of complex design and construction projects. NBIMS V1-P1 includes three candidate reference standards as Appendix documents: IAI Industry Foundation Classes (IFC or ifc), Construction Specifications Institute (CSI) OmniClass ™, and CSI IFDLibrary ™.3http://cic.vtt.fi/projects/vbe-net/4 5Section 1 – Introduction to the National BIM Standard V 1 - Part 1Chapter 1.1National Building Information Modeling Standard™©2007 National Institute of Building Sciences. All rights reserved .The IFC data model consists of definitions, rules, and protocols that uniquely define data sets which describe capital facilities throughout their lifecycles. These definitions allow industrysoftware developers to write IFC interfaces to their software that enable exchange and sharing of the same data in the same format with other software applications, regardless of the internal data structure of the individual software application. Software applications that have IFC interfaces are able to exchange and share data with other application that also have IFC interfaces.The OmniClass ™ Construction Classification System (OmniClass or OCCS) is a multi-tableclassification system designed for use by the capital facilities industry. OmniClass includes some of the most commonly used taxonomies in the capital facilities industry. It is applicable for organizing many different forms of information important to the NBIM Standard, both electronic and hard copy. OCCS can be used in the preparation of many types of project information and for communicating exchange information, cost information, specification information, and other information that is generated throughout the facility’s lifecycle.IFDLibrary ™ is a kind of dictionary of construction industry terms that must be used consistently in multiple languages to achieve consistent results. Design of NBIMS relies on terminology and classification agreement (through OmniClass ) to support model interoperation. Entries in the OmniClass tables can be explicitly defined in the IFDLibrary once and reused repeatedly,enabling reliable automated communications between applications – a primary goal of NBIMS. ReferencesNBIMS References in this document represent the work of many groups working in parallel to define BIM implementation for their areas of responsibility. Currently there are four types of references.x Business Process Roadmaps are documents that provide the business relationships of the various activities of the real property industry. These will be the basis for organizing the business processes and will likely be further detailed and coordinated over time. The roadmaps will help organize NBIMS and the procedures defined in the InformationDelivery Manuals (IDMs).x Candidate Standards are documents that are candidates to go through the NBIMS consensus process for acceptance as part of future NBIMS. It is envisioned that Part 2 or later releases of the Standard will incorporate these documents once approved.x Guidelines have been developed by several organizations and include items that should be considered for inclusion in NBIMS. Since NBIMS has not existed prior to this, there was no standard from which to work, resulting in a type of chicken-or-egg dilemma.When formal NBIMS exists there will need to be some harmonization, not only between the guidelines and NBIMS, but also in relating the various guidelines to each other.While guidelines are not actually a part of NBIMS, they are closely related and therefore included as references.xOther Key References are to parallel efforts being developed in concert with NBIMS. Not part of NBIMS, they may, in fact, be standards in their own right.。

国标《建筑信息模型应用统一标准》主要技术内容

国标《建筑信息模型应用统一标准》主要技术内容

《建筑信息模型应用统一标准》是我国第一部建筑信息模型应用的工程建设标准,提出了建筑信息模型应用的基本要求,是建筑信息模型应用的基础标准,可作为我国建筑信息模型应用及相关标准研究和编制的依据。

本篇,将对《标准》的编制背景、编制过程、主要技术内容以及国际BIM标准进行系统介绍。

一、编制背景2011年,住房和城乡建设部在《2011-2015年建筑业信息化发展纲要》中明确提出,在“十二五”期间加快建筑信息模型(BIM)、基于网络的协同工作等新技术在工程中的应用,并特别要求“完善建筑业行业与企业信息化标准体系和相关的信息化标准”。

我国已在2010年将BIM的国际标准之一ISO/PAS 16739:2005《Industry Foundation Classes, Release 2x, PlatformSpecification (IFC2x Platform)》等同采用为国家标准GB/T 25507-2010《工业基础类平台规范》。

但我国的BIM应用工程建设标准仍属空白,无法为我国建筑工程建设各阶段BIM技术的应用实践及发展提供技术指导和规范。

2012年1月17日,住房和城乡建设部印发《2012年工程建设标准规范制订、编制计划》(建标[2012]5号),国家标准《建筑工程信息模型应用统一标准》(以下简称《标准》)列入制订计划,由中国建筑科学研究院会同有关单位进行编制。

二、编制过程2012年3月28日,《标准》编制组成立会召开。

住房和城乡建设部标准定额司、住房和城乡建设部标准定额研究所、住房和城乡建设部信息技术应用标准化技术委员会有关领导以及《标准》编制组成员出席了会议。

《标准》编制组组长黄强研究员作《中国BIM标准发展战略与实施研究框架》专题报告。

编制组成员讨论了《标准》编制大纲(草案)和拟研究的课题内容。

会议确定了BIM技术与我国的建筑工程应用软件紧密结合的P-BIM路线,以及以既有产品成果为依托、实现上下游数据贯通、达到数据完备性要求,并在此基础上实现以三维空间数据及图形的BIM发展、具有可拓展性和前瞻性,统一数据库的存储和获取、考虑数据安全机制等技术要求。

建筑BIM工程师考试(习题卷2)

建筑BIM工程师考试(习题卷2)

建筑BIM工程师考试(习题卷2)第1部分:单项选择题,共74题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]()应表明管道走向、管径、坡度、管长、进出口(起点、末点,标高、各系统编号、各楼层卫生设备和工艺用水设备的连接点位置和标高)。

A)管道系统图B)管道平面图C)局部设施图D)详图答案:A解析:平面图主要表达的是管线的布置,局部设施图主要是针对建筑物内有提升、调节或小型局部设施的情况,详图主要针对的是管道附件、设备、仪表及特殊配件需要加工又无标准图的情况。

2.[单选题]下列选项中,关于Tekla(Xsteel)主要功能描述不正确的是()。

A)施工详图需手动生成B)具备校正检查的功能C)零件数据可自动生成D)可以进行三维钢结构建模答案:A解析:Tekla(Xsteel)是来自芬兰的钢结构深化设计软件,主要功能包括三维钢结构建模,进行零件、安装、总体布置图及各构件参数、零件数据、施工详图自动生成,具备校正检查的功能。

3.[单选题]按()划分可将BIM在项目管理中应用内容划分为人员管理、机具管理、材料管理、工法管理等。

A)工作阶段B)工作对象C)工作内容D)工作目标答案:B解析:见BIM在项目管理中应用内容划分表,人员、机具、材料、工法是属于工作对象。

4.[单选题]选中一段管道,鼠标靠近端点控制柄然后右键点击,以下不包含在弹出对话框中的命令为()。

A)绘制管道B)绘制管道占位符C)绘制软管D)绘制管件答案:D解析:5.[单选题]BIM是近十年在原有CAD技术基础上发展起来的一种多维模型信息集成技术,其中多维是指三维空间、四维时间、五维()、N维更多应用。

A)设计B)成本C)运营D)开发答案:B解析:BIM的全称是BuildingInformationModeling,即建筑信息模型,BIM技术是一种多维(三维空间、四维时间、五维成本、N维更多应用)模型信息集成技术。

6.[单选题]创建结构墙,选项栏设置为F1,高度设置为未连接,输入3000数值,偏移量500,创建该建筑墙之后属性栏显示()。

(精选)建筑信息模型(BIM)概论第六章 BIM标准课件

(精选)建筑信息模型(BIM)概论第六章 BIM标准课件

6.1国外BIM标准
• 芬兰政府物业管理机构 Senate Properties 于2007年正式 发《布BIM Requirements 2007 》,共分为 9 卷,包括总则、
建境模、环建筑、机电、构造、质量保证和模型合并、造价、可视化、 机分析等内容。
6.1国外BIM标准
• 澳大利亚于 2009 年出台《国家数码模型指南和案例》,旨 在广推BIM全生命周期的应用。内容由3部分组成: BIM 概况、
• 言IF,C 也标是准行是业针的对数建据筑标工准程。以及工程内所有的实体构件的数据模型的 描述, 由于IFC 确定了一个通用的数据模型标准,故与一般的数据 定义不同之 处在于采用何种形式化的数据规范语言来保证描述的精 确性和一致性。 EXPRESS 语言是一种规范化、面向对象的数据描述 语言,其重点是实 体的概念。实体作为一种结构化数据类型,表示一类具有共同特性的 实 体对象,而对象的特性通过属性和规则的定义在实体中表达。 EXPRESS 提供建筑工程以及工程内各种实体模型数据进行标准化描述 的机制,所有的数据交换模型和标准数据存取,都采用此语言进行描 述。
6.3LOD标准
• LOD被定义为5个等级,从概念设计到竣工设计,已经足够来 定 义整个模型过程。但为给未来可能会插入等级预留空间, 定义 LOD为100~500。
• 模型的细致程度,等级定义如下: • 100级别: Conceptual 概念 化• 2。00级别: Approximate geometry 近似构件(方案及扩 初• )30。0级别: Precise geometry 精确构件(施工图及深化施工 图• )④4。00级别: Fabrication 加工和制造精 度• 。⑤500级别: As-built 竣工模 型。

2022年-2023年BIM工程师之BIM工程师过关检测试卷A卷附答案

2022年-2023年BIM工程师之BIM工程师过关检测试卷A卷附答案

2022年-2023年BIM工程师之BIM工程师过关检测试卷A卷附答案单选题(共40题)1、BIM技术在设计阶段主要任务不包括( )。

A.进度控制B.造价控制C.安全管理D.项目可行性验证【答案】 D2、下列( )是建设工程生产过程的总集成者,也是建设工程生产过程的总组织者。

A.业主B.设计单位C.政府部门D.施工单位【答案】 A3、三维激光扫描仪垂直扫描范围()。

A.180°B.270°C.300°D.360°【答案】 C4、初步设计阶段的BIM应用不包括以下哪个选项()。

A.结构分析B.性能分析C.建筑施工模拟D.工程算量统计【答案】 C5、每个项目的完成会给企业带来一些方面的成果,这类成果不包括()。

A.提升企业形象B.实现企业目标C.增加企业收益D.形成企业知识【答案】 B6、BIM技术在温度监测中,BIM运维平台中可以获取建筑中()的相关信息数据。

A.模型整体B.BIM模型中任意一点C.温度测点D.空调位置点【答案】 C7、初步设计阶段BIM主要应用不包括()。

A.结构分析B.性能分析C.方案比选D.工程算量【答案】 C8、设计单位对BIM项目管理的需求不包括()。

A.提高设计质量B.提高设计效率C.施工模拟D.可视化的设计会审【答案】 C9、下列关于IFC标准介绍正确的是()。

A.IFC标准是开放的建筑产品数据表达与交换的国际标准B.IFC标准是多家厂商软件间的数据交换基础C.IFC标准是我国自定义标准D.IFC标准是一种计算机语言E.IFC标准是一种数据格式【答案】 A10、下面哪一项不是机房机电安装工程BIM深化设计的内容?()A.基础建模B.机电设备建模C.机电管线建模D.碰撞检查【答案】 A11、()是两形体表面的共有线。

A.相贯线B.轴线C.投影线D.轮廓线【答案】 A12、在设计时,往往由于各专业设计师之间的沟通不到位,而出现各种专业之间的碰撞问题,BIM的()就可以帮助处理这种问题。

bim应用实施标准

bim应用实施标准

bim应用实施标准
BIM(Building Information Modeling,建筑信息模型)是一种数字化建筑设计和施工管理的方法,它可以提供建筑项目全生命周期的信息和协作平台。

虽然没有一个通用的全球标准,但许多国家和地区都制定了自己的BIM应用实施标准。

以下是一些常见的BIM应用实施标准:
1.美国国家BIM标准(NBIMS-US):由美国国家BIM标准委员会制定,包括了BIM使用的信息要求、协议和最佳实践等内容。

2.英国BIM标准(PAS 1192系列):由英国建筑信息管理协会(BIM Level 2)制定的一系列标准,包括了从设计到运营的BIM应用要求和流程。

3.欧洲BIM标准(EN ISO 19650系列):由欧洲标准化委员会(CEN)和国际标准化组织(ISO)联合制定的一系列标准,包括了BIM应用的要求和流程。

4.新加坡BIM指南:由新加坡国家发展部和建筑与建设局制定的BIM应用指南,包括了BIM在建筑项目中的实施要求和指导。

除了这些国家和地区的标准外,还有许多其他国家和地区制定了自己的BIM 应用实施标准。

此外,一些行业组织和公司也制定了自己的BIM标准,以满足特定行业或组织的需求。

因此,在具体的项目中,需要根据所在国家或地区的要求,以及项目的特定需求,选择适用的BIM应用实施标准。

bim标准解读

bim标准解读

bim标准解读什么是BIM标准?为什么BIM标准如此重要?如何解读BIM标准的内容?本文将会一步一步回答这些问题,以帮助读者更好地理解BIM标准。

第一步:定义BIM标准BIM标准是指为建筑信息模型(Building Information Modeling)制定的一系列规范和准则。

BIM标准涵盖了BIM模型的建模流程、数据交换格式、协作要求、质量控制等方面的要求。

BIM标准可以帮助各方在建设项目中采用统一的BIM方法,并确保BIM数据的一致性和可靠性。

第二步:BIM标准的重要性BIM标准非常重要,原因如下:1. 提高工作效率:BIM标准可以明确各方在建模过程中的职责和要求,减少不必要的沟通和协调工作,提高工作效率。

2. 降低错误风险:BIM标准规定了建模的标准流程和质量要求,可以帮助发现和纠正潜在的错误,在项目实施阶段降低错误的风险。

3. 促进协作和集成:BIM标准规范了BIM数据的交换格式和协作要求,有助于各方之间的协作和信息集成,减少信息断层和冲突。

4. 提供基础设施支持:BIM标准为BIM软件和工具的开发提供了基础支持,有助于推动BIM技术的应用和发展。

第三步:BIM标准的内容解读BIM标准的内容通常包括以下几个方面:1. BIM建模规范:规定了BIM模型的建模方法、参数设置、命名规则等,确保建模结果的一致性和可用性。

2. BIM数据交换格式:规定了BIM数据的文件格式、数据结构、数据元素定义等,确保BIM数据的交换和共享的有效性。

3. BIM协作要求:规定了BIM数据的协作平台、文件版本控制、权限管理等,确保各方在BIM项目中的协作顺畅和安全。

4. BIM质量控制:规定了BIM模型的质量标准、审核流程、错误纠正等,确保BIM模型的质量符合项目要求。

5. BIM标准的更新和维护:规定了BIM标准的更新机制、维护责任等,确保BIM标准的持续改进和适应行业发展的需求。

在解读BIM标准的内容时,需要注意以下几个方面:1. 准确理解标准中的术语和定义:通读标准文件,确保对其中的术语和定义有准确的理解,避免解读的偏差。

建筑信息模型BIM技术介绍之欧阳科创编

建筑信息模型BIM技术介绍之欧阳科创编

建筑信息模型BIM技术介绍****有限公司技术中心8月18日目录1 BIM的概念11.1 BIM概念理解11.2 BUILDING含义12 BIM成长轨迹13 BIM的信息载体24 BIM的实现手段34.1 BIM设计类软件44.2 BIM施工类软件64.3 与BIM核心软件具有互用性的软件75 BIM的阐发应用106 BIM的生命力117 BIM的价值优势118 BIM在建设项目各阶段的具体应用118.1可行性研究阶段118.2设计工作阶段128.3 建设实施阶段138.4 运营维护阶段139 REVIT、NAVISWORK及相关软件工程应用实例14 9.1工程概述149.2 BIM建模149.3编制进度计划159.4 4D建模1510 BIM与云工作台(CLOUD)151 BIM的概念美国国家BIM标准对BIM的界说:“BIM是建设项目兼具物理特性与功能特性的数字化模型,且是从建设项目的最初概念设计开始的整个生命周期里做出任何决策的可靠共享信息资源”。

实现BIM的前提是:在建设项目生命周期的各个阶段不合的项目介入方通过在BIM建模过程中拔出、提取、更新及修改信息以支持和反响出各介入方的职责。

BIM是基于公共标准化协同作业的共享数字化模型。

1.1BIM概念理解BIM的概念分化为两个方面,BIM既是模型结果(Product)更是过程(Processs)。

(1)BIM作为模型结果(product)BIM作为模型结果,与传统的3D建筑模型有着实质的区别,其兼具了物理特性与功能特性。

其中,物理特性(Physical Characteristic),可以理解为几何特性(Geometric Characteristic);而功能特性(Functional Characteristic),是指此模型具备了所有一切与该建设项目有关的信息。

(2)BIM作为过程(Proeess)BIM是一种过程,其功能在于通过开发、使用和传递建设项目的数字化信息模型以提高项目或组合设施的设计、施工和运营管理。

美国国家BIM标准的技术细节

美国国家BIM标准的技术细节
[1]
Charter for the National Building Information Model (BIM) Standard, December 15, 2005, pg.1. See /bim/pdfs/NBIMS_Charter.pdf.
Approval to continue received
3 Construct, commission, & hand over building structure
Operate & Maintain Building Structure
Building Information Model
er_exchange_ er_exchange_ er_exchange_ architectural_design structural_specifications project_plans (outline)
Structural Engineering
Structural Designer
Yes
2 Produce Structural Design No Approval to Continue to Construction Stage
Structural Contractor
定义信息交 换需求
Yes
将BIM互操作性变成现实:
国家BIM标准的技术细节
Deke Smith, AIA
For Dr. Francois Grobler
美国,华盛顿特区
National Institute of
Building Sciences
This presentation is a collaborative product including the NIBS NBIMS Project Committee and others. Copyright F. Grobler

国外BIM介绍(美国BIM标准和VA BIM指南)

国外BIM介绍(美国BIM标准和VA BIM指南)

发布
美国国家 目的 BIM标准
观点:
建筑业设计、施工的无用功和浪费高达57%, 而制造业只有26%,buildingSMART联盟认为 通过改善我们提交、使用和维护建筑信息的 流程,建筑行业完全有可能在2020年消除高 出制造业的那部分浪费(31%)
通过提供一种组 织和划分电子数 据对象以及培养 业主、设计师、 材料供应商、施 工方、设备管理 者等所有和建筑 环境有联系的相 关方之间流畅的 沟通交流的手段 来推进建筑环境 全生命周期的艺 术和科学
现浇混凝土、钢框架、 铝幕墙、液压货运电 梯,热电锅炉,室内 照明
表23-产品 用来区分有形的建设资源
永久并入建造实体的构件或构件的装配 混凝土、普通砖、门、 电器接线盒
表32-服务
和设计、施工、维护、翻新、拆除、运 行、停运相关活动、过程和工序以及在 建造实体生命周期内产生的其他所有功 能
规划、招标、预算、 施工、勘测、维护、 检查
二、VA(甲方) BIM指南
1.关于VA 2.关于BIM指南 3.实施基本原则 4.设计BIM管理计划 5.VA要求的BIM使用 6.VA鼓励的BIM使用 7.图纸-房间命名 8.图纸-木制品材料 9.图纸-详图注释
1
第一节
美国国家BIM标准
2
背景介绍
buidingSMART联盟
美国建筑科学研究院 在信息资源和技术领 域的一个专业委员会
C5.2 最小BIM
391-404
C5.3 BIM项目执行规划指南
405-416
C5.4 BIM项目执行计划内容
417-425
C5.5Biblioteka 机械,电气,给排水,消防系统空间协调需 要的施工安装模型和可交付成果

你还不了解BIM标准吗?——从四种维度了解BIM标准

你还不了解BIM标准吗?——从四种维度了解BIM标准

你还不了解BIM标准吗?——从四种维度了解BIM标准来源丨万间科技发布丨绿盟_赵磊做了那么久的BIM,你还只是停留在建模阶段吗?再不督促自己学点就要Out了;BIM标准太多,看得云里雾里?不要着急,小万带你从四种维度了解BIM标准。

▲ 从业人员BIM标准导航图目前国内外关于BIM标准可以归为三个方面,分别是BIM理论体系、BIM软件研发和BIM工程应用三个方面。

就目前的BIM标准具体分析,可把BIM标准归为4类,如下:第一类:美国国家BIM标准NBIMS,分别于2007、2012和2015年发布了三个版本,NBIMS的内容涵盖了BIM理论体系、软件和应用三个方面,应该是到目前为止想要系统、深入学习BIM的同行最好的学习资料,从事不同BIM工作(包括BIM理论研究、软件开发、BIM应用)的同行可以根据自己工作需要和兴趣学习对应的内容,其中的BIM理论体系部分能够帮助读者全面和系统地认识BIM。

第二类:中国工程建设标准化协会建筑信息模型专业委员会(简称中国BIM标委会)主持编制的一系列P-BIM标准,内容为各个专业或任务的“软件功能与信息交换标准”,2017年6月15日发布了《规划和报建P-BIM软件功能与信息交换标准》(T/CECS-CBIMU 1-2017)等13项,这个系列标准覆盖BIM应用(其软件功能部分)和软件研发(其信息交换部分)两个方面,工程技术和管理人员一般而言只需要了解其BIM应用部分(软件功能)的内容。

第三类是主要给软件研发人员使用的标准,包括国际上的IFC/IFD/IDM/MVD/Omniclass/Uniclass标准,以及已经立项正在编制过程中的国家《建筑信息模型存储标准》和《建筑信息模型编码标准》,这些标准跟建筑业从业人员不是直接使用的关系,而是需要通过相应的软件工具去使用的标准,工程技术和管理人员基本上没有必要在这些标准上花时间,就如同大家使用手机和自动取款机没有必要了解它们各自执行的标准一样,相信如果把手机和自动取款机执行的标准拿出来,对绝大多数人来说都是天书,如果要掌握这些标准才能使用手机和自动取款机的话,估计也就没有多少人有能力使用手机和取款机了。

企业建筑信息模型实施能力成熟度评价标准

企业建筑信息模型实施能力成熟度评价标准

企业建筑信息模型实施能力成熟度评价标准下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!企业建筑信息模型(BIM)是一种数字化工具,用于设计、建造和管理建筑项目。

BIM模型深度标准及定义

BIM模型深度标准及定义

1.BIM模型深度标准及定义
美国建筑师学会(AIA)以“模型精度等级(LOD-Level of Detail)“来定义BIM模型中建筑元素的精度高低。

将LOD共分为5级:
1)LOD100——概念性:示以几何数据,或线条、面积、体积区域等。

2)LOD200——近似几何:以3D显示通用元素,包括其最大尺寸和用途。

3)LOD300——精确几何:以3D表达特定元素,具体几何数据的3D对象,包含尺
寸、容量、连接关系等。

4)LOD400——加工制造:即为加工制造图,用以采购、生产及安装;具有精确性特
点。

5)LOD500——建成竣工:建筑部件实际成品。

参考上述规定,再比照我国相关制图规范标准,特将传统设计阶段——方案阶段、初步设计阶段、施工图阶段、施工图深化阶段、运维阶段分别和LOD100、200、300、400、500对应。

1.1各专业在不同阶段模型精度等级:
1.2各专业模型精度等级具体要求:。

【盈嘉昕语】解读《美国国家BIM标准》系列之––BIM能力成熟度模型(三)

【盈嘉昕语】解读《美国国家BIM标准》系列之––BIM能力成熟度模型(三)

【盈嘉昕语】解读《美国国家BIM标准》系列之––BIM 能力成熟度模型(三)陆一昕澳洲Wollongong大学计算机科学硕士,PMP;数字化工程领域专家;曾完成国内某大型核电EPC工程数字化技术应用与研究。

现致力于泛建筑业的BIM+GIS+IoT+大数据方向的技术研究与应用。

盈嘉互联(北京)科技有限公司合伙人、BOS产品总监。

BIM 能力成熟度模型CMM解读本周姗姗来迟,这次咱们来说说BIM生命周期的故事,这也是BIM CMM的第二个重要维度“Life Cycle View”。

建筑的生命周期很长,他涵盖了从设计、生产(供应链)、施工、运维几个阶段,在这每个阶段中,都会产生大量的信息和数据。

从BIM信息的完整性角度来看,这些都是BIM信息来源的重要环节,同时BIM数据在这每个环节是需要流转、协同和复用的。

在美国规范中,CMM关于生命周期应用的定义是这样的:目前,我们的BIM应用大部分还是集中在规划和设计阶段,大家主要还是关注了三维建模展示、管线综合、设计协同等方面的应用;一小部分BIM应用到了生产和施工阶段,比如:提取材料清单、造价成本管理、施工方案模拟、施工进度模拟等5D 应用。

极少部分关注了在运维阶段的应用。

同时,BIM CMM还非常强调数据的无缝流转和复用,每个阶段的数据是需要流畅地传递到下游的,一个阶段一个阶段进行数据叠加,这样才能使BIM数据的价值持续增长,而不是形成一个个独立的数据包。

当然,我认为在国内,BIM信息之所以无法很好的做到全生命周期和数据高效传递、复用,很大一部分原因是由于我们所处的行业是业务垂直型的生态体系,数据协同必然会遇到企业壁垒的问题。

抛开企业管理的问题,单从技术角度,我们如何能提升BIM在全生命周期的应用能力呢?以下是几个建议:1、提前做好数据规划数据规划是在BIM实施前非常至关重要的一个环节,在这个环节,我们需要明确定义出各个阶段需使用的数据内容、格式规范、数据来源、相互之间的对应关系,这样才能确保BIM信息既能满足各阶段使用方的需求,又不会造成数据冗余,并为数据协同、流转做好技术准备,事半功倍。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解读《美国国家BIM标准》
– BIM能力成熟度模型(二)陆一昕
上次和大家一起了解了下《美国国家BIM标准V3》中提到的能力成熟度模型CMM 及11个评价维度。

从本周开始,我将与您一同揭开这11个维度的神秘面纱,共同探究BIM CMM精彩的内涵和外延。

今天和大家一同分享的是“数据内容(Data Richness)”。

在BIM实施和应用的过程中,我们经常会遇到这样的困惑“高质量的BIM模型中到底需要包含多少信息?”、“BIM数据是否可信?”、“数据有效性如何保证?”、“信息间的逻辑关系如何存放和展示?”,CMM通过“数据内容”这一项关键指标,很好地回答了这些问题。

CMM是这样定义的:
从上述定义中不难发现,BIM CMM对“数据内容”提出了很高的要求,从数据的种类、规范性、可信度、关联度等多方面进行了综合评价。

目前,国内BIM大多还处于较初级的阶段(1-2级),我们主要还是停留在设计阶段应用BIM,搭建一个三维模型并输入了有限的信息,解决了建筑物可视化展示和简单的碰撞检查等设计阶段的问题。

那么我们该如何来提升BIM能力成熟度呢?个人认为以下几个关键点是现阶段我们
进行能力提升的升级途径:
1.数据的完整性
BIM数据其实包含的内容可以很多,不仅仅有用来描述建筑物和构件的静态数据,还应包含大量的业务数据,甚至动态数据。

业务数据是指,在设计-制造-施工-调试-交付-运维等各阶段产生的业务数据,如:业务编码、厂家信息、备品备件、WBS、安装位置、变更信息、质量监测信息、调试参数、维保维修信息等。

动态数据是指在运维阶段设备产生的实时动态数据。

这些数据加在一起,才形成了一个完整的BIM 数据链,能为一个项目的建设和运行管理创造价值。

目前国内设计、施工、运营等各家企业都在分别做自己的BIM和平台,都希望做全做准确,但由于行业的壁垒,谁都无法靠一己之力把整个产业链上的数据做全,以致最后BIM数据被分割成一个个信息孤岛。

要让BIM真正实现全生命周期数据贯通,最佳的方法是建立一个统一的数据平台,各阶段BIM数据在这个平台上进行提交和验收,直至最后的数字化竣工移交。

这个平台可由业主方或其委托方牵头搭建,各方负责各自的数据维护,在平台上按角色进行授权管理。

这样既可保证数据的完整性,又可确保各方的信息安全。

2.数据权威性与责任制
数据可信度也是评价BIM应用成熟度高低的一个重要指标。

往往我们在推行BIM 时经常会有人质疑“BIM模型里面的数据是真实的吗?和图纸完全一样吗?”,有这样的问题,本身也说明我们对BIM的理解和应用还处于非常初级的阶段。

BIM数据是否可信,关键在于我们是否有明确的数据责任制度,即这些BIM数据该由谁或组织来生成并对其准确性负责。

通常有一种错误的做法,BIM数据是由单独的数据录入人员来完成的,而不是真正的业务人员。

这就必然会导致数据责任人不清晰,甚至最终数据失真的情况。

因此,我认为数据责任人应与业务责任人保持一致,或者有明确的对应关系,做到谁生产的数据谁负责。

有了能对数据准确性负责的人后,自然会提高数据的权威性。

3.数据有效性校验
为了保证BIM数据的准确、可靠,CMM对数据有效性也提出了相应的要求,其中包括了需要有元数据,以及对应的数据校验机制。

元数据是用来定义数据的数据,简单的说就是规定了数据类型、格式、范围值等规则,他是规范BIM数据的卡尺,是数据准入需要遵守的基础规则。

当然,具体规
则可由每个BIM实施者自己定义。

有了数据规范后,该用何种方式执行这样的数据校验呢?人工校验当然可以,但是这种方式的弊端也显而易见,费时费力,且无法避免人为失误可能带来的影响。

所以利用元数据,制定自动化的数据校验流程是最佳的方式。

让电脑来完成这些有规则,且机械性的重复劳动再合适不过了。

相关文档
最新文档