四点平滑、八点平滑、中值滤波、直方图均匀化、线性变换

合集下载

图像处理-中值滤波

图像处理-中值滤波

图像处理-中值滤波1、滤波滤波(Wave filtering)是将信号中特定波段频率滤除的操作,是抑制和防⽌⼲扰的⼀项重要措施。

在图像处理中,滤波是图像预处理的⼀种。

图像处理中滤波将信号中特定的波段频率滤除,从⽽保留所需要的波段频率信号。

2、滤波的作⽤(1)消除图像中混⼊的噪声对应的是低通滤波,噪声在图像中⼀般是⾼频信号。

(2)为图像识别抽取出图像特征这⾥的特征⼀般为边缘纹理的特征,对应的是⾼通滤波,图像中边缘和纹理细节是⾼频信号。

3、滤波的分类图像中滤波算法的分类有很多,可以分为线性滤波和⾮线性滤波,可以分为相关滤波和卷积滤波,还可以分为⾼通滤波和低通滤波,空间滤波和频域滤波。

3.1线性滤波⽤于时变输⼊信号的线性运算,在图像处理中可以这么理解,对于输⼊的信号(即要处理的图像),进⾏的是线性的运算,得出的结果作为输出图像。

线性滤波的包含⽅框滤波、均值滤波、⾼斯滤波、拉普拉斯滤波、sobel算⼦等。

3.2⾮线性滤波输出的信号响应是由输⼊经过⾮线性的运算得到的。

⽐如典型的中值滤波,就是取像素点邻域的中值作为像素的的响应输出。

⾮线性滤波包含中值滤波和双边滤波4、中值滤波中值滤波是基于排序统计理论的⼀种能有效抑制噪声的⾮线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中⼀点的值⽤该点的⼀个邻域中各点值的中值代替,让周围的像素值接近的真实值,从⽽消除孤⽴的噪声点。

⽅法是⽤某种结构的⼆维滑动模板,将板内像素按照像素值的⼤⼩进⾏排序,⽣成单调上升(或下降)的为⼆维数据序列。

⼆维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。

W为⼆维模板,通常为3x3,5x5区域,也可以是不同的的形状,如线状,圆形,⼗字形,圆环形等。

原理图解释:456827569g(x,y)=med{f(x-k,y-l),(k,l∈W)}g =med[4,5,6;8,2,7;5,6,9] = 62、4、5、5、6、6、7、8、9中间的值为66MATLAB程序clcclearclear allclose all%%%对图像做中值滤波处理img = imread('1.png');figure(1)subplot(2,2,1),imshow(img),title('原始图像')%%%将彩⾊图像转灰度图像img_gray = rgb2gray(img);subplot(2,2,2),imshow(img_gray),title('RGB-GRAY灰度图像')%%%加⼊椒盐噪声img_salt=imnoise(img_gray,'salt & pepper',0.3);subplot(2,2,3),imshow(img_salt),title('加⼊椒盐噪声后')%%%系统⾃带的中值滤波系统⾃带的中值滤波输⼊参数为2维图像img_mid=medfilt2(img_salt,[33]);subplot(2,2,4),imshow(img_mid),title('对噪声图像中值滤波后');%%%对彩⾊图像滤波figure(2)subplot(2,2,1),imshow(img),title('原始图像')img_salt=imnoise(img,'salt & pepper',0.3);subplot(2,2,2),imshow(img_salt),title('加⼊椒盐噪声后')img_rgb = img;img_rgb(:,:,1) = medfilt2(img(:,:,1),[33]);img_rgb(:,:,2) = medfilt2(img(:,:,2),[33]);img_rgb(:,:,3) = medfilt2(img(:,:,3),[33]);subplot(2,2,3),imshow(img_rgb),title('加⼊中值滤波后')⾃定义的函数function [ img ] = median_filter( image, m )%----------------------------------------------%中值滤波%输⼊:%image:原图%m:模板的⼤⼩3*3的模板,m=3%输出:%img:中值滤波处理后的图像%----------------------------------------------n = m;[ height, width ] = size(image);x1 = double(image);x2 = x1;for i = 1: height-n+1for j = 1:width-n+1mb = x1( i:(i+n-1), j:(j+n-1) );%获取图像中n*n的矩阵mb = mb(:);%将mb变成向量化,变成⼀个列向量mm = median(mb);%取中间值x2( i+(n-1)/2, j+(n-1)/2 ) = mm;endendimg = uint8(x2);endimg_mid_salt = median_filter( img, 3 );subplot(2,2,4),imshow(img_mid_salt),title('⾃定义中值滤波后')还有⼀种计算中值的⽅法,适合在硬件上实现当我们使⽤3x3窗⼝后获取领域中的9个像素,就需要对9个像素值进⾏排序,为了提⾼排序效率,排序算法思想如图所⽰。

医学图像处理实验报告

医学图像处理实验报告
c、利用预定义函数fspecial命令产生平均(average)滤波器
d、分别对其进行10*10、5*5、2*2的均值滤波;
e、显示原图像和选用不同大小模版处理后的图像。
(3)高斯滤波
a、读入图像;
b、对数字图像进行直方图均衡化处理;
c、选择高斯滤波参数(标准差)sigma为1.6;
d、选择滤波器尺寸为5*5;
i、显示原图像和处理后的图像。
(2)四八领域均值滤波
a、读入图像;
b、转换图像矩阵为双精度型;
c、创建4邻域平均滤波模版[0 1 0; 1 0 1; 0 1 0];
创建8邻域平均滤波模版[1 1 1; 1 0 1; 1 1 1];
d、进行滤波;
e、显示原图像和处理后图像。
(3)巴特沃斯高通滤波
a、读取图像;
e、创建高斯滤波器进行滤波;
f、显示原图像和处理后的图像。
3
(1)同态滤波
a、读入图像;
b、对数字图像进行直方图均衡化处理;
c、转换图像矩阵为双精度型;
d、取对数;
e、对其做傅里叶变换;
f、选择参数,截止频率为10,锐化系数为2, =1.5, =2.0;
g、进行高斯同态滤波;
h、滤波之后进行傅里叶逆变换;
c、显示原图像和经过均衡化处理过的图像;
d、记录和整理实验报告。
(2)中值滤波加直方图均衡化
a、将模板在图中漫游,并将模板中心与图中某个像素位置重合;
b、读取模板下各对应像素的灰度值;
c、将这些灰度值从小到大排成1列;
d、找出这些值中排在中间的1个;
e、将这个中间值赋给对应模板中心位置的像素;
f、中值滤波之后的像素值进行直方图均衡化处理;

数字图像处理期末复习试题3

数字图像处理期末复习试题3

1、数字图像:指由被称作像素的小块区域组成的二维矩阵。

将物理图像行列划分后,每个小块区域称为像素(pixel)。

数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。

3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。

4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

像素的邻域邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1)三、简答题( 每小题10分,本题共30 分 ):1. 举例说明直方图均衡化的基本步骤。

直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr直方图修正的例子假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。

根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。

因此,根据上述计算值可近似地选取:S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。

图像平滑处理

图像平滑处理

图像平滑处理图像平滑处理是一种常见的图像处理技术,旨在减少图像中的噪声和细节,使图像更加平滑和清晰。

在本文中,我将详细介绍图像平滑处理的原理、方法和应用。

一、原理图像平滑处理的原理是基于图像中像素值的平均化或滤波操作。

通过对图像中的像素进行平均化处理,可以减少噪声的影响,使图像更加平滑。

常见的图像平滑处理方法包括均值滤波、中值滤波和高斯滤波。

1. 均值滤波均值滤波是一种简单而有效的图像平滑处理方法。

它通过计算像素周围邻域的平均值来替代该像素的值。

均值滤波器的大小决定了邻域的大小,较大的滤波器可以平滑更大范围的图像。

2. 中值滤波中值滤波是一种非线性滤波方法,它将像素周围邻域的像素值进行排序,并取中间值作为该像素的值。

中值滤波器对于去除椒盐噪声等离群点非常有效,但对于平滑边缘和细节的效果不如均值滤波。

3. 高斯滤波高斯滤波是一种基于高斯函数的线性平滑方法。

它通过对像素周围邻域进行加权平均来替代该像素的值。

高斯滤波器的权重由高斯函数确定,距离中心像素越远的像素权重越小。

高斯滤波器可以有效平滑图像并保持边缘的清晰度。

二、方法图像平滑处理可以使用各种图像处理软件和编程语言来实现。

以下是一种常见的基于Python的图像平滑处理方法的示例:```pythonimport cv2import numpy as npdef image_smoothing(image, method='gaussian', kernel_size=3):if method == 'mean':smoothed_image = cv2.blur(image, (kernel_size, kernel_size))elif method == 'median':smoothed_image = cv2.medianBlur(image, kernel_size)elif method == 'gaussian':smoothed_image = cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) else:raise ValueError('Invalid smoothing method.')return smoothed_image# 读取图像image = cv2.imread('image.jpg')# 图像平滑处理smoothed_image = image_smoothing(image, method='gaussian', kernel_size=5) # 显示结果cv2.imshow('Original Image', image)cv2.imshow('Smoothed Image', smoothed_image)cv2.waitKey(0)cv2.destroyAllWindows()```以上代码使用OpenCV库实现了图像平滑处理。

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。

本文将对这三种滤波方法进行介绍、比较和分析。

一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。

这样可以有效地平滑图像并去除高频噪声。

然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。

二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。

它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。

加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。

通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。

高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。

三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。

然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。

比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。

均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。

高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。

几种平滑处理方法

几种平滑处理方法

⼏种平滑处理⽅法平滑,也可叫滤波,或者合在⼀起叫平滑滤波,平滑滤波是低频增强的空间域滤波技术。

它的⽬的有两类:⼀类是模糊;另⼀类是消除噪⾳。

空间域的平滑滤波⼀般采⽤简单平均法进⾏,就是求邻近像元点的平均亮度值。

邻域的⼤⼩与平滑的效果直接相关,邻域越⼤平滑的效果越好,但邻域过⼤,平滑会使边缘信息损失的越⼤,从⽽使输出的图像变得模糊,因此需合理选择邻域的⼤⼩。

“平滑处理”也称“模糊处理”(blurring),是⼀项简单且使⽤频率很⾼的图像处理⽅法。

平滑处理的⽤途很多,但最常见的是⽤来减少图像上的噪声或者失真。

降低图像分辨率时,平滑处理是很重要的。

#1,均值滤波【Simple Blurring】均值滤波是典型的线性滤波算法,它是指在图像上对⽬标像素给⼀个模板,该模板包括了其周围的临近像素(以⽬标象素为中⼼的周围8个像素,构成⼀个滤波模板,即去掉⽬标像素本⾝),再⽤模板中的全体像素的平均值来代替原来像素值。

对噪声图像特别是有⼤的孤⽴点的图像⾮常敏感,即使有极少数量点存在较⼤差异也会导致平均值的明显波动。

#2,中值滤波【Median Blurring】中值滤波法是⼀种⾮线性平滑技术,它将每⼀像素点的灰度值设置为该点某邻域窗⼝内的所有像素点灰度值的中值,也就是将中⼼像素的值⽤所有像素值的中间值(不是平均值)替换。

中值滤波通过选择中间值避免图像孤⽴噪声点的影响,对脉冲噪声有良好的滤除作⽤,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。

这些优良特性是线性滤波⽅法所不具有的。

此外,中值滤波的算法⽐较简单,也易于⽤硬件实现。

所以,中值滤波⽅法⼀经提出后,便在数字信号处理领得到重要的应⽤。

#3,⾼斯滤波【Gaussian Blurring】⾼斯滤波是⼀种线性平滑滤波,适⽤于消除⾼斯噪声,⼴泛应⽤于图像处理的减噪过程。

通俗的讲,⾼斯滤波就是对整幅图像进⾏加权平均的过程,每⼀个像素点的值,都由其本⾝和邻域内的其他像素值经过加权平均后得到。

线性变换、非线性变换、直方图均衡、直方图匹配

线性变换、非线性变换、直方图均衡、直方图匹配

线性变换、非线性变换、直方图均衡、直方图匹配2 图像滤波图像卷积运算平滑:均值平滑、中值滤波平滑锐化:梯度检测、边缘检测、定向检测3 彩色增强单波段彩色变换和多波段彩色合成4图像运算差值运算:两幅同样行、列数的图像,对应像元的亮度值相减就是差值运算。

比值运算:两幅相同行列数的图像, 对应像元的亮度值相除就是比值运算。

5多光谱变换其变换的本质:对遥感图像实行线性变换,使光谱空间的坐标按一定规律进行旋转。

K-L变换K-T变换1.教学时数2学时2.教学方式(手段)讲授法、演示法3.师生活动设计教师提问,学生回答。

4.讲课提纲、板书设计采用多媒体教学5.教学内容第五节遥感数据的融合图像融合是指把多源遥感数据按照一定的规则或算法进行处理, 生成一幅具有新的空间、光谱和时间特征的合成图像。

图像融合并不是数据间的简单复合, 其目的是: 突出有用信息, 消除或抑制无关信息; 增加解泽的可靠性, 减少识别目标的模糊性和不确定性, 为快捷、准确地识别和提取目标信息奠定基础。

1 多源遥感数据的融合多源遥感数据融合的基本过程包括图像选择、图像配准和图像融合三个关键环节。

图像融合时,需根据融合图像的类型、特点以及融合的目的,选择恰当的融合方法。

常用的融合方法主要有:基于加减乘除运算的融合,基于相关分析、主成分变换、小波分析以及基于IHS变换的融合等。

2 遥感数据与地学信息的融合地学信息与遥感数据的结合和相互印证, 则有助于对遥感图像特征的综合分析, 提高图像解译的科学性。

(1) 地学信息的预处理地学信息主要指各种专题地图和专题数据, 前者包括土地利用图、植被图、土壤图、等值线图等, 后者包括各种采样分析数据、野外测量数据、调查统计数据、 DEM数据等。

地学信息的预处理包括专题地图的数字化和专题数据的图像化。

地学信息的预处理实现了地学信息到数字图像的转换, 接下来就可以进行空间配准和融合处理了。

空间配准包括地学数据之间及地学与遥感数据之间的空间配准, 即运用图像处理技术, 将不同地学数据集配准到统一的地理坐标系统上, 形成以图像为基础的综合数据库。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。

2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解.5.图像处理五个模块:采集、显示、存储、通信、处理和分析.第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)〈∞ ,反射分量0 <r(x,y)<1。

7.图像数字化:将一幅画面转化成计算机能处理的形式-—数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样.采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠.9.将像素灰度转换成离散的整数值的过程叫量化.10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像.12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度.例如对细节比较丰富的图像数字化。

14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

c++ 坐标点的平滑方式

c++ 坐标点的平滑方式

c++ 坐标点的平滑方式
在C++中,要实现坐标点的平滑方式,通常可以使用一些数学
和算法技巧来实现。

以下是一些常见的方法:
1. 线性插值,线性插值是一种简单的平滑方法,可以用来在两
个已知点之间进行平滑。

例如,如果有两个点A(x1, y1)和B(x2,
y2),我们可以通过线性插值来找到它们之间的点C(x, y),其中x
的值在x1和x2之间,y的值在y1和y2之间。

2. 贝塞尔曲线,贝塞尔曲线是一种常用的平滑曲线方法,它可
以通过控制点来实现平滑的曲线。

在C++中,可以使用贝塞尔曲线
的数学公式来计算平滑的坐标点。

3. 样条曲线,样条曲线是一种平滑曲线,它可以通过一组控制
点来定义。

在C++中,可以使用样条曲线的算法来实现坐标点的平滑。

4. 滤波器,滤波器是一种信号处理技术,可以用来平滑坐标点。

常见的滤波器包括移动平均滤波器和卡尔曼滤波器等,它们可以通
过对坐标点进行加权平均来实现平滑。

5. 多项式拟合,多项式拟合是一种通过拟合多项式曲线来实现
坐标点的平滑方法。

在C++中,可以使用最小二乘法等技术来拟合
多项式曲线。

总之,在C++中实现坐标点的平滑方式有很多种方法,可以根
据具体的需求和场景选择合适的方法来实现。

以上提到的方法只是
其中的一部分,还有其他更复杂的方法可以实现更高级的平滑效果。

希望这些信息能够帮助到你。

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较近年来,图像处理被广泛应用于计算机视觉、图像识别等领域。

在图像处理中,平滑滤波是一个常见的操作,它可以去除噪点、边缘保持等。

不同的平滑滤波方法会对图像产生不同的影响,因此选择合适的平滑滤波方法非常重要。

本文将比较五种常见的平滑滤波方法:均值滤波、高斯滤波、中值滤波、双边滤波和小波变换。

一、均值滤波均值滤波是最简单的一种平滑滤波方法,它将图像中每个像素点周围的像素值取平均数,并将平均值赋值给该像素点。

均值滤波可以消除图像的高频噪声,但同时也会损失一些图像的细节信息。

此外,均值滤波对较大的噪声点效果并不理想,很容易使图像产生模糊现象。

二、高斯滤波高斯滤波是一种局部加权平均滤波方法,它可以对图像进行模糊处理,同时保留较多的图像细节信息。

高斯滤波的核心理念是将周围像素的加权平均值作为该像素点的值。

高斯滤波的其中一个优点是可以更好地处理高斯白噪声、椒盐噪声等图像噪声,提高图像质量。

但是,高斯滤波也可能产生一定程度的模糊。

三、中值滤波中值滤波是一种基于统计学原理的平滑滤波方法,它将3×3或者5×5个像素的中间值作为该像素点的值。

中值滤波不会像均值滤波那样对图像像素进行加权平均,因此可以更好地去除图像噪声。

中值滤波常用于处理椒盐噪声、斑点噪声等,它能够减弱噪点的影响,同时保持图像的轮廓、边缘等细节特征。

四、双边滤波双边滤波是一种非线性滤波方法,它在平滑图像的同时,还可以保留图像的细节信息。

双边滤波在处理不同光照条件下的图像、模糊图像、具有强噪音的图像等方面具有较好的效果。

它的核心思想是在像素空间和像素值空间同时进行加权,从而能够更好地保留图像细节信息。

双边滤波的计算速度相对较慢,但是它常被用于实时视频处理等场景。

五、小波变换小波变换是在频域进行滤波的一种方法,它能够分离图像信号的低频和高频成份,对于高频噪点可以进行好的去除。

小波变换可以提取出不同频率的信息,对于保留图像细节来说非常有用。

最新医学图像处理实验报告

最新医学图像处理实验报告
1
(1)直方图均衡化
直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。
图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。
(3)高斯滤波
高斯滤波器的二维形式为: ,D(u,v)是距频率矩形中心的距离。 是关于中心的扩展度的度量。通过令 ,该滤波器可表示为:
其中, 是截止频率。当 时,H下降到其最大值的0.607处。
3
(1)同态滤波
同态滤波是把频率过滤和灰度变换结合起来的一种图像处理方法,它依靠图像的照度/反射率模型作为频域处理的基础,利用压缩亮度范围和增强对比度来改善图像的质量。使用这种方法可以使图像处理符合人眼对于亮度响应的非线性特性,避免了直接对图像进行傅立叶变换处理的失真。
医学图像处理实验报告
班级专业姓名学号
实验
一、实验目的
1:理解并掌握常用的图像的增强技术。
2:熟悉并掌握MATLAB图像处理工具箱的使用。
3:实践几种常用数字图像增强的方法,增强自主动手能力。
二、实验任务
对于每张图像(共三张图片),实现3种图像增强方法。根据图像的特点,分别选用不用的图像增强算法。
三、实验内容(设计思路)
直方图均衡化是指:采用累积分布函数(CDF)变化生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1],均衡化处理的结果是一幅扩展了动态范围的图像。直方图均衡化就是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。主要用途是:将一幅灰度分布集中在较窄区间,细节不够清晰的图像,修正后使图像的灰度间距增大或灰度分布均匀,令图像的细节清晰,达到图像增强的目的。

图像处理中的数学:滤波与变换

图像处理中的数学:滤波与变换

图像处理是一门将图像经过一系列处理方法使得图像更具可视化、分析和识别的技术。

在图像处理中,数学扮演着重要的角色,其中滤波与变换是数学在图像处理中常见的方法。

滤波是图像处理中常用的技术之一,它利用一系列的运算对图像进行去噪、增强和提取等处理。

滤波方法主要分为线性滤波和非线性滤波两类。

线性滤波使用线性函数对像素点进行加权平均,常用的线性滤波方法有均值滤波和高斯滤波。

均值滤波将每个像素点的值替换为周围像素点的平均值,可以有效降低图像的噪声。

而高斯滤波则是根据各像素点周围像素点的加权平均计算新的像素值,更加注重中心像素点的权重,能够更好地平滑图像。

非线性滤波方法则不仅仅依赖于像素点周围的像素值,还会参考像素点的相对位置和灰度值等信息。

其中,中值滤波是一种常用的非线性滤波方法,它将每个像素点的像素值替换为周围像素点排序后中间的值,主要用于去除椒盐噪声。

另外,双边滤波也是一种常见的非线性滤波方法,它在像素值加权平均的基础上,考虑了像素点之间的距离和相似性,能够更好地保持图像的边缘信息。

除了滤波外,变换也是图像处理中的重要数学方法。

常见的变换方法包括傅里叶变换、小波变换和哈尔小波变换等。

傅里叶变换是将图像从空间域转换到频域的方法,它可以将图像分解为一系列的正弦余弦函数,利用频域上的特性进行图像处理。

傅里叶变换常被用于图像增强、去噪和图像恢复等领域。

小波变换是一种多尺度的信号分析方法,它将图像分解为不同尺度和频率的小波函数,从而可以在不同空间和不同频率上分析和处理图像。

小波变换常被用于处理含有丰富细节或边缘的图像。

哈尔小波变换是小波变换的一种特殊形式,它使用正交函数对图像进行分解,并可以在不同尺度和方向上获取图像的频域信息。

哈尔小波变换常被用于图像压缩和特征提取等应用。

综上所述,滤波与变换是图像处理中常用的数学方法。

滤波可以通过加权平均的方式对图像进行去噪和增强等处理,而变换可以将图像从一个域转换到另一个域,并利用频域的特性进行分析和处理。

数字图像处理总复习(14)(1)

数字图像处理总复习(14)(1)
将M幅图像相加求平均利用了M幅图像中同一位置的M个 像素的 平均值,用一个n*n的模板进行平滑滤波利用了同一 幅图像中的n*n个像素的平均值。因为参与的像素个数越多, 消除噪声的能力越强,所以如果M>n*n,则前者消除噪声的 效果较好,反之则后者消除噪声的效果较好。
2.图像锐化与图像平滑有何区别与联系?
第三章 (不考计算题) 频域滤波的物理含义 傅立叶变换性质 频域滤波的基本方法
第四章 灰度基本变换(线形、非线性) 直方图处理(定义、直方图规定化、均衡化) 算术逻辑运算(帧差分,帧平均) 空间滤波(均值、中值、KNN) 同态滤波(滤波流程) 边缘检测(一阶,二阶,循环卷积) 图像锐化与图像平滑 真彩色图像处理与伪彩色图像处理
第一章图像数字图像处理灰度图像的概念图像工程定义分类图像的表达图像文件格式bmp文件第二章视觉感知要素图像采样和量化颜色模型像素之间的基本关系邻接连通距离度量第三章不考计算题频域滤波的物理含义傅立叶变换性质频域滤波的基本方法第四章灰度基本变换线形非线性直方图处理定义直方图规定化均衡化算术逻辑运算帧差分帧平均空间滤波均值中值knn同态滤波滤波流程边缘检测一阶二阶循环卷积图像锐化与图像平滑真彩色图像处理与伪彩色图像处理第五章图像编码与压缩不考计算图像编码的基本概念图像编码的方法第六章图像恢复颜色模型第七章图像分割图像的阈值分割图像的梯度分割图像边缘检测第八章目标的表达和描述目标表达目标的描述第九章形态学运算膨胀腐蚀开运算闭运算?除电磁波谱图像外按成像来源进行划分的话常见的计算机图像还包三种类型
8. 直方图修正有哪两种方法?二者有何主要区别于 联系?
方法:直方图均衡化和直方图规定化。
区别:直方图均衡化得到的结果是整幅图对比度的增 强,但一些较暗的区域有些细节仍不太清楚,直方图 规定化处理用规定化函数在高灰度区域较大,所以变 换的结果图像比均衡化更亮、细节更为清晰。联系: 都是以概率论为基础的,通过改变直方图的形状来达 到增强图像对比度的效果。

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
数字图像处理知识点与考点(经典)
第 1 章 导论(知识引导)
1. 图像、数字图像和数字图像处理: 答: “图”是物体投射或反射光的分布,是客观存在的。“像”是人的视觉系统对图在大脑中形成的 印象或认识。图像(image)是图和像的有机结合,即反映物体的客观存在,又体现人的心理因素;是 客观对象的一种可视表示,它包含了被描述对象的有关信息。 数字图像是指由被称作像素(pixel)的小块区域组成的二维矩阵。将物理图像行列划分后,每个小 块区域称为像素。 数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种 预想目的的技术. 2. 数字图像处理一般包括图像处理、图像分析、图像理解三个层次。 图像处理是对图像本身进行加工,以改善其视觉效果或表现形式,为图像分析打下基础,图像处理 的输出仍是图像。 图像分析是目标图像进行检测和各种物理量的计算,以获取对图像的客观描述。 图像理解是在图像分析的基础上。理解图像所表现的内容,分析图像间的相互联系,得出对客观场 景的解释。 3. 数字图像处理主要包括哪些研究内容? 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、 重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 4. 一个数字图像处理系统由哪几个模块组成?试说明各模块的作用。 答: 一个基本的数字图像处理系统由图像输入、图像处理和分析、图像存储、图像通信、图像输出5 个模块组成,如下图所示。
说明:通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。 4.曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内,故采用线性变换拉伸图像。 5.直方图的均衡化(考)(习题第四章 6 题,如下示例)与规定化

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
答: Laplacian 算子进行检测边缘是利用阶跃边缘灰度变化的二阶导数特性,根据边缘点是零交叉点来检测图像边缘位 置。 它对应的模板为 -1 -1 -4 1 -1
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。

模式识别知识点

模式识别知识点

1、图像: 图像是对客观存在的物体的一种相似性的生动模仿或描述,是物体的一种不完全、不精确,但在某种意义上是适当的表示。

2、数字图像处理:利用数字计算机或其它数字硬件,对从图像信息转换而来的电信号进行某些数学运算以期达到预想的结果。

3、图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

包括采样和量化两个主要步骤。

4、分辨率:指映射到图像平面上的单个像素的景物元素的尺寸,单位:像素/英寸,像素/厘米;或者是指要精确测量和再现一定尺寸的图像所必需的像素个数,单位:像素*像素。

5、灰度图像:每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息。

6、彩色图像的概念:每个像素的信息由RGB 三原色构成的图像,其中RGB 是由不同的灰度级来描述的。

7、了解彩色三要素(亮度,色调,饱和度):亮度是人眼感受彩色光的明暗的程度,色调是光的颜色,饱和度是颜色的深浅程度。

8、了解图像数字化的量化技术分类:量化可分为均匀量化和非均匀量化。

均匀量化是简单地在灰度范围内等间隔量化。

非均匀量化是对像素出现频度少的部分量化间隔取大,而对频度大的量化间隔取小。

9、掌握简述数字图像信息的特点:[简答]信息量大,占用频宽,像素间相关性大,受人的因素影响大。

Chapter21、了解傅里叶变换的条件(狄里赫利条件):有限个间隔点,有限个极点,绝对可积。

一个周期为T 的函数f(t)在[-T/2,T/2]上满足狄利赫利(Dirichlet)条件,则在[-T/2,T/2]可以展成傅立叶级数。

表明了信号由哪些频率分量组成及其所占的比重。

2、会计算一维、二维连续信号的傅里叶变换: 一维:二维:3、熟悉二维离散信号的傅里叶变换的性质(比例性质、空间位移、频率位移、共轭对称性、平均值):4、了解拉格尔函数的基本知识: ,一个不完备的正交集;R(n,t)的取值只有+1和-1;R(n,t)是R(n-1,t)的二倍频。

Chapter31、熟悉图像对比度、直方图的定义:对比度是亮度的最大值与最小值之比。

中值滤波和均值滤波

中值滤波和均值滤波

中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法。

它们都是为了去除图像中的噪声而设计的,但在实际应用中有不同的特点和适用场景。

中值滤波是一种非线性滤波方法,其基本思想是用窗口内所有像素的中值来代替中心像素的灰度值。

中值滤波的优点是能有效地去除椒盐噪声等孤立噪声点,同时能保持图像的边缘信息。

在中值滤波中,窗口的大小是一个关键参数,一般选择3×3、5×5等大小的窗口。

中值滤波的过程可以通过以下步骤来实现:1. 对图像进行遍历,对于每个像素点,以其为中心取一个窗口。

2. 将窗口内的像素值排序,取中间值作为滤波结果。

3. 将中值赋给中心像素。

均值滤波是一种线性滤波方法,其基本思想是用窗口内所有像素的平均值来代替中心像素的灰度值。

均值滤波的优点是简单、快速,但其对椒盐噪声等孤立噪声点的去除效果较差,同时会对图像的边缘信息进行模糊处理。

均值滤波的过程可以通过以下步骤来实现:1. 对图像进行遍历,对于每个像素点,以其为中心取一个窗口。

2. 将窗口内的像素值求平均,作为滤波结果。

3. 将平均值赋给中心像素。

中值滤波和均值滤波在去除图像噪声方面有着各自的适用场景。

中值滤波适用于椒盐噪声等孤立噪声点比较严重的图像,能够有效地去除这些噪声点,同时保持图像的边缘信息。

而均值滤波适用于噪声点比较均匀分布的图像,能够对整幅图像进行平滑处理,但对于孤立噪声点的去除效果较差。

在实际应用中,我们需要根据图像的具体情况来选择使用哪种滤波方法。

如果图像中存在着孤立噪声点比较严重,可以采用中值滤波来去除这些噪声点;如果图像中的噪声点比较均匀分布,可以考虑使用均值滤波来平滑整幅图像。

在进行滤波操作时,窗口的大小也是需要考虑的因素。

如果窗口太小,可能无法有效地去除噪声;而如果窗口太大,可能会模糊图像的细节信息。

因此,选择合适的窗口大小也是一个需要注意的问题。

中值滤波和均值滤波是数字图像处理中常用的滤波方法,它们在去除图像噪声方面具有不同的特点和适用场景。

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比一、摘要本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析 3 种方法在图像增强处理能力的优劣之处。

结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失;图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题;图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。

关键词: 图像增强 灰度图 直方图 平滑 锐化二、三种图像增强算法图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。

影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。

现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。

下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。

1、直方图均衡化直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。

为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。

遥感名词解释

遥感名词解释

遥感名词解释遥感名词解释1.模拟图像:空间坐标和明暗程度连续变化,计算机无法直接处理的图像,又称光学图像。

2.数字图像:指用计算机存储和处理的图像,是一种空间坐标和灰度均不连续的、用离散数学表示的图像。

数字图像的最小单元是像素。

3.遥感数字图像(digital image):是以数字形式表述的遥感图像。

不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。

4.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成电磁波谱。

5.反射波谱:地物反射电磁辐射的能力,随所反射的电磁波波长变化而变化。

如以横坐标表示波长的变化,纵坐标表示其反射率(或反射亮度系数)可构成反映反射光谱特性的曲线,称为反射光谱曲线。

6.高光谱图像:是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据得到的遥感图像,波段多,波段范围一般<10nm。

7.高空间分辨率图像:空间分辨率<10m遥感图像。

8.遥感影像地图:以航空和航天遥感影像为基础,经几何纠正,配合数字线划图和少量注记,将制图对象综合表示在图面上的地图。

遥感影像地图具有一定的数学基础,有丰富的光谱信息与几何信息,又有行政界限和属性信息,直接提高了可视化效果。

9.遥感图像模型:传感器探测地物电磁波辐射能量所得到的遥感图像从理论角度归纳出的一个具有普遍意义的模型。

10.多源信息融合:将多种遥感平台、多时相、遥感数据之间以及遥感与非遥感数据之间的信息组合匹配的技术,复合后将更有利于综合分析,一般包括匹配和复合两个步骤。

11.像素:数字图像最基本的单位是像素,像素是A/D 转换中的取样点,是计算机图像处理的最小单元;每个像素具有特定的空间位置和属性特征。

像素值称为亮度值(灰度值/DN值)。

亮度值的高低由传感器所探测到的地物辐射强度决定。

由于地物反射或辐射电磁波的性质不同且受大气影响不同,相同地点不同图像(不同波段、时期、种类)的亮度值可能不同,因此灰度值是相对的,仅能在图像内部相互比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像上机报告一、实验内容:四点平滑、八点平滑、中值滤波、直方图均匀化、线性变换二、实验目的:1、四点平滑、八点平滑:去除高斯噪声,使图像平滑,缺点是会使图像模糊,模糊程度与领域半径成正比丢失边沿。

2、中值滤波:去除图像中的椒盐噪声,平滑图像,同样会使图像模糊,丢失边缘。

三、编程思想:1、四点平滑:f(i, j) ——表示(i, j)点的实际灰度值g(i, j) ——变换后输出图象(i, j)点的实际灰度值以(i, j)点为中心取其上下左右四个像素点的灰度值和点(i, j)取平均,将均值赋给g(i, j)作为输出灰度值。

2、八点平滑:f(i, j) ——表示(i, j)点的实际灰度值g(i, j) ——变换后输出图象(i, j)点的实际灰度值以(i, j)点为中心取一个N×N的窗口(N = 3,5,7,…八点滤波时N=3),窗口内象素组成的点集以A来表示,经邻域平均法滤波后,平滑后g(i, j)的值为九个像素点的灰度值值和。

3、中值滤波:取以(i, j)点为中心取一个N×N的窗口(N = 3,5,7,…),对窗口内的所有像素点的像素值进行排序,去中值作为该点的输出灰度值。

取合理的邻近像素值来替代噪声点,所以只适合于椒盐噪声的去除(去椒盐噪声比超限像素平均分更有效),不适合高斯噪声的去除。

在滤除随机噪声时,中值滤波要比均值滤波效果弱。

四、代码及实现效果1、四点平滑:代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'gaussian',0.01,0.002); %加入高斯噪声figure,imshow(g),title('加入高斯噪声之后的图象');p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=2:p(1)-2for j=2:p(2)-2%c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘s=x1(i,j)+x1(i-1,j)+x1(i+1,j)+x1(i,j+1)+x1(i,j-1); %求c矩阵(即模板)中各元素之和x2(i,j)=s/5; %将模板各元素的均值赋给模板中心位置的元素endend%未被赋值的元素取原值d=uint8(x2);figure,imshow(d),title('滤波后');2、八点平滑:代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'gaussian',0.01,0.002); %加入高斯噪声figure,imshow(g),title('加入高斯噪声之后的图象');n=input('请输入均值滤波器模板大小\n');a(1:n,1:n)=1; %a即n×n模板,元素全是1p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=1:p(1)-n+1for j=1:p(2)-n+1c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘s=sum(sum(c)); %求c矩阵(即模板)中各元素之和x2(i+(n-1)/2,j+(n-1)/2)=s/(n*n);%将模板各元素的均值赋给模板中心位置的元素endendd=uint8(x2);figure,imshow(d),title('滤波后');3、中值滤波代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'salt & pepper',0.04);%加椒盐噪声figure,imshow(g),title('加入高斯噪声之后的图象');n=input('请输入均值滤波器模板大小\n');a(1:n,1:n)=1; %a即n×n模板,元素全是1p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=1:p(1)-n+1for j=1:p(2)-n+1c=x1(i:i+(n-1),j:j+(n-1));%取出x1中从(i,j)开始的n行n列元素,即模板(n ×n的)e=c(1,:); %是c矩阵的第一行for u=2:ne=[e,c(u,:)]; %将c矩阵变为一个行矩阵endmm=median(e); %mm是中值x2(i+(n-1)/2,j+(n-1)/2)=mm; %将模板各元素的中值赋给模板中心位置的元素endendd=uint8(x2);figure,imshow(d),title('滤波后');4、直方图均匀化代码:c lear all;a=imread('D:/lina.jpg');[m,n]=size(a);b=zeros(1,256);for i=1:mfor j=1:nk=a(i,j)+1; %k可能为0,矩阵从一开始,故此处加一,0~255变1~256 b(k)=b(k)+1; %循环计算每级灰度出现次数endendb=b/(m*n); %概率figure,bar(0:255,b,'y') % 直方图title('原图像直方图')xlabel('灰度值')ylabel('出现概率')c=zeros(1,256);for i=1:256for j=1:ic(i)=b(j)+c(i);endendd=round((c*256)+0.5); % 归到相近级的灰度for i=1:256e(i)=sum(b(find(d==i))); % 计算现有每个灰度级出现的概率end,find函数返回d中所有为i的横坐标索引值figure,bar(0:255,e,'b')title('均衡化后的直方图')xlabel('灰度值')ylabel('出现概率')将图像界面放大竟出现了颜色黄色和蓝色。

为了增加我组竞争力,提高分数,本人又做了迭代法clear allI=imread('D:/lina.jpg');s=size(I);a=I(1,1);for i=1:s(1)for j=1:s(2)if(a<=I(i,j))a=I(i,j);elsea=a;endendendtmin=a;tmax=max(I(:));%老师算这个最大值和最小值很类似,故直接调用算法,不再赘述for 的循环语句th=(tmin+tmax)/2;ok=true;while okg1=I>=th;%将图像分为两部分g2=I<th;u1=mean(I(g1));%这个for循环与算I的最小值很类似,故也仅调用函数 u2=mean(I(g2));thnew=(u1+u2)/2;ok=abs(th-thnew)>=1;th=thnew;endth=floor(th);J=im2bw(I,th/255);subplot(1,2,1);imshow(I);title('原始图像');str=['迭代算法 TH=',num2str(th)];subplot(1,2,2);imshow(J);title(str);自认为这个还是挺成功的。

5、线性变换代码:clear all;a=imread('D:/lina.jpg');[m,n]=size(a);b=zeros(1,256);for i=1:mfor j=1:nk=a(i,j)+1; %k可能为0,矩阵从一开始,故此处加一,0~255变1~256 b(k)=b(k)+1; %循环计算每级灰度出现次数endendx=b;for i=1:100x(i)=20;endfor i=101:208x(i)=20+10/107*(x(i)-20);endfor i=208:256x(i)=250;endfigure,bar(0:255,x,'y'); % 直方图f=a;for i=1:256for j=1:256if f(i,j)<50f(i,j)=20;end;if f(i,j)>50 &f(i,j)<190f(i,j)=20+10/107*(f(i,j)-20);endif f(i,j)>190f(i,j)=250;endendendfigure,imshow(f);有些问题,灰度图像变换出了颜色。

相关文档
最新文档