高中数学著名不等式荟萃归纳
(完整版)高中数学不等式归纳讲解
第三章不等式定义:用不等号将两个解析式连结起来所成的式子。
3-1 不等式的最基本性质①对称性:如果x>y,那么y<x;如果y<x,那么x>y;②传递性:如果x>y,y>z;那么x>z;③加法性质;如果x>y,而z为任意实数,那么x+z>y +z;④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则)3-2 不等式的同解原理①不等式F(x)<G(x)与不等式G(x)>F(x)同解。
②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。
③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。
④不等式F (x )G (x )>0与不等式0)x (G 0)x (F >>或0)x (G 0)x (F <<同解不等式解集表示方式F(x)>0的解集为x 大于大的或x 小于小的F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式3-3-1 均值不等式1、调和平均数: )a 1...a 1a 1(nH n21n +++= 2、几何平均数: n 1n 21n )a ...a a (G =3、算术平均数: n)a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++=这四种平均数满足Hn ≤Gn ≤An ≤Qna1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号3-3-1-1均值不等式的变形(1)对正实数a,b ,有2ab b a22≥+ (当且仅当a=b 时取“=”号)(2)对非负实数a,b ,有ab 2b a ≥+ (6)对非负数a,b ,有ab )2b a (b a 222≥+≥+ (7) 若,,a bc R +∈,有a b c ++≥a b c ==时成立)(8)对非负数a,b,c ,有ac bc ab c b a 222++≥++ (9)对非负数a,b , 2b a 2b a ab 222b1a 1+≤+≤≤+ 3-3-1-1最值定理当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和有最小值。
(完整版)高考数学-基本不等式(知识点归纳)
高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高中数学著名不等式荟萃
著名不等式荟萃在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩。
下面择要介绍一些著名的不等式。
一、平均不等式(均值不等式)设a 1,a 2,…,a n 是 n 个实数,A =na ++a +a n 21 叫做这n 个实数的算术平均数。
当这 n 个实数非负时,G =n n 21a a a 叫做这 n 个非负数的几何平均数。
当这 n 个实数均为正数时,H =n 21a 1++a 1+a 1n 叫做这 n 个正数的调和平均数。
设a 1,a 2,…,a n 为 n 个正数时,对如下的平均不等式:H ≤G ≤A 当且仅当 a 1=a 2=…=a n 时等号成立。
平均不等式A ≥G 是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一。
设x 1,x 2,…,x n 是 n 个正的变数,则(1)当积 x 1x 2…x n =P 是定值时,和x 1+x 2+…+x n 有最小值,且(x 1+x 2+…+x n )min =(2)当和 x 1+x 2+…+x n =S 是定值时,积 x 1x 2…x n 有最大值,且(x 1x 2…x n )max =(12n x +x ++x n L )n =(S n)n 两者都是当且仅当 n 个变数彼此相等时,即 x 1=x 2=…=x n 时,才能取得最大值或最小值。
在 A ≥G 中,当n =2,3时,分别有12a +a 2,123a +a +a 3平均不等式 A ≥G 经常用到的几个特例是:(a 1+a 2+…+a n ) (11a +21a +…+n1a )≥n 2 当且仅当a 1=a 2=…=a n 时等号成立;a 1+1a 1≥2,当且仅当a 1=1时等号成立。
二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数a 1,a 2,…,a n ;b 1,b 2,…,b n ,有(a 1b 1+a 2b 2+…+a n b n )≤(a 12+a 22+…+a n 2) (b 12+b 22+…+b n 2)其中等号当且仅当11a b =22a b =…=n n a b 时成立。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)
第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
(完整版)高中数学不等式知识点总结
选修 4--5 知识点1、不等式的基本性质①(对称性) a b b a同向可加性)a b,c⑧(倒数法则)2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三相等” .④ (可积性)a b,cac bca b ,c 0 acbc⑤ (同向正数可乘性)a b0,c d 0 acbdb 0,0cdab (异向正数可除性) cd⑥ (平方法则)a bna b n(n N,且n1)异向可减性)a b,c dN,且n b 1)a na n b(n③(三个正数的算术—几何平均不等式) abc33 abc(a 、b 、 cR )(当且仅当a b c 时取到等号)②(传递性)a b,bc ac③(可加性) a bacbc⑦(开方法则) 11a b ;a22①a 2b 2 2aba ,,(当且仅当b时取 "" 号) . 变形公式:aba2 b22②(基本不等式)aba ,,(当且仅当 a b 时取到等号)变形公式: a 2 ababa b2,要注意满足三个条件“一正、二定、(a 2 b 2)(c 2 d 2) (ac bd )2 (a,b,c,d R ).当且仅当 ad bc 时,等号成立2ax⑨绝对值三角不等式3、几个著名不等式②幂平均不等式:④二维形式的柯西不等式:2④ab 22c ab bc ca a , b R(当且仅当a b c 时取到等号) .3⑤ab33c 3abc(a 0,b 0,c 0)(当且仅当a b c 时取到等号) .若ab⑥0,则ba2ab (当仅当 a=b 时取等号)若ab b 0,则aa 2b (当仅当 a=b 时取等号)b b m1anbn a ⑦aa mb ,(其中a b 0,规律: 小于 1 同加则变大,大于 1 同加则变小 .⑧当a 0时,x22a x a x a 或 x a;m 0, n 0)1(a 1n ③二维形式的三角不等式: 22 a 1 a 2 2 a n a 2a n )2.22 x 1 y 122x 2 y 2(x 1 x 2)2 (y 1 y 2)2(x 1,y 1,x 2,y 2 R).a. b.①平均不等式: 211ababb a 2 b 2,(a,b R ,当且仅当 ab 时取 " "号) . (即调和平均 变形公式:几何平均 算术平均 平方平均) .aba b22abb 2(a b)2 20)⑤ 三维形式的柯西不等式:顺序和),当且仅当 a1 a2 ... an 或 b1 b2 ... bn 时,反序和等于顺序和 ⑨琴生不等式 : (特例 :凸函数、凹函数)若定义在某区间上的函数f ( x),对于定义域中任意两点 x1,x2(x1 x2),有f(x 1 x 2)f(x 1) f(x 2)或 f(x 1 x 2) f (x 1) f(x 2).f (2 )2或 f (2 )2 .则称 f(x) 为凸(或凹)函数4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 一化:化二次项前的系数为正数 二判:判断对应方程的根 . 三求:求对应方程的根 .2 2 2 2 2 2 (a 1 a 2 a3 )(b 1 b 2 b 3) (a 1b 1 a 2b 2⑥一般形式的柯西不等式:(a 12a 22... a n 2)(b 12b 22... b n 2) (a 1b 1⑦向量形式的柯西不等式:ur urur urur ur设 ,是两个向量,则,当且仅当等号成立 .⑧排序不等式( 排序原理):设a 1 a 2... a n ,b 1 b 2bn为两组实数 a 1b n a 2b n 1... a n b 1a 1c 1 a 2c 2... a n c na 3b 3) .a 2b 2 ... a n b n ) .ur ur ur是零向量,或存在实数 k ,使 k 时, .c 1,c 2,...,c n是b 1,b 2,...,b n的任一排列,则①舍去或加上一些项,如 1(a12)234②将分子或分母放大(缩小) ,11,11如k 2 k(k 1),k 2k(k1),1 2 (k * N *,k1)等.kk k 15、一元二次不等式的解法2求一元二次不等式 ax bx c0(或12(a12)2;22 1 22 k k k k k k 1常见不等式的放缩方法:(a 0,2b 4ac 0)解集的步骤:四画:画出对应函数的图象 . 五解集:根据图象写出不等式的解集 . 规律:当二次项系数为正时,小于取中间,大于取两边 .6、高次不等式的解法:穿根法 . 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) ,结合原式不等号的方向, 写出不等式的解集 .7、分式不等式的解法:先移项通分标准化,则f(x)0 f (x) g(x) 0 g(x)f(x) 0f (x) g(x) 0g(x) g(x) 0(“ 或 ”时同理)规律:把分式不等式等价转化为整式不等式求解 .8、无理不等式的解法:转化为有理不等式求解⑵当0 a 1时,a f(x) a g(x)f (x) g(x)规律:根据指数函数的性质转化 .10、对数不等式的解法f(x) 0log a f (x) log a g(x) g(x) 0⑴当a 1时,f(x) g(x)f(x)⑴a(a 0)f(x) f(x)f(x)⑵a(a 0)f(x) f(x) f(x) g(x) f(x)g(x) f(x) 0 02 [g(x)]2或f(x) 0 或g(x) 0 f(x)g(x) f(x)g(x) f(x)0 02[g(x)]2f(x)g(x)f (x) g(x) f (x) 0g(x) ⑸ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解 9、指数不等式的解法:⑴当 a 1时 ,af (x) a g(x)f (x) g(x)f (x) 0log a f(x) log a g(x) g(x) 0 .f (x) g(x)⑵当0 a 1时,规律:根据对数函数的性质转化.11、含绝对值不等式的解法:a (a 0)a.⑴定义法: a (a 0)2(x) g2(x).⑵平方法:f(x) g(x) f⑶同解变形法,其同解定理有:①x a a x a(a 0);或x a(a 0);②x a x a③ f (x) g(x) g(x) f (x) g(x) (g(x) 0)或f(x) g(x) (g(x) 0) 规律:关键是去掉绝对值的符号.④f (x) g(x) f(x) g(x)12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法2解形如ax bx c 0 且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a与0的大小;⑵讨论与0 的大小;⑶讨论两根的大小.14、恒成立问题c 0 的解集是全体实数(或恒成立)的条件是⑴不等式ax2 bx0 时b0,c 0;①当aa00.②当a0时⑵不等式ax2 bx c 0 的解集是全体实数(或恒成立)的条件是①当a 0 时b 0,c 0;a0②当a 0 时0.⑶f (x) a恒成立f (x)max a;f(x) a恒成立f(x)max a⑷ f (x) a 恒成立f (x)min a;f(x) a恒成立f(x)min a.15、线性规划问题常见的目标函数的类型:①“截距”型:zAx By;z ②“斜率”型:y z yx 或x b; a③“距离”型:z22x2 y2或z22 xyz (x a)2 (y b)2或z (x a)2(y b)2.在求该“三型” 的目标函数的最值时,可结合线性规划与代数式的几何意义求解,题简单化.从而使问。
高中数学中所有不等式解法汇总每题均含详细解析
专项一 简单不等式的解法汇总解简单不等式是指:解二元一次不等式组、解一元二次不等式、解含绝对值的简单不等式、解分式不等式、解简单的高次不等式。
一、有关分数不等式的性质 若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、“三个二次”的关系22三、解一元二次方程一元二次方程可以采用的方法有,一是:求根公式x =,首先要求有根,也就是要求240b ac -≥;二是采取因式分解法,因式分解的重要措施就是使用“十字相乘法”,十字相乘法适用于求解20(0)ax bx c a ++=≠,拆分形式图如:m p n q ⎛⎫⎪⎝⎭需要满足的条件是:;;;mn a pq c mq pn b =⎧⎪=⎨⎪+=⎩,m n p q 、、、四个关键参数需要考生观察想到,则该式即可化成:()()0mx p nx q ++=,则两根可解出,但是要知道一点,十字相乘法不是万能的,有些方程因为不能满足上述三个条件而不能使用;三是使用配方法,这个方法在初中的时候,是作为重要方法进行训练的,相信大家没有问题。
四、解一元二次不等式(1) .我们统一养成一个习惯,将一元二次不等式的二次项系数处理为正数,之后凡是解“大于零或大于等于零”的一元二次不等式,一律“取两边”; 凡是解“小于零或小于等于零”的,一律“取中间”。
(2).(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法【1】.(教材改编)不等式x 2-3x -10>0的解集是( ) A.(-2,5) B.(5,+∞)C.(-∞,-2)D.(-∞,-2)∪(5,+∞)答案 D解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 【2】.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0] 答案 B解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).【3】.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A.(2,3) B.(-∞,2)∪(3,+∞) C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 【4】.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.【5】.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)解析D (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. 【6】.设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A.(0,4) B.[0,4) C.(0,+∞)D.(-∞,4)解析B 。
高中数学各种不等式定理的汇总
高中数学各种不等式定理的汇总在高中数学中,不等式理论是一个重要的部分,其中包括了各种不等式的定理。
这些定理在解决各类数学问题时起到了至关重要的作用。
下面是对几个常用不等式定理的汇总。
1.平均值不等式:平均值不等式又称柯西不等式,它是一种常用的不等式。
平均值不等式表明了若干个正数的平均值大于等于它们的几何平均值,而几何平均值又大于等于它们的算术平均值。
平均值不等式的形式可以表示为:对于任意正数 a1, a2, ..., an ,有(a1+a2+...+an)/n ≥ √(a1*a2*...*an)≥ (a1+a2+...+an)/n2.三角不等式:三角不等式是指三角函数的绝对值之间的不等关系。
对于任意实数a 和b,有:a+b,≤,a,+,ba-b,≤,a,+,bsin a + sin b,≤ 2sin a - sin b,≤ 2cos a + cos b,≤ 2cos a - cos b,≤ 2等等3.欧拉不等式:e^x≥x+14.伯努利不等式:伯努利不等式是一种数学归纳法的应用,它表示了一个正实数的n次幂的凸性。
伯努利不等式的形式如下:(1+x)^n ≥ 1 + nx,其中x ≥ -1 ,且 n 为自然数。
5.可加性不等式:可加性不等式表示了一个函数在两个变量相加时的不等关系。
对于任意实数a和b,有:f(a+b)≥f(a)+f(b)这仅是高中数学中常见的一些不等式定理,实际上还有许多其他不等式定理,如柯西-施瓦茨不等式,霍尔德不等式,杨辉三角不等式等等。
这些不等式定理在高等数学、概率论、数论等领域都有重要应用,能够帮助我们解决各类数学问题。
高中数学不等式知识点汇总
不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:〔1〕a b b a <⇔> , a b b a >⇔< 〔反对称性〕 〔2〕c a c b b a >⇒>>, ,c a c b b a <⇒<<, 〔传递性〕 〔3〕c b c a b a +>+⇒>,故b c a c b a ->⇒>+ 〔移项法那么〕 推论:d b c a d c b a +>+⇒>>, 〔同向不等式相加〕 〔4〕bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的根底,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进展条件的放宽和加强。
3、常用的根本不等式和重要的不等式〔1〕0,0,2≥≥∈a a R a 当且仅当”取“==,0a 〔2〕ab b a R b a 2,,22≥+∈则 〔3〕+∈R b a ,,那么ab b a 2≥+〔4〕222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由〔1〕如积P y x P xy 2(有最小值定值),则积+=〔2〕如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。
运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++ n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a ba ab ba +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:假设a>b,b>c, 那么a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否那么易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。
高中数学解题常用不等式
高中数学解题常用不等式1.基本不等式链若,a b都是正数,则2112a ba b+≤≤≤+当且仅当a b=时等式成立2.对数平均值不等式链若0,,b a a b>>≠则ln ln2211b aa ba ba bb a<<<+-+<-3.绝对值三角不等式结论1:若,,a b R∈则||||||||||a b a b a b-≤+≤+(右边=“”成立.ab0⇔≥左边=“”成立()a b b0⇔+≤)结论2:若,,a b R∈则||||||||||a b a b a b-≤-≤+(右边=“”成立.ab0⇔≤左边=“”成立()a b b0⇔-≥)结论3:若,,a b R∈则||||||||||||a b a b a b-≤+≤+(右边=“”成立.ab0⇔≥左边=“”成立ab0⇔≤)结论4:若,,a b R∈则||||||||||||a b a b a b-≤-≤+(右边=“”成立.ab0⇔≤左边=“”成立ab0⇔≥)结论5:若,,,12na a a R∈…,则|||||||12n12na a a a a|a+++≤+++……4.柯西不等式若,,...,12na a a和12nb b b,,...,均为实数,则:222222212n12n1122n na a ab b b a b a b a b (...)(...)(...) ++++++≥+++当且仅当n1212naa ab b b...===时,等号成立.5.权方和不等式若,,...,12n a a a 和12n b b b ,,...,均为正实数,则:2222n 12n 1212n 12n a a a a a a b b b b b b (...)......++++++≥+++ 当且仅当n 1212na a ab b b ...===时,等号成立. 6.排序不等式若12n a a a ...≤≤≤;12n b b b ...≤≤≤为实数,对于12n a a a (,,...,)的任何轮换12n x x x (,,...,),都有下列不等式:1122n n 1122n n n 1n 121n a b a b a b x b x b x b a b a b a b .........-+++≥+++≥+++ 其中,1122n n a b a b a b ...+++称正序和,n 1n 121n a b a b a b ...-+++称反序和,1122n n x b x b x b ...+++称乱序和.7. 琴生不等式凸函数的定义:设连续函数()f x 的定义域为[],a b ,对于区间[],a b 任意两点12,x x ,都有1212()()()22x x f x f x f ++≤,则称()f x 为[],a b 上的下凸(凸)函数; 反之,若有1212()()()22x x f x f x f ++≥,则称()f x 为[],a b 上的上凸(凹)函数。
高中数学公式完全总结归纳(均值不等式)
均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1 x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x>0时,y=x+1x≥2x·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
最新高中数学23个经典不等式归纳汇总
最新高中数学23个经典不等式归纳汇总一、均值不等式:均值不等式是不等式理论中的重要分支,其中最基本的是算术平均数和几何平均数之间的关系。
1.算术均值不等式(AM-GM):对于非负实数 x1 , x2 , x3 ,⋯, xn , 有以下不等式成立:(x1 + x2 + x3 + ⋯ + xn) / n ≥ √(x1 · x2 · x3 ⋯ xn)证明:令a = (x1 + x2 + x3 + ⋯ + xn) / n,其中x1, x2, x3,⋯, xn为非负实数。
令 b = √(x1 · x2 · x3 ⋯ xn) ,则要证明的不等式即为 a ≥ b。
根据均值不等式的性质,两个算术均值之间有一个几何均值,即a≥b。
2. 加权平均值不等式 (Chebyshev 不等式):对于非负实数 x1 , x2 , x3 ,⋯, xn 和 w1 , w2 , w3 ,⋯, wn 为正实数,并且 w1 + w2 + w3 + ⋯ + wn = 1,有以下不等式成立:w1x1 + w2x2 + w3x3 + ⋯ + wn xn ≥ (x1^w1 · x2^w2 · x3^w3 ⋯xn^wn)证明:将w1x1 + w2x2 + w3x3 + ⋯ + wn xn 展开为 w1/x1 + w2/x2 +w3/x3 + ⋯ + wn/xn,利用 AM-GM 不等式即可证明。
即 w1x1 + w2x2 + w3x3 + ⋯ + wn xn ≥(x1^w1 · x2^w2 · x3^w3 ⋯ xn^wn)二、特殊不等式:特殊不等式是指在一些特殊条件下成立的不等式,是数学中的一种重要类型。
1. 柯西不等式 (Cauchy-Schwarz):对于任意实数 a1, a2, a3,⋯, an 和 b1, b2, b3,⋯, bn,有以下不等式成立:(a1b1 + a2b2 + a3b3 + ⋯ + anbn)^2 ≤ (a1^2 + a2^2 + a3^2 + ⋯+ an^2)· (b1^2 + b2^2 + b3^2 + ⋯ + bn^2)证明:考虑函数 f(t) = (a1t + a2t + a3t + ⋯ + ant)^2 ,求导可证明。
高中数学竞赛专题---几个重要不等式及其应用
几个重要不等式及其应用一、几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM )不等式设12,,,n a a a是非负实数,则12na a a n+++≥2、柯西(Cauchy )不等式设,(1,2,)i i a b R i n ∈=,则222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑等号成立当且仅当存在R λ∈,使,1,2,,.i i b a i n λ== 变形(Ⅰ):设+∈∈R b R a i i ,,则∑∑∑===⎪⎭⎫⎝⎛≥ni in i i ni ii b a b a 12112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===⎪⎭⎫ ⎝⎛≥n i ii n i i ni ii b a a b a 1211。
等号成立当且仅当n b b b === 21 3.排序不等式设n n n j j j b b b a a a ,,,,,212121⋯≤⋯≤≤≤⋯≤≤是n ,,2,1⋯的一个排列,则n n j j j n n n b a b a b a b a b a b a b a b a b a n ++≤+++≤+++-2211321112121. 等号成立当且仅当n a a a === 21或n b b b === 21。
(用调整法证明).4.琴生(Jensen )不等式若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈ *()n N ∈有()()()12121().nn x x x f f x f x f x nn +++≤+++⎡⎤⎣⎦等号当且仅当n x x x === 21时取得。
(用归纳法证明)二、进一步的结论运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到的效果。
最新高中数学23个经典不等式归纳汇总(解析版)
1、 2、 3、 4、 5、 6、 7、 8、 9、 证明: 1+
1 1 1 2 ... 2 2 ; 2 2 3 n
若: a 3 b3 2 ,求证: a b 2 ; 若: n N ,求证:
1 1 1 1 ... 1; 2 n 1 n 2 2n
17、 求证: 2( n 1 1) 1 18、 已知: x 0 ,求证:
1 1 1 ... 2( 2n 1 1) ; 2 3 n
x ln(1 x) x ; 1 x
最新高中数学 23 个经典不等式归纳汇总
1 1 1 1 1 ln(1 x) 1 ... 19、 已知: n N ,求证: ... ; 2 3 n 1 2 n
(a 1) 2 (b 2) 2 (c 3) 2 1 ,求 a b c 的最大值和最小值; 16 5 4
13、 若 a, b, c 0 , x, y, z 0 ,且满足 a 2 b 2 c 2 25 , x 2 y 2 z 2 36 ,
ax by cz 30 ,求:
于是:
从第二项开始用积分,当函数是减函数时,积分项大于求和项时,积分限为 [1, n] ;积分 项小于求和项时,积分限为 [2, n 1] . 2. 若: a 3 b3 2 ,求证: a b 2 ; 2、证明: a 3 b3 (a b)(a 2 b 2 ab) ab(a b) ,即: ab(a b) 2 则: 3ab(a b) 6 , a 3 b3 3ab(a b) 8 ,即: (a b)3 8 ,即: a b 2 . 立方和公式以及均值不等式配合. 另:本题也可以采用琴生不等式证明. 构建函数: f ( x) x3 ,则在在 x R 区间为单调递增函数,且是下凸函数. 对于此类函数,琴生不等式表述为:函数值得平均值不小于平均值的函数值. 即:
高考数学不等式方法技巧及题型全归纳(100页)
g(x) 0
f
(x)
0
(2) f (x) 0 f x g x 0
g(x)
f (x) g(x)
0
f (x) g(x) g(x) 0
0
2.2 含有绝对值的不等式
(1) f x g x f (x) g(x) 或 f (x) g(x) ;
(2)| f (x) | g(x) g(x) f (x) g(x) ;
到的 与原式是恒等的,则称 1, 2, ⋅⋅⋅ , 是完全对称的.
如
+
+
,
b
a
c
c
b
a
a
c
b
等.
设 ( 1, 2, ⋅⋅⋅ , )是一个 元函数. 若作置换 1 → 2, 2 → 3, ⋅⋅⋅ , −1 → , → 1,得到
的 与原式是恒等的,则称 ( 1, 2, ⋅⋅⋅ , )是轮换对称的.
如3
+
3
+
3 , a b c 等. ab bc ca
显然,完全对称的一定是轮换对称的.
2
2、重要不等式
2.1 无理式、分式
(1)
f
(x)
g(x)
g(x) 0
f
(x)
0
g(x) 0
或
f
(x)
g 2(x)
g(x) 0
f
(x)
g(x)
f
(x)
0
f (x) g 2 (x)
f (x)
g(x) 0 g(x) 0 或
2.1 无理式、分式............................................................................................................... 3 2.2 含有绝对值的不等式................................................................................................... 3 2.3 一元二次不等式........................................................................................................... 3 2.4 基本不等式................................................................................................................... 4 2.5 柯西不等式................................................................................................................... 4
高中数学基本不等式知识点归纳及练习题
高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高中数学竞赛之重要不等式汇总(相关练习答案)
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n se n 不等式)若)(xf 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
著名不等式荟萃
在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.
一、平均不等式(均值不等式)
设,,…,是个实数,
叫做这个实数的算术平均数。
当这个实数非负时,
叫做这个非负数的几何平均数。
当这个实数均为正数时,
叫做这个正数的调和平均数。
设,,…,为个正数时,对如下的平均不等式:
,
当且仅当时等号成立。
平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一。
设,,…,是个正的变数,则
(1)当积是定值时,和有最小值,且
;
(2)当和是定值时,积有最大值,且
两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值。
在中,当时,分别有
,
平均不等式经常用到的几个特例是(下面出现的时等号成立;
(3),当且仅当时等号成立;
(4),当且仅当时等号成立。
二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)
对任意两组实数,,…,;,,…,,有
,其中等号当且仅当
时成立。
柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:
(1),,则
(2)
(3)
柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位。
三、闵可夫斯基不等式
设,,…,;,,…,是两组正数,,则
()
()
当且仅当时等号成立。
闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:
右图给出了对上式的一个直观理解。
若记,,则上式为
四、贝努利不等式
(1)设,且同号,则
(2)设,则
(ⅰ)当时,有;
(ⅱ)当或时,有,上两式当且仅当时等号成立。
不等式(1)的一个重要特例是
()
五、赫尔德不等式。