重庆中考26题专题训练
重庆中考数学26题专项.doc
中考26题第二小问专项讲解第一大类:线段最大值一、基本题型:_ _丄2 3 9例1:如图,抛物线J = _7X +T X + 2与兀轴交于A.B两点,与y轴交于C点, P为抛物线上BC±方的一点。
1、过点P作y轴的平行线交BC于M,求PM的最大值。
2、过点P作X轴的平行线交BC于M,求PM的最大值。
二、变式题型1:过点P作y轴的平行线交BC于M,作PN丄BC于N。
3、求PN的最大值,PM+PN的最大值。
4、求APMN周长的最大值。
5、求APMN面积的最大值。
三、变式题型2:P为抛物线上E C上方的一点。
D为E C延长线上的一点且C D = B C 6、求APBC面积的最大值。
7、求APDC面积的最大值。
例2:如图,抛物线与y = -yx2+|x + 2兀轴交于4, B两点,与y轴交于C点,P为抛物线的顶点。
1、M是BC上的一点,求PM + AM最小时M点的坐标。
2、D为点C关于x轴的对称点,M是BC±的一点,求DM+PM最小时M点的坐标。
3、M是BC上的一点,N是AC上的一点,求° OMN周长的最小值及M点的坐标。
4、M. N为直线B C±的动点,N在下方且MN = V5 ,最小值。
5、M. N为直线BC上的动点,N在下方且MN = V5 , D在抛物线上且在D与C对称。
求四边形PMND周长的最小值。
6、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N A的最小值。
7、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N B的最小值。
8、M为对称轴上的一点,N为y轴上一点,D在抛物线上且在D与C对称。
求OM + MN + N D第二大类: 线段和的最小值9、M为EC上的一点,求PM + 討的最小值。
求PM + MN + AN 的10、D在抛物线上且在D与C对称,在BC±找一点N, M是x轴上的一点。
2020年重庆中考几何第26题专题训练一(含答案解析)
2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为DE=2CE;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.(1)解:∵∠DBC=∠ACB=90°,∴∠DBC+∠ACB=180°,∴AC∥BD,∴∠DBE=∠CAE又∵∠DEB=∠AEC,∴△DBE∽△CAE,∴=,又∵BD=BC=2AC,∴DE=2CE;故答案为:DE=2CE.(2)证明:如图2,∵∠DBC=∠ACB=120°,BD=BC,∴∠D=∠BCD=30°,∴∠ACD=90°,过点B作BM⊥DC于M,则DM=MC,BM=BC,∵AC=BC,∴BM=AC,∵在△BME和△ACE中∴△BME≌△ACE(AAS),∴ME=CE=CM,∴DE=3EC;(3)解:如图,过点B作BM′⊥DC于点M′,过点F作FN⊥DB交DB的延长线于点N,设BF=a,∵∠DBF=120°,∴∠FBN=60°,∴FN=a,BN=a,∵DB=BC=2BF=2a,∴DN=DB+BN=a,∴DF===a,∵AC=BC,BF=BC,∴BF=AC,∴△BDF≌△BCA(SAS),∴∠BDF=∠CBA,又∵∠BFG=∠DFB,∴△FBG∽△FDB,∴==,∴BF2=FG×FD,∴a2=a×FG,∴FG=a,∴DG=DF﹣FG=a,BG==a,∵△DKG和△DBG关于直线DG对称,∴∠GDH=∠BDF,∴∠ABC=∠GDH,又∵∠BGF=∠DGH,∴△BGF∽△DGH,∴=,∴GH==a,∵BH=BG+GH=a=10,∴a=2;∴BC=2a=4,CM′=BC cos30°=2,∴DC=2CM′=4,∵DE=3EC,∴EC=DC=.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.(1)解:∵DA=DB,∠ADB=120°,∴∠ABC=∠BAD=30°,∵AB=AC,∴∠ABC=∠C=30°,∴∠CAD=90°,在RtACD中,tan30°=,∴AD=2×=2,AE=CD=2AD=4 ∴DE=AE﹣AD=CD﹣AD=4﹣2=2;(2)证明:如图,过A作AG∥BC,∵DB=DA,AB=AC,∴∠BAD=∠ABC,∠ABC=∠ACB,∴∠BAD=∠ACB,∵AE=CD,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴BE=AD,∵BE=2CD,∴AD=2CD=2AE,∴AE=DE,∵AG∥BC,∴∠G=∠DCE,∠GAE=∠CDE,在△AGE和△DCE中∴△AGE≌△DCE(AAS),∴GE=CE,AG=CD=AE,∴△AGE为等腰三角形,∴∠GAF=∠ABC=∠BAD,∴F为GE的中点,∴CE=EG=2EF,∴CF=3EF;(3)如图3,取BE中点M,延长AM至N,使MN=AM,连接BN,EN,∴四边形ABNE是平行四边形,∴AE∥BN,∴∠NBC=∠D,BN=AE=CD,∵AB=AC,DB=DA,∴∠ABC=∠ACB=∠BAD,∴∠BAC=∠D=∠NBC,∵∠ABN=∠NBC+∠ABC,∠ACD=∠BAC+∠ABC,∴∠ABN=∠ACD,在△ABN和△ACD中∴△ABN≌△ACD(SAS),∴BD=AD=AN=2AM,∵BE⊥AD,∴AE2+ME2=AM2,∴AE2+(BE)2=(AN)2,∴AE2+BE2=BD2.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.(1)①证明:在菱形ABCD中,∠ABC=60°,∴∠ADC=60°,且AB=BC=DA=DC,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=∠CAD=60°,又∵△APE是等边三角形,∴AE=AP,∠EAP=60°,∴∠BAC+∠CAP=∠PAE+∠CAP,即∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴∠ACE=∠ABP=∠ABC=30°,∵∠CAD=60°,∴∠ACE+∠CAD=90°,∴CE⊥AD;②解:如图1,设AC与BD交于点O,由①知,∠ACE=30°,且∠ACB=60°,∴∠ACE+∠ACB=∠BCE=90°,∵在Rt△BCE中,BC=AB=,BE=,∴CE==4,由①知,△BAP≌△CAE,∴BP=CE=4,在Rt△BOC中,∠ACB=60°,∴BO=BC=,CO=AO=BC=,∴OP=BP﹣BO=,∴在Rt△AOP中,AP===,∴AE=AP=;(2)解:如图2,连接AE,过点A作AH⊥BF于点H,∵点D关于AP的对称点为E,∴AP垂直平分DE,∴AD=AE,FD=FE,∴∠EAF=∠DAF=∠EAD,∠DFA=∠EFA=∠DFE,又∵在菱形ABCD中,AB=AD,∴AB=AE,∴AH垂直平分BE,∴EH=BH=BE=,∠BAH=∠EAH=∠BAE,∴∠HAF=∠EAH+∠EAF=∠BAD,∵∠ABC=60°,∴∠BAD=180°﹣∠ABC=120°,∴∠HAF=60°,∴∠AFH=90°﹣∠HAF=30°,∴∠DFE=60°,∴△DEF为等边三角形,∴EF=DE=5,∴HF=HE+EF=+5=,在Rt△AHF中,∠AFH=30°,∴AH=HF=,∴S△AEF=EF•AH=×5×=,∵AD=AE,FD=FE,AF=AF,∴△ADF≌△AEF(SSS),∴△ADF的面积为.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.解:(1)如图1,作DF∥AB,∵DF∥AB,∴,∵AC=BC,∴CF=CD,∴BF=AD,∵DF∥AB,∴∠DFC=60°,∴∠BFD=120°,∵BD=DE,∴∠E=∠DBE,在△BDF和△EDC中,,∴△BDF≌△EDC,(AAS)∴BF=CE,∴AD=CE,(2)如图2,过点B作BG∥AC交AF的延长线于G,∴∠G=∠DAF,∠CBG=∠ACB=60°,∴∠ABG=∠ABC+∠CBG=120°=∠ACE,∵点F是BD中点,∴BF=DF,在△BFG和△DFA中,,∴△BFG≌△DFA,∴BG=AD,由(1)知,AD=CE,∴BG=CE,在△ABG和△ACE中,,∴△ABG≌△ACE,∴∠BAF=CAE;(3)由(2)知,∠BAF=∠CAE,∴∠FAE=∠FAC+∠CAE=∠FAC+∠BAF=∠BAC=60°,∵FH⊥AE,∴∠AHF=90°,∴∠AFH=90°﹣∠FAE=30°,在Rt△AFH中,AH=,∴AF=2,由(2)知,△BFG≌△DFA,∴GF=AF=2,由(2)知,△ABG≌△ACE,∴AE=AG=2AF=4,∴EH=AE﹣AH=4﹣=3.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?证明:(1)如图1,过点E作EM⊥BC于M,∵∠ACB=90°,AD⊥DE∴∠ACB=∠ADE=90°∵∠ADB=∠ACB+∠DAC=∠ADE+∠EDB∴∠DAC=∠EDB,且∠ACD=∠EMD=90°,AD=DE ∴△ACD≌△DME(AAS)∴AC=DM,CD=EM∵AC=BC,∴BC=DM∴CD=BM∴BM=EM,且EM⊥BM∴∠EBM=45°∵∠C=90°,AC=BC∴∠ABC=∠BAC=45°∴∠ABE=180°﹣∠ABC﹣∠EBM=90°∴∠C=∠ABE(2)如图2,过点E作EM⊥BC于M,∵∠C=90°,AC=BC,∠ADE=90°,AD=DE∴∠CAB=∠DAE=∠AED=45°由(1)可知∠EBM=45°,∴∠CBE=135°,∵∠DAE+∠AEB+∠DBE+∠ADB=360°,且∠AEB=75°,∴∠ADB=105°∴∠ACD+∠CAD=∠ADB=105°∴∠CAD=15°∴∠DAB=30°∵把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.∴∠DAB=∠BAG=30°∴∠DAG=60°,且∠ADE=90°∴∠G=30°=∠BAG∴AH=HG∵∠ADE=90°,∠DAH=30°∴AH=2DH∴HG=2DH(3)作EN平分∠DEB交BC于点N,∵EM=BM,∠EMB=90°∴BE=EM,且BE=3,∴EM=∵∠AEB=75°,∠AED=45°∴∠DEN=30°∵EN平分∠DEB∴∠DEN=15°∵∠EDM=∠CAD=15°∴∠DEN=∠EDB=15°,∴DN=EN,∠ENM=30°,且EM⊥BM∴NE=2EM=3,NM=EM=在Rt△DEM中,DE==3+3=AD∵∠DAH=30°,∠ADH=90°∴AD=DH=3+3∴DH=3+6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°解:(1)如图1,∵∠BDC=90°,BD=1,CD=2,∴BC===,∵AB=BC=,由勾股定理得:AC===;(2)如图2,延长BD交AC于P,∵DC平分∠ACB,∴∠BCD=∠ACD,∵∠BDC=90°,∴∠BDC=∠PDC=90°,∵CD=CD,∴△BDC≌△PDC,∴BD=PD,∵BE∥AC,∴∠E=∠EAC,∠EBD=∠DPA,∴△BDE≌△PDA,∴AD=DE;(3)如图3,以BD为边作等边三角形BDE,连接BF、CE,∴BD=DE=BE,∵AB=BC,F是AC的中点,∴BF⊥AC,∴∠AFB=90°,∵∠ABC=90°,∴BF=AF,∵CD=BC,∠BCD=30°,∴∠CBD=∠CDB=75°,∵CE=CE,∴△CEB≌△CED,∴∠BCE=∠DCE=15°,∵∠CBD=75°,∠DBE=60°,∴∠CBE=75°﹣60°=15°,∵∠ABC=90°,∴∠ABD=90°﹣75°=15°,∴∠ABD=∠CBE,∴△ABD≌△CBE,∴∠BAD=∠BCE=15°,∴∠ABD=∠BAD=15°,∴AD=BD,∵DF=DF,∴△ADF≌△BDF,∴∠AFD=∠BFD=∠AFB=×90°=45°.7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.解:(1)取CP的中点F,连接BF,如图1,∵BC=BP,BF是底边上的中点,∴∠CBF=∠PBF=∠CBP,BF⊥PC,∴∠CBF+∠BCF=90°,∵∠BCF+∠DCP=90°,∴∠DCP=∠CBF,∴∠CBP=2∠DCP;(2)过得C作CG⊥CE交EB的延长线于点G,连接BD,如图2,∵BC=CD,∠BCD=90°,∴∠CBD=45°,∵∠EBF=∠EBP+∠PBF=∠ABP+∠CBP=45°,∴∠BEF=180°﹣∠EBF﹣∠BFE=45°,∴△CEG是等腰直角三角形,∴EG=CE,CG=CE,∵∠ECG=90°=∠BCD,∴∠BCG=∠DCE,在△CBD和△CDE中∴△CBD≌△CDE(SAS),∴BG=DE,∴DE+BE=BG+BE=EG=CE;(3)CE=,理由如下;取CD的中点M,连接MF,设MF的延长线交直线AB与B′,如图2,∵F是PC的中点,∴FM∥AD,∵AB∥CD,∴四边形AB′MD是平行四边形,∴AB′=DM=1=AB,∴B′与B重合,即B、F、M在一条直线上,∴BM⊥CE,∵∠CBF=∠MBC,∴△BFC∽△BCM,∴=,即=,∴BF=2CF,∵∠BEF=45°,∠BFE=90°,∴EF=BF=2CF,∵CF=PF,∴CF=PF=PE,CE=3CF,∵S△BCM=CF•BM=BC•CM,∴CF===,∴CE=3CF=.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN∥BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE∥BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°﹣∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=DE×AP=××4=37.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.解:(1)如图1,Rt△ABC中,∠CAB=30°,BC=2,∴AB=4,AC=2,∵△ACE是等边三角形,∴AE=AC=2,∠EAC=60°,∴∠EAB=60°+30°=90°,在Rt△EAB中,EB===2;(2)如图2,过E作EG∥BD,交BA的延长线于G,∴∠EGA=∠ABD,∵△ABD是等边三角形,∴∠ABD=60°,∴∠EGA=60°,Rt△AEG中,设AG=x,∴EG=2x,AE=x,∴AC=AE=BH=x,∵∠BDH=60°,∴BD=2x,∴EG=BD=2x,∵∠EFG=∠BFD,∴△EFG≌△DFB,∴EF=DF,等边△ABD中,∵BH⊥AD,∴AH=DH,∴FH是△AED的中位线,∴FH=AE=BH,∴BH=2FH;(3)如图3,连接BN,并延长交AD于H,∵∠CBA=60°=∠BAD,∴BC∥AD,∴∠BCN=∠NDH,∵CN=ND,∠CNB=∠DNH,∴△CNB≌△DNH,∴BN=NH,BC=DH,∵M是AB的中点,∴MN是△ABH的中位线,∴MN=AH,设BC=x,则DH=x,AB=AD=2x,∴AH=x,∴MN=x,Rt△ACB中,AC=2x,∴AE=2x,∴==,∴AE=4MN.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末。
2020重庆中考复习数学第26题专题训练六(含答案解析)
2020重庆中考复习数学第26题专题训练六1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°, 在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.G解:(1)由E 为CR 中点可得AG平分BAC ∠,过G 作GH AB ⊥,则有GH=CG=1,故 (2)延长FD 交AG 于点M,易证:()BFD AMD AAS ∆≅∆,所以BF=AM 再证:()BFC CEA AAS∆≅∆,所以BF=CE=AM,CF=AE ∴CF-CE=AE-AM,即EM=EF ∴EFM ∆为等腰直角三角形∴2EF FM ==(3)结论为:2BD EF +=4、(2017秋•许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋•中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD, 由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018•连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG. (1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠F AG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018•站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°, ∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015•新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BF A,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BF A,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°, ∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=•S△ABC=××4×2=.。
2020年重庆中考26题二次函数综合
二次函数二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。
) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。
2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。
】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。
在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。
4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。
5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。
6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。
最新重庆中考数学第26题专题训练
N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。
(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。
4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线233334y x x=-++交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D。
重庆中考第26题专题专训(教师版)
重庆中考数学第26题专题专训1.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.解:(1)当y=0时,﹣x2﹣x﹣2=0,解这个方程,得:x1=﹣6,x2=﹣1,∴点A(﹣6,0),B(﹣1,0),当x=0时,y=﹣2,∴C(0,﹣2),设直线AC的解析式为:y=ax+b(a≠0),将点A(﹣6,0),C(0,﹣2)代入得:,∴,∴直线AC的解析式为:y=﹣x﹣2;(3分)(2)如图1,过点P作PE∥y轴交直线AC于点E,设P(a,﹣),则点E(a,﹣﹣2),∴PE=(﹣)﹣(﹣﹣2)=﹣﹣2a,∵AO=6,OC=2,∴AC===2,∵∠PDE=∠AOC=90°,∠PED=∠ACO,∴△PDE∽△AOC,∴=,∴PD=PE==﹣﹣,对称轴是:a=﹣3,∵﹣,∴当a=﹣3时,PD的长度最大,此时点P的坐标为(﹣3,2),如图1所示,在x轴上取点F(1,0),连接CF并延长,∴CF===3,∴sin∠OCF==,点M是y轴上一点,过点M作MH⊥CF于点H,由△CHM∽△COF,可知:=,∵t==PM+MH,如图2,当P、M、H在同一直线上时,t的值最小,此时,过P作PK⊥y轴于K,由△PKM∽△COF,可知:=2,∴KM=,∴M(0,),(7分)(3)如图3,当四边形ACSO'是菱形时,过S作SG⊥y轴于G,延长O'C'交x轴于H,∵四边形ACSO'是菱形,∴AO'=AC=SC,AO'∥SC,∴∠AMC=∠BCS,∴∠AO'H+∠MC'O'=∠BCO+∠OCS,∵∠MC'O'=∠BCO,∴∠AO'H=∠OCS,∵∠AHO'=∠CGS,∴△O'AH≌△CSG,∴AH=SG,O'H=CG,Rt△OCB中,sin∠OCB==,∴sin∠BC'H==,设BH=x,则BC'=3x,∴C'H=2x,∴AH=SG=5﹣x,∵O'C'=OC=2,∴C'H=OG=2x,由勾股定理得:AC2=O'A2,∴AO2+OC2=O'H2+AH2,∴=(5﹣x)2+(2+2x)2,解得:x=,当x=时,SG=5﹣x=,OG=2x=,当x=<0时,不符合题意,舍去,SG=5﹣x=,OG=2x=,此时S的坐标为:或;②如图4,过S作SH⊥AO于H,延长O'B'到y轴交于G,∵SE∥CF,EC∥SF,∴四边形SECF是平行四边形,∴∠ESF=∠ECF,∵四边形ASO'C是菱形,∴∠ASO'=∠ACO',∴∠ASH=∠O'CG,同理得:△ASH≌△O'CG,∴AH=O'G,SH=CG,sin∠GCB'==,设GB'=x,则CB'=3x,CG=2x,∴O'G=1+x,由勾股定理得:AC2=O'C2,∴62+(2)2=(2x)2+(x+1)2解得:x=,当x=时,SH=CG=2x=,OH=6﹣AH=6﹣O'G=5﹣x=,当x=<0时,不符合题意,舍去,此时,点S的坐标为:(,);③如图5,AC为对角线时,同理可得S(,)④如图6,过S作SE⊥x轴于E,延长B'O'交y轴于H,延长O'C'交x轴于G,设GB'=x,则CB'=3x,CG=2x,∴O'G=O'H=1+x,∵∠HO'D=∠O'DA=∠EAS,易得△SEA≌△CHO',同理可得S(,);⑤如图7,过S作SH⊥x轴于H,过O'作O'E⊥SH于E,延长C'O'交x轴于G,设OG=x,则BG=1+x,∵O'B'∥BG,∴,∴,∴C'G=2(1+x),∴O'G=C'G﹣C'O'=2x,∴AG=1+x,同理得:62+(2)2=(1+x)2+(2x)2,解得:x1=,x2=(舍),可得S;综上所述,S的坐标为:或或(,)或(,)或(,).(12分)2.在平面直角坐标系中,已知抛物线322+--=x x y 的图象交x 轴于A 、B 两点(点A 在点B 左侧),交y 轴于点C .(1)求直线AC 的解析式;(2)抛物线的对称轴交直线AC 于点E ,直线AC 上方的抛物线上有一动点P ,当△PEC 面积最大时,线段CE 在直线AC 上平移,记线段CE 平移 后为E C '',求E C P ''∆的周长最小值;(3)抛物线的顶点为D ,连接AD ,将线段AD 沿直线AC 平移,记线段AD 平移后为D A '',过点D '作x 轴的垂线交x 轴于点G ,当G D A ''∆ 为等腰三角形时,求A A '的长度.解:(1)抛物线y=﹣x 2﹣2x+3,∴A (﹣3,0),B (1,0),C (0,3),∴直线AC 的解析式 y=x+3; (2)∵对称轴为x=﹣1,∴E (﹣1,2),设P (m ,﹣m 2﹣2m+3), ∴S △PEC =﹣m 2﹣m=﹣(m+)2+,∴当m=﹣时,S △PEC 的有最大值,即:P(﹣,),将线段PC平移,使得C与E重合,得到线段P'E,∴P'(﹣,),P''(﹣,),∴△PC'E'的周长的最小值为PP''+CE=+(3)∵抛物线y=﹣x2﹣2x+3,∴D(﹣1,4),设A'(﹣3+n,n),D'(﹣1+n,4+n),则G(﹣1+n,0),∴AA'=|n|,∴A'D'2=20,A'G2=n2+4,D'G2=n2+8n+16,∵△A′D′G为等腰三角形,①当A'D'=A'G时,∴20=n2+4,∴n=±4,∴AA'=4②当A'D'=D'G时,∴20=n2+8n+16,∴n=±2﹣4,∴AA'=2±4③当D'G=A'G时,∴n2+4=n2+8n+16,∴n=﹣,∴AA'=,即:AA′的长度为4或2或.3.如图,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,连接BC,过点A作AD∥BC交y轴于点D.(1)求平行线AD、BC之间的距离;(2)如图1,点P为线段BC上方抛物线上的一动点,当△PCB的面积最大时,Q从点P出发,先沿适当的路径运动到直线BC上点M处,再沿垂直于直线BC的方向运动到直线AD上的点N处,最后沿适当的路径运动到点B处停止.当点Q的运动路径最短时,求点M的坐标及点Q经过的最短路径的长;(3)如图2,将抛物线以每秒个单位长度的速度沿射线AD方向平移,抛物线上的点A、C平移后的对应点分别记作A′、C′,当△A′C′B是以C′B为底边的等腰三角形时,将等腰△A′C′B 绕点D逆时针旋转一周,记旋转中的△A′C′B为△A″C″B′,若直线A″C″与y轴交于点K,直线A″C″与直线AD交于点I,当△DKI是以KI为底边的等腰三角形时,求出DK2的值.解:(1)如图1中,作AH⊥BC于H.对于抛物线y=﹣x2+x+3,令y=0,得到﹣x2+x+3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),令x=0,得到y=3,∴C(0,3),∴OA=,OB=3,AB=4,OC=3,BC==3,=•AB•CO=•BC•AH,∵S△ABC∴AH==,∵AD∥BC,∴AD与BC之间的距离为.(2)如图2中,设P(m,﹣m2+m+3),S△PBC =S△POB+S△PCO﹣S△BOC=×3×(﹣m2+m+3)+×3×m﹣×3×3=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,此时P(,),作B关于直线AD的对称点B′交AD于K,连接PK交BC于M,作MN⊥AD于N,连接BN,则PM+MN+BN 的值最小.∵直线BC的解析式为y=﹣x+3,AD∥BC,∴直线AD的解析式为y=﹣x﹣1,∵BB′⊥BC,∴直线BB′的解析式为y=x﹣6,由,解得,∴K(,﹣),∴直线PK的解析式为y=﹣x+,由,解得,∴M(,),∴点Q经过的最短路径的长=PM+MN+BN=MN+(PM+MK)=MN+PK,∵MN=,PK==,∴点Q经过的最短路径的长为+.4. 抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D 是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O 2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.解:(1)如图1,过点D作DK⊥y轴于K,当x=0时,y=,∴C(0,),y=﹣x2﹣x+=﹣(x+)2+,∴D(﹣,),∴DK=,CK=﹣=,∴CD===;(4分)(2)在y=﹣x2﹣x+中,令y=0,则﹣x2﹣x+=0,解得:x1=﹣3,x2=,∴A(﹣3,0),B(,0),∵C(0,),易得直线AC的解析式为:y=,设E(x,),P(x,﹣x2﹣x+),∴PF=﹣x2﹣x+,EF=,Rt△ACO中,AO=3,OC=,∴AC=2,∴∠CAO=30°,∴AE=2EF=,∴PE+EC=(﹣x2﹣x+)﹣(x+)+(AC﹣AE),=﹣﹣x+[2﹣()],=﹣﹣x﹣x,=﹣(x+2)2+,(5分)∴当PE+EC的值最大时,x=﹣2,此时P(﹣2,),(6分)∴PC=2,∵O1B1=OB=,∴要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,∴PO1+B1C=P2B1+B1C,∴连接P2C与x轴的交点即为使PO1+B1C的值最小时的点B1,∴B1(﹣,0),将B1向左平移个单位长度即得点O1,此时PO1+B1C=P2C==,对应的点O1的坐标为(﹣,0),(7分)∴四边形PO1B1C周长的最小值为+3;(8分)(3)O2M的长度为或或2+或2.(12分)理由是:如图3,∵H是AB的中点,∴OH=,∵OC=,∴CH=BC=2,∴∠HCO=∠BCO=30°,∵∠ACO=60°,∴将CO沿CH对折后落在直线AC上,即O2在AC上,∴∠B2CA=∠CAB=30°,∴B2C∥AB,∴B2(﹣2,),①如图4,AN=MN,∴∠MAN=∠AMN=30°=∠O2B2O3,由旋转得:∠CB2C1=∠O2B2O3=30°,B2C=B2C1,∴∠B2CC1=∠B2C1C=75°,过C1作C1E⊥B2C于E,∵B2C=B2C1=2,∴=B2O2,B2E=,∵∠O2MB2=∠B2MO3=75°=∠B2CC1,∠B2O2M=∠C1EC=90°,∴△C1EC≌△B2O2M,∴O2M=CE=B2C﹣B2E=2﹣;②如图5,AM=MN,此时M与C重合,O2M=O2C=,③如图6,AM=MN,∵B2C=B2C1=2=B2H,即N和H、C1重合,∴∠CAO=∠AHM=∠MHO2=30°,∴O2M=AO2=;④如图7,AN=MN,过C1作C1E⊥AC于E,∴∠NMA=∠NAM=30°,∵∠O3C1B2=30°=∠O3MA,∴C1B2∥AC,∴∠C1B2O2=∠AO2B2=90°,∵∠C1EC=90°,∴四边形C 1EO 2B 2是矩形, ∴EO 2=C 1B 2=2,,∴EM=,∴O 2M=EO 2+EM=2+, 综上所述,O 2M 的长是或或2+或2.5. 如图,在平面直角坐标系中,点A 在抛物线y=﹣x 2+4x 上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(1,1). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当△PBE 的面积最大时,求PH+HF+FO 的最小值;(3)在(2)中,PH+HF+FO 取得最小值时,将△CFH 绕点C 顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.解:(1)由题意A (1,3),B (3,3), ∴AB=2.(2)如图1中,设P (m ,﹣m 2+4m ),作PN ∥y 轴J 交BE 于N . ∵直线BE 的解析式为y=x , ∴N (m ,m ),∴S△PEB=×2×(﹣m2+3m)=﹣m2+3m,∴当m=时,△PEB的面积最大,此时P(,),H(,3),∴PH=﹣3=,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,∴PH+HF+FO=PH+FH+FK=PH+HK,此时PH+HF+OF的值最小,∵•HG•OC=•OG•HK,∴HK==+,∴PH+HF+OF的最小值为+.(3)如图2中,由题意CH=,CF=,QF=,CQ=1,∴Q(﹣1,3),D(2,4),DQ=,①当DQ为菱形的边时,S1(﹣1,3﹣),S2(﹣1,3+),②当DQ为对角线时,可得S3(﹣1,8),③当DR为对角线时,可得S4(5,3)综上所述,满足条件的点S坐标为(﹣1,3﹣)或(﹣1,3+)或(﹣1,8)或(5,3).6.如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点D,过点B作BC的垂线,交对称轴于点E.(1)求证:点E与点D关于x轴对称;(2)点P为第四象限内的抛物线上的一动点,当△PAE的面积最大时,在对称轴上找一点M,在y轴上找一点N,使得OM+MN+NP最小,求此时点M的坐标及OM+MN+NP的最小值;(3)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面内找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.(1)证明:如图1中,令y=0,得到x2﹣x﹣3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),令x=0,可得y=﹣3,∴C(0,﹣3),∵y=x2﹣x﹣3=(x﹣)2﹣4,∴顶点D(,﹣4),设对称轴与x轴交于F,则BF=2,∵△EFB∽△BOC,∴=,∴=,∴EF=4,∴E(,4),∴E、D关于x轴对称.(2)过点P作PQ∥y轴,交直线AE于点Q.=x+2,∵yAE∴设P(a,a2﹣a﹣3),Q(a,a+2),(0<a<3),7.如图1,在平面直角坐标系中,抛物线2y x x=--与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C.(1)求直线AC的解析式;(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a m+最大时,求点E的坐标,并直接写出23EQ PQ PB++的最小值;(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB 的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A O M''',同时抛物线以每秒1个单位的速度沿x轴正方向平移,点B的对应点为B'.△A B M'''能否为等腰三角形?若能,请求出所有符合条件的点M'的坐标;若不能,请说明理由.8.如图1,在平面直角坐标系中,抛物线423412++-=x x y 与x 轴交于A 、B 两点(点A 在点B左侧),与y 轴交于点C .(1)求抛物线的对称轴及△ABC 的周长;(2)点D 是线段AC 的中点,过点D 作BC 的平行线,分别与x 轴、抛物线交于点E 、F ,点P为直线BC 上方抛物线上的一动点,连接PD 交线段BC 于点G ,当四边形PGEF 面积最大时,点Q 从点P 出发沿适当的路径运动到x 轴上的点M 处,再沿射线DF 方向运动5个单位到点N 处,最后回到直线BC 上的点H 处停止,当点Q 的运动路径最短时,求点Q 的最短运动路径长及点H 的坐标; (3)如图2,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A 、C 的对应点分别为点A 1、C 1,且点A 1落在线段AC 上,再将△A 1OC 1沿y 轴平移得△A 2O 1C 2,其中直线O 1C 2与x 轴交于点K ,点T 是抛物线对称轴上的动点,连接KT 、O 1T ,△O 1KT 能否成为以O 1K 为直角边的等腰直角三角形?若能,请直接写出所有符合条件的点T 的坐标;若不能,请说明理由.9.如图,在平面直角坐标系中,抛物线y=-x2-3x+4交x轴于A、D两点(点A在点B的左例), 交y轴于点C,顶点为点D,连接BC,作直线AC.(1)求点D 的坐标和直线BC 的解析式;(2)若点P 为BC 上方抛物线上的一个动点,连接PC 、PB,过P 作PE ⊥y 轴于点E,当△PBC 面积最大时,将△PEC 绕平面内一点逆时针方向旋转90°后得到△111C E P .点P 、E 、C 的对应点分别是点1P 、1E 、1C ,当点C 1C 落在线段AC 上时,连接PP 1,求A C C P PP 111122++的最小值,并求出此时点1C 的坐标;(3)在(2)的条件下,将△111C E P 沿射线AC 以每秒2个单位长度的速度平移,记平移后的△111C E P 为△222C E P 点1P 、1E 、1C 的对应点分别是点2P、2E ,C 2,设平移时间为秒,当△CD P 2为等腰三角形时,求t 的值.10.如图,在平面直角坐标系中,抛物线)0≠(++=2a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C , AO=CO=4,BO=6,点D 是第四象限抛物线上一点,且点F 的纵坐标为-4.(1)求抛物线的解析式和直线CF 的解析式;(2)如图1,点P 是直线CF 上方抛物线上一点,点E 在直线CF 上,点E 的横坐标为3,当△PCF 的面积最大时,在y 轴有一动点M ,在x 轴有一动点N ,当PM+MN+NE 的值最小时,求出PM+MN+NE 的最小值.(3)如图2,点D 为线段BO 的中点,连接CD ,将CDO ∆绕着点D 顺时针旋转α度得到对应''C DO ∆ ()0180α︒<<︒.设直线'C D 和直线''C O 分别与直线BC 交于H 、G 两点,当三角形C ′HG 是等腰三角形 时,直接写出腰的长度.11.如图1,在平面直角坐标系中,抛物线c bx x y ++-=2的图像与x 轴交于点A 和点B (5,0),与y 轴交于点C ,点D (1,8)是抛物线上一点.(1)求抛物线和直线AD 的解析式;(2)点Q 是抛物线一象限内一动点,过点Q 作QN ∥AD 交BC 于N ,QG ⊥AB 交BC 与点M ,交AB 于点G (如图1),当QNM ∆的周长最大时,求QNM ∆周长的最大值;此时,在直线BC 上有两动点P 、H ,且PH=22(P 在H 的右边),K (2,0),当HK PQ -最大时求点P 的坐标(3)直线AD 与y 轴交于点F ,点E 是点C 关于对称轴的对称点,点P 是线段AE 上的一动点,将AFP ∆沿着FP 所在的直线翻折得到FP A '∆(点A 的对应点为点A ')(如图2),当FP A '∆与AED ∆重叠部分为直角三角形时,求AP 的长.(第26题1) (第26题2) (第26题备用图)12. 如图1,在平面直角坐标系中,抛物线()032≠-+=a bx ax y 过点()0,2-A 和点()0,23B ,且与y 轴交于点C ,抛物线的顶点为点D ,过点B 作BC 的垂线,交对称轴于点E.(1)求抛物线的解析式和点D 的坐标;(2)点P 为第四象限内的抛物线上的一动点,当△PAE 的面积最大时,在x 轴上找一点M ,使△MPC 周长最小,求此时点M 的坐标;(3)如图2,将线段AD 在射线AD 上移动,点D 平移后的对应点为D ′,点A 的对应点为A ′,设抛物线的对称轴与x 轴交于点F ,若以F 、D ′、A ′为顶点的三角形为等腰三角形,求平移的距离。
重庆2012数学中考题的24、25、26题
24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC 交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.24.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.25.解答:解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=1×12000=12000,故y1=(1≤x≤6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7≤x≤12,且x取整数);(2)当1≤x≤6,且x取整数时:W=y1•x1+(12000﹣y1)•x2=•x+(12000﹣)•(x﹣x2),=﹣1000x2+10000x﹣3000,∵a=﹣1000<0,x=﹣=5,1≤x≤6,∴当x=5时,W最大=22000(元),当7≤x≤12时,且x取整数时,W=2×(12000﹣y1)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),=﹣x2+1900,∵a=﹣<0,x=﹣=0,当7≤x≤12时,W随x的增大而减小,∴当x=7时,W最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a﹣30)%]×(1﹣50%)=18000,设t=a%,整理得:10t2+17t﹣13=0,解得:t=,∵≈28.4,∴t1≈0.57,t2≈﹣2.27(舍去),∴a≈57,答:a的值是57.26.解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.。
2020重庆中考复习数学第26题专题训练五(含答案解析)
2020重庆中考复习数学第26题专题训练五1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.2020重庆中考复习数学第26题专题训练五参考答案1、(2019秋•天桥区期末)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、(2019秋•淮安期末)[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、(2019春•碑林区校级月考)【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A 为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、(2018春•铁西区期中)(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、(2019秋•武冈市期中)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、(2018秋•东海县期末)模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、(2019秋•松北区期末)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、(2017春•合肥期末)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、(2017春•南岗区校级月考)如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.。
重庆中考26题专题训练
1. 已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2. 已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。
(1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。
当△CQE 的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0)。
问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。
Y XE C A D Q B O 28题图3.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想; (2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CB D A 28-1图P E F A D 1B C 1D 2C 228-3图 C 2D 2C 1B D 1A 28-2图4.如图1,在平面直角坐标系中有一个Rt △OAC ,点A (6,8),点C (6,0),将其沿直线AC 翻折,翻折后图形为△BAC .动点P 从点O 出发,沿折线O →A →B 的方向以每秒2个单位的速度向B 运动,同时动点Q 从点B 出发,在线段BO 上以每秒1个单位的速度向点O 运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t (秒).(1)设△OPQ 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)如图2,固定△OAC ,将△ACB 绕点C 逆时针旋转,旋转后得到的三角形为△''CB A ,设''B A 与AC 交于点D ,当∠'BCB =∠CAB 时,求线段CD 的长;(3)如图3,在△ACB 绕点C 逆时针旋转的过程中,若设C A '所在直线与OA 所在直线的交点为E ,是否存在点E 使△ACE 为等腰三角形,若存在,求出点E 的坐标,若不存在,请说明理由.图1 图2 图3备用图42251015BEB'A'OCAxyx642251015DB'A'OCBAyxy42251015OCBAx422451015Q POCBAy5.如图1,抛物线24y x x c =-+交x 轴于点A 和(1,0),B -交y 轴于点C ,且抛物线的对称轴交x 轴于点D . (1)求这个抛物线的解析式;(2)若点E 在抛物线上,且位于第四象限,当四边形ADCE 面积最大时,求点E 的坐标;(3)如图2,在抛物线上是否存在这样的点P ,使PAB ∆中的内角..中有一边与x 轴所夹锐角..的正切值为12?若存在,求出点P 的坐标,若不存在,请说明理由.6. 如图1,矩形OABC 的顶点O 为原点,点E 在AB 上,把CBE ∆沿CE 折叠,使点B 落在OA 边上的点D 处,点A D 、坐标分别为(10,0)和(6,0),抛物线215y x bx c =++过点C B 、. (1)求C B 、两点的坐标及该抛物线的解析式;(2)如图2,长、宽一定的矩形PQRS 的宽1PQ =,点P 沿(1)中的抛物线滑动,在滑动过程中x PQ //轴,且RS 在PQ 的下方,当P 点横坐标为-1时,点S 距离x 轴511个单位,当矩形PQRS 在滑动过程中被x 轴分成上下..两部分的面积比为2:3时,求点P 的坐标;(3)如图3,动点M N 、同时从点O 出发,点M 以每秒3个单位长度的速度沿折线ODC 按C D O →→的路线运动,点N 以每秒8个单位长度的速度沿折线OCD 按D C O →→的路线运动,当M N 、两点相遇时,它们都停止运动.设M N 、同时从点O 出发t 秒时,OMN ∆的面积为S .①求出S 与t 的函数关系式,并写出t 的取值范围:②设0S 是①中函数S 的最大值,那么0S = .。
2018重庆中考数学第26题专题训练
2018年重庆市中考数学26题专题训练1.抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.2.如图,已知抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC。
(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;当△BCM的面积最大时,在抛物线的对称轴上存在点Q,使得△CNQ为直角三角形,求点Q的坐标。
3.如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。
(1)求点B的坐标和抛物线的解析式。
(2)已知,C为抛物线与y轴的交点。
若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。
4.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN 的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线交轴于A,B两点(点A在点B的左侧),交轴于点W,顶点为C,抛物线的对称轴与轴的交点为D。
2021重庆中考26题专题复习及答案2
重庆中考26题专题复习1、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.2、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.3、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.。
重庆中考26题
1.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(-2 , 0 ),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,(1)、四边形ABFC的面积S与X的函数解析式。
(2)、四边形ABFC的面积S为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2.如图,抛物线y= x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2.二次函数y=ax2+bx+c的图象经过点(-1,4),且与直线y= x+1相交于A、B两点(如图), A点在y轴上,过点B作BC⊥x轴,垂足为点C(-3 , 0 ).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.4.如图所示,对称轴是x=-1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C (3,0),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC于点D,交抛物线于点E,连结CE、OD.(1)求抛物线的函数表达式;(2)当P在A、O之间时,求线段DE长度s的最大值;(3)连接AE、BC,作BC的垂直平分线MN分别交抛物线的对称轴x轴于F、N,连接BF、OF,若∠EAC=∠OFB,求点P的坐标.5.如图1,抛物线y=ax2+bx+c与坐标轴分别交于A(-3,0)、B(1,0)、C(0,3)三点.(1)求抛物线的解析式;(2)D是抛物线的顶点,P是x轴下方的抛物线上的一点,若∠PBA=∠CBD,求点P的坐标;(3)连接DC并延长交x轴于E点(如图2).若将抛物线沿其对称轴上、下平移,使抛物线与线段DE总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?。
重庆数学中考26题专题训练
图(2)MNOBPCA Q图(1)QACPBONNMQP DC B A FENM Q PDCBA 重庆数学中考题26题专题训练26、如图(1)AOB Rt ∆中,090=∠A ,060=∠AOB ,32=OB ,AOB ∠的平分线OC 交AB 于C ,过O 点作与OB 垂直的直线ON .动点P 从点B 出发沿折线CO BC -以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点C 出发沿折线ON CO -以相同的速度运动,当点P 到达点O 时P 、Q 同时停止运动.(1)求OC 、BC 的长;(2)设CPQ ∆的面积为S ,直接写出S 与t 的函数关系式;(3)当P 在OC 上、Q 在ON 上运动时,如图(2),设PQ 与OA 交于点M ,当t 为何值时,OPM ∆为等腰三角形?求出所有满足条件的t 值.26.如图1,梯形ABCD 中,AD ∥BC ,5AB AD DC ===,11BC =.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ BC ⊥,交折线段BA AD -于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(0t >). (1)当正方形PQMN 的边MN 恰好经过点D 时,求运动时间t 的值;(2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.第26题图1第26题图2xyO x =4ABCPHM26.四边形OABC 是等腰梯形,OA ∥BC ,在建立如图的平面直角坐标系中,A (10,0),B (8,6),直线x =4与直线AC 交于P 点,与x 轴交于H 点; (1)直接写出C 点的坐标,并求出直线AC 的解析式; (2)求出线段PH 的长度,并在直线AC 上找到Q 点,使得△PHQ 的面积为△AOC 面积的51,求出Q 点坐标; (3)M 点是直线AC 上除P 点以外的一个动点,问:在x 轴上是否存在N 点,使得△MHN 为等腰直角三角形?若有,请求出M 点及对应的N 点的坐标,若没有, 请说明理由.26.如图1,已知点(0,3)A ,点B 在x 轴正半轴上,且30ABO ∠=.动点P 在线段AB 上从点A 向点B 以每秒3t 秒.在x 轴上取两点M 、N 作等边△PMN .(1)求直线AB 的解析式;(2)求等边△PMN 的边长(用t 的代数式表示),并求出当顶点M 运动到与原点O 重合时t 的值;(3)如图2,如果取OB 的中点D ,以0D 为边在Rt△AOB 内部作矩形ODCE ,点C 在线段AB 上.从点P 开始运动到点M 与原点O 重合这一过程中,设等边△PMN 和矩形ODCE 叠部分的面积为S ,请求出S 与 t 的函数关系式和相应的自变量t 的取值范围.26.如图,矩形ABCD 中,AB=6,BC=O 是AB 的中点,点P 在AB 的延长线上,且BP=3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧。
2023年重庆中考第26题压轴题专题:几何变换综合题
2023年重庆中考第26题压轴题专题:几何变换综合题1.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2.(2023•渝中区校级二模)如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,AE ⊥CD于E点.(1)如图1,过B作BF⊥AB交AE的延长线于点F.若BD=1,BF=2,求AE的长度;(2)如图2,将AE绕A点逆时针旋转90°到AF,连接BF交AE于点H,猜想AH和CE之间存在的数量关系,并证明你的猜想;(3)如图3,在第(2)问的条件下,将△ABH沿着AB翻折得到△ABP,连接PC,当线段PC取得最大值,请直接写出的值.3.(2023•渝中区校级一模)如图,△ABC是等边三角形,D为AB上一点,连接CD,将CD绕点C顺时针旋转120°至CE,连接BE,分别交AC、CD于点F、G.(1)若AD=3,BD=1,求△BCE的面积;(2)请猜想线段AF,BD,CF之间的数量关系,并证明你的猜想;(3)当△BCE周长最小时,请直接写出的值.4.(2023•沙坪坝区校级一模)在等腰三角形ABC中,AB=AC.点E为AC上一点,连接BE.(1)如图1,若∠BAC=90°,过点C作CD⊥BE交BE延长线于点D,连接AD,过点A作AF⊥AD交BD于点F,连接CF,求证:FC2=FB2+2FA2;(2)如图2,过A作AD∥BC交BE延长线于点D,将AD绕着点A逆时针旋转至AN,连接DN,使得DN⊥AC于点G,AN与BD交于点M,若点M为BD的中点,且∠DAM=∠DMA,猜想线段AM与DE之间的数量关系,并证明你的猜想;(3)如图3,若∠BAC=60°,,将AC沿着AP翻折得到AC′(∠CAC′<120°),点C′落在BE延长线上,BC′交AP于点P,点Q、R分别是射线AC、AB上的点,连接CP、PQ、QR,满足,当BP取得最大值时,直接写出的最小值的平方.。
2014.03.06-重庆中考26题面积练习
重庆中考26题精练第一讲:60°与面积方法视窗练习要求:60°与面积在2010、2011、2013年均出现,非常重要学生需通过例题1熟悉上述方法,例题2追求更高的准确度,例题3、4中体验中考难度例题1:(2011一中5月月考)如图1,在Rt △AOB 中, ∠AOB =90°, AO= ∠ABO=30°.动点P 在线段AB 上从点 A 向终点B设运动时间为t 秒.在直线OB 上取两点M 、N 作等边△PMN .(1)求当等边 △PMN 的顶点M 运动到与点O 重合时t 的值. (2)求等边 PMN △ 的边长(用t 的代数式表示);(3)如果取OB 的中点D ,以OD 为边在Rt △AOB 内部作如图2所示的矩形ODCE ,点C 在线 段 AB 上. 设等边△PMN 和矩形ODCE 重叠部分的面积为S ,请求出当0≤t ≤2秒时S 与 t 的函数关系式,并求出S 的最大值.2S AB =B2S AB =2S AB =答案:(1)2 (2)8-t (3)21)2)2)t S t t ⎧+≤≤⎪⎪=-++≤≤⎨⎪=⎪⎩例题2:(2012重庆一中6月月考)如图1,梯形ABCD 中,AD ∥BC,AB CD ==,3AD =,30B ∠=︒.动点E 从点B 出发,以每秒1个单位长度的速度在线段BC 上运动;动点F 同时从点B 出发,以每秒2个单位长度的速度在线段BC 上运动.以EF 为边作等边△EFG ,与梯形ABCD 在线段BC 的同侧.设点E 、F 运动时间为t ,当点F 到达C 点时,运动结束.(1)当等边△EFG 的边EG 恰好经过点A 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 与梯形ABCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;答案:(1)当EG 经过点A 时 ∴△EGF 为等边△∴∠AEF =600=∠B+∠BAE ∴∠BAE =∠B =300 ∴BE =AE =t =EF ∴此时G 与A,重合 ∴在Rt △BAF 中 2t•cos300t=4s......3分(2)222t (0t 4)11t )2s 11(t 7)2715t t )8482<≤⎪⎪-<≤⎪⎪=⎨⎪+-<≤⎪⎪⎪-+-<≤⎪⎩.................8分CGFE DBA例题3:(2011重庆)如图,矩形ABCD 中,6=AB ,32=BC ,点O 是AB 的中点,点P 在AB 的延长线上,且3=BP .一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点F E 、同时出发,当两点相遇时停止运动.在点F E 、的运动过程中,以EF 为边作等边EFG ∆,使EFG ∆和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(t ≥0).(1)当等边EFG ∆的边FG 恰好经过点C 时,求运动时间t 的值; (2)在整个运动过程中,设等边EFG ∆和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;26.解:(1)当边FG 恰好经过点C 时(如图①), ︒=∠60CFB ,3BF t =-. ···· (在Rt CBF ∆中,32=BC ,BFBCCFB =∠tan , ∴BF3260tan =︒. ∴2BF =, ········································································································ (2分)即32t -=.∴1t =.∴当边FG 恰好经过点C 时,1t =. ······························································· (3分) (2)当0≤t <1时,S =+ ····························································· (4分)26题图26题答图①当1≤t <3时,23733232++-=t t S . ············································ (5分) 当3≤t <4时,S =-+ ························································ (6分) 当4≤t <6时,2S =-+ ············································· (7分)本题考核的是动态几何问题,是全卷最后一道压轴题,难度大,涉及函数关系式,是代数与几何的综合运用。
重庆中考第26题复习资料
1 因动点产生的相似三角形问题 2011年上海市闸北区中考模拟第25题1、直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.例2 2011年上海市杨浦区中考模拟第24题Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.例3 2010年义乌市中考第24题如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2例4 2010年上海市宝山区中考模拟第24题如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.例5 2009年临沂市中考第26题如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,例6 2009年上海市闸北区中考模拟第25题如图1,△ABC 中,AB =5,AC =3,cos A=310.D 为射线BA 上的点(点D 不与点B重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图例 7 2008年杭州市中考第24题如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.1.2 因动点产生的等腰三角形问题 例1 2011年湖州市中考第24题如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2例2 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.例3 2010年上海市闸北区中考模拟第25题如图1,在直角坐标平面内有点A (6, 0),B (0, 8),C (-4, 0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向作匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向作匀速运动,MN 交OB 于点P .(1)求证:MN ∶NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长; (3)若△BNP 是等腰三角形,求CM的长.图1例4 2010年南通市中考第27题如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m,要使△DEF 为等腰三角形,m的值应为多少?图1例5 2009年重庆市中考第26题已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1例6 2009年上海市中考第24题在平面直角坐标系内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM //x 轴(如图1所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆与圆O 外切,求圆O 的半径.图11.3 因动点产生的直角三角形问题例1 2011年沈阳市中考第25题如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34P Q A B =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1例2 2011年浙江省中考第23题设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.例3 2010年北京市中考第24题在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.图1例4 2009年嘉兴市中考第24题如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例 5 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例6 2008年天津市中考第25题已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图1,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程.(2)当扇形CEF 绕点C 旋转至图2的位置时,关系式222BNAMMN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.图1 图21.4 因动点产生的平行四边形问题例 1 2011年上海市中考第24题已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.例2 2011年江西省中考第24题将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2,如图1所示. (1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图1例3 2010年河南省中考第23题如图1,在平面直角坐标系中,已知抛物线经过A (-4,0)、B (0,-4)、C (2,0)三点. (1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2例4 2010年山西省中考第26题在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA =35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2例 5 2009年福州市中考第21题如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1例6 2009年江西省中考第24题如图1,抛物线322++-=xxy与x轴相交于A、B两点(点A在点B的左侧),与y 轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系.图1例 7 2008年太原市中考第29题如图,在平面直角坐标系xOy中,直线1y x=+与334y x=-+交于点A,分别交x轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标. (3)在直线AB 上是否存在点E ,使得以点E 、D 、O 、A 为顶点的四边形是平行四边形?如果存在,直接写出B EC D的值;如果不存在,请说明理由.图11.5 因动点产生的梯形问题例1 2011年北京市海淀区中考模拟第24题已知平面直角坐标系xOy 中, 抛物线y =ax 2-(a +1)x 与直线y =kx 的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN的面积.备用图例 2 2011年义乌市中考第24题已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2例3 2010年杭州市中考第24题如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例 4 2010年上海市奉贤区中考模拟第24题已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D .(1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.图1例5 2009年广州市中考第25题如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45.(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1例6 2009年河北省中考第26题如图1,在Rt △ABC 中,∠C =90°,AC =3,AB =5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设P 、Q 运动的时间是t 秒(t >0).(1)当t =2时,AP =_____,点Q 到AC 的距离是________;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式(不必写出t 的取值范围);(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值;若不能,请说明理由;(4)当DE 经过点C 时,请直接写出t的值.图11.6 因动点产生的面积问题例 1 2011年南通市中考第28题如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p>1)作x 轴的平行线分别交曲线m y x=(x >0)和m y x=-(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.图1例2 2011年上海市松江区中考模拟第24题如图1,在平面直角坐标系xOy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA ,OC =4,BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E .(1)求点E 的坐标;(2)二次函数y =-x 2+bx +c 的图像经过点B 和点E . ①求二次函数的解析式和它的对称轴;②如果点M 在它的对称轴上且位于x 轴上方,满足S △CEM =2S △ABM ,求点M 的坐标.图1例3 2010年广州市中考第25题如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1例 4 2010年扬州市中考第28题如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .(1)求线段AD 的长;(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.图1 备用图例5 2009年兰州市中考第29题如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.(4)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.图1 图2例6 2008年长春市中考第25题在直角坐标系中,抛物线cbxxy++=2经过点(0,10)和点(4,2).(1)求这条抛物线的解析式.(2)如图1,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线cbxxy++=2滑动,在滑动过程中CD∥x轴,AB在CD的下方.当点D在y轴上时,AB 落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.图1。
2019重庆中考第26题二次函数综合问题探索举例(含解题思路提示)
P若A(m,n),则C(-n,m)OA=OC1x 2019重庆中考26题二次函数综合问题探索举例二次函数综合问题,是重庆历届中考必考题,在解答此类问题时,除二次函数、一次函数等必备的知识外,还涉及到如下一些知识:1.两点的所有连线中,线段最短,简单说成:两点之间,线段最短 (新人教版七上基础知识)2.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短. (新人教版七下基础知识)3.两点P 1(x 1,y 1),P 2(x 2,y 2)的距离公式:P 1P 2 =212212)y y ()x x (-+- (新人教版八下拓展知识)特别:当P 1P 2∥y 轴时,P 1P 2 =12y y -. 当P 1P 2∥x 轴时,P 1P 2 =12x x -.4.两直线y=k 1x+b 1,y=k 2x+b 2平行的条件:k 1=k 2,且b 1≠b 2. (新人教版八下拓展知识)5.两直线y=k 1x+b 1,y=k 2x+b 2垂直的条件:k 1k 2=-1. (新人教版八下拓展知识)如图,直线y=k 1x ,y=k 2x 垂直的条件是:k 1k 2=-1.6.常见图形的计算、性质、判定等.答图1图1典例探索例1.(2019重庆B 卷)在平面直角坐标系中,抛物线y=32x 23x 432++-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q.(1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+23KG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.思路:点坐标→PH+HK+23KG 的最小值→H 的坐标. (2)由条件→新抛物线→设出N 的坐标求得D /N ,D /C ,CN →建立方程求出N 的坐标.提示:(1)易求A(-2,0),B(4,0),C(0,32),D(1,439),△PEF ∽△BOC. ∴当PE 最大时,△PEF 的周长最大.易求直线BC 的解析式为y=32x 23+- 设P(x, 32x 23x 432++-),则E(x, 32x 23+-) ∴PE=32x 23x 432++--(32x 23+-)=x 3x 432+- ∴当x=2时,PE 有最大值. ∴P(2, 32),此时,如图将直线OG 绕点G 逆时针旋转60 °得到直线l ,过点P 作PM ⊥l 于点M ,过点K 作KM /⊥l 于M /.则PH+HK+23KG= PH+HK+KM /≥PM ,易知∠POB=60°.POM 在一直线上.易得PM=10,H(1,3)(2)易得直线AC 的解析式为y=32x 3+,过D 作AC 的平行线,易求此直线的解析式为y=435x 3+,所以可设D /(m, 435m 3+),平移后的抛物线y 1=435m 3)m x (432++--.将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5,4325). 设N(1,n),又C(0,32),D /(5,4325). 所以NC 2=1+(n-32)2,D /C 2=22)324325(5-+=161267,D /N 2=22)n 4325()15-+-(. 分NC 2= D /C 2;D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解.答案N 1(1,4139338+),N 2(1, 4139338-),N 3(1,41011325+),N 4(1, 41011325-),N 5(1,1363641). 例2.(2019重庆A 卷)如图,在平面直角坐标系中,抛物线y=x 2-2x-3与x 轴交于点A ,B(点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E. (1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+31PC 的最小值; (2)在(1)中,当MN 取得最大值,HF+FP+31PC 取得最小值时,把点P 向上平移22个单位得到点Q ,连接AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A /OQ /,其中边A /Q /交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得∠Q /=∠Q /OG ?若存在,请直接写出所有满足条件的点Q /的坐标;若不存在,请说明理由.思路:(1)MN 取得最大值→FN 最大→点F 坐标及HF 的值→HF+FP+31PC 的最小值. (2)由P 的坐标→Q 点坐标→注意∠Q /=∠AQO 构成直角三角形,求出Q /的坐标.提示:(1)易得A(-1,0),B(3,0),C(0,-3),D(1,-4),E(1,0).直线BD 的解析式为y=2x-6. 易得△MNF ∽△EBD ,所以要MN 取最大值,只要FN 设N(x, x 2-2x-3),F(x,2x-6). 则FN=-x 2+4x-3,∴当x=2时,FN 最大,此时MN 最大,F(2,-2),HF=2. ∴当FP+31PC 最小时,HF+FP+31PC 最小. 如图,以PC 为斜边,31PC 的长为直角边,作Rt △CRP ,其中PR=31PC 因此,当点F ,P ,R 在一条 直线上时,FP+31PC 最小.此时,过F 作y 为S ,则△CPR ∽△FPS.又易得FS=2. S(0,-2) SP=22,FP=223,PC=CS-PS=222-,所以PR=31PC=622-.答案3247+(2)由(1)知SP=22,将P 向上平移22个单位得到的Q 点即为S 点,所以OQ=2. 如图,过Q /作Q /T ⊥x 轴于T.在Rt △OQ /T 中,易得∠Q /OT 的正切为一定值.结合勾股定理及方程思想求出两直角边.552),(552,554-).例3.(2019重庆中考考试说明题型示例)在平面直角坐标系中,抛物线y=22x 23x 422-+与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C.(1)如图甲所示,点D 是抛物线第二象限上一点,且满足22x x A D =-,过点D 作AC 的平行线,分别与x 轴、射线CB 交于点F 、E ,点P 为直线AC 下方抛物线上的一动点,连接PD 交线段AC 于点Q ,当四边形PQEF 面积最大时,在y 轴上找一点M ,x 轴上找一点N ,使得PM+MN-53NB 取得最小值; (2)如图乙所示,将△BOC 沿直线AC 平移得到△B /O /C /,再将△B /O /C /沿B /C /翻折得到△B /O //C /,连接C /B ,O //B ,则△C /BO //能否构成等腰三角形?若能,请直接写出所有符合条件的点O //的坐标;若不能,请说明理由.思路:(1)四边形PQEF 面积最大→△PDF 的面积最大→P 点坐标→PM+MN-53NB 最小值. (2)由条件表达出C /,B ,O //的坐标→求得C /B ,O //B ,O //C /→建立方程求出O //的坐标. 提示:(1)易得A(24-,0),B(2,0),C(0,22-),又点D 是抛物线第二象限上一点,且满足22x x A D =-,∴D(26-,27).易得直线AC 的解析式y=22x 21--,∴直线DF 的解析式为y=24x 21+-,易得直线CB 的解析式为y=22x 2-. ∴易得F(28,0),E(2512,2514). ∵四边形PQEF 面积=△PDF 的面积-△DQE 的面积.而平行线得,△DQE 的面积=△DAE 的面积.而△DAE 的面积为定值,∴当△PDF 的面积最大时,四边形PQEF 面积最大. 过P 作PT ⊥x 轴,交DF 于点T ,则当PT 最大时,△PDF 的面积最大. 设P(x, 22x 23x 422-+),则T(x, 24x 21+-).PT=24x 21+--(22x 23x 422-+)=26x 2x 422+--, ∴当x=22-时,PT 最大,此时P(22-,23-). △PDF 的面积最大,四边形PQEF 面积最大.如图,作点P 关于y 轴的对称点P /(22,23-).过点B 作直线l : y=243x 43-(针对53NB) 过P /作直线l ////PM+MN-53NB 5即为所求的最小值.易求直线l /的解析式为y=32x 34--,∴W(52,523-),∴P /W=23.答案23.(2)易得直线AC 的解析式为y=22x 21--,直线OO /的解析式为y=x 21-,直线BB /解析式为y=22x 21+-.直线BC 的解析式为y=22x 2- . AC ⊥BC.设O /(t, t 21-),则C /(t, 22t 21--),B /(2t +,t 21-), 则直线B /C /的解析式为y=22t 25x 2--, 所以O /O //与B /C /的交点坐标为(524t (+,522t 21--),所以O //(528t +,524t 21--). ∴C /B 2=22)22t 21()2t (++-=10t 452+. O //C / 2=O /C / 2=OC 2=8. O //B 2=22)524t 21()2528t (++-+=2t 22t 452++.若C /B=O //C /.则10t 452+=8,此无解,舍去.若C /B=O //B.则10t 452+=2t 22t 452++,解得t=22.∴O //(5281,529-). 若O //B= O //C /.则2t 22t 452++=8,解得t 1=538224+-,t 2=538224--∴O //(538224+,53822+-),O //(538224-,53822--). 答案O //(5281,529-)或O //(538224+,53822+-)或O //(538224-,53822--).图1图2答图如下 例 4.(2019重庆中考考试说明参考试卷)如图所示,在平面直角坐标系中,抛物线y=3x 332x 332--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(2)点G 是线段CE 的中点,将抛物线y=3x 332x 332--沿x 轴正方向平移得到新抛物线y /,y /经过点D ,y /的顶点为点F. 在新抛物线y /的对称轴上,是否存在一点Q ,使得△FGQ为等腰三角形?若存在,请直接写出点Q 的坐标,若不存在,请说明理由.思路:(1)△PCE 的面积最大→P 点坐标→KM+MN+NK 的最小值.(2)由条件→新抛物线→设Q 点坐标→求出FG ,GQ ,FQ →建立方程求出Q 点的坐标. 提示:(1)易得A(-1,0),B(3,0),C(0,3-),D(1,0),E(4,335).则易得直线CE 的解析式为y=3x 332-.过P 作x 轴的垂线交直线CE 于T ,则当PT 最大时,△PCE 的面积最大. 设P(x, 3x 332x 332--), T(x, 3x 332-).PT=3x 332--(3x 332x 332--)=x 334x 332+-. ∴当x=2时,PT 最大,△PCE 的面积最大,此时P(2, 3-). 由OC=3,OB=3,易得∠OCB=60°.又易得DB=DC=2.CP ∥x 轴,K 关于CD 对称的点就是点O. 设K 关于CP 对称的点K /.连接OK /交CP 于M ,交DC 于N.则此时的M 、N 使得KM+MN+NK 最小.答案KM+MN+NK 最小值是3. (2)易得F(3,334-),G(2,33),设Q(3,t).则FG 2=328. GQ 2=2)33t (1-+=34t 332t 2+-. QF 2=2)334t (+=316t 338t 2++. 若GQ=FG ,则34t 332t 2+-=328,解得t=32或t=334-(此时Q 与F 重合,舍). 若GQ=QF ,则34t 332t 2+-=316t 338t 2++,解得t=532-. 若QF=FG ,则316t 338t 2++=328,解得t=321234+-或t=. 答案Q(3, 32)或(3, 532-)或(3, 321234+-)或(3, 321234--).例5.(2019重庆巴蜀三诊)如图1,抛物线x 63y 2+-=A 、B 两点(点A 在点B 的右侧),与y 轴相交于点C ,对称轴与x 轴相交于点H ,与AC 相交于点T. (1)点P 是线段AC 上方抛物线上一点,过点PQ ∥AC 交抛物线的对称轴于点Q ,当△AQH 面积最大时,点M 、N 在y 轴上(点M 在点N 的上方),MN=3,点G 在直线AC 上,求PM+NG+21GA 的最小值. (2)点E 为BC 中点,EF ⊥x 轴于F ,连接EH ,将△EFH 沿EH 翻折得△EF /H ,如图2所示,再将△EF /H 沿直线BC 平移,记平移中的△EF /H 为△E /F //H /,在平移过程中,直线E /H /与x 轴交于点R ,则是否存在这样的点R ,使得△RF /H /为等腰三角形,若存在,求出R 点坐标.思路:(1)△AQH 面积最大→△APT 面积最大→P 的坐标→PM+NG+21GA 的最小值. (2)由条件表达出F /,H /,R 的坐标→求出F /H /,F /R ,H /R →建立方程求出R 的坐标.提示:(1)由题意得B(-2,0),A(6,0),C(0,32),设AC 与对称轴交于T ,连接AQ ,PT ,PA.如图.∵S △AQH =S △ATH + S △AQT 而S △ATH 为定值338. ∴△AQH 的面积最大,即△AQT 的面积最大. 又PQ ∥AC ,∴S △AQT =S △APT . 过点P 作PR ∥y 轴交AC 于R. 易求得AC 的解析式为y=32x 33+-设P(m, 32m 332m 632++-),则R(m, 32m 33+-)S △APT =4)m 3m 63(212⨯+-⨯=m 32m 332+-.∴当m=3时面积最大,此时P(3,235). 过点G 作GE ⊥x 轴交x 轴于E ,作x 轴关于直线AC 的对称直线l ,E 的对称点为E /,将PM 沿y 轴 向下平移3个单位至P /N ,作点P /关于y 轴的对称 点P //,作P //S ⊥l 于点S.如图所示,则有PM+NG+21GA=P //N+NG+GE //≥P //S.易求P //S=4315 (2)易得△ABC ,△BOC ,△EFH 均为含30E(-1,3),F(-1,0),H(2,0),F /(21,233). 易得直线BC 的解析式为y=32x 3+, 直线HH /的解析式为y=32x 3-, 直线EH 的解析式为y=332x 33+-. 将△EF /H 沿直线BC 平移,设在水平方向上记平移|t|个单位.则平移后的△E /F //H /中易得E /(t-1,3t 3+),H /(t+2,t 3), 易得直线E /H /的解析式为y=332t 334x 33++-. ∴R(4t+2,0). ∴(F /H /)2=22)233t 3()212t (-+-+=4t 2-6t+9.(H /R)2=22)t 30()]2t ()2t 4[(-++-+=12t 2. (F /R)2=22)2330()212t 4(-+-+=16t 2+12t+9.图1若F /H /= H /R ,4t 2-6t+9=12t 2.解得t=43或t=23-, 此时R(5,0)(此时F /、H /、R 共线,舍)或R(-4,0). 若F /H /= F /R ,4t 2-6t+9=16t 2+12t+9,解得t=0或t=23-, 此时R(2,0)(此时H /、R 重合,舍)或R(-4,0). 若H /R= F /R ,12t 2=16t 2+12t+9.解得t 1=t 2=23-,此时R(-4,0).答案R(-4,0). 例6.(2019重庆南开测试四)如图,在平面直角坐标系中,抛物线3x 49x 43y 2++-=与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ;连接BC.点P 为线段BC 上方抛物线上的一动点,连接OP 交BC 于点Q.(1)如图1,当OQ PQ值最大时,点E 为线段AB 上一点,在线段BC 上有两动点M ,N (M在N 上方),且MN=1,求PM+MN+NE-53BE 的最小值; (2)如图2,连接AC ,将△AOC 沿射线CB 方向平移,点A ,C ,O 平移后的对应点分别记作A 1,C 1,O 1,当C 1B=O 1B 时,连接A 1B ,O 1B ,将△A 1O 1B 绕点O 1沿顺时针方向旋转90°后得△A 2O 1B 1,在直线x=21上是否存在点K ,使得△A 2B 1K 为等腰三角形?若存在,直接写出点K 的坐标;若不存在,请说明理由.思路:(1)OQ PQ值最大→P 点坐标→PM+MN+NE-53BE 的最小值.(2)由条件表达出A 2,B 1,K 的坐标→求出A 2B 1,B 1K ,A 2K →建立方程求出K 的坐标. 提示:(1)易得A(-1,0),B(4,0),C(0,3).直线BC 的解析式为y=3x 43+-. 过点P 作PH ∥y 轴交BC 于H.令P(a,3a 49a 432++-),则H(a, 3a 43+-),∴PH=a 3a 432+-.易得△PQH ∽△OQC ,∴OQ PQ =O CPH=3a3a 432+-=a a 412+-∴当a=2时,OQPQ最大,此时P(2,29)将P 沿MN 方向平移1个单位(即向右平移54,向下平移53)得P /(514,1093).过点A 作AJ ∥CB.过点E 作EK ⊥AJ 于K ,过点P /作P /K /⊥AJ 于K /.则 PM+MN+NE-53BE= PM+MN+NE-53(AB-AE)= PM+MN+NE+53AE-53AB =P /N+NE+EK-2≥P /K /-2=2527-=517. 注:MN=1,EK=53AE ,53AB=3,易得直线AJ 的解析式为y=43x 43--,直线P /K /的解析式为y=61x 34+,∴K /(2511-,5021-),P /K /=527. 答案最小值为517. (2)易得直线AA 1的解析式为y=43x 43--,直线OO 1的解析式为y=x 43-,又直线BC 的解析式为y=3x 43+-.设A 1(t-1,t 43-),则C 1(t,3t 43+-),O 1(t, t 43-).又B(4,0), ∴当C 1B=O 1B 时,22)3t 43()4t (+-+-=22)t 43()4t (-+-,解得:t=2. ∴A 1(1,23-),O 1(2, 23-),∴A 2(2,21-),B 1(27,27-) 设K(21,y),则A 2K 2=22)y 21()212(--+-=25y y 2++,A 2B 12=45, B 1K 2=22)y 27()2127(--+-=485y 7y 2++. 若A 2K= A 2B 1,25y y 2++=445,解得y=25或y=27-. 若A 2B 1=B 1K ,445=485y 7y 2++,解得y=-2或y=-5. 若A 2K= B 1K ,25y y 2++=485y 7y 2++,解得y=825- 答案K 1(21,25)(此时K 1、A 2、B 1在一直线上,舍去), K 2(21,27-),K 3(21,-2),K 4(21,-5),K 5(21,825-). 反思:重庆中考二次函数的综合题,一般设计两个问:第(1)问,通常是线段(均可转化为线段)取最值时,求几条线段和差的最值. 第(2)问,通常是在图形变换下,出现特殊情况时,直接写出坐标.看视较难,其实还是有一定的解题思路:(1)把动点产生的最值问题,转化为动线段的最值,确定其动点取最值时的坐标,再把几条线段和差转化为几何图形的有关最值,或把几条线段和差转化为代数问题求最值.(2)在经历图形变换后,需要求出相关线段的长度,利用方程思想求出其中未知数的值,写出坐标.车到山前必有路,船到桥头自然直,山穷水尽疑无路,柳暗花明又一村.只要不断向前做,定会发现新思路.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个单位的速度向点B运动;点N从点C出发,沿C→D→A方向,以每秒1个单位的速度向点A运动,若M、N同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t秒,过点N作NQ⊥CD交AC于点Q.(1)设△AMQ的面积为S,求S与t的函数关系式,并写出t的取值范围.(2)在梯形ABCD的对称轴上是否存在点P,使△PAD为直角三角形?若存在,求点P到AB的距离;若不存在,说明理由.(3)在点M、N运动过程中,是否存在t值,使△AMQ为等腰三角形?若存在,求出t值;若不存在,说明理由.2、如图,四边形OABC为正方形,点A在x轴上,点C在y轴上,点B(8,8),点P在边OC上,点M在边AB上.把四边形OAMP沿PM对折,PM为折痕,使点O落在BC边上的点Q处.动点E从点O出发,沿OA边以每秒1个单位长度的速度向终点A运动,运动时间为t,同时动点F从点O出发,沿OC边以相同的速度向终点C运动,当点E到达点A时,E、F同时停止运动.(1)若点Q为线段BC边中点,直接写出点P、点M的坐标;(2)在(1)的条件下,设△OEF与四边形OAMP重叠面积为S,求S与t的函数关系式;(3)在(1)的条件下,在正方形OABC边上,是否存在点H,使△PMH为等腰三角形,若存在,求出点H的坐标,若不存在,请说明理由;(4)若点Q为线段BC上任一点(不与点B、C重合),△BNQ的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由.3、如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=,∠B=45°,动点M从点B出发,沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发,沿C→D→A,以同样速度向终点A运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为t秒.(1)求线段BC的长度;(2)求在运动过程中形成的△MCN的面积S与运动的时间t之间的函数关系式,并写出自变量t的取值范围;并求出当t为何值时,△MCN的面积S最大,并求出最大面积;(3)试探索:当M,N在运动过程中,△MCN是否可能为等腰三角形?若可能,则求出相应的t值;若不可能,说明理由.4、如图1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒个单位的速度运动,设运动时间为t秒.在直线OB 上取两点M、N作等边△PMN.(1)求当等边△PMN的顶点M运动到与点O重合时t的值.(2)求等边△PMN的边长(用t的代数式表示);(3)如果取OB的中点D,以OD为边在Rt△AOB 内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.5、如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,∠A=90°,∠AOB=60°,,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣Oy以相同的速度运动,当点P到达点O时P、Q同时停止运动.(1)OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.6、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO 返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD 在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.7、已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A 在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.8、已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE 交于点P,此时点Q在DF上匀速运动,速度为,当QC⊥DF时暂停旋转;运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C 与点F重合时为止.设运动时间为t(s),中间的暂停不计时,解答下列问题(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时_________ s;(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.9、将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片△ABC、△DEF(如图2),量得他们的斜边长为6cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,且点A、C、E、F 在同一条直线上,点C与点E重合.△ABC保持不动,OB为△ABC的中线.现对△DEF纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△DEF沿CA向右平移,直到两个三角形完全重合为止.设平移距离CE为x(即CE 的长),求平移过程中,△DEF与△BOC重叠部分的面积S与x的函数关系式,以及自变量的取值范围;(2)△DEF平移到E与O重合时(如图4),将△DEF绕点O顺时针旋转,旋转过程中△DEF的斜边EF交△ABC的BC边于G,求点C、O、G构成等腰三角形时,△OCG的面积;(3)在(2)的旋转过程中,△DEF的边EF、DE分别交线段BC于点G、H(不与端点重合).求旋转角∠COG为多少度时,线段BH、GH、CG之间满足GH2+BH2=CG2,请说明理由.10、如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ 的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO﹣OP于点F.当DF经过原点O时,请直接写出t的值.备用图'B'O .C'AAB'C图3'B.GFEH IOC'C'AABP 图2'B 'O .C'A AB'C11、如图1,△ABC 和△A ’B ’C ’是两个全等的等腰直角三角形,且'CC ∠=∠=90°,AC BC ==其中D 、E 分别为△ABC 中AC ,BC 的中点,现将两三角形如图所示放置,A 点与'B 重合,且'',,,A A B B 在同一条直线上,现将△A ’B ’C ’沿射线AB 方向向右匀速运动,速度为1/cm s ,直到E 点落在''B C 上停止运动.⑴试写出在运动过程中△A ’B ’C ’与四边形DABE 重叠部分的面积S 与时间t 的函数关系式; ⑵ 如图2, 若O 为△ABC 内角平分线的交点,在⑴的运动中当△A ’B ’C ’平移到'C 与C 重合时,让△ABC 保持不动将△A ’B ’C ’绕点O 顺时针方向旋转,在旋转过程中,直线''A B 与直线AC 相交于点K ,则是否存在这样的点K 使得△ABK 为等腰三角形,若存在,试求出△ABK 的面积,若不存在,请说明理由;⑶ 如图3,在⑵的前提下,当将△A ’B ’C ’绕点O 顺时针方向旋转45°时,如图,试求出△ABC 和△A ’B ’C ’重叠部分的面积是多少?备用图('B )'CCBEDA'A ('B ) CBEDA'A 'C图1。