高考数学公式:排列组合公式

合集下载

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。

⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

高中排列组合计算公式

高中排列组合计算公式

高中排列组合计算公式高中数学中的排列组合计算公式,那可是相当重要且有趣的一部分内容呢!先来说说排列。

排列就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n, m) 。

计算公式是 A(n, m) = n! / (n - m)! 。

这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。

给大家举个例子,假设咱们班有 10 个同学,要选 3 个同学去参加比赛,那一共有多少种选法呢?这就是一个简单的排列问题。

按照公式来算,A(10, 3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。

组合呢,组合是从 n 个不同元素中取出 m 个元素的组合数,记作C(n, m) 。

计算公式是 C(n, m) = n! / [m! × (n - m)!] 。

就说学校要从 10 个社团中选出 3 个社团参加校际交流活动,这时候就该用组合来计算,C(10, 3) = 10! / [3! × (10 - 3)!] = 120 种。

记得我之前监考的时候,发现有个同学在做排列组合的题目时,抓耳挠腮,苦思冥想。

我在旁边看着都替他着急,不过最后他还是算出来了,那股子认真劲儿真是让人欣慰。

在实际生活中,排列组合的应用那可太广泛了。

比如说抽奖,从一堆号码中抽出几个中奖号码,这就是组合。

而如果要考虑号码的顺序,那就是排列。

再比如安排座位,一排有 8 个座位,要安排 5 个人坐下,这又得考虑排列。

还有分东西,把10 个苹果分给3 个小朋友,每个小朋友至少一个,这也是组合问题。

总之,排列组合的计算公式虽然看起来有点复杂,但只要咱们多练习,多思考,就一定能掌握好。

就像咱们解决生活中的其他难题一样,只要用心,没有什么是做不到的。

大家在学习排列组合的时候,一定要多做练习题,熟悉各种题型,这样才能在考试中应对自如。

排列组合公式排列组合计算公式定稿版

排列组合公式排列组合计算公式定稿版

排列组合公式排列组合计算公式精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数 R参与选择的元素个数!-阶乘,如?9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章?排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()A.60个B.48个C.36个D.24个解?因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P 13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()A.140种B.84种C.70种D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是()A.-27C610B.27C410C.-9C610D.9C410解?设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为()A.1B.-1C.0D.2解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有()A.6种B.12种C.18种D.24种解?分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

第讲排列组合和二项式定理概率(2022高考数学---新东方内部

第讲排列组合和二项式定理概率(2022高考数学---新东方内部

第讲排列组合和二项式定理概率(2022高考数学---新东方内部第十一章排列、组合和二项式定理1.排列数公式mAnn(n1)(n2)(nm1)n!n(mn);Ann!n(n1)(n2)21。

(nm)!如①1!+2!+3!+…+n!(n4,nN某)的个位数字为;(答:3)②满足A8某6A8某2的某=(答:8)组合数公式mAnn(n1)(nm1)n!0Cm(mn);规定0!1,Cn1.Amm(m1)21m!nm!mnmnm如已知CnCm1An6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①CnmCnnm;1②CnmCnm1Cnm1;kk1③kCn;nCn11④CrrCrr1Crr2CnrCnr;1⑤nn!(n1)!n!;n11⑥.(n1)!n!(n1)!2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③从集合1,2,3和1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤A的一边AB上有4个点,另一边AC上有5个点,连同A的A顶点共10个点,以这些点为顶点,可以构成_____个三角形;(答:CB90)⑥用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有D种不同涂法;(答:480)⑦同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种;(答:9)⑧f是集合Ma,b,c到集合N1,0,1的映射,且f(a)f(b)f(c),则不同的映射共有个;(答:7)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识排列组合是高中数学教学内容中的重要组成部分,在高考试卷中排列组合的占分比越来越高,且出现的形式多种多样。

下面店铺给你分享高中数学排列组合公式大全,欢迎阅读。

高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。

高考数学排列组合常见方法

高考数学排列组合常见方法

学习必备欢迎下载排列组合中的常用方法1.排列数:)!(!)1()2)(1(m n n m n n n n P m n ,(其中m ≤n ,m 、n N ).注意:为了使m=n 时,!)!(!n n n n P P nn mn 公式成立,我们规定10!(同时11!).2.组合数:)!(!!123)2)(1()1()2)(1(m n m n m m m m n n n n P P C mm m nmn ),,(n m N m n 且mn n mn C C ),,(n m N mn 且. 注意:为了使m=n 时,0n n n C C 公式成立,我们规定10n C ,所以111010k k kk k k C C C C ;3.排列组合问题联系生活实际,生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题还是组合问题或是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

4.排列组合中的常用方法如下:(1)特殊元素和特殊位置问题——优限法(2)多元问题——合理分类与分步法(3)相邻问题——捆绑法(4)不相邻问题——插空法(5)定序问题——倍缩法(6)重排问题——求幂法(7)平均分组问题——除序法(8)分组问题——隔板法(9)分配问题——先分组后排列法(10)球盒问题(11)区域涂色问题——分步与分类综合法(12)“至少”“至多”问题或者部分符合条件问题——排除法或分类法(“正难则反”策略)(13)元素个数较少的排列组合问题——枚举法(14)复杂的排列组合问题——分解与合成法。

高考数学公式理科总结

高考数学公式理科总结

高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。

因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。

今天,我们就来总结一下理科数学中常用的数学公式及其应用。

一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。

应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。

2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。

应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。

3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。

应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。

二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。

应用:用于三角函数问题,例如角度求解、三角函数值等。

2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。

应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。

3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。

应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。

三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。

应用:用于处理随机事件、样本调查、统计数据等问题。

2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。

应用:用于基本的统计概率问题,例如计算事件发生的概率等。

3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。

排列组合和排列组合计算公式

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合和排列组合计算公式

排列组合和排列组合计算公式

排列P------和顺序有关组合C——不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1排列及计算公式从n个不同元素中,任取m(mc n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mc n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) ..... (n-m+1)= n!/(n-m)!( 规定0!=1).2. 组合及计算公式从n个不同元素中,任取m(mc n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(贰n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n ,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!) ; c(n,m)=c(n,n-m);3. 其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r二n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,…nk 这n个元素的全排列数为n!/(n 1!* n2!*..* nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=r X( n-1 ) .... (n-m+1); Pnm=n / (n-m) !(注:!是阶乘符号);Pnn (两个n分别为上标和下标)=n !; 0! =1; Pn1 ( n 为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm二Pnm/Pmm Cnm二n /m!(n-m)!; Cnn (两个n 分别为上标和下标)=1 ; Cn1 (n为下标1为上标)二n; Cnm二Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个个个个解因为要求是偶数,个位数只能是2或4的排法有P1;小于50 000的五位数,2万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6在(x- )10的展开式中,x 6的系数是() -27CB.27C 410-9CD.9C 410解设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410 故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x 2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为 在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0. (五)综合例题赏析例8若(2x+ )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有() 种种种种解分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。

高考排列组合圆桌问题知识点

高考排列组合圆桌问题知识点

高考排列组合圆桌问题知识点在高考数学考试中,排列组合是一个重要的考点。

其中,圆桌问题是排列组合中的一个经典问题,涉及到圆桌上的座位安排。

本文将探讨高考中与排列组合圆桌问题相关的知识点。

一、排列组合基础知识回顾在了解圆桌问题之前,我们先复习一下排列与组合的基础知识。

排列与组合是数学中的两个重要概念。

排列指的是从一组元素中选取若干个元素按照一定的顺序进行排列,而组合指的是从一组元素中选取若干个元素,不考虑排列顺序。

排列的计算公式为P(n, k) = n! / (n-k)!,其中P代表排列,n 代表元素总数,k代表选取的元素个数。

组合的计算公式为C(n, k) = n! / (k!*(n-k)!),其中C代表组合。

二、圆桌问题的基本原理在圆桌问题中,我们需要考虑的是座位的相对位置,而不是绝对位置。

即同一组合的座位安排,在圆桌上的旋转并不改变其本质。

例如,假设有3个人A、B、C需要坐在一张圆桌上。

按照排列的理念,我们可以有6种不同的安排方式:ABC、ACB、BAC、BCA、CAB、CBA。

然而,这6种安排方式在圆桌上的旋转下实际上只有3种不同的位置,即ABC、BCA和CAB。

这个原理对于解决圆桌问题非常关键,因为在计算圆桌问题时,我们需要将重复的排列去除,只保留不同位置上的一种排列。

三、圆桌问题的实际应用圆桌问题在日常生活中有着许多实际应用。

例如,在电视节目《快乐大本营》中,主持人常常使用圆桌问题来安排嘉宾的座位。

这不仅增加了节目的趣味性,也体现了排列组合的实际应用。

在高考中,圆桌问题常常出现在数学或者概率统计的题目中。

这些题目往往要求学生计算不同条件下的座位安排数量,或者计算不同条件下的概率值。

例如,考生可能会遇到这样的一道题目:某餐厅有10个空座位,现有5位就餐者要坐在圆桌上。

如果其中有两位就餐者必须坐在相邻座位上,那么有多少种不同的座位安排方式?对于这个问题,我们可以首先计算不考虑相邻要求的所有座位安排方式,即C(10, 5)。

高考数学作文常用公式总结

高考数学作文常用公式总结

高考数学作文常用公式总结介绍高考数学作文是高中学生在数学考试中常见的一种题型。

作文是考查学生对数学知识的理解和应用能力,也是检验学生逻辑思维和解决问题能力的一种方式。

在高考数学作文中,掌握常用公式是非常重要的,可以帮助学生更好地解题和推导。

本文将总结高考数学作文中常用的公式,以便学生们在备考中能够更好地掌握和应用。

计数原理排列组合公式•排列公式: Anm = n!/(n-m)!•组合公式:Cnm = n!/(m!(n-m)!)概率与统计基本概率公式•事件A的概率: P(A) = n(A)/n(S)•事件的互斥: P(A∪B) = P(A) + P(B)•事件的独立: P(A∩B) = P(A)P(B)离散型随机变量•期望:E(X) = μ = ∑(x * P(X=x))•方差:D(X) = σ2 = ∑((x-μ)2 * P(X=x))连续型随机变量•期望:E(X) = ∫(x * f(x))dx•方差:D(X) = ∫((x-μ)2 * f(x))dx函数与方程一次函数•一次函数方程:y = kx + b•斜率公式:k = (y2-y1)/(x2-x1)二次函数•二次函数一般式:y = ax2 + bx + c•二次函数顶点坐标:(h, k),其中 h = -b/2a, k = f(h) •二次函数的判别式:Δ = b2 - 4ac•二次函数与x轴交点坐标:x1,2 = (-b±√Δ)/(2a)指数函数与对数函数•指数函数公式:y = ax•对数函数公式:y = logax•复数公式:a+bi,其中a是实部,b是虚部空间几何与立体几何直角坐标系•平面方程:Ax + By + Cz + D = 0•点的距离公式:d = √((x2-x1)2 + (y2-y1)2 + (z2-z1)2)点与直线•点斜式方程:y-y1 = k(x-x1)•两点式方程:(y-y1)/(x-x1) = (y-y2)/(x-x2)•截距式方程:x/a + y/b + z/c = 1平面几何•平面方程:Ax + By + Cz + D = 0•平面的法向量:n = (A, B, C)•平面上一点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D|/√(A2 + B2 + C2)•平行平面之间的距离:d = |D1-D2|/√(A2 + B2 + C2)立体几何•体积公式:V = lwh•表面积公式:S = 2lw + 2lh + 2wh导数与微分•导数定义:f'(x) = lim (f(x+h)-f(x))/h (h->0) •微分定义:dy = f'(x)dx•高阶导数:f''(x), f'''(x)积分•不定积分:∫f(x)dx•定积分:∫abf(x)dx•牛顿-莱布尼茨公式:∫abf(x)dx = F(b) - F(a) 微分中值定理•极值点:f'(x) = 0•最值点:可通过一阶导数或二阶导数判断三角函数基本三角函数•正弦函数:sin(x)•余弦函数:cos(x)•正切函数:tan(x)三角函数的性质•周期性:sin(x + 2π) = sin(x)•奇偶性:sin(-x) = -sin(x), cos(-x) = cos(x)•三角函数的和差化积公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)三角函数的图像•正弦函数的图像:周期为2π,在[0, 2π]上为正值,[π, 2π]上为负值•余弦函数的图像:周期为2π,在[0, π]上为正值,[π, 2π]上为负值矩阵与行列式矩阵运算•矩阵乘法:C = AB,其中C的第i行第j列元素为A第i行与B第j列的乘积之和•矩阵的转置:AT,其中A的第i行第j列元素变为AT的第j行第i列元素行列式•二阶行列式:D = |a b| = ad - bc•三阶行列式:D = |a11 a12 a13| |a21 a22 a23| |a31 a32 a33|空间坐标系与向量空间坐标系•直角坐标系:以三条相互垂直的直线构成的坐标系•极坐标系:以极轴和极坐标构成的坐标系•柱面坐标系:以柱面坐标构成的坐标系•球面坐标系:以球面坐标构成的坐标系向量运算•向量加法:C = A + B,其中C的坐标为A和B的对应坐标相加•向量减法:C = A - B,其中C的坐标为A和B的对应坐标相减•数乘:C = kA,其中C的坐标为A的坐标乘以k金融数学复利公式•复利计算:A = P(1 + r/n)nt等额本息计算•等额本息计算:M = P * i * (1+i)t/((1+i)t-1)物理数学牛顿第二定律•牛顿第二定律公式:F = ma牛顿万有引力定律•牛顿万有引力定律公式:F = G * (m1 * m2)/r2结论本文总结了高考数学作文中常用的公式,涵盖了排列组合、概率与统计、函数与方程、空间几何与立体几何、微积分、三角函数、矩阵与行列式、空间坐标系与向量、金融数学和物理数学等方面。

排列组合和排列组合计算公式

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m 个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

数学排列组合公式

数学排列组合公式

公式P就是指排列,从N个元素取R个进行排列。

ﻫ公式C就是指组合,从N个元素取R个,不进行排列。

ﻫN—元素得总个数R参与选择得元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n—1)*(n-2)。

.(n-r+1);因为从n到(n—r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123与213就是两个不同得排列数。

即对排列顺序有要求得,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类得组合, 我们可以这么瞧,百位数有9种可能,十位数则应该有9—1种可能,个位数则应该只有9-1—1种可能,最终共有9*8*7个三位数、计算公式=P(3,9)=9*8*7,(从9倒数3个得乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟"?A2: 213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序得,属于“组合C”计算范畴、上问题中,将所有得包括排列数得个数去除掉属于重复得个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合得概念与公式典型例题分析例1设有3名学生与4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中得任何一个,而不限制每个课外小组得人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法、点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例 2 排成一行,其中不排第一,不排第二,不排第三,不排第四得不同排法共有多少种?解依题意,符合要求得排法可分为第一个排、、中得某一个,共3类,每一类中不同排法可采用画“树图”得方式逐一排出:∴符合题意得不同排法共有9种、点评按照分“类”得思路,本题应用了加法原理.为把握不同排法得规律,“树图”就是一种具有直观形象得有效做法,也就是解决计数问题得一种数学模型.例3判断下列问题就是排列问题还就是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长与一名副组长,共有多少种不同得选法?②从中选2名参加省数学竞赛,有多少种不同得选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们得商可以有多少种不同得商?②从中任取两个求它得积,可以得到多少个不同得积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同得选法?②从中选出2盆放在教室有多少种不同得选法?分析(1)①由于每人互通一封信,甲给乙得信与乙给甲得信就是不同得两封信,所以与顺序有关就是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手就是同一次握手,与顺序无关,所以就是组合问题.其她类似分析、(1)①就是排列问题,共用了封信;②就是组合问题,共需握手(次).(2)①就是排列问题,共有(种)不同得选法;②就是组合问题,共有种不同得选法、(3)①就是排列问题,共有种不同得商;②就是组合问题,共有种不同得积.(4)①就是排列问题,共有种不同得选法;②就是组合问题,共有种不同得选法.例4证明.证明左式右式.∴等式成立。

排列组合计算公式及经典例题汇总

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式排列A------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Anm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式A是指排列,从N个元素取R个进行排列。

高考数学中的常见排列组合

高考数学中的常见排列组合

高考数学中的常见排列组合在高中数学中,排列组合是一个重要的概念和方法,也是高考中常见的题型之一。

掌握排列组合的基本原理和解题方法,对于学生们提高数学成绩,顺利应对高考至关重要。

本文将介绍高考数学中常见的排列组合知识点及其解题技巧。

一、排列排列是指从给定的一组数或对象中按照一定的顺序取出一部分或全部进行排列。

常见的排列问题有以下几种情况:1. 直线排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,就构成了从n个对象中取出k个对象的直线排列。

直线排列的公式为:A(n, k) = n * (n-1) * (n-2) * ... * (n-k+1),其中n ≥ k。

2. 圆排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,构成了从n个对象中取出k个对象的圆排列。

圆排列的公式为:P(n, k) = (n-k+1) * (n-k+2) * ... * n * (n-1) * (n-2) * ... * 2 * 1,其中n ≥ k。

3. 重复排列:重复排列是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行排列,允许重复。

重复排列的公式为:A'(n, k) = n^k,其中n ≥ k。

排列问题在高考中常常涉及选排队、座位、字母、数字等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种排列公式,并注意计算时的条件约束。

二、组合组合是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行组合。

与排列不同,组合中的元素的排列顺序不重要。

常见的组合问题有以下几种情况:1. C(n, k)表示从n个对象中选择k个不同的对象组成一个集合,其中n ≥ k。

定义组合公式为:C(n, k) = A(n, k) / k! = n! / [(n-k)! * k!]。

2. n个相异对象的m个同类分成若干组,每组可以有0个或者多个,此种情况下共有C(m-1, n)种不同的组合。

组合问题在高考中常常涉及选人、选课、摆放等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种组合公式,并注意计算时的条件约束。

排列组合计算公式及经典例题汇总

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式排列A------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Anm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式A是指排列,从N个元素取R个进行排列。

排列组合公式排列组合计算公式高中数学

排列组合公式排列组合计算公式高中数学

排列组合公式/排列组合计算公式公式P就是指排列,从N个元素取R个进行排列。

公式C就是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)、、(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123与213就是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么瞧,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念与公式典型例题分析例1设有3名学生与4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”就是一种具有直观形象的有效做法,也就是解决计数问题的一种数学模型.例3判断下列问题就是排列问题还就是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长与一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信就是不同的两封信,所以与顺序有关就是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手就是同一次握手,与顺序无关,所以就是组合问题.其她类似分析.(1)①就是排列问题,共用了封信;②就是组合问题,共需握手(次).(2)①就是排列问题,共有(种)不同的选法;②就是组合问题,共有种不同的选法.(3)①就是排列问题,共有种不同的商;②就是组合问题,共有种不同的积.(4)①就是排列问题,共有种不同的选法;②就是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这就是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解 (1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即 ,解得第六章排列组合、二项式定理一、考纲要求1、掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题、2、理解排列、组合的意义,掌握排列数、组合数的计算公式与组合数的性质,并能用它们解决一些简单的问题、3、掌握二项式定理与二项式系数的性质,并能用它们计算与论证一些简单问题、二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理就是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据、例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都与前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都就是选择题或填空题考查、例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A、60个B、48个C、36个D、24个解因为要求就是偶数,个位数只能就是2或4的排法有P12;小于50 000的五位数,万位只能就是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C、例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种)、例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都就是由选择题或填空题考查、例4 从4台甲型与5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A 、140种B 、84种C 、70种D 、35种 解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C 、例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种、根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种)、 (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它就是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题、 例6 在(x- )10的展开式中,x 6的系数就是( ) A 、-27C 610 B 、27C 410 C 、-9C 610 D 、9C 410解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于就是展开式中第5项含x 6,第5项系数就是C410(-)4=9C410故此题应选D、例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的与,则其与为在(x-1)6中含x3的项就是C36x3(-1)3=-20x3,因此展开式中x2的系数就是-2 0、(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A、1B、-1 C、0 D、2解:A、例92名医生与4名护士被分配到2所学校为学生体检,每校分配1名医生与2 名护士,不同的分配方法共有( )A、6种B、12种C、18种D、24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学公式:排列组合公式1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号
p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!*n2!*...*nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为
c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:
乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初
见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

相关文档
最新文档