(完整)湘教版七年级上册数学期末试卷

合集下载

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数是()A .13B .-13C .±13D .32.下面说法错误的是()A .M 是线段AB 的中点,则AB=2AM B .直线上的两点和它们之间的部分叫做线段C .一条射线把一个角分成两个角,这条射线叫做这个角的平分线D .同角的补角相等3.已知-25a 2mb 和7b 3-na 4是同类项,则m +n 的值是()A .2B .3C .4D .64.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xyx y x y --++5.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种6.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°7.已知0<x <1,则2x 、x 、1x大小关系是()A .2x <x<1xB .x<2x <1x C .x<1x<2x D .1x<x <2x 8.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()A .6折B .7折C .8折D .9折9.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上随意画出一条长2021cm 长的线段AB ,则线段AB 盖住的的整点有()个A .2018或2019B .2019或2020C .2022或2023D .2021或202210.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°11.单项式224πx y 9的系数与次数分别为()A .49,7B .49π,6C .4π,6D .49π,412.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是()A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况二、填空题13.把680000000元,这个数用科学记数法可表示为______________________元.14.若方程3511x +=与6318x a +=的解相同,则=a ____________.15.已知∠α=72°36′,则∠α的余角的补角是________度.16.若22x x +的值是5-,则2365x x +-的值是________________.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2021次输出的结果为___________.三、解答题18.计算(1)()232223|3|----÷-(2)1234602345⎛⎫⨯-+-+ ⎪⎝⎭19.解下列方程(1)52(32)3x x --=-(2)11232x x x +--=-20.先化简,再求值:()()22522367ab ab a ab a +---,其中a b 、满足()21103a b ++-=21.若0>>>a b c ,且||||||a b c <<,化简||||||||a c a b c a b b c ++++---+.22.李明针对自行车和长跑项目进行专项训练某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.23.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A 、B 、C 、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B 等级所占圆心角的度数.24.如图,线段AB=6cm,点C是AB的中点,点D是BC的中点,E是AD的中点.(1)求线段AE的长;(2)求线段EC的长.25.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.26.如图,将一副直角三角形的直角顶点C叠放一起(1)如图1,若CE恰好是∠ACD的角平分线,请你猜想此时CD是不是的∠ECB的角平分线?并简述理由;(2)如图1,若∠ECD=α,CD在∠ECB的内部,请猜想∠ACE与∠DCB是否相等?并简述理由;(3)在如图2的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.参考答案1.B【分析】根据倒数的定义求解即可.【详解】解:∵-3×(-13)=1,∴-3的倒数是-13,故选:B .【点睛】本题考查求一个数的倒数,乘积等于1的两个数互为倒数.2.C【分析】由题意根据中点的性质,线段、角平分线的定义,分别对各选项进行判断即可.【详解】解:A 、M 是AB 的中点,则AB=2AM ,正确,故本选项错误;B 、直线上的两点和它们之间的部分叫作线段,正确,故本选项错误;C 、从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,原说法错误,故本选项正确;D 、同角的补角相等,正确,故本选项错误;故选:C .【点睛】本题考查角平分线的定义、余角和补角的知识,熟练掌握各知识点的内容是解题的关键.3.C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B【分析】直接利用多项式的有关定义分析得出答案.【详解】A 、多项式23230.3271x y x y xy --+,是五次四项式,故此选项正确;B 、四次项的系数是-7,故此选项错误;C 、它的常数项是1,故此选项正确;D 、按y 降幂排列为3322720.31xy x y x y --++,故此选项正确;故选:B .【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.5.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.C【详解】解:因为∠AOC=80°,∠BOC=30°,所以∠AOB=∠AOC-∠BOC=80°-30°=50°,又因为∠BOD=80°,所以∠AOD=∠AOB+∠BOD=50°+80°=130°.故选C .7.A【分析】根据0<x <1,可得:0<x 2<x <1,1x>1,据此判断即可.【详解】解:∵0<x <1,∴0<x 2<x <<1,1x>1,∴x 2<x <1x.故选:A .【点睛】此题主要考查了有理数的大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负数绝对值大的反而小.【分析】设打x折时,利润率为20%,则利用利润的两种不同的表示方法得相等关系,再列方程,解方程即可.【详解】解:设打x折时,利润率为20%,则´-´x12000.1800=80020%,x=解得:8,答:要保证利润率不低于20%,则至少可以打八折.故选C【点睛】本题考查的是一元一次方程的应用,掌握“利润=售价-成本或利润=进价⨯利润率”是解本题的关键.易错点是不按照题干的要求作答.9.D【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB盖住2021或2022个整点.故选:D【点睛】本题考查了数轴,解题的关键是根据题意得到找出长度为n(n为正整数)的线段盖住n或n+1个整点并注意利用分类讨论思想解答.10.C【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【详解】∵OC平分∠DOB,∠COB=35°∴∠BOD=2∠COB=2×35°=70°∴∠AOD=180°-70°=110°故选:C.【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】单项式224πx y 9的系数与次数分别为:49π,4,故选:D .【点睛】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.D【分析】个体是总体中的每一个调查的对象,据此判定即可.【详解】在这次调查中,个体是每一名学生对“世界读书日”的知晓情况故选:D .【点睛】本题考查了调查中个体的定义,掌握理解个体的概念是解题关键.13.6.8×108【分析】科学记数法的表示形式是10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 为正数;当原数绝对值小于1时,n 为负数.【详解】按照科学记数法的表示形式是10n a ⨯,其中110a ≤<,n 为整数.题中 6.8a =,小数点从右至左移动了8位,所以这个数用科学记数法表示为6.8×108.故答案为:6.8×108.14.2【分析】先解3511x +=可得方程的解为2,x =再把2x =代入6318x a +=求解a 即可.【详解】解:3511x +=,36,x ∴=解得2,x = 方程3511x +=与6318x a +=的解相同,解得:2a =故答案为:215.162.6【分析】根据余补角的定义直接进行求解即可.故答案为162.6.【分析】化简所求的式子,根据整体代入计算即可;【详解】由题可得()22365325+-=+-x x x x ,∵225+=-x x ,∴原式()35520=⨯--=-;故答案是20-.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.17.6【分析】将开始的值48代入进行计算,求出多次输出的值后,找到数值之间的规律即可作答.【详解】根据运算程序可知,当输入的值为48时,输出:148242´=,当输入的值为24时,输出:124122⨯=,当输入的值为12时,输出:11262⨯=,当输入的值为6时,输出:1632⨯=,当输入的值为3时,输出:336+=,由前面的规律可知,依次输出的结果为24,12,6,3,6,3,……发现从第三次开始,输出结果以6和3为一个循环组依次循环,第奇数次为6,第偶数次为3,由于2021是奇数,所以第2021次输出的结果为6.故答案为:6【点睛】本题考查了代数式求值当中的流程图问题,解题关键是计算出前几次输出的结果,找到规律,即可总结出第n 次计算的结果.18.(1)-15;(2)13【分析】(1)根据有理数的乘方混合运算求解即可;(2)利用乘法分配律进行有理数的混合运算即可.【详解】解:(1)原式=84315---=-;(2)原式=123460606060=30404548132345⎛⎫⨯-+⨯-⨯⨯-+-+= ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解题的关键.19.(1)13;(2)13-【分析】(1)本题首先去括号,继而合并同类项与移项,最后未知项系数化为1即可.(2)本题首先去分母,继而去括号、移项、合并同类项即可求解.【详解】(1)∵52(32)3x x --=-,∴5643x x -+=-,∴93x =,∴13x =.(2)∵11232x x x +--=-,∴2(1)1263(1)x x x +-=--,∴2212633x x x +-=-+,∴6322123x x x --=--,∴13x =-.【点睛】本题考查一元一次方程的求解,熟练掌握去分母、移项、合并同类项等运算手段,其次注意计算仔细即可.20.原式=a 2+3ab ;0.【分析】先去括号、合并同类项化简原式,再根据非负数性质得出a 、b 的值,代入计算可得.【详解】解:原式=5ab+4ab-6a 2-6ab+7a 2=a 2+3ab ,∵()21103a b ++-=∴a=-1、b=13,则原式=1-3×1×13=1-1=0.21.3a b c-+-【分析】先根据0>>>a b c ,且||||||a b c <<,得到0a c +<,0a b c ++<,0a b ->,0b c +<,然后化简绝对值即可得到答案.【详解】解:∵0>>>a b c ,且||||||a b c <<∴0a c +<,0a b c ++<,0a b ->,0b c +<∴||||||||a c abc a b b c ++++---+()()()()a c a b c a b b c =-++-++----+⎡⎤⎡⎤⎣⎦⎣⎦a c abc a b b c=------+++3a b c =-+-.22.自行车路段的长度为3000米,长跑路段的长度为2000米.【分析】设自行车路段的长度为x 米,则长跑路段的长度为()5000x -米,结合题意,通过列方程并求解,即可得到答案.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x -+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.23.(1)抽取了50个学生进行调查;(2)B 等级的人数20人;(3)B 等级所占圆心角的度数=144°.【分析】(1)用C 等级的人数除以C 等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A 、C 、D 等级的人数得到B 等级的人数,然后画出折线统计图;(3)用360°乘以B 等级所占的百分比即可得到B 等级所占圆心角的度数.【详解】解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B 等级的人数=50-15-10-5=20(人),画折线统计图;(3)图乙中B 等级所占圆心角的度数=360°×2050=144°.【点睛】题目主要考查由折线统计图与扇形统计图获取相关信息,包括利用部分计算总体,扇形统计图圆心角,折线统计图等,理解题意,综合运用这些知识点是解题关键.24.(1)AE=2.25cm ;(2)EC=0.75cm .【分析】(1)观察图形,根据线段之间的关系,可得思路()1122AE AD AB BD ==-,代入数值求解即可.(2)观察图形,根据线段之间的关系,可得思路EC AC AE =-,代入数值求解即可.【详解】(1)∵点C 是AB 的中点,∴AC=BC=3cm ,又∵点D 是BC 的中点,∴BD=CD=1.5cm ,∴AD=AB ﹣BD=6﹣1.5=4.5cm .∵E 是AD 的中点,∴AE 1 2.252AD cm ==;(2)由(1)可知AE=2.25cm ,AC=3cm ,∴EC=AC ﹣AE=3﹣2.25=0.75cm .【点睛】本题考查线段的中点和线段之间的数量关系,观察图形,找到数量关系是解答关键.25.(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】解:(1)设一个暖瓶x 元,则一个水杯(38-x )元,根据题意得:2x+3(38-x )=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.26.(1)CD 是∠ECB 的角平分线,见解析;(2)∠ACE =∠DCB ,见解析;(3)∠DCE+∠ACB =180°,见解析.【分析】(1)CD 是∠ECB 的角平分线,求出∠ECD =∠BCD =45°即可证明;(2)∠ACE =∠DCB ,求出∠ACE =∠DCB =90°﹣α即可;(3)∠DCE+∠ACB =180°,根据∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE即可进行求解证明.【详解】解:(1)CD是∠ECB的角平分线,理由是:∵∠ACD=90°,CE是∠ACD的角平分线,∴∠ECD=12∠ACD=45°,∴∠BCD=90°﹣∠ECD=45°=∠ECD,即CD是∠ECB的角平分线;(2)∠ACE=∠DCB,理由是:∵∠ACD=∠BCE=90°,∠ECD=α,∴∠ACE=90°﹣α,∠DCB=90°﹣α,∴∠ACE=∠DCB;(3)∠DCE+∠ACB=180°,理由是:∵∠ACD=∠BCE=90°,∴∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE=90°+90°=180°,即∠DCE+∠ACB=180°.。

湘教版七年级数学上册期末考试卷及答案【完整】

湘教版七年级数学上册期末考试卷及答案【完整】

湘教版七年级数学上册期末考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .433.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.因式分解:2218x-=______.4.已知15xx+=,则221xx+=________________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、D5、B6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、垂线段最短.3、2(x+3)(x﹣3).4、235、七6、54°三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、﹣1≤x<2.3、略4、36平方米5、(1)答案见解析(2)36°(3)4550名6、(1)3;(2)第5个台阶上的数x是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.下列几何体中,是圆柱的为()A .B .C .D .2.若a b =,则下列等式变形不正确...的是()A .33a b=B .22a b -=-C .a bm m=D .55a b +=+3.将6.38亿这个数用科学记数法可表示为()A .76.3810⨯B .86.3810⨯C .763.810⨯D .96.3810⨯4.若221a a +=-,则2487a a ++的值为()A .3B .4C .5D .65.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元6.如图,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若AC =6cm ,MN =5cm ,则线段MB 的长度是()A .7cmB .6cmC .8cmD .10cm7.如图,∠BOD =118°,∠COD 是直角,OC 平分∠AOB ,则∠AOB 的度数是()A .48°B .56°C .60°D .32°8.下列运算中正确的是()A .4x ﹣3x =1B .2x 2+3x 2=5x 2C .3x +4y =7xyD .x 2+x 2=2x 49.下列多项式不是同类项的是()A .22a b 与23a b-B .13x 与4xC .23ab 与5abD .22a b 与23ab 10.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是A .我B .中C .国D .梦二、填空题11.如果收入800元表示为800+元,那么支出300元可表示为_______元.12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.13.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费________元(用含,a b 的代数式表示).14.若单项式22m xy 与313n x y -为同类项,则n m 的值为____________.15.若x =2是关于x 的一元一次方程2(x ﹣m )=32x+m 的解,则m 的值是__.16.若a b ,互为相反数,c d ,互为倒数,m 的绝对值是2,则代数式25220221a b m cdm ++-+的值为__________.17.小明和妈妈今年的年龄之和为36岁,再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,则今年小明的年龄为______________岁.18.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.三、解答题19.计算:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦.20.先化简,再求值:()()22225335x y xyxyx y --+,其中2,1x y ==-.21.解方程:43252x x x ---=.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,110BOC ∠=°.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数.23.某校为了解七年级学生对“阳光跑操”活动的喜欢程度,学校随机抽取部分学生进行调查,被调查的每位学生从A :非常喜欢,B :比较喜欢,C :一般,D :不喜欢,四个选项中任选一项(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据图中信息,解答下列问题:(1)求本次调查学生的总人数及扇形统计图中D 部分的圆心角的度数;(2)请补全条形统计图;(3)若该校七年级共有750名学生,根据调查结果,估计对阳光跑操活动“比较喜欢”学生共有多少人?24.已知多项式()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭的值与字母x 的取值无关.(1)求m n ,的值;(2)先化简多项式()()2222442mmn n m mn n +--+-,再求其值.25.如图,数轴上两个动点A ,B 开始时所表示的数分别为-10,5,A B ,两点都在数轴上运动,且A 点的运动速度为3个单位长度/秒,B 点的运动速度为2个单位长度/秒.(1)如果AB 、两点同时出发,相向而行,那么它们经过几秒相遇?(2)如果AB 、两点同时出发,都向数轴正方向运动,那么几秒时两点相距6个单位长度?26.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+的成立的一对有理数,a b 为“共生有理数对”,记为:(),a b .例如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)判断数对()2,1-,13,2⎛⎫⎪⎝⎭是否为“共生有理数对”,并说明理由;(2)若(),3a 是“共生有理数对”,求a 的值;(3)若(),m n 是“共生有理数对”,试判断(),n m --是否为“共生有理数对”,并说明理由.27.如图,点O 是直线AB 上一点,OD 平分∠BOC ,∠COE=90°,若∠AOC=46°,求∠DOE 的度数.参考答案1.A【分析】根据几何体的特征进行判断即可.【详解】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥.故选:A .【点睛】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.2.C【分析】根据等式性质1,等式两都加上或减去同一数或整式等式应成立可判断B ,D ;根据等式性质2,等式两边都乘以或除以同一个不为0的数或整式,等式应成立可判断A 、C 即可.【详解】解:A.33a b =,根据等式性质2等式两边都乘以3,应成立,故选项A 不合题意;B.22a b -=-,根据等式性质1,等式两边都减2,应成立,故选项B 不合题意;C.a bm m=,根据等式性质2,等式两边都除以不为零的数,等式应成立,但m 要求不为0,故选项C 符合题意;D.55a b +=+,根据等式性质1,等式两边都加5,应成立,故选项D 不合题意.故选C .【点睛】本题考查等式的性质,掌握等式性质和应用条件是解题关键.3.B【详解】整数6.38亿共计9位,采用10n a⨯表达,则有 6.38a =,918n =-=,即:6.38亿用科学记数法表示为86.3810⨯,故选:B .4.A【详解】解:∵a 2+2a=-1,∴4a 2+8a+7=4(a 2+2a )+7=4×(-1)+7=-4+7=3,故选:A.5.B【分析】根据题意,可以用含x的代数式表示出6月份的产值.【详解】由题意可得,6月份的产值是x(1+30%)=130%x(万元),故选:B.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.A【分析】根据线段中点的定义可求解MC,结合MN=5cm可求解CN=BN=2cm,进而可求解.【详解】解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=12AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN-MC=5-3=2cm,∴MB=MN+BN=5+2=7cm,故选:A.【点睛】本题主要考查线段中点的定义,两点间的距离,根据线段的和差求解释解体的关键.7.B【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.【点睛】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.8.B【分析】根据合并同类项的计算,在合并同类项时,系数相加减,字母及其指数不变,进行计算,然后进行判断.【详解】解:A.4x ﹣3x =x ,故此选项不符合题意;B.2x 2+3x 2=5x 2,正确;C.3x 、4y 不是同类项,不能合并计算,故此选项不符合题意;D.x 2+x 2=2x 2,故此选项不符合题意故选:B .【点睛】本题考查合并同类项,正确理解同类项的概念和合并同类项的计算法则正确计算是解题关键.9.D【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可作出判断.【详解】解:A.22a b 与23a b -是同类项;B.13x 与4x 是同类项;C.23ab 与5ab 是同类项;D.22a b 与23ab ,a 的指数不同,b 的指数也不同,故不是同类项.故选:D .【点睛】本题考查了同类项的定义,熟练掌握同类项定义中的两个“相同”并能利用其进行准确判断是解题的关键,注意同类项的判别与系数和字母的顺序无关.10.D【详解】这是一个正方体的平面展开图,共有六个面,根据正方体侧面展开图的特点,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.故选:D .【点睛】考点:正方体的展开图11.300-【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可【详解】解:若规定收入为正,则支出为负,即:收入800元表示为+800元,那么他每月支出300元表示为-300元.故答案为:-300.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.-3【分析】数轴上的点能表示实数,从点在数轴上位置可得出A 表示的数.只有符号不同的两个数互为相反数,求一个数的相反数,直接在前面添上“-”号即可,由此可得出本题答案.【详解】从图上可知点A 表示的数是3,而3的相反数是-3.故答案为:-3.【点睛】本题考察了数轴上的点表示实数和相反数的定义,能正确求已知数的相反数是做出本题的关键.13.()610a b +或者(10b+6a)【分析】根据单价×数量=总费用进行解答.【详解】解:依题意得:小明共花费(6a+10b )元,故答案是:(6a+10b ).【点睛】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.14.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m ,n 的值,继而可求得mn 的值.【详解】解:∵单项式22m x y 与313n x y -是同类项,∴n=2,m=3,则mn=32=9.故答案为:9.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.13.【分析】把x=2代入方程,得到关于m 的一元一次方程,解方程即可.【详解】把x =2代入方程得:2(2﹣m )=3+m ,∴4﹣2m =3+m ,∴﹣3m =﹣1,∴m =13,故答案为:13.【点睛】本题考查了一元一次方程的解,掌握一元一次方程的解的定义是解题的关键,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.18【分析】根据题意,可得:a+b=0,cd=1,m=±2,据此求出代数式25220221a b m cd m ++-+的值即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,252a b m cd++-+=0+5×22-2×1=5×4-2=20-2=18;当m=-2时,25220221a b m cd m ++-+=0+5×(-2)2-2×1=5×4-2=20-2=18.故答案为:18.【点睛】此题主要考查了有理数的混合运算,互为相反数、互为倒数的两个数的性质和应用,以及绝对值的含义和求法,注意运算顺序.17.4【分析】设今年小明的年龄为x 岁,则妈妈为()36x -岁,根据再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,列方程为()365451,x x -+=++解方程可得答案.【详解】解:设今年小明的年龄为x 岁,则妈妈为()36x -岁,()365451,x x -+=++41421,x x ∴-=+520,x ∴=4.x ∴=所以今年小明的年龄为4岁.故答案为:4.【点睛】本题考查的是一元一次方程的应用,掌握利用一元一次方程解决年龄问题是解题的关键.18.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.19.43【分析】先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【详解】解:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦()1911324⎛⎫=--+÷+ ⎪⎝⎭341329=--⨯+2133=--+43=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.28xy -,16-【分析】先去括号,合并同类项,然后将,x y 的值代入代数式计算即可得.【详解】解:()()22225335x y xy xy x y --+,2222155315x y xy xy x y =---,28xy =-,当2x =,1y =-时,原式282(1)16=-⨯⨯-=-.21.23x =【分析】方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:43252x x x ---=去分母,得()()1024532x x x --=-,去括号,得10821510x x x -+=-移项,合并同类项,得32x =,方程两边同除以3,得23x =.因此原方程的解为23x =.22.(1)70AOC ∠=︒(2)55MOD ∠=︒【分析】(1)利用邻补角的定义计算∠AOC 的度数;(2)先根据角平分线的定义得到∠COM=35°,然后利用互余计算∠MOD 的度数.(1)∵∠AOC+∠BOC=180°,∴∠AOC=180°-110°=70°,即∠AOC 的度数为70°;(2)∵OM平分∠AOC,∴∠COM=12∠AOC=12×70°=35°,∵∠COD=90°,∴∠MOD=90°-∠COM=55°,即∠MOD的度数为55°.23.(1)200人,D部分的圆心角的度数为54(2)图见解析(3)300人【分析】(1)从两个统计图中可以得到A组的有40人,占调查人数的20%,可求出调查人数,用360°乘D部分所占比例可得D部分的圆心角的度数;(2)求出C组的人数即可补全条形统计图,(3)样本估计总体,样本中B组的占40%,因此估计总体中也有40%的学生属于B组.(1)调查人数为:40÷20%=200(人),D部分的圆心角的度数为:360°×(1-20%-25%-40%)=54°;(2)C组的人数为:200-40-80-30=50(人),补全条形统计图如图所示:(3)估计对阳光跑操活动“比较喜欢”学生共有:750×40%=300(人).所以,估计对阳光跑操活动“比较喜欢”学生共有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.(1)1n =-,3m=(2)223mn n -,-9【分析】(1)原式去括号合并得到最简结果,由题意多项式的值与字母x 的取值无关,确定出m 与n 的值即可;(2)原式去括号合并同类项化简后,把m 与n 的值代入计算即可求出值.(1)解:()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭22133212x mx y x y nx =+-+-+-+()()231322n x m x y =++-++∵多项式的值与字母x 的值无关∴10n +=,30m -=解得:1n =-,3m =;(2)解:()()2222442m mn n m mn n +--+-222244442m mn n m mn n =+---+223mn n =-当3m =,1n =-时,原式()()223131=⨯⨯--⨯-63=--9=-25.(1)3秒(2)9秒或21秒【分析】(1)设它们经过m 秒相遇,根据两点相遇时表示的数相同,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设运动的时间为t 秒,则点A 表示的数为3t-10,点B 表示的数为2t+5,根据两点相距6个单位长度,根据绝对值的性质列出关于t 的一元一次方程,解之即可得出结论.(1)解:由题意可知A ,B 两点间的距离为:()51015--=(单位长度)设它们经过m 秒后相遇,则根据等量关系,得3215m m +=解得3m =;(2)解:设经过t 秒后,A ,B 两点相距6个单位长度.经过t 秒后,点A 的位置所表示的数为:103t -+.经过t 秒后,点B 的位置所表示的数为:52t +.此时,A ,B 两点间的距离为()5210315t t t +--+=-则根据等量关系,得:156t -=则:156t -=或156t -=-解得:9t =或21【点睛】本题考查了一元一次方程的应用以及数量,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)分点A 在点B 的左侧及点A 在点B 的右侧两种情况,找出关于t 的一元一次方程.26.(1)()2,1-不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”,理由见解析(2)2a =-(3)是“共生有理数对”,理由见解析【分析】(1)先计算,然后根据题目中的新定义,可以判断(-2,1),13,2⎛⎫ ⎪⎝⎭是否为“共生有理数对”;(2)根据新定义可得关于a 的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(-n ,-m )变形即可判断.(1)因为213--=-,()2111-⨯+=-所以()21211--≠-⨯+,即()2,1-不是“共生有理数对”又因为15322-=,153122⨯+=所以1133122-=⨯+即13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”(2)由题意得:331a a -=⨯+,即331a a -=+解得:2a =-.(3)是.理由:因为()n m n m ---=-+,()()11n m mn -⨯-+=+①又因为(),m n 是“共生有理数对”,所以1m n m n -=⨯+即1m n mn -=+而m n n m -=-+所以1n m mn -+=+由①式可知:()()()1n m n m ---=-⨯-+所以(),n m --是“共生有理数对”.27.23°.【分析】根据平角的定义得到134BOC ∠=︒,在根据角平分线的定义得到,然后利用90DOE COD ∠+∠=︒,即可求出DOE ∠.【详解】解:∵46AOC ∠=︒,180BOC AOC ∠+∠=︒,∴134BOC ∠=︒,∵OD 平分BOC ∠,∴1672COD BOC ∠=∠=︒,又90DOE COD ∠+∠=︒,∴23DOE ∠=︒.。

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、单选题1.下列各数中,比﹣3小的数是()A .﹣5B .﹣1C .0D .12.﹣12的倒数的相反数等于()A .﹣2B .12C .﹣12D .23.下列变形不一定正确的是()A .若a b =,0m ≠,则a b m m=B .若a b =,则22a b =C .若a b =,则22a c b c +=+D .若ac bc =,则a b=4.下列各式中运算正确的是()A .32a a -=B .22532x y xy xy-=C .257a b ab+=D .330ab ba -=5.如图,点O 在直线AE 上,OC 平分AOE ∠,DOB ∠是直角.若∠1=25°,那么AOB ∠的度数是()A .65°B .25°C .90°D .115°6.下列说法中,正确的是()A .连接两点之间的线段,叫做这两点之间的距离B .0没有相反数C .单项式243r π-的系数为43π-D .直线、射线、线段中直线最长7.要反映华容县近五年来财政收入变化趋势,应绘制()A .条形统计图B .折线统计图C .扇形统计图D .复式统计图8.观察下列等式:177=,2749=,37343=,472401=,5716807=,……根据其中的规律可得20217的结果的个位数字是()A .0B .1C .7D .89.单项式12b xy +-与2313a x y -是同类项,则下列单项式与它们属于同类项的是()A .35x y-B .33xyC .332xy D .xy10.如图所示,已知AOB ∠与BOD ∠互为余角,OC 是BOD ∠的平分线,20AOB ∠=︒,则COD ∠的度数为()A .70︒B .35︒C .50︒D .20︒二、填空题11.数轴上表示3-的点到原点的距离是_____.12.将21000000用科学记数法表示为______.13.已知()2230a b -++=,则()2021a b +=________.14.如图,线段3AB cm =,延长AB 至点C ,使得3BC AB =,D 为BC 的中点,则BD =_____cm .15.某商店购进每双a 元的旅游鞋100双,每双b 元的皮鞋50双,那么该商店一共要付货款____元.16.已知224x x -=,则代数式2428x x --=______.17.单项式21314m a b -与513n a b +是同类项,求3m-2n=_______.18.用“☆”定义一种新的运算:对于任意有理数a 和b ,规定a ☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16,则(-2)☆3的值为_______.19.任意给一个非零数m ,按下列程序进行计算,则输出结果为______;三、解答题20.计算:(1)()()202021121234-⨯--⨯+-(2)23°22'52"+45°38'20″21.解方程:31225t tt ---=22.先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.23.若a 与b 互为相反数,x 与y 互为倒数,|m|=2,则式子2a b m m x xy+-+的值为多少?24.某市国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A ,B ,C ,D ,E 五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次简单随机抽样调查,并根据调查结果制作了如下两幅不完整的统计图:(1)m =_______,并请补全条形统计图;(2)求扇形统计图中“A”部分的圆心角;(3)若该小区有居民1200人,请估计去E 地旅游的居民的人数.25.有这样一道题:“先化简,再求值:(3x 2﹣2x+4)﹣2(x 2﹣x)﹣x 2,其中x =100”甲同学做题时把x =100错抄成了x =10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车.()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?27.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE (1)请你数一数,图中共有____________个角;(2)求BOD ∠的度数;(3)如果30BOC ∠=︒,求COD ∠的度数.参考答案1.A 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】-5<-3<-1<0<1,所以比-3小的数是-5,故选A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D 【详解】试题分析:若两个数的乘积是1,我们就称这两个数互为倒数.相反数是指只有符号不同的两个数.-12的倒数为-2,-2的相反数为2.考点:倒数;相反数3.D 【分析】根据等式的性质逐一判断即可.【详解】解:A .根据等式性质2,若a=b ,m≠0,则a bm m=,结论正确,故选项A 不符合题意;B .根据等式性质2,若a=b ,则a 2=b 2,结论正确,故选项B 不符合题意;C .根据等式性质1,若a=b ,则a+2c=b+2c ,结论正确,故选项C 不符合题意;D .当c=0时,若ac=bc ,则a 不一定等于b ,故选项D 符合题意.故选:D .【点睛】本题考查等式的性质,解题关键是熟知等式的性质,并注意在等式性质2中,同时除以的时候不能除以0.4.D 【分析】利用同类项定义和合并同类项法则即可解答.【详解】解:A 、∵32a a a -=,∴此选项错误,不合题意;B 、∵25xy 和23xy 不是同类项,不能合并,∴此选项错误,不合题意;C 、∵2a 和5b 不是同类项,不能合并,∴此选项错误,不合题意;D 、∵330ab ba -=,∴此选项正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项,合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,注意不是同类项不能进行合并,熟练掌握法则是做题的关键.5.B 【分析】根据题意,得90AOC ∠= ,再由DOB ∠是直角,∠1=25°,得COB ∠;最后通过AOB AOC COB ∠=∠-∠计算,即可得到答案.【详解】∵OC 平分AOE∠∴90AOC ∠= ∵90DOB ∠=∴901902565COB ∠=-∠=-=∴906525AOB AOC COB ∠=∠-∠=-= 故选:B .【点睛】本题考查了角平分线、角的运算的知识;解题的关键是熟练掌握角平分线、角的和差的性质,从而完成求解.6.C 【分析】单项式的系数就是字母前面的数字因数部分,包含符号,由此可判断C 正确,注意π是圆周率,不是字母.【详解】解:A 、连接两点之间的线段的长度叫做两点之间的距离,故A 错误,不合题意;B 、0的相反数是0,故B 错误,不合题意;C 、单项式243r π-的系数为43π-,故C 正确,符合题意;D 、直线不能度量,故D 错误,不合题意;故选:C .【点睛】本题主要考查基础概念性质,熟记概念性质是解题的关键.7.B 【分析】根据统计图的特点进行分析可得:折线统计图表示的是事物的变化情况.【详解】解:根据统计图的特点可得,反映华容县近五年来财政收入变化趋势的统计图最合适的是折线统计图;故选:B .【点睛】此题考查了统计图的选择,掌握扇形统计图、折线统计图、条形统计图各自的特点是解题的关键.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.C【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴个位数字是7,9,3,1循环,∵2021÷4=505余1,∴20217的结果的个位数字是7.故选:C .【点睛】本题考查了规律型尾数特征,解题关键是分析给出的等式规律,判定出尾数规律.9.B 10.B 11.3【详解】在数轴上表示3-的点与原点的距离是33-=.故答案为3.12.2.1×108【详解】解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.1-【分析】根据非负数的性质列出算式,分别求出a 、b 的值,然后代入()2021a b +进行计算即可.【详解】解:根据题意得:20a -=,30b +=,解得2a =,3b =-,∴()20212021(23)1a b +=-=-故答案为:1-.【点睛】本题主要考查非负数的性质,解题的关键是掌握非负数的性质;几个非负数相加和为0,则每一个式子都为0.14.92【分析】先根据题目的等量关系得到BC ,再根据中点的性质即可求出BD .【详解】解:∵AB=3cm ,∴BC=3AB=9cm ,∵D 为BC 的中点,∴BD=12BC=92cm .故答案为:92.【点睛】本题考查线段的和差倍分问题和线段的中点性质,结合图象分析线段之间的等量关系即可.15.100a +50b 【分析】根据题意列出代数式解答即可.【详解】解:根据题意,该商店一共要付货款100a +50b 元.故答案为:100a +50b .16.0【分析】把要求的式子变形后整体代入求值即可.【详解】∵224x x -=∴224282()82480xx x x --=--=⨯-=.故答案为:017.5【分析】根据同类项的定义列出式子计算出m 、n 的值,再代入3m-2n 中计算即可解答.【详解】解:由同类项定义得:215m -=,13n +=,解得3,2m n ==,故答案为:5.18.-32【分析】读懂题意,理解“☆”运算的含义,发现-2与a 对应,3与b 对应,把a=-2,b=3代入ab 2+2ab+a 求值即可.【详解】比较a ☆b 、(-2)☆3得a=-2,b=3,把之代入得a ☆b=ab 2+2ab+a=2(2)32(2)3(2)-⨯+⨯-⨯+-=-32.故答案为:-32.19.m 【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:(m 2+m )÷m-1=m+1-1=m ,故答案为:m 20.(1)4(2)69112'''︒【分析】(1)先计算乘方,乘法,绝对值;然后计算加减法;(2)按角度运算方法计算即可解答,注意单位换算:1度=60分,即1°=60',1分=60秒,即160'=".(1)解:原式1433=⨯-+433=-+4=;(2)解:原式686072'''=︒686112'''=︒69112'''=︒.21.97t =【分析】方程去分母,去括号,移项,合并同类项,系数化为1即可.【详解】解:去分母,得()()5312210t t t ---=,去括号,得1554210t t t --+=,移项,得1521054t t t +-=+,合并同类项,得79t =,系数化为1,得97t =;因此,原方程的解是97t =.22.2214x xy y +-;-2【分析】整式的化简求值,先去括号合并同类项即可得到最简结果,再把x 和y 的值代入计算即可求出值.【详解】()2222(42)35x xy y x xy y-+--+2222423315x xy y x xy y =-+-+-2214x xy y =+-当1x =-,12y =-时()()222214111411222x xy y ⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭+-=-+--=-.23.6或2【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a+b =0,xy =1,因为|m|=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可.【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m|=2,∴a+b =0,xy =1,m =±2,当m =2时,原式=2﹣0+4=6,当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2.24.(1)35,补全条形统计图见解析(2)扇形统计图中“A”部分的圆心角是36°(3)估计去E地旅游的居民的人数为300人【分析】(1)先由D景区人数及其所占百分比求出总人数,再用B景区人数除以被调查的总人数即可求出m的值,继而求出C景区人数即可补全图形;(2)用360°乘以A景区人数所占比例即可;(3)用总人数乘以样本中E景区人数所占比例即可.(1)解:∵被调查的总人数为20÷10%=200(人),∴m%=70200×100%=35%,即m=35,C景区人数为200-(20+70+20+50)=40(人),补全图形如下:故答案为:35;(2)∵360°×20200=36°,∴扇形统计图中“A”部分的圆心角是36°;(3)∵1200×50200=300(人),∴估计去E地旅游的居民的人数为300人.【点睛】此题考查了扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.25.4【分析】原式去括号合并得到结果,即可做出判断.【详解】∵原式=3x2﹣2x+4﹣2x2+2x﹣x2=4,∴无论x=100,还是x=10,代数式的值都为4.【点睛】本题考查了整式的加减运算,解题的关键是熟练的掌握整式的加减运算法则.26.(1)12时;(2)60km.【分析】(1)设小颖追上队伍用了x小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【详解】(1)设小颖追上队伍用了x小时.依题意得111060()8060x x +=解得12x =答:小颖追上队伍用了12小时(2)小颖追上队伍时.距离雷锋纪念馆:100-80×12=60(km )【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.27.(1)10(2)75°(3)45°【分析】(1)根据角的定义数出角的个数即可;(2)利用角平分线得出∠AOB=∠BOC ,∠COD=∠DOE ,结合图形求解即可;(3)根据题意得出60AOC ∠= ,结合图形及角平分线求解即可.(1)图中共有10个角,分别为∠AOB ,∠BOC ,∠COD ,∠DOE ,∠AOC ,∠AOD ,∠AOE ,∠BOD ,∠BOE ,∠COE 故答案为:10;(2) OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE ∴∠AOB=∠BOC ,∠COD=∠DOE ,∴∠BOD=∠BOC+∠COD ,∴1150752BOD ∠=⨯= ;(3) 223060AOC BOC ∠=∠=⨯︒= ,∴111()(15060)9045222COD AOE AOC ∠=∠-∠=-=⨯= .。

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.下面四个几何图形中,表示平面图形是()A .B .C .D .2.下列计算中正确的是()A .2210.502x y yx -=B .20202019222-=C .2221x x -=D .3x 2+2x 3=5x 53.若9x =,则x 的值是()A .9B .-9C .±9D .04.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于()A .2B .12C .-2D .1-25.下列说法正确的个数是()①延长射线AB 到C ;②两点确定一条直线;③两点之间,线段最短;④同角的余角相等;A .1个B .2个C .3个D .4个6.为了了解慈利县某校七年级600名学生体重的情况,从中抽取100名学生进行测量.在这个问题中,下列说法正确的是()A .600名学生是总体B .每个学生是个体C .抽取的100名学生是一个样本D .样本的容量是1007.一副三角板(∠AOB=∠COD=90°)按如图方式摆放,若∠BOC =37°,则∠AOD 的度数为()A .127°B .143°C .153°D .117°8.a 的倒数是3,则a 的值是()A .13B .﹣13C .3D .﹣39.计算(1)(1)-+--(2019)(2020)0-⨯-⨯的结果()A .1-B .1C .0D .-210.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到29000公里,将29000用科学记数法表示应为()A .32910⨯B .42.910⨯C .32.910⨯D .50.2910⨯二、填空题11.单项式3332x y -的次数是__________.12.已知3x 2﹣4x +6的值为9,则6x 2﹣8x ﹣5的值为_____.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为________元.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.已知角的余角比它的补角的13还少10°,则=_______.16.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为________.17.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有_____人18.如图,已知:∠AOB=60°,∠COD=34°,OM 为∠AOD 的平分线,ON 为∠BOC 的平分线,则∠MON 的度数为____________三、解答题19.223(3)3(2)1---+⨯⎡---⎤⎣⎦20.先化简再求值:222(43)(21)(24)a a a a a a --+-+-+,其中a =2.21.如图,点O 为直线AB 上的一点,∠BOC =44°,∠COE =90°,且OD 平分∠AOC(1)求∠AOE 的度数.(2)求∠DOE 的度数.22.解方程;(1)52(5)6x x --=(2)31132x x --=-23.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?24.如图,现有两条乡村公路,AB BC ,AB 长为1200米,BC 长为1600米,一个人骑摩托车从A 处以20米/秒的速度匀速沿公路,AB BC 向C 处行驶;另一人骑自行车从B 处以5米/秒的速度匀速沿公路BC 向C 处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?25.我市某中学教务处为了了解该校学生的课外体育活动情况,对学生进行了随机的调查,分别从足球、篮球、乒乓球、羽毛球四个方面进行了汇总,然后将结果制成了如下的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)在扇形统计图中,乒乓球项目所对的圆心角是多少度?(3)请补充完整条形统计图.(4)假如你是该校的一名学生,请你根据调查的结论,谈谈对于运动场所配置的建议.26.如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.(1)求∠DOE和∠DOF的度数;(2)若∠DOC=3∠COF,求∠AOC的度数;(3)求∠BOF+∠DOC的度数.参考答案1.D【分析】根据平面图形和立体图形的区别即可解答.【详解】选项A 是圆锥,选项B 是圆柱,选项C 是四棱柱,选项D 是三角形,三角形是平面图形;故答案为D.【点睛】本题考查了平面图形和立体图形的认识,解题的关键是熟练掌握其定义.2.A【解析】【分析】根据合并同类项,系数相加,,字母和字母的指数不变逐项判断即可.【详解】A.2210.502x y yx -=,正确;B.202020192019222-=,故本项错误;C.2222x x x -=,故本项错误;D.3x 2,2x 3,不是同类项不能合并,错误;故答案为A.【点睛】本题考查了合并同类项熟练掌握运算法则是解题的关键.3.C【解析】【分析】根据绝对值的概念解答即可.【详解】∵9x =,∴x=±9,故答案为C.【点睛】本题考查了绝对值的概念,解题的关键是对其定义的理解.4.B【分析】根据题意列出方程,求出方程的解即可得到x 的值.解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.5.C【解析】【分析】根据射线的性质,直线的性质,线段的性质以及余角的性质对各小题分析判断即可得解.【详解】①射线是向一方无限延伸的,不能延长射线AB,但可以反向延长射线AB到C,所以①错误;②过两点有且只有一条直线,正确;③两点之间的所有连线中,线段最短,正确;④同角的余角相等,正确.综上所述,正确的有②③④共3个.故选C.【点睛】本题主要考查直线、线段、射线的知识点,比较简单.6.D【解析】【分析】根据总体、个体、样本、样本容量的定义解答即可.【详解】A.600名学生体重是总体,错误;B.每个学生的体重是个体,错误;抽取的100名学生的体重是一个样本,错误;D.样本的容量是100;正确;故答案选D.【点睛】本题考查了总体、个体、样本、样本容量的定义,比较简单.7.B【解析】根据角的运算法则计算即可.【详解】∵∠AOB=90°,∠BOC =37°,∴∠AOC=53°,∵∠COD=90°,∴∠AOD=∠AOC +∠COD=143°;故答案选B.【点睛】本题考查了角的运算,熟练掌握其运算性质是解题的关键.8.A【分析】根据倒数的定义进行解答即可.【详解】∵a 的倒数是3,∴3a =1,解得:a =13.故选A .【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9.D【分析】先算乘法,再算加减法即可求解.【详解】解:(1)(1)-+--(2019)(2020)0-⨯-⨯=110---=-2.故选D.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.10.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:29000=42.910⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.4【分析】根据单项式的定义求解即可.【详解】3332x y -的次数为3+1=4;故答案为4.【点睛】本题考查了单项式的次数,基础知识,需熟记其定义.12.1【分析】把3x 2−4x 看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】∵3x 2﹣4x+6=9,∴3x 2﹣4x =3,∴6x 2﹣8x ﹣5=2(3x 2﹣4x )﹣5=2×3﹣5=6﹣5=1.故答案为:1.【点睛】本题考查了代数式求值:先把所求的代数式变形,然后把已知条件整体代入求得代数式的值.13.100【分析】设该商品的进价为x元,根据售价−进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该商品的进价为x元,根据题意得:200×0.6−x=20%x,解得:x=100.故答案为:100.【点睛】本题考查了一元一次方程的应用,根据售价−进价=利润,列出关于x的一元一次方程是解题的关键.14.1.5【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB=AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.60°【解析】【分析】设为x,根据题意和余角、补角的概念列出方程,解方程即可.【详解】解:设为x,°−−10°由题意得,90°−=解得,x=60°,则为60°,【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.16.105°【分析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9,分针指向6,两者之间相隔3.5个数字,即可求解.【详解】∵3×30°+15°=105°.∴钟面上9点30分时,分针与时针所成的角的度数是105度.故答案为105°【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.17.7【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】设共有x 人,可列方程为:8x-3=7x+4.解得x=7;故答案为7.【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.47°【分析】利用角的和差关系分别进行计算即可【详解】∵ON 为∠BOC 的平分线,∴∠BOC=2BOA COA ∠∠+,∵OM 为∠AOD 的平分线,∴2DOC COA AOM ∠∠∠+=,又∵AOM ∠+∠AOB=∠MON +∠BON ,∠AOB=60°,∠COD=34°,∴22DOC COA BOA COA AOB MON ∠∠∠∠∠=∠++++,∴∠MON=47°.【点睛】此题主要考查了角的计算,正确运用角平分线的性质是解题的关键,19.-21【分析】根据有理数的混合运算法则求解即可.【详解】[]223(3)3(2)1993(2)1---+⨯⎡---⎤--+⨯-⎣⎦=+183(1)18321-+⨯----===;故答案为-21【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.20.a 2+3,7【分析】先对原式进行化简,再把a =2代入计算即可.【详解】解:222222(43)(21)(24)432124a a a a a a a a a a a a--+-+-+---++-+=23a +=,当a =2时,原式=4+3=7;【点睛】本题考查了整式的混合运算,解题的关键是熟练掌握去括号的法则.21.(1)46°;(2)22°【分析】(1)根据平角的定义求解即可;(2)先求出∠AOC ,再由OD 平分∠AOC ,求出∠AOD ,即可求出∠DOE 的度数.【详解】(1)∵点O 为直线AB 上的一点,∠BOC =44°,∠COE =90°,∴∠AOE=180°-∠BOC -∠COE =90°=180°-44°-90°=46°;(2)∵∠BOC =44°,∴∠AOC=136°∵OD 平分∠AOC ,∴∠AOD=68°,∴∠DOE=∠AOD -∠AOE=68°-46°=22°.【点睛】本题考查了角度的计算,正确利用角平分线的性质是解题的关键.22.(1)x =43-;(2)x =3【分析】(1)(2)根据解方程的步骤求解即可.【详解】(1)去括号得:5x-2x+10=6,移项、合并同类项得:3x=-4,系数化为1得:x =43-,(2)去分母得:2(3)63(1)x x -=--,去括号得:26633x x --+=,移项、合并同类项得:5x=15,系数化为1得:x=3.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤.23.1.【分析】由题意甲工程队单独做此工程需4个月完成,则知道甲每个月完成14,乙工程队单独做此工程需6个月完成16,当两队合作2个月时,共完成112(46´+,设乙工程队再单独做此工程需x 个月能完成,则根据等量关系共同完成的+乙工程队完成的=整个工程,列出方程式即可.【详解】设乙工程队再单独做此工程需x 个月能完成,∵甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,∴甲每个月完成14,乙工程队每个月完成16,现在甲、乙两队先合作2个月,则完成了112()46´+,由乙x 个月可以完成16x ,根据等量关系甲完成的+乙完成的=整个工程,列出方程为:1112(1 466x´++=解得x=1.【点睛】本题考查应用一元一次方程解决工程问题.此类题目重要的一点是找到工作总量是什么:如果题目中有提到,则直接使用即可;如果题目中没有告诉工作总量,一般情况下用1表示工作总量.24.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x秒摩托车追上自行车,列方程得20x=1200+5x,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.25.(1)100;(2)36°;(3)见解析;(4)建议是篮球场约占运动场的40%,足球场约占运动场的30%,羽毛球场约占运动场的20%,乒乓球场约占运动场的10%【分析】(1)羽毛球人数÷羽毛球人数所占百分比即可求出一共调查的人数;(2)求出足球所占所占百分比,即可求出乒乓球项目所占百分比,也就求出了乒乓球项目所圆心角的度数;(3)求出参加篮球和参加乒乓球的人数即可补充完整条形统计图;(4)根据条形图和扇形图各项运动所占比例即可给出建议.【详解】(1)20÷20%=100,调查了100名学生;(2)∵足球所占的圆心角为30%,∴乒乓球项目所占的圆心角为10%,∴乒乓球项目所圆心角是360°×10%=36°;(3)参加篮球的有100×40%=40(人),参加乒乓球的有:100-30-40-20=10(人),(4)建议是篮球场约占运动场的40%,足球场约占运动场的30%,羽毛球场约占运动场的20%,乒乓球场约占运动场的10%.(言之有理即给分)【点睛】本题考查了条形统计图和扇形统计图,从不同的统计图中得到必要的信息是解题的关键.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD 平分∠AOC ,射线OE 平分∠BOC ,即可求出∠DOE ,再根据OF 平分∠DOE ,即可求出∠DOF 的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.【点睛】本题考查了角的计算和角平分线的定义,一定要注意角平分线的几种表示方法.。

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.-5的相反数是()A .15-B .15C .5D .-52.下列各组单项式中,为同类项的是()A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a3.下列化简正确的是()A .431a a -=B .224325a a a +=C .2222ab ab ab -=-D .325a a a+=4.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是()A .a b>B .a c a c -=-C .a b c -<-<D .b c b c+=+5.把两块三角板按如图所示那样拼在一起,则∠ABC 等于()A .70°B .90°C .105°D .120°6.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A .B .C .D .7.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1,p 是数轴到原点距离为1的数,那么201621a b pcd m abcd +-+++的值是().A .3B .2C .1D .08.轮船沿江从A 港顺流行驶到B 港,比从B 港逆流返回A 港少用3小时,若船在静水中的速度为26千米/时,水速为2千米/时,设A 港与B 港相距x 千米,则根据题意可列出方程()A .28=24−3B .28=24+3C .r226=K226−3D .K226=r226−39.下列图形,不是柱体的是()A .B .C .D .10.如图,∠AOB=130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的角平分线,下列叙述正确的是()A .∠DOE 的度数不能确定B .∠AOD=12∠EOC C .∠AOD+∠BOE=65°D .∠BOE=2∠COD二、填空题11.倒数是它本身的数有____,相反数是它本身的数有______.12.计算|3.14-π|-π的结果是______.13.青藏高原面积约为2500000方千米,将2500000用科学记数法表示应为______.14.已知∠1与∠2互余,∠2与∠3互补,∠1=65°,则∠3=________15.若x=2是方程8﹣2x=ax 的解,则a=.16.关于x,y 的多项式222568x kxy y xy -++-不含xy 项,则k =__________.17.已知3x y +=,1xy =-,则代数式()()5235x xy y +--的值为_______.18.若2(2)30x y -+-=,则代数式x y 的值是________.三、解答题19.计算:(1)()()1218715--+--.(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭.20.解方程:(1)()()371523x x x --=-+(2)118225x x x -+-=-21.先化简,再求值:22221-23(2)122x y x y ⎡⎤+--+⎣⎦,其中1x =-,2y =-22.一个两位数的个位上的数的3倍加2是十位上的数,个位上的数与十位上的数的和等于10,这个两位数是多少?23.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?24.A 、B 两地相距64km ,甲从A 地出发,每小时行14km ,乙从B 地出发,每小时行18km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10km?25.如图,已知∠AOB 是直角,OE 平分∠AOC ,OF 平分∠BOC .(1)若∠BOC=60°,求∠EOF的度数;(2)若∠AOC=x°(x>90),此时能否求出∠EOF的大小,若能,请求出它的数值26.某水果批发市场香蕉的价格如表:购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)李明分两次购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,李明第一次购买香蕉和第二次购买香蕉各多少千克?(2)王强分两次购买50千克,第二次购买的数量多于第一次购买的数量,共付出264元,请问王强第一次,第二次分别购买香蕉多少千克?参考答案1.C【分析】根据相反数的定义解答即可.【详解】-5的相反数是5【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.D【分析】逐一对选项进行分析即可.【详解】A 选项中,43a a a -=,故该选项错误;B 选项中,222325a a a +=,故该选项错误;C 选项中,2a b 和22ab 不是同类项所以不能合并,故该选项错误;D 选项中,325a a a +=,故该选项正确.故选D 选项.【点睛】本题主要考查了合并同类项,理解同类项的概念是解题的关键.4.D【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .因为a ﹣c<0,所以|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .因为b +c >0,所以|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.5.D【解析】试题分析:9030120.ABC ∠=+= 故选D .考点:角度的大小比较.6.B【解析】试题解析:由正方体展开图的特征及正方形上的三种图形相邻,可得正方体沿某些棱展开后,能得到的平面图形是B .故选B .7.B【分析】由a 、b 互为相反数可知0a b +=,由c 、d 互为倒数可知1cd =,由m 的绝对值为1可知1m =±,由p 是数轴到原点距离为1的数可知1p =±,将各个代数式的值代入所求式子中即可.【详解】201621110112a b p cd m abcd+-+++=-+++=故选B【点睛】本题主要考查了相反数,倒数,绝对值的意义,理解互为相反数的两个数相加为零,互为倒数的两个数乘积为1,以及绝对值的几何意义是数轴上的点到原点的距离等是解题的关键.8.A【分析】设A港和B港相距x千米,根据行船问题公式可知,顺水速度较快,所用时间较少,所以利用行程问题公式,列方程为:26+2+3=26−2,变形为:28=24−3,据此选择.【详解】解:设A港和B港相距x千米,26+2+3=26−2,变形为:28=24−3∴方程为:28=24−3故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.9.D【详解】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.10.C【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【详解】∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE.又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.【点睛】本题是对角的平分线的性质的考查,解题时注意:角平分线将角分成相等的两部分.11.±1【分析】根据倒数和相反数的定义解答即可.【详解】∵1的倒数是1,-1的倒数是-1,∴倒数是它本身的数有±1;∵0的相反数是0,∴相反数是它本身的数有0.故答案为±1,0.【点睛】本题考查了倒数和相反数的定义,熟练掌握乘积为1的两个数互为倒数,只有符号不同的两个数是互为相反数是解答本题的关键.12.-3.14【分析】去掉题目中的绝对值计算即可,注意去绝对值时绝对值里面是负的,所以去掉绝对值之后变为相反数.【详解】原式= 3.14 3.14ππ--=-【点睛】本题主要考查了绝对值的性质:一个负数的绝对值是它的相反数,掌握绝对值的性质是解题的关键.13.62.510⨯【分析】科学计数法就是把一个数写成10n a ⨯的形式,其中110a ≤<,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,716n =-=,由a 的范围可知 2.5a =,可得结论.【详解】解:62500000 2.510=⨯.故答案为:62.510⨯.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.14.155°【解析】已知∠1的度数,根据余角的性质可求得∠2的度数,再根据补角的性质即可求得∠3的度数.解:∵∠1与∠2互余,∠1=65°∴∠2=90°-65°=25°∵∠2与∠3互补∴∠3=180°-25°=155°此题主要考查学生对余角和补角的性质的理解及运用能力.15.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.16.3【分析】先把多项式合并同类项,多项式不含xy 项,说明xy 的系数为0,即620k -=,则k 可求.【详解】222225685(62)8x kxy y xy x y k xy -++-=++--∵多项式不含xy 项620,3k k ∴-=∴=【点睛】本题主要考查了多项式不含某项时说明某项的系数为0,注意必须先将多项式合并同类项再进行计算.17.20【分析】先将所求代数式()()5235x xy y +--去括号,就会出现x y +和xy ,然后整体代入求值即可.【详解】()()523552355()32x xy y x xy y x y xy +--=+-+=+-+3x y += ,1xy =-∴原式=533(1)220⨯-⨯-+=【点睛】本题主要考查了整体代入法求代数式的值,整体代入的思想是一种重要的数学思想.18.9【分析】要求x y 的值,必须先求出,x y 的值,而通过已知条件可知20,30x y ∴-=-=,则可求,x y 的值.【详解】2(2)30x y -+-= 20,30x y ∴-=-=2,3x y ∴==代入x y 中,得239=【点睛】本题主要考查平方数和绝对值的性质都是非负性,两个非负数相加为零,则这两个数都为零,利用这点解题即可.19.(1)8;(2)-5.【分析】(1)运用有理数的加减混合运算计算即可(2)运用有理数的加减乘除混合运算计算即可.【详解】(1)()()121871512187153071523158--+--=+--=--=-=(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭1124(8)99=-+÷--⨯131=---5=-【点睛】本题主要考查有理数的加减乘除混合运算,需要注意两点:一是运算顺序,二是运算符号.20.(1)x=4;(2)x=-3【分析】(1)去括号,解一元一次方程即可.(2)去分母,解一元一次方程即可.【详解】(1)解:去括号,377526x x x -+=--移项,372567x x x -+=--合并同类项,28x -=-系数化为1,4x =(2)去分母,105(1)202(18)x x x --=-+去括号,105520236x x x -+=--移项,105220365x x x -+=--合并同类项,721x =-系数化为1,3x =-【点睛】本题主要考查解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意不要漏乘不含分母的常数项.21.22326x y -++,11.【分析】先将原式去括号,合并同类项,化成最简之后,再将,x y 的值代入求值即可.【详解】原式=22221-2(3212)2x y x y +-++=2221-2(4212)2x y x +-+=222-226x y x +-+=22-326x y ++当1x =-,2y =-时,原式=223(1)2(2)611-⨯-+⨯-+=【点睛】本题主要考查了代数式的化简求值,代入时,把字母的值代入代数式的相应的位置是解题的关键.同时注意括号前的系数需要同括号里的每一项相乘.22.这个两位数是82.【分析】可以设个位数字为x ,则十位上的数字可以用x 表示出来,再根据已知条件“个位上的数与十位上的数的和等于10”列出方程求解即可.【详解】设个位上的数字为x ,则十位上的数字为32x +由题意得:(32)10x x ++=解得2x =所以十位上的数字为32x +=8所以这两位是为82【点睛】本题主要考查了一元一次方程的应用,读懂题意,正确找到等量关系,列出方程是解题的关键.23.亏损8元【解析】试题分析:设盈利25%的衣服价格是x 元,亏损25%的衣服价格是y 元,先列方程求得各自的成本,再比较即可判断.设盈利25%的衣服价格是x 元,亏损25%的衣服价格是y 元,由题意得(1+25%)x=60,解得x=48(1-25%)y=60,解得y=80因为48+80=128元,60+60=120元,128-120=8元所以亏损8元.答:亏损8元.考点:一元一次方程的应用点评:解题的关键是读懂题意,找到等量关系,正确列方程求解.24.(1)2小时;(2)1.5小时或2.5小时;(3)18.5小时.【分析】(1)如果两人同时出发相向而行,那么是相遇问题,设两人同时出发相向而行,需经过x小时两人相遇,即x小时他们共同走完64千米,由此可以列出方程解决问题;(2)此小题有两种情况:①还没有相遇他们相距16千米;②已经相遇他们相距16千米.但都可以利用相遇问题解决;(3)若甲在前,乙在后,两人同时同向而行,此时是追及问题,设z小时后乙超过甲10千米,那么z小时甲走了14z千米,乙走了18z千米,然后利用已知条件即可列出方程解决问题.【详解】解:(1)设两人同时出发相向而行,需经过x小时两人相遇,根据题意得:,+=x x141864解方程得:(小时).x=2答:两人同时出发相向而行,需经过2小时两人相遇;(2)设两人同时出发相向而行,需y小时两人相距16千米,①当两人没有相遇他们相距16千米,14181664根据题意得:,++=y y解方程得:(小时);1.5y=②当两人已经相遇他们相距16千米,+=+依题意得,y y14186416∴=2.5y(小时).答:若两人同时出发相向而行,则需1.5或2.5小时两人相距16千米;(3)设甲在前,乙在后,两人同时同向而行,则z小时后乙超过甲10千米,18146410=++根据题意得:,z z解方程得:(小时).18.5z=答:若甲在前,乙在后,两人同时同向而行,则18.5小时后乙超过甲10千米.故答案是:(1)2小时;(2)1.5小时或2.5小时;(3)18.5小时.【点睛】此题是一个比较复杂行程问题,既有相遇问题,也有追及问题.解题的关键是读懂题意,正确把握已知条件,才能准确列出方程解决问题.25.(1)∠EOF=45°;(2)∠EOF 总等于45°.【分析】(1)观察发现EOF EOC FOC ∠=∠-∠,则找到EOC ∠和FOC ∠的度数即可,而EOC ∠是AOC ∠的一半,FOC ∠是BOC ∠的一半,AOC ∠和BOC ∠已知或可求,则EOF ∠的度数可求.(2)按照(1)的方法,用字母替换掉具体的度数即可.【详解】1)因为∠BOC=60°,∠AOB=90°所以∠AOC=150°因为OE 平分∠AOC 所以1752EOC AOC ∠=∠=︒因为OF 平分∠BOC 所以1302FOC BOC ∠=∠=︒所以∠EOF=∠COE-∠COF=75°-30°=45°(2)能具体求出∠EOF 的大小因为∠AOC=x°,∠AOB=90°所以∠BOC=x°-90°因为OE 平分∠A0C 所以122x EOC AOC ∠=∠=因为OF 平分∠BOC所以19022x FOC BOC-︒∠=∠=所以∠EOF=∠COE-∠COF90 22 x x-︒=-即当x>90时,∠EOF总等于45°【点睛】本题主要考查了角平分线的性质以及角的和与差,读懂图形,分清角的和差关系是解题的关键.26.(1)第一次买16千克,第二次买24千克;(2)第一次购买14千克香蕉,第二次购买36千克.【分析】(1)根据题意列出设出未知数,找出等量关系,列出方程求解即可.但是要注意最后的结果第二次购买的数量多于第一次购买的数量(2)根据题意列出设出未知数,找出等量关系,列出方程求解即可.但是要验证最后的结果第二次购买的数量多于第一次购买的数量,同时由于两次购买了50千克,需要分情况讨论,列出两个方程分别解答.【详解】(1)设第一次购买x千克香蕉,则第二次购买(40-x)千克香蕉,由题意可得6x+5(40-x)=216,解得:x=16,∴40-x=2440-16=24答:第一次买16千克,第二次买24千克.故答案为16,24;(2)设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉.分两种情况考虑:①当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克);②当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,根据题意,得:6x+4(50-x)=264,解得:x=32.检验:x=32(不符合题意,舍去);答:第一次购买14千克香蕉,第二次购买36千克.【点睛】本题主要考查一元一次方程的实际应用以及分类讨论的思想,读懂题意,找到正确的等量关系,列出方程是解题的关键,同时要注意分情况讨论,并验证最后的结果是否满足题意.。

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.13-的倒数是()A.3B.3-C.13-D.132.把3720000进行科学记数法表示正确的是()A.0.372×106B.3.72×105C.3.72×106D.37.2×105 3.在-1,12,-20,0,-(-5),-3+中,负数的个数有()A.2个B.3个C.4个D.5个4.下列各组的两个数中,运算后的结果相等的是()A.(﹣2)3和(﹣3)2B.(﹣2)3和﹣23C.(﹣2)2和﹣22D.23和325.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位6.已知a﹣2b=3,则代数式6b﹣3a+5的值为()A.14B.11C.4D.﹣47.如图摆放的几何体的左视图是()A.B.C.D.8.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°9.如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离B .线段AD 的长度表示点A 到BC 的距离C .线段CD 的长度表示点C 到AD 的距离D .线段BD 的长度表示点A 到BD 的距离10.下列式子正确的是()A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z =x ﹣2(z+y )D .﹣a+c+d+b =﹣(a ﹣b )﹣(﹣c ﹣d )11.下列各图经过折叠后不能围成一个正方体的是()A .B .C .D .12.如图所示,下列结论成立的是()A .若∠1=∠4,则BC ∥ADB .若∠5=∠C ,则BC ∥ADC .若∠2=∠3,则BC ∥AD D .若AB ∥CD ,则∠C +∠ADC =180°二、填空题13.把式子(3)(6)(4.8)(7)-+--+--改写成省略括号的和的形式:_____________.14.比较大小:-2.1×108______-1.9×10815.以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)16.单项式323ab -的系数是______,次数是____.17.如图,OP//QR//ST ,若∠2=100°,∠3=120°,则∠1=______.18.已知2x+4与3x -2互为相反数,则x=_____.三、解答题19.计算:(1)-20+(-14)-(-18)-13(2)3571(491236--+÷20.如图,点A ,O ,B 在同一直线上,OD 是AOC ∠的平分线,OD OE ⊥,且120AOC ∠=︒.(1)试求∠BOE 的度数:(2)直接写出图中所有与AOD ∠互余的角.21.先化简,再求值已知|x ﹣2|+(y+1)2=0,求2x 2﹣[5xy ﹣3(x 2﹣y 2)]﹣5(﹣xy+y 2)的值.22.如图,已知∠1+∠2=180°,∠3=∠B ,试说明EF ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180°(已知).∠2=∠4(______).∴∠______+∠4=180°(______).∴______∥______(______).∴∠B=∠______(______).∵∠3=∠B(______).∴∠3=∠______(______).∴EF∥BC(______).23.某区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=度.(2)灯A射线从AM开始顺时针旋转至AN需要秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=度,∠MAC=度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在(3)的条件下,将“当AC到达AN之前”改为“在BD到达BQ之前”,其它条件不变.是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出AC转动时间,若不存在,请说明理由.24.为了解某社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区参与问卷调查人中,用微信支付方式的哪个年龄段人数多?25.如图,C 是线段AB 的中点,D 是线段AB 的三等分点,如果CD=2cm ,求线段AB 的长.26.如图,在一块边长为acm 的正方形铁皮上,一边截去4cm ,另一边截去3cm ,用A 表示截去的部分,B 表示剩下的部分.(1)用两种不同的方式表示A 的面积(用代数式表示)(2)观察图形或利用(1)的结果,你能计算(3)(4)a a --吗?如果能,请写出计算结果.27.如图,直线AB ,CD 交于点O ,且∠BOC =80°,OE 平分∠BOC ,OF 为OE 的反向延长线.(1)∠2=,∠3=;(2)OF 平分∠AOD 吗?为什么?参考答案1.B 【分析】倒数:乘积是1的两数互为倒数.【详解】解:13-的倒数是3-,故选:B .【点睛】本题考查了倒数,掌握倒数的定义是解答本题的关键.2.C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3720000=3.72×106,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要确定a 的值以及n 的值.3.B 【分析】先把()3,5-+--化简,再根据负数的含义逐一分析即可得到答案.【详解】解:()33,55,-+=---=Q -1,12,-20,0,-(-5),-3+中负数有:1,20,3,---+故选B【点睛】本题考查的是负数的含义,相反数的含义,绝对值的含义,掌握与有理数相关的基础知识是解题的关键.4.B【分析】根据有理数乘方法则依次计算解答.【详解】解:A、(﹣2)3=-8,(﹣3)2=9,故该选项不符合题意;B、(﹣2)3=-8,﹣23=-8,故该选项符合题意;C、(﹣2)2=4,﹣22=-4,故该选项不符合题意;D、23=8,32=9,故该选项不符合题意;故选:B.5.B【分析】根据近似数的精确度求解.【详解】3.20精确的数位是百分位,故选B.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.D【分析】根据已知条件求出2b-a=-3,得到6b-3a=-9,代入计算即可.【详解】解:∵a﹣2b=3,∴2b-a=-3,∴6b-3a=-9,∴6b﹣3a+5=-9+5=-4,故选:D.7.A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.8.C【分析】求出∠3即可解决问题;【详解】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,由平行可得∠2=∠3=55°,故选C.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.9.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B.线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C.线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D.线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.10.D【分析】根据去括号与添括号法则逐项计算即可求解.【详解】解:A.x﹣(y﹣z)=x﹣y+z,故该选项不正确,不符合题意;B.﹣(x﹣y+z)=﹣x+y﹣z,故该选项不正确,不符合题意;C.x+2y﹣2z=x﹣2(z-y),故该选项不正确,不符合题意;D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d),故该选项正确,符合题意;故选D【点睛】本题考查了去括号与添括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.11.D【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C【分析】若同位角相等或内错角相等或同旁内角互补,则两直线平行,反之亦然.【详解】解:A,若∠1=∠4,则AB∥CD,故错误;B,若∠5=∠C,,则AB∥CD,故错误;C ,若∠2=∠3,则BC ∥AD ,故正确;D ,若AB ∥CD ,则∠C +∠ABC =180°,故错误;故选择C.【点睛】本题考查了平行线的判定及性质.13.36 4.87---+【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.【详解】解:(3)(6)(4.8)(7)36 4.87-+--+--=---+.故答案为:36 4.87---+.【点睛】本题考查的是有理数的加减混合运算,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式是解题的关键.14.<【分析】根据有理数大小比较解答,正数>0>负数,对于用科学记数法表示的数,10的n 次方相同,比较前面的数即可.【详解】解:因为10的指数相同,2.1>1.9,所以-2.1<-1.9,故答案为<【点睛】本题考查科学记数法和两个负数比较,绝对值大的反而小.15.①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误.故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.16.23-4【分析】直接写出单项式的系数及次数即可.【详解】解:323ab -=323ab -,其系数为23-,次数为所有字母次数之和,即1+3=4次,故答案为23-,4.【点睛】本题考查了单项式的系数及次数,熟记单项式的次数为所有字母次数之和是解题的关键.17.40°【分析】根据平行线的性质得到2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,求出∠PRQ的度数,根据∠1=∠SRQ ﹣∠PRQ 代入即可求出答案.【详解】解:∵////OP QR ST ,2=100∠︒,3=120∠︒,∴2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,∴=180100=80PRQ ∠︒-︒︒,∴1==40SRQ PRQ ∠∠-∠︒,故答案是40°.【点睛】本题主要考查对平行线的性质的理解和掌握,能灵活运用平行线的性质进行计算是解此题的关键.18.25-【分析】根据相反数的性质列出方程,解方程即可.【详解】∵2x+4与3x -2互为相反数,∴2x+4=-(3x -2),解得x=-25.故答案为-25.【点睛】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(1)-29;(2)-26.【分析】(1)先去括号,然后计算加减即可;(2)利用乘法分配率,进行计算即可.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)(﹣3574912-+)136÷=(﹣3574912-+)×36=﹣27﹣20+21=﹣26.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的乘法运算律进行计算.20.(1)30°(2)∠COE 与∠BOE【分析】(1)利用OD是∠AOC的平分线,得出∠AOD=∠COD12=∠AOC,求出∠AOE,再利用平角的意义求得问题;(2)利用互余两角的和是90°直接写出即可.(1)解:∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD12=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∵∠COE+∠COD=90°又AOD∠=∠COD,∠BOE=∠COE∴∠COE+∠COD=90°,∠BOE+∠COD=90°∴与AOD∠互余的角为:∠COE与∠BOE.【点睛】此题考查两角互余的关系、角平分线的意义、平角的意义,以及角的和与差等知识点.21.5x2﹣8y2,12【分析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.22.对顶角相等;1;等量代换;AB;DF;同旁内角互补,两直线平行;FDC;两直线平行,同位角相等;已知;FDC;等量代换;内错角相等,两直线平行【分析】先由已知和对顶角相等得∠1+∠4=180°,证出AB∥DF,再由平行线的性质得∠B=∠FDC,然后结合已知证出∠3=∠FDC,即可得出结论.【详解】∵∠1+∠2=180°(已知).∠2=∠4(对顶角相等).∴∠1+∠4=180°(等量代换).∴AB∥DF(同旁内角互补,两直线平行).∴∠B=∠FDC(两直线平行,同位角相等).∵∠3=∠B(已知).∴∠3=∠FDC(等量代换).∴EF∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质以及对顶角相等等知识;熟练掌握平行线的判定与性质是解题的关键.23.(1)60(2)90(3)①(t+30),2t;②当AC转动30秒时,两灯的光束射线AC∥BD(4)存在,t=110秒【分析】(1)根据邻补角互补,即可求解;(2)根据题意可得灯A射线从AM开始顺时针旋转至AN,旋转了180°,即可求解;(3)①根据旋转的角度等于旋转的速度乘以时间,即可求解;②根据平行线的性质可得∠CAM=∠PBD,可得到关于t的方程,即可求解;(4)根据平行线的性质可得∠PBD+∠CAN=180°,可得到关于t的方程,即可求解.(1)解:∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴2∠BAN+∠BAN=180°,∴∠BAN=60°;故答案为:60(2)解:灯A射线从AM开始顺时针旋转至AN,旋转了180°,∴所需时间为180÷2=90(秒)(3)解:①∵灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,∴∠PBD=(t+30)°,∠MAC=2t°,答案为:(t+30),2t②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,理由如下:如图:∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=(30+t),解得t=30(秒);所以当AC转动30秒时,两灯的光束射线AC∥BD(4)解:BD到达BQ之前,即90<t<150时,还存在某一时刻,使两灯的光束射线AC∥BD,如图:∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴(30+t)+(2t﹣180)=180,解得t=110(秒).存在t=110秒使两灯的光束射线AC∥BD【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用方程思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.(1)500;(2)详见解析;(3)用微信支付方式的20-40岁年龄段人数多【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可得出答案;(2)根据喜欢现金支付所占的比例×总人数,得出喜欢现金支付的参与调查的人数,再减去20-40岁年龄段人数,即可得到喜欢现金支付的41-60岁年龄段人数,据此补全图形即可;(3)通过条形统计图可直接得出用微信支付方式的20-40岁年龄段人数多.【详解】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图如下:(3)该社区参与问卷调查人中,用微信支付方式的20-40岁年龄段人数多.【点睛】本题考查的知识点是扇形统计图与条形统计图,解题的关键是将扇形统计图与条形统计图中的信息相关联.25.AB的长为12cm.【分析】设线段AB的长为xcm,则AC的长为12x cm,AD的长为13x cm,列方程求解即可.【详解】解:设AB 的长为xcm ,则AC 的长为12x cm ,AD 的长为13x cm ;依题意得:11223x x -=,解得:12x =.答:AB 的长为12cm .【点睛】本题考查的知识点是一元一次方程的应用,根据图形找出线段间的等量关系是解此题的关键.26.(1)4(3)3a a -+或2(3)(4)a a a ---;(2)能计算,结果为2712a a -+.【分析】(1)第一种方法:可以用大的正方形的面积减去B 的面积得出;第二种方法可以A 分割成两个小长方形的面积和即可计算;(2)根据(1)中的结果建立一个等式,根据等式即可求出(3)(4)a a --的值.【详解】(1)第一种方法:用正方形的面积减去B 的面积:则A 的面积为2(3)(4)a a a ---;第二种方法,把A 分割成两个小长方形,如图,则A 的面积为:4(3)3a a-+(2)能计算,过程如下:根据(1)得,2(3)(4)4(3)3a a a a a---=-+∴22(3)(4)4(3)3712a a a a a a a --=---=-+【点睛】本题主要考查列代数式和整式加减的应用,数形结合是解题的关键.27.(1)∠2=100°,∠3=40°.(2)OF 平分∠AOD.【分析】(1)根据邻补角和角平分线的定义进行计算即可;(2)分别计算∠AOD 和∠3的大小,然后进行判断即可.【详解】解:(1)由题意可知:2+180BOC ∠∠= ,且∠BOC =80°,∴∠2=100°,∵OE平分∠BOC∴11=402BOC∠∠=∴∠3=180°-∠1-∠2=40°.(2)OF平分∠AOD.理由:∵∠AOD=180°-∠2=180°-100°=80°,∴∠3=12∠AOD所以OF平分∠AOD.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.如果||a a =-,下列成立的是()A .0a >B .0a <C .0a ≥D .0a ≤2.若盈余60万元记作+60万元,则﹣60万元表示()A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损3.把202400000记成科学记数法正确的是()A .82.02410⨯B .720.2410⨯C .80.202410⨯D .52.02410⨯4.下列方程中是一元一次方程的是()A .536x y -=B .132x -=C .321x x+=D .2625x =5.下列各题中去括号正确的是()A .()531531x x -+=--B .1242414x x ⎛⎫-+=-+ ⎪⎝⎭C .1241244x x ⎛⎫-+=-- ⎪⎝⎭D .()()22312433x y x y ---=---6.当3x =时,整式31ax bx +-的值等于﹣100,那么当3x =-时,整式31ax bx +-的值为()A .100B .﹣100C .98D .﹣987.下列说法正确的是()A .25x y π的系数是5B .233x y π的次数是6C .323xy -的系数是23-D .223xy -的次数是28.实数a 、b 在数轴上的位置如图所示,则a -与b 的大小关系是()A .a b ->B .a b -=C .a b-<D .不能判断9.下列几何体中,其侧面展开图为扇形的是()A .B .C .D .10.一个角的补角加上30°后,等于这个角的余角的3倍,则这个角是()A .10°B .15°C .30°D .25°11.规定一种新运算:23a b a b ⊗=-,若()2110x ⊗⊗-=⎡⎤⎣⎦,则x 的值为()A .2B .﹣2C .1D .﹣112.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°二、填空题13.已知x=-2是关于x 的方程ax+3x-6=0的解,则a 的值为______.14.单项式2415m x y +-与423m n x y -是同类项,则m n =______.15.规定一种运算:()()22a b a b a b *=-+,那么()432**=______.16.某企业2018年9月份产值为x 万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是______万元(用含x 的代数式表示)17.按如图所示的运算程序,当2x =,4y =输出的结果为_______.三、解答题18.计算:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦19.解方程:(1)()322050x x --+=;(2)5415313412y y y ++--=+.20.先化简再求值:已知()22310a b -++=,求代数式()()22262234a ab a ab b --+-的值.21.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是15cm ,求AB ,CD 的长.22.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?23.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?24.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.25.对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()()a,b c,d ac bd ⊗=-.例如:()()()2,41,3214314⊗-=⨯--⨯=-.根据上述规定,解决下列问题:(1)有理数对()()2,45,6-⊗-=______;(2)若有理数对()()3,2,418x ⊗--=,则x =______;(3)当满足等式()()11229,x x y,y -⊗-=中的x 是整数时,求整数y 的值.26.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若30AOB ∠=︒,20DOE ∠=︒,那么BOD ∠是多少度?(2)若150∠=︒AOE ,40AOB ∠=︒,那么COD ∠是多少度?参考答案1.D 2.B 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.C 11.D12.C13.-6【分析】把x=-2代入方程ax+3x-6=0得出-2a-6-6=0,再求出方程的解即可.【详解】解:把x=-2代入方程ax+3x-6=0,得-2a-6-6=0,解得:a=-6,故答案为:-6.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左右两边相等的未知数的值,叫方程的解.14.1【分析】两个单项式中,所含的字母相同,相同字母的指数也相等,则成为同类项,据此解题.【详解】解析:∵单项式2415m x y +-与423m n x y -是同类项,∴2424m m n +=⎧⎨-=⎩,解得21m n =⎧⎨=-⎩,∴()211mn=-=,故答案为:1.【点睛】本题考查同类项定义,难度较易,掌握相关知识是解题关键.15.﹣180【分析】根据a ∗b=(a−2b)(2a+b)先求出3∗2=-7,然后求出4∗(-7)即可.【详解】解:由题意:()()()()()323223223434177*=-⨯⨯+⨯=-⨯+=-⨯=-;∴()()()()()432474144141810180**=*-=+⨯-=⨯-=-.故答案为:﹣180.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够熟练掌握平方差公式.16.(1﹣10%)(1+10%)x 【分析】根据题目中的数量关系.10月份比9月份减少了10%.则10月份为(1﹣10%)x 万元.11月份比10月份增加了10%.则11月份的产值为(1﹣10%)(1+10%)x 万元.【详解】∵某企业今年9月份产值为x 万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x 万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x 万元.故答案为:(1﹣10%)(1+10%)x .【点睛】本题结合百分比考查列代数式解决问题,理解题意,找准数量关系是解答关键.17.12【分析】根据运算程序,把2x =,4y =代入代数式,求值,即可求解.【详解】解:∵41y =≥,∴当2x =,4y =时,22x y +=222412+⨯=,故答案是:12.【点睛】本题主要考查按程序图求代数式的值,掌握含乘方的有理数的混合运算法则是解题的关键.18.6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算.【详解】解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭()4166=-+-410=-+6=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)7x =(2)13y =-【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,可得:3x-40+2x+5=0,移项,可得:3x+2x=40-5,合并同类项,可得:5x=35,系数化为1,可得:x=7;(2)解:去分母,可得:4(5y+4)-3(y+1)=12+5y-3,去括号,可得:20y+16-3y-3=12+5y-3,移项,可得:20y-3y-5y=12-3-16+3,合并同类项,可得:12y=-4,系数化为1,可得:y=-13.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.2102ab b -+,32【分析】化简代数式,先去括号,然后合并同类项,根据绝对值和乘方的非负性求得a ,b 的值,代入求值即可.【详解】解:()()22262234a ab a ab b--+-22262682a ab a ab b =---+2102ab b =-+∵()22310a b -++=,∴30a -=,10b +=,即3a =,1b =-,∴原式()()210312130232=-⨯⨯-+⨯-=+=【点睛】本题考查整式的化简求值,掌握去括号及有理数的混合运算法则正确化简计算是本题的解题关键.21.18cm AB =,2cm CD =【分析】根据线段中点的性质,可得12AE AB =,12CF CD =,根据线段的和差,可得AC 的长、EF 的长,根据解方程,可得x 的值.【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =.∵点E 、点F 分别为AB 、CD 的中点,∴1 1.52AE AB xcm ==,122CF CD xcm ==.∴6 1.52 2.5EFAC AE CF x x x xcm =--=--=.∵15EF cm =,∴2.515x =,解得:6x =.∴18AB cm =,24CD cm =.【点睛】本题考查与线段中点有关的计算、解一元一次方程,利用方程思想解决线段之间的数量关系是解答的关键.22.(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米(2)这天上午出租车共耗油36.4升【分析】(1)根据有理数的加法运算,将所有数据相加即可;(2)求出这天上午行驶的路程,再乘每千米耗油量,即可得答案.(1)31813151012131729-++----=-,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米.(2)3813151012131791++-+++++-+-+-+-=,910.436.4⨯=(升).答:这天上午出租车共耗油36.4升.【点睛】本题考查了正数和负数,掌握有理数的加法运算是解题关键.23.安排20人加工汤料包.【分析】设安排x 人加工汤料包,根据每袋包装臭豆腐里有1个汤料包和4个配料包得:4×100x=200(60-x ),即可解得x 答案.【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x=200(60-x ),解得x=20,答:安排20人加工汤料包.【点睛】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.24.(1)7(2)3或5【分析】(1)由2AC BC =,18AB =,可求出6BC =,12AC =.再根据E 为BC 中点,即得出3CE =,从而可求出CD 的长,进而可求出AD 的长;(2)分类讨论:当点E 在点F 的左侧时和当点E 在点F 的右侧时,画出图形,根据线段的倍数关系和和差关系,利用数形结合的思想即可解题.(1)∵2AC BC =,18AB =,8DE =,∴163BC AB ==,2123AC AB ==,如图,∵E 为BC 中点,∴132CE BC ==,∴5CD DE CE =-=,∴18567AD AB CD BC =--=--=;(2)分类讨论:①如图,当点E 在点F 的左侧时,∵3CE EF +=,6BC =,∴点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==;②如图,当点E 在点F 的右侧,∵12AC =,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,∴3AD =.综上所述:AD 的长为3或5;【点睛】本题考查线段中点的有关计算,线段n 等分点的有关计算,线段的和与差.利用数形结合和分类讨论的思想是解题关键.25.(1)-14(2)6(3)0y =或1y =或1y =-或2y =或4y =-或5y =【分析】(1)根据题目中的法则即可运算;(2)根据法则表达出(−3,x)⊗(-2,4),再解方程即可;(3)根据法则表达出(1,x−1)⊗(x−2y ,2y),列出方程,再根据x 是整数,求出y 的值即可.(1)解:()()()()2,45,62546102414-⊗-=-⨯--⨯=-=-;(2)解:()()3,2,418x ⊗--=,()()32418x ⨯--⨯-=,解得6x =;(3)解:由()()11229,x x y,y -⊗-=得()2219x y y x ---=,即()129y x -=,∵x 是整数,∴121y -=±或3±或9±,∴0y =或1y =或1y =-或2y =或4y =-或5y =.【点睛】本题考查了新定义下的有理数运算问题,解题的关键是掌握题中新定义的运算法则.26.(1)50°(2)35°【详解】解:(1)OB 是AOC ∠的平分线,∴30BOC AOB ∠=∠=︒;∵OD 是COE ∠的平分线,∴20COD DOE ∠=∠=︒,∴302050BOD BOC COD ∠=∠+∠=︒+︒=︒;(2)OB 是AOC ∠的平分线,∴280AOC AOB ∠=∠=︒,∴1508070COE AOE AOC ∠=∠-∠=︒-︒=︒,∵OD 是COE ∠的平分线,∴1352COD COE ∠=∠=︒.。

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.下列四个数中,最小的数是()A .0B .12022-C .2022D .2022-2.方程360x +=的解是()A .2x =B .2x =-C .3x =D .3x =-3.下列式子:22132,4,,,5,07ab ab x x a c++-中,整式的个数是()A .6B .5C .4D .34.根据等式的性质,下列结论不正确的是()A .若a b y y =,则a b =B .若ax bx =,则a b=C .若33a n b n -=-,则a b=D .若22m m a b +=+,则a b =5.下列各式中,去括号正确的是()A .()22a b c a b c--+=--+B .()()2121x t a x t a --+-=---+C .()2121x x ⎡⎤⎣⎦---=+D .()321321x y x y +-+-=-+-6.有理数a ,b 在数轴上的位置如图所示,那么a ,a -,b ,b -之间的大小关系正确的是A .b a <B .a b <-C .a b -<D .a b-<-7.将一半圆绕其直径所在的直线旋转一周,得到的立体图形是()A .圆柱B .球C .圆台D .圆锥8.下列图形中,不是正方体的展开图形的是()A .B .C .D .9.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x 立方米的水,下列方程正确的是()A .1.2×20+2(x ﹣20)=1.5xB .1.2×20+2x =1.5xC .1.22 1.52x x +=D .2x ﹣1.2×20=1.5x 10.如图所示,OB ,OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式是()A .2α﹣βB .α﹣βC .α+βD .以上都不正确二、填空题11.a 与1互为相反数,那么a=______.12.数据5734000000用科学记数法表示是______.13.若单项式22m x y 与413-n x y 是同类项,则m n =_________.14.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.15.如图,已知63AOB ∠=︒,2316BOC '∠=︒,那么AOC ∠=______.(用度、分、秒表示)16.学校决定修建一块长方形草坪,长为a 米,宽为b 米,并在草坪上修建如图所示的十字路,已知十字路宽x 米,则草坪的面积是________平方米.17.一个如图所示的长方形,恰好被分成6个正方形,已知最小的正方形的面积为1,则正方形F 的边长为____________.18.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖块.三、解答题19.计算:(1)()()31257---+--(2)15643158⎛⎫-÷⨯- ⎪⎝⎭(3)411138824⎛---+⨯-⎫ ⎪⎝⎭20.化简:(1)()2222253x y xy x y xy -++(2)先化简,再求值:()()1223623x y x y x ---+,其中2x =,14y =-.21.解方程:(1)()328x +=(2)211132x x x -+-=+22.如图,已知B 、C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,且AB CD =.(1)如图线段AD 上有6个点,则共有______条线段;(2)比较线段的大小:AC______BD (填“>”、“=”或“<”);(3)若12AD =,8BC =,求MN 的长度.23.对于任意一个三位数m ,若百位上的数字与个位上的数字之和是十位上的数字的2倍,则称这个三位数m 为“共生数”.例如:357m =,因为3725+=⨯,所以357是“共生数”;435m =,因为4523+≠⨯,所以435不是“共生数”.(1)根据题设条件,请你举例说出两个“共生数”:______,______;(2)若一个“共生数”的十位上的数字为4,设百位上的数字为x ,则个位上的数字用x 可表示为______,那么这个“共生数”用x 可表示为______.(结果要化简)(3)对于某个“共生数”,百位上的数字比个位上的数字小2,百位、十位与个位上的数字之和是9,求这个“共生数”是多少?24.(1)利用一副三角板可以画出一些特殊的角,在①135°,②120°,③75°,④50°,⑤35°,⑥15°,四个角中,利用一副三角板画不出来的特殊角是______;(填序号)(2)在图①中,写出一组互为补角的两角为______;(3)如图①,先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角()AOB ∠的顶点与60°角()COD ∠的顶点互相重合,且边OA 、OC 都在直线EF 上(图①),固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α(如图②),当OB 平分EOD ∠时,求旋转角度α.25.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足以下关系式:()2390a c ++-=,1b =.(1)a=______;c=______;(2)若将数轴折叠,使得A 点与B 点重合,则点C 与数______表示的点重合;(3)若点P 为数轴上一动点,其对应的数为x ,当代数式x a x b x c -+-+-取得最小值时,此时x=______,最小值为______.26.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)若进货款恰好为46000元,则购进甲种节能灯多少只?(2)若商场销售完节能灯时恰好获利30%,那么此时购进甲种节能灯又为多少只?并求此时利润为多少元?27.如图,平面内60,40AOB BOC ∠=︒∠=︒.(1)求AOC ∠的度数;(2)射线,OM ON 分别平分AOC ∠,BOC ∠,求MON ∠的度数.参考答案1.D2.B3.C4.B5.D6.C7.B8.C9.A10.A11.1-【详解】解:∵a 与1互为相反数,∴a+1=0,∴a=-1,故答案是:-1.12.95.73410⨯【详解】5734000000用科学记数法表示为95.73410⨯.故答案为:95.73410⨯.13.16【详解】∵单项式22m xy 与413-n x y 是同类项,∴n =2,m =4,∴m n =24=16.故答案为:16.【点睛】本题考查了同类项,解决本题的关键是熟记同类项定义中的两个“相同”:相同字母的指数相同.14.7【分析】先根据已知条件求出CD ,DB 的长,再根据中点的定义求出BM ,BN 的长,进而可求出MN 的长.【详解】解:∵AC ∶CD ∶DB =3∶4∶5,且AC =6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M 是线段AB 的中点,∴MB=12AB=12×24=12,∵N 是线段BD 的中点,∴NB=12DB=12×10=5,∵MN=MB-NB ,∴MN=12-5=7.故答案为:7.【点睛】本题考查的是两点之间的距离,以及线段中点的定义,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.3944'︒【分析】根据AOC AOB BOC ∠=∠-∠计算即可.【详解】63AOB ∠=︒ ,2316'BOC ∠=︒,∴AOC AOB BOC∠=∠-∠632316'=︒-︒3944'=︒.故答案为:3944'︒.【点睛】本题主要考查了度、分、秒的计算,熟练掌握角度之间的关系是解题的关键.16.ab -(a +b)x +x 2【分析】根据草坪的面积等于长方形草坪面积减去横向小路面积和纵向小路面积再加上两条小路重合部分的面积.【详解】根据题意可得:长方形草坪面积=ab 平方米,横向小路面积=ax 平方米,纵向小路面积=bx 平方米,两条小路重合部分面积=x 2平方米,所以剩余草坪面积=ab-ax-bx+x 2=ab -(a +b)x +x 2故答案为:ab -(a +b)x +x 2.【点睛】本题主要考查列代数式表示图形面积,解决本题的关键是要熟练分析图形中面积关系,根据面积关系正确用字母表示.17.4【分析】设正方形F 的边长为x ,根据长方形对边相等结合图形可列出关于x 的一元一次方程,求出x 即可.【详解】设正方形F 的边长为x ,∵正方形A 的面积为1,∴正方形A 的边长为1.根据图形可知正方形E 的边长为x ,正方形D 的边长为x+1,正方形C 的边长为x+1+1=x+2,正方形B 的边长为x+2+1=x+3,∴正方形F 的边长+正方形E 的边长+正方形D 的边长=正方形B 的边长+正方形C 的边长,即x+x+(x+1)=(x+2)+(x+3).解得x=4.故答案为:4.【点睛】本题考查正方形、长方形的性质以及一元一次方程在几何中的应用.根据长方形对边相等列出边的等量关系式是解答本题的关键.18.42【分析】观察发现:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……由此发现,第n 个图形中有白色地砖(4n+2)块.从而可得答案.【详解】解:根据题意得:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……则第n 个图形中有白色地砖(4n+2)块.∴当10n =时,4242.n +=故答案为42.【点睛】本题考查了图形的变化规律,解决此类题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19.(1)-3(2)152(3)-4【分析】(1)原式根据有理数加减法法则进行计算即可;(2)原式先计算括号内的,再把除法转换为乘法,最后进行乘法运算即可;(3)原式首先计算乘方、绝对值和括号内的,再进行乘法运算,最后进行加减运算即可.(1)()()31257---+--31257=-+--3=-(2)15643158⎛⎫-÷⨯- ⎪⎝⎭1636458⎛⎫=-÷⨯- ⎪⎝⎭5364168=⨯⨯152=(3)411138824⎛---+⨯-⎫⎪⎝⎭11158824=--+⨯-⨯1542=--+-4=-【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.(1)224x y xy -+(2)32x y -,132【分析】(1)先去括号,然后根据整式的加减计算法则求解即可;(2)先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.(1)解:原式2222253x y xy x y xy =--+224x y xy =-+(2)解:()()1223623x y x y x---+2422x y x y x=--++32x y=-当2x =,14y =-时,原式1113323226422x y ⎛⎫=-=⨯-⨯-=+= ⎪⎝⎭【点睛】本题主要考查了整式的加减计算,去括号和整式的化简求值,熟知相关计算法则是解题的关键.21.(1)23x =(2)7x =-【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)()328x +=去括号得,368x +=移项得,386x =-合并,得,32x =系数化为1,得:23x =(2)211132x x x -+-=+去分母得:()()6221631x x x --=++,去括号得:642633x x x -+++=,移项合并得:7x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(1)15(2)=(3)10【分析】(1)根据线段有两个端点,得出所有线段的条数;(2)依据AB =CD ,即可得到AB +BC =CD +BC ,进而得出AC =BD ;(3)依据线段的和差关系以及中点的定义,即可得到MN 的长度.(1)∵线段AD 上有6个点,∴图中共有线段条数为6×(6−1)÷2=15;故答案为:15;(2)∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ;故答案为:=;(3)∵12AD =,8BC =,∴4AB CD AD BC +=-=,∵M 是AB 的中点,N 是CD 的中点,∴12BM AB =,12CN CD =,∴()114222BM CN AB CD +=+=⨯=,∴2810MN BM CN BC =++=+=.【点睛】本题主要考查了两点间的距离以及线段的和差关系,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.23.(1)123,234(2)8x -,9948x +(3)234【分析】(1)根据题意写出两个符合要求的数字即可;(2)根据题意先求出个位上的数字为:428x x ⨯-=-,由此即可表示出这个“共生数”;(3)设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.则依题意得:()()129a a a ++++=,由此求解即可.(1)解:123m =,∵1322+=⨯,∴123是“共生数”;234m =,∵2432+=⨯,∴234是“共生数”;(2)解:由题意得个位上的数字为:428x x ⨯-=-,∴这个“共生数”用x 可表示为1004089948x x x ++-=+;(3)解:设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.依题意得:()()129a a a ++++=,解得2a =.即百位上数字为2,十位为3,个位为4.所以这个“共生数”为234.【点睛】本题主要考查了列代数式和整式的加减计算,解一元一次方程,正确理解题意是解题的关键.24.(1)④⑤;(2)AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可);(3)15α=︒【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)根据补角的定义解答即可;(3)根据已知条件得到180120EOD COD ∠=︒-∠=︒,根据角平分线的定义得到1602EOB EOD ∠=∠=︒,进一步得到结论.【详解】解:(1)1359045︒=︒+︒,1209030︒=︒+︒,754530︒=︒+︒,154530︒=︒-︒50︒和35︒不是15︒的倍数,不能写成90︒,60︒,45︒,30°的和或差,故画不出;故答案为:④⑤(2)根据平角的定义可得:180AOB BOC ∠+∠=︒,180AOD DOC ∠+∠=︒,180BA BAE O +=∠∠︒,180DCO DCF +=︒∠∠故答案为:AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可).(3)∵60COD ∠=︒,∴180120EOD COD ∠=︒-∠=︒,∵OB 平分EOD ∠,∴1602EOB EOD ∠=∠=︒,∵45AOB ∠=︒,∴15EOB AOB α=∠-∠=︒.25.(1)3-,9(2)11-(3)1,12【分析】(1)根据非负数的性质求解即可;(2)先求出AB 的中点表示的数,由此即可得到答案;(3)分图3-1,图3-2,图3-3,图3-4四种情况讨论求解即可.(1)解:∵()2390a c ++-=,30a +≥,()209c -≥,∴3090a c +=⎧⎨-=⎩,∴39a c =-⎧⎨=⎩,故答案为:-3;9;(2)解:∵点A 表示的数为-3,点B 表示的数为1,∴AB 中点表示的数为-1,∴点C 到AB 中点的距离为10,∴点C 与数-1-10=-11表示的点重合,故答案为:-11;(3)解:由题意得x a x b x c-+-+-119x x x =++-+-,∴代数式x a x b x c -+-+-的值即为点P 到A 、B 、C 三点的距离和,如图3-1所示,当点P 在A 点左侧时3316x a x b x c PA PB PC PA AB AC PA -+-+-=++=++=+如图3-2所示,当点P 在线段AB 上时,12x a x b x c PA PB PC PB -+-+-=++=+如图3-3所示,当点P 在线段BC 上时,12x a x b x c PA PB PC PB AC PB -+-+-=++=+=+如图3-4所示,当点P 在C 点右侧时,320x a x b x c PA PB PC PC -+-+-=++=+∴综上所述,当P 与B 点重合时,()=12x a x b x c -+-+-最小值.26.(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元(2)商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元【分析】(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x)只,由题意可得等量关系:甲型的进货款+乙型的进货款=46000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a 只,则购进乙型节能灯(1200-a)只,根据商场销售完节能灯时恰好获利30%作为等量关系列方程即可.(1)解:设商场购进甲型节能灯x 只,则购进乙型节能灯()1200x -只,由题意得:()2545120046000x x +-=.解得:400x =.答:购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元;(2)解:设商场购进甲型节能灯a 只,则购进乙型节能灯()1200a -只,由题意,得:()()()()3025604512002545120030a a a a -+--=+-⨯⎡⎤⎣⎦%.解得:450a =.()515120013500a a +-=.答:商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元.27.(1)20°;(2)30°【分析】(1)把6040AOB BOC ∠=︒∠=︒,代入=AOC AOB BOC ∠∠-∠,计算即可得到答案;(2)由,OM ON 分别平分AOC ∠,BOC ∠,得到11,,22MOC AOC NOC BOC ∠=∠∠=∠再利用=MON MOC NOC ∠∠+∠,从而可得答案.【详解】解:(1) 6040AOB BOC ∠=︒∠=︒,∴=20AOC AOB BOC ∠∠-∠=︒(2) ,OM ON 分别平分AOC ∠,BOC ∠,11,,22MOC AOC NOC BOC ∴∠=∠∠=∠60,AOB ∠=︒ ∴=MON MOC NOC∠∠+∠12AOC BOC =∠+∠()12AOC BOC =∠+∠12AOB =∠16030.2=⨯︒=︒。

湘教版七年级数学上册期末考试题及答案【完整版】

湘教版七年级数学上册期末考试题及答案【完整版】

湘教版七年级数学上册期末考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( ) A .1x -B .1x +C .21x -D .()21x -2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800x B .1000(13﹣x )=800x C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x x C .233072x xD .323072x x6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( ) A .y=(x+1)2+4 B .y=(x ﹣1)2+4 C .y=(x+1)2+2D .y=(x ﹣1)2+27.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm8.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6510.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.一个n边形的内角和为1080°,则n=________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是________.4.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.5.分解因式:4ax2-ay2=_____________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x-7(x-1)=3-2(x+3) (2) 12334x xx-+-=-2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、A5、D6、D7、C8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、20°.34、53°5、a(2x+y)(2x-y)6、54°三、解答题(本大题共6小题,共72分)1、(1)x=5(2)x=-22、(x﹣y)2;1.3、(1)证明见解析;(2)75.4、(1)略;(2)略;(3)略;(4)略;5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数的相反数是()A .13-B .13C .3D .92.下列各式中运算正确的是()A .336235x x x +=B .220a b ab -=C .(-18)÷(-9)=-2D .3(2)8-=-3.以下四个图中有直线、射线、线段,其中能相交的是()A .①②③④B .①③C .②③④D .①4.有理数a ,b 在数轴上的位置如图所示,那么下列式子中不一定成立的是()A .a >bB .b ﹣a <0C .ab <0D .|a|≥|b|5.若1a b -=-则223a b --等于()A .1-B .2-C .5-D .56.下列方程的变形中,正确的是()A .方程3221x x +=-移项得3212x -=-+B .方程625(1)x x -=--,去括号得6251x x -=--C .方程2332x =,方程两边都乘以32,得1x =D .方程1125x x--=可化为5(1)210x x --=7.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是()A .0x =B .3x =C .3x =-D .2x =8.下列调查中,最适合采用抽样调查的是()A .对旅客上飞机前的安检B .了解全班同学每周锻炼的时间C .企业招聘,对应聘人员面试D .对某水域的水质情况进行调查9.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为()A .10cmB .13cmC .12cmD .9cm10.某种商品因换季准备打折出售.如果按定价的七五折出售将亏25元,而按定价的打九折出售,将赚20元,这种商品的定价为()A .250元B .300元C .280元D .285元11.如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A .①②④B .①②③C .②④D .②③④12.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余D .∠AOC 与∠COB 互补二、填空题13.已知∠α=36°36′36″,则∠α的余角等于_____.14.如果单项式28m x y 和32n x y -是同类项则m n +=_________.15.若|m ﹣2|+(n+2)2=0,则m+2n 的值为______.16.修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.17.将数据47050000用科学记数法表示为__________.18.观察下列单项式:3572,6,12,20,x x x x ……按此规律写出第n 个单项式________.三、解答题19.计算:(1)5-7+(-1)(2)43111(2)356()23-+-+--⨯-||20.解下列方程:(1)5(1)2(12)0x x --+=(2)12124x x +-=+21.先化简,再求值:222212[2()2]42m n m n mn m n mn mn ---++,其中3m =,12n =.22.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)若∠AOB=140°,求∠COE 的度数;(2)若∠COE=65°,∠COA=20°,求∠BOE 的度数.23.列方程解应用题:甲乙两位同学制作黑板报,甲单独制作需要4小时,乙单独制作需要2小时;(1)如果甲乙一起制作,多长时间能做完?(2)如果甲先制作3小时,剩下的由乙来制作,乙要用多少时间才能制作完?24.解答下列两题:(1)某新冠疫苗接种点,每天接种人数在500人左右,工作人员统计时,超过500人的人数记为正,不足500人的人数记为负.以下是10天内的记录数据:-10+8+10-6-2+15-7+3-20+7计算该接种点10天内接种的总人数.(2)已知A=2423x x +-,B=232x x --.计算A -2B .25.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.26.某蔬菜基地今年收获大白菜24000千克,在收获前期共投入9000元的成本,今年大白菜的销售行情如下:方式一:直接在蔬菜基地销售,每千克为m 元:方式二:在市场上每千克为n 元,但平均每天只出售2000千克,且每天需人工费300元,每天还需缴纳管理费等其它费用100元.(1)分别用m .n 表示两种方式出售大白菜的纯收入:(2)若2m =元, 2.5n =元,选择怎样方式出售获利较多?说明你的理由:(3)当3n =元,m 为何值时,两种方式获利一样.27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)将数﹣5,﹣32,0,2.5在数轴上表示出来.(2)若数轴上表示数a 的点位于﹣3与2之间,那么|a+3|+|a ﹣2|的值是多少?(3)若A 是数轴上的一个点,它表示数a ,则|a+5|+|a ﹣3|的最小值是多少?当a 取多少时|a+5|+|a ﹣1|+|a ﹣3|有最小值?最小值是多少?参考答案1.B 【分析】根据倒数及相反数的定义解答即可.【详解】∵﹣3的倒数是﹣13,∴﹣3的倒数的相反数是13,故选B .【点睛】本题考查了倒数及相反数的定义,熟知倒数及相反数的定义是解决问题的关键.2.D 【分析】根据合并同类项,有理数的除法及乘方分析各选项即可.【详解】解:A 选项,333235x x x +=,故该选项计算错误,不符合题意;B 选项,2a b 与2ab 不是同类项,故该选项计算错误,不符合题意;C 选项,(-18)÷(-9)=2,故该选项计算错误,不符合题意;D 选项,3(2)8-=-,故该选项计算正确,符合题意;故选∶D【点睛】本题考查了合并同类项,有理数的除法及乘方,熟记乘方的意义是解题的关键.3.B 【分析】根据直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸依次判断即可.【详解】解:①射线和直线延伸后可以相交,符合题意;②线段不能向两端延伸,不能相交,不符合题意;③两条直线延伸后可以相交,符合题意;④射线和直线延伸后不能相交,不符合题意;故选:B .【点睛】题目主要考查直线、线段及射线的知识,掌握直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸是解题关键.4.D 【详解】试题分析:观察数轴可得:b <0<1<a ,∴a >b ,b ﹣a <0,a b<0,根据已知数轴不能判断|a|和|b|的大小.故选D .考点:1.有理数大小比较;2.数轴.5.C 【分析】将223a b --变形为2()3a b --,再将a-b=-1整体代入即可求解.【详解】∵a-b=-1,∴223a b --2()3a b =--2(1)3=⨯--5=-.故选:A .【点睛】本题考查了已知式子的值求代数式的值,注重整体代入的思想是解答本题的关键.6.D 【分析】解一元一次方程的步骤:去分母,去括号,移项,合并同类项,化系数为1.移项要变号;去括号时若括号前是负号,括号里面要变号;去分母时等式左右两边每一项都要乘以分母的最小公倍数.【详解】A :程3221x x +=-移项得3212x x -=--,故A 错误;B :方程625(1)x x -=--,去括号得6255x x -=-+,故B 错误;C ∶方程2332x =,方程两边都乘以32,得94x =D ∶正确故选:D【点睛】本题主要考查了解一元一次方程的步骤,熟练的掌握等式的性质,能够根据等式的性质正确的解一元一次方程是解题的关键.7.A【详解】解:由方程为一元一次方程得,m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.8.D【分析】根据普查及抽样调查的的适用范围(一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查)依次判断即可.【详解】解:A.∵对旅客上飞机前的安检非常重要,故宜采用普查;B.了解全班同学每周体育锻炼的时间工作量比较小,故宜采用普查;C.企业招聘,对应聘人员的面试工作量比较小,故宜采用普查;D.对某水域的水质情况进行调查,宜采用抽样调查;故选D.【点睛】题目主要考查抽样调查及普查的适用范围,理解抽样调查及普查的适用范围是解题关键.9.C【分析】直接根据题意表示出各线段长,进而得出答案.【详解】解:∵23BC AC,∴设BC=2x,则AC=3x,∵D为BC的中点,∴CD=BD=x,∵线段AB=15cm,∴AC+BC=5x=15,解得:x=3(cm),∴AD=3x+x=4x=12(cm).故选:C.【点睛】此题主要考查了两点之间的距离,正确表示出各线段长是解题关键.10.B【分析】七五折是定价的75%,九折是定价的90%,设定价为x元,则根据两种情况下的进价相等列方程,再解方程可得答案.【详解】解:设定价为x元,则0.75250.920,x x +=-解得:300,x =答:这种商品的定价为300元.故选B【点睛】本题关键是理解打折的含义,一元一次方程的应用,理解题意,确定相等关系是解本题的关键.11.A 【分析】由平面图形的折叠及正方体的展开图解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选A .【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C 【分析】根据垂直的定义和互余解答即可.【详解】解:∵∠EOD =90°,∠COB =90°,∴∠1+∠DOC =∠2+∠DOC =90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE =∠1+∠COD ,∴∠AOE =∠COD ,故选:C .【点睛】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.13.532324︒'''【分析】根据互为余角的两个角的和为90度,列出算式,再根据度分秒的换算即可得出答案.【详解】解:α∠的余角是:90363636532324︒-︒'''=︒''',故答案为:532324︒'''.【点睛】此题主要考查了余角和度分秒的换算,解题的关键是主要记住互为余角的两个角的和为90度.14.5【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:因为单项式8xmy 2和-2x 3yn 是同类项,所以m=3,n=2,所以m+n=3+2=5.故答案为:5.【点睛】本题考查了同类项的定义,熟记同类项定义是解答本题的关键.15.2-【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可求解.【详解】解:∵|m ﹣2|+(n+2)2=0,∴m ﹣2=0,n+2=0,解得m =2,n =﹣2,则m+2n =2+2×(﹣2)=2﹣4=﹣2.故答案为:﹣2.【点睛】本题考查了非负数的性质∶几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.16.两点之间线段最短【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.17.4.705×710【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:47050000=4.705×107,故答案为:4.705×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.21(1)n n n x -+【分析】观察发现,单项式的指数部分为2n-1,系数部分为n (n+1),据此即可求解.【详解】解:∵2x=1×(1+1)x2×1-1,6x3=2×(2+1)x2×2-1,12x5=3×(3+1)x2×3-1,20x7=4×(4+1)x2×4-1,…,∴第n个单项式为:n(n+1)x2n-1.故答案为:n(n+1)x2n-1.【点睛】本题主要考查了单项式规律,解答的关键是由所给的单项式的总结出变化的规律.19.(1)-3(2)-8【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘法分配律,最后算加减即可得到结果.(1)解:原式=5-7-1=-2-1=-3;(2)解:原式=-1-8+2-6×12-6×(-13)=-1-8+2-3+2=-8.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.20.(1)x=7(2)x=0【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.(1)解:去括号得:5x-5-2-4x=0,移项得:5x-4x=5+2,合并得:x=7;(2)解:去分母得:2(x+1)=4+(x-2),去括号得:2x+2=4+x-2,移项得:2x-x=4-2-2,合并得:x=0.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.21.24mn ,3【分析】根据整式的运算顺序:先算小括号里面的,再算中括号里面的,最后算括号在面的;进行计算即可.【详解】解:原式=22222[22]4mn m n mn m n mn mn --+++=222224m n m n mn -+=24mn 当13,2m n ==时221443(32mn =⨯⨯=【点睛】本题主要考查了整式的加减法,按照运算顺序,同一级运算从左到右一次计算,有括号先算小括号里面的,再算中括号里面的,最后算大括号里面的进行计算是解题的关键.22.(1)70°(2)45°【分析】(1)直接根据角平分线的定义进行解答即可;(2)先根据(1)中所得结论∠COE=12∠AOB 求出∠AOB 的度数,再利用角的和差关系即可得出结论.(1)解:∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠AOB=140°,∴∠COE=12∠BOD+12∠AOD =12(∠BOD+∠AOD )=12∠AOB=70°;(2)由(1)知∠COE=12∠AOB ,∵∠COE=65°,∴∠AOB=130°,∵∠COA=20°,∴∠BOE=∠AOB-∠AOC-∠COE=130°-20°-65°=45°.【点睛】本题考查的是角平分线的定义,几何图形中角度的计算,数形结合是解答此题的关键.23.(1)43(2)12【分析】(1)根据题意可得,甲的工作效率为14,乙的工作效率为12,利用工作总量除以总工作效率即可得出结果;(2)先求出甲完成的工作量,确定剩余工作量,然后除以乙的工作效率即可.(1)解:根据题意可得,甲的工作效率为14,乙的工作效率为12,∴1141423⎛⎫÷+= ⎪⎝⎭小时,故甲乙合作需要43小时完成;(2)甲先制作3小时,完成了13344⨯=,剩余工作量为:1-3144=,需要乙工作的时间为:111422÷=,故乙要用12小时才能制作完.24.(1)4998人(2)2281x x ++【分析】(1)先计算出超过或不足500人的数据的总数,然后再进行计算即可;(2)将代数式直接代入计算,然后合并同类项求解即可.(1)解:-10+8+10-6-2+15-7+3-20+7=-2,∴500×10-2=4998,∴该接种点10天内接种的总人数为4998人;(2)解:A=4x2+2x−3,B=x2−3x−2.A-2B=4x2+2x−3-2(x2−3x−2)=4x2+2x−3-2x2+6x+4=2x2+8x+1.25.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).26.(1)方式一:(24000m-9000)元,方式二:(24000n-13800)元(2)方式二的出售获利较多,理由见解析(3)m=2.8元【分析】(1)根据利润=总额-成本列出代数式;(2)把m=2,n=2.5代入(1)中所列的代数式并解答,然后比较即可;(3)根据题意列出关于m的方程,通过解方程得到m的值.(1)方式一:出售苹果的纯收入为(24000m-9000)元,方式二:24000÷2000=12天,12(300100)4800⨯+=,则出售苹果的纯收入为24000n-4800-9000=(24000n-13800)元,故方式一的纯收入为(24000m-9000)元,方式二的纯收入为(24000n-13800)元;(2)方式二的出售获利较多,理由如下:方式一:把m=2元代入24000m-9000,得到24000×2-9000=39000(元)方式二:把n=2.5元代入24000n-13800,得到24000×2.5-13800=46200(元)因为39000<46200,所以方式二的出售获利较多;(3)依题意得:24000m-9000=24000n-13800整理,得:5n-5m=1,把n=3代入,得:15-5m=1,解得:m=2.8,答:当n=3元,m=2.8元时,两种获利一样.【点睛】本题考查了列代数式,代数式求值,以及一元一次方程的应用,解题的关键是读懂题目意思,根据题目所给出的条件找到合适的等量关系再求解.27.(1)详见解析;(2)5;(3)8;a=1;8.【分析】(1)在数轴上标示出﹣5,﹣32,0,2.5即可求解;(2)由图可得﹣3<a<2,然后根据绝对值的意义对|a+3|+|a-2|进行化简,即可求解;(3)根据|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和确定当﹣5<a<3时,|a+5|+|a ﹣3|的值最小,然后根据绝对值的意义进行化简.【详解】解:(1)如图所示:(2)①∵﹣3<a<2,∴|a+3|+|a﹣2|=a+3+2-a=5;(3)∵|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和∴当﹣5<a<3时,|a+5|+|a﹣3|的值最小,且为a+5+3-a=8,是定值,∴a=1时,|a﹣1|最小为0,∴a=1时,|a+5|+|a﹣1|+|a﹣3|的最小值等于8.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.如果向右走5步记为+5,那么向左走3步记为()A .+3B .-3C .+13D .-132.月球白天的温度可达127℃,夜晚可降到-183℃,那么月球表面白天气温比晚上高()A .310℃B .-310℃C .56℃D .-56℃3.下列说法中,正确的是()A .单项式x 没有系数B .35x y 的次数是3C .2mn 与22n m -是同类项D .多项式31x -的项是3x 和14.下列运算中,结果正确的是()A .55x x -=B .235224x x x +=C .220a b ab -=D .43b b b-+=-5.下列方程中,解为3x =-的是()A .23x x +=B .30x -=C .103x +=D .31x -=6.如图所示几何图形中,是棱柱的是()A .B .C .D .7.在如图所示四幅图中,符合“射线PA 与射线PB 表示同一条射线”的图形是()A .B .C .D .8.下列调查中,适合采用全面调查(普查)方式的是()A .了解湖南卫视“快乐大本营”的收视率B .了解洪山竹海中竹蝗的数量C .了解全国快递包裹产生包装垃圾的数量D .了解某班同学“跳绳”的成绩9.如图,线段AB =22cm ,C 是AB 上一点,且AC =14cm ,O 是AB 的中点,线段OC 的长度是()A .2cmB .3cmC .4cmD .5cm10.按照如图所示的计算程序,若x=3,则输出的结果是()A .1B .9C .71-D .81-二、填空题11.2021的倒数是___________.12.数据4400000000人,这个数用科学记数法表示为_________.13.若一个多项式与m n -的和等于2m ,则这个多项式是_______.14.当x =________时,代数式122x -的值为0.15.为了做一个试管架,在长为a (cm )(a >6)的木板上钻3个小孔(如图)每个小孔的直径为2cm ,则x 等于_____cm .16.如图是根据某市2017年至2021年的各年工业生产总值绘制而成的折线统计图,则比上年增长额最大的年份是___________年.17.关于m 、n 的单项式﹣2manb 与32(1)a m -n 的和仍为单项式,则这两个单项式的和为___.18.如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.三、解答题19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.计算:3221(3)(2)[(2)(1)]12⎛⎫-⨯-+-⨯-+÷- ⎪⎝⎭21.先化简,再求值:()()254222.510xy x xy xy -+-+,其中1x =,2y =-.22.解方程:(1)3(x+1)=2(4x ﹣1);(2)32225x xx ---=.23.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强就某日午餐浪费饭菜情况进行了调查,随机抽取了若干名学生,将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图:回答下列问题:(1)这次调查的样本容量是________﹔(2)已知该中学共有学生2500人,请估计这日午餐饭和菜都有剩的学生人数;若按平均每人剩10克米饭计算.这日午餐将浪费多少千克米饭?24.5名老师带领若干名学生旅游(旅游费统一支付)他们联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?AB BC,AB长为1200米,BC长为1600米,一个人骑摩托25.如图,现有两条乡村公路,AB BC向C处行驶;另一人骑自行车从B处以5米/车从A处以20米/秒的速度匀速沿公路,秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.直线AB与CD相交于点O,OE平分70BOD AOC OF CD∠∠=⊥,,于O.∠互余的角是________.(1)图中与EOF∠的度数.(2)求EOF27.阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图,点M表示数1-,点N 表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、-3时,b 的值分别是多少?②利用(1)中的结论,探索a 与b 的关系,并用含a 的式子表示b ;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.参考答案1.B 2.A 3.C 4.D 5.A 6.B 7.C 8.D 9.B 10.C 11.12021【详解】2021的倒数是12021故答案为:12021.12.94.410⨯【详解】解:4400000000=94.410⨯,故答案为:94.410⨯.13.m n+【分析】已知一个加式与和求另一个加式,用减法,所以可得这个多项式是()2m m n --,再去括号,合并同类项即可得到答案.【详解】解: 一个多项式与m n -的和等于2m ,∴这个多项式是()22,m m n m m n m n --=-+=+故答案为:.m n +14.14【分析】根据题意可得1202x -=,解出即可.【详解】解:根据题意得:1202x -=,解得:14x =.故答案为:1415.64a -.【分析】根据题意可知4x 加上三个圆的直径(6cm )的和是acm ,列方程得到4x+3×2=a ,然后解关于x 的一元一次方程即可.【详解】根据题意得4x+3×2=a ,解得x =64a -,故答案为64a -.16.2021【分析】折线统计图中越陡说明增长的幅度越大,从图中看出2021年的折线最陡,所以增长额最大,进而知道增长额最大年份.【详解】解:从图中看出2021年的折线最陡,所以增长额最大,∴2021年比上年增长额最大故答案为:2021.【点睛】本题考查折线统计图的综合运用,读懂统计图,了解图形的变化情况是解决问题的关键.17.m 2n .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值,再代入代数式计算即可.【详解】∵﹣2manb 与3m 2(a ﹣1)n 的和仍为单项式,∴﹣2manb 与3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴﹣2manb+3m 2(a ﹣1)n =﹣2m 2n+3m 2n =m 2n .故答案为:m 2n .18.1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解: 点C 为线段AB 的中点,且10AB =,152BC AB ∴==,4DB = ,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.19.()13 2.50232-<-<<<--<【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.【详解】解:33--=-,(2)2--=,∵13 2.50232-<-<<<<,∴13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.-22【分析】根据有理数的四则混合运算顺序,先算乘方,再算乘除,最后算加减,有括号的要先算括号.【详解】原式219(2)21(8=÷-++-⨯()1848=-++-22=-【点睛】本题考查了有理数的四则混合运算,掌握四则运算顺序是解题的关键.21.24220x xy ---,20-【分析】把整式去括号、合并同类项后,然后把x 和y 的值代入计算即可得出结果.【详解】解:原式()2542520=---+xy x xy xy 2542520=----xy x xy xy 24220=---x xy ,当1x =,2y =-时,原式()24121220=-⨯-⨯⨯--()4420=----20=-.【点睛】本题考查了整式的加减—化简求值.去括号、合并同类项把整式正确化简是解题的关键.22.(1)x =1;(2)x =2.【分析】(1)先去括号,然后移项合并,再系数化为1,即可得到答案;(2)先去分母、去括号,然后移项合并,再系数化为1,即可得到答案;【详解】解:(1)3(x+1)=2(4x ﹣1),去括号,得3x+3=8x ﹣2,移项,得3x ﹣8x =﹣2﹣3,合并同类项,得﹣5x =﹣5,系数化为1,得x =1;(2)32225x xx ---=,去分母,得5(3x ﹣2)﹣2(2﹣x )=10x ,去括号,得15x ﹣10﹣4+2x =10x ,移项,得15x+2x ﹣10x =10+4,合并同类项,得7x =14,系数化为1,得x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法.23.(1)120(2)这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭【分析】(1)用A 组人数除以它所占的百分比即可得到调查的总人数;(2)先求出这日午饭有剩饭的学生人数为:2500×(1-60%-10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.(1)解:这次调查的样本容量=72÷60%=120(人),故答案为120;(2)解:122500250120⨯=(人);()250020%250107500⨯+⨯=(克)=7.5千克,答:这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.24.(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+⨯=,B 旅行社的费用为:()0.852020a a ⨯+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.25.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x 秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y 秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x 秒摩托车追上自行车,列方程得20x=1200+5x ,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y 秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.26.(1)∠DOE 和∠BOE ;(2)55︒【分析】(1)根据余角定义:如果两个角的和等于90︒(直角),就说这两个角互为余角可得答案;(2)首先计算出∠BOE 的度数,再计算出∠BOF 的度数,再求和即可.(1)∵OE 平分∠BOD ,∴∠BOE=∠DOE ,∵OF ⊥CD ,∴∠DOF=90︒,∴∠EOF+∠DOE=90︒,∠EOF+∠BOE=90︒,∴图中与EOF ∠互余的角是∠DOE 和∠BOE ;故答案为:∠DOE 和∠BOE ;(2)∵直线AB 、CD 相交于点O ,∠AOC=70︒,∴∠BOD=70︒,∵OE 平分∠BOD ,∴∠BOE=35︒,∵OF ⊥CD ,∴∠BOF=180709020︒-︒-︒=︒,∴∠EOF=∠BOE+∠BOF=55︒.【点睛】此题主要考查了角的计算,以及余角,关键是掌握余角定义,理清图形中角的关系.27.(1)①画图见解析,2,-2,5;②2b a =-;③-2019;(2)107.【分析】(1)①根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;②根据2a b +=,变换后即可得出结论;③根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;(2)设点A 表示的数为x ,根据点A 的运动找出点B ,结合互为基准变换点的定义即可得出关于x 的一元一次方程,解之即可得出结论;(1)解:画图略,① 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当0a =时,2b =,当4a =时,2b =-,当3a =-时,5b =,故答案为:2;2-;5;②2a b += ,2b a ∴=-,故答案为:2a -;③ 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当2021a =时,2019b =-;(2)解:设点A 表示的数为x ,根据题意得:5422x x -+=,解得:107x =.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.已知m 的绝对值是3,则m 的值是()A .0B .3C .-3D .3±2.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是()A .B .C .D .3.若23a =-,()1b =--,()32c =-,则a 、b 、c 的大小关系是()A .a b c <<B .a c b<<C .b c a<<D .b a c<<4.下列计算正确的是()A .2222x x x -=B .532--=-C .22232a b ab a b -=D .23a b ab +=5.一个角的补角是这个角的余角的4倍,则这个角的度数是()A .120°B .90°C .80°D .60°6.要调查下列问题,适合采用全面调查(普查)的是()A .中央电视台《开学第一课》的收视率B .即将发射的气象卫星的零部件质量C .某城市居民6月份人均网上购物的次数D .某品牌新能源汽车的最大续航里程7.下列说法正确的是()A .若32x y =,则 1.5x y =B .若a b =,则a bc c=C .若2331a b +=-,则234a b =-D .单项式213r h π的系数是13,次数是48.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789A B C D E F 十进制123456789101112131415例如,十进制中261610=+,用十六进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为()A .8CB .140C .32D .EO9.若方程2152x kx x -+=-的解为-1,则k 的值为()A .10B .-4C .-6D .-8二、填空题10.如果节约20m 的彩带记作20m +,那么浪费10m 的彩带记为________.11.已知423n x y 和26m x y -是同类项,则m n +的值是_________12.2020年6且23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为______.13.若m+n=-1,则(m+n )2-2m-2n 的值是___________.14.教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有___________天.15.已知2x =是关于x 的一元一次方程250x m +-=的解,则m =_________.16.下列说法:①点C 是线段AB 的中点,则2AB AC =;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画4条直线;③锐角和钝角定互补;④35322435.54'''︒=︒,其中正确结论的序号是__________.17.化简:﹣3a ﹣a+b+2b 2+a+b ﹣2b 2=________.三、解答题18.计算(1)()172 1.25⎛⎫+---- ⎪⎝⎭(2)()()2202012 2.5 3.5120---+-÷19.先化简,再求值;()()222232522xxy y x xy y -+--+,其中1x =,2y =-.20.解方程:(1)4321x x +=-(2)12223x x--=21.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A 非常了解”、“B 比较了解”、“C 基本了解”、“D 不太了解”四个等级,划分等级后的数据整理成如下两幅不完整的统计图,请你根据图表信息回答下列问题:(1)学校这次调查共抽取了名学生,并请补全条形统计图;(2)求扇形统计图中B 选项所对应的圆心角度数.(3)若该校有学生1800人,那么“不太了解”垃圾分类知识的学生大约有多少人?22.如图,直线AB 与CD 相交于点O ,90AOE ∠=︒.(1)如果20AOC ∠=︒,求COE ∠和BOD ∠的度数.(2)如果2COE BOD ∠=∠,求BOC ∠的度数.23.列方程解应用题:双十一期间,某商店将某型号的彩电按标价的八折出售,若每台彩电的利润率是5%,已知该型号彩电的进价为每台4000元,求该型号彩电的标价.24.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB =,BC =.(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA=,PC=.②若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ=②当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.25.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠=°.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为.(3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.参考答案1.D 【分析】由绝对值的定义,正数绝对值是正数,负数绝对值也是正数,可知m有正负两种情况.【详解】∵3=3 ,3=3-∴m =3±故答案选D .【点睛】本题主要考察绝对值知识点,准确理解记住它的定义是解题关键.2.D 【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:选项A 、B 、C 经过折叠均能围成正方体,选项D 折叠后有两个面重叠,不能折成正方体.故选:D .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1−4−1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2−2−2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3−3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1−3−2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.3.B 【分析】根据有理数的乘方运算将a 和c 算出结果,再比较大小.【详解】解:239a =-=-,()11b =--=,()328c =-=-,∵981-<-<,∴a c b <<.故选:B .【点睛】本题考查有理数的乘方运算,解题的关键是掌握有理数乘方的运算法则.4.A 【分析】根据整式的加减运算法则判断选项的正确性.【详解】A 选项正确,2222x x x -=;B 选项错误,538--=-;C 选项错误,不是同类项不可以加减;D 选项错误,不是同类项不可以加减.故选:A .【点睛】本题考查整式的加减运算,解题的关键是掌握整式的加减运算法则.5.D【分析】根据余角是两角之和是90o,补角是两角之和是180o,再根据等量关系列出方程,即可解出答案.【详解】解:设这个角为x,则它的余角是(90o-x),补角是(180o-x)依题意得:180o-x=4(90o-x)解得x=60o故答案选D.【点睛】本题主要考查了补角,余角等基础概念,准确理解记住它们的定义是解题关键.6.B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;C、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C【分析】根据等式的性质,单项式系数和次数的定义求解即可.【详解】解:A.错,是23x y =B.错,没说0c ≠C.对D.单项式的系数是13π,次数是3故答案选C .【点睛】本题主要考察了等式的性质,单项式等知识点,准确理解并记住它们的定义是解题关键.8.A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案.【详解】解:∵A=10,E=14∴A×E=10×14=140∴140÷16=8⋯⋯12∵C=12∴A×E=8C 故答案选A .【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.9.C 【分析】将1x =-代入原方程得到关于k 的方程,求解即可.【详解】将1x =-代入2152x kx x -+=-中,得2152k -++=--,解得6k =-,故选C.【点睛】本题考查了一元一次方程的解和解方程,明确方程的解的定义是本题关键.10.-10m 【分析】根据节约20m 记作+20m ,可以表示出浪费10m ,本题得以解决.【详解】解:∵节约20m 记作+20m ,∴浪费10m 记作-10m ,故答案为:-10m .【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.11.5【分析】根据同类项的概念可得2,3m n ==,然后代入进行求解.【详解】解:由423n x y 和26m x y -是同类项可得:24,26m n ==,∴2,3m n ==,∴5m n +=;故答案为5.【点睛】本题主要考查同类项,熟练掌握同类项的概念是解题的关键.12.43.610⨯【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则436000 3.610=⨯,故答案为:43.610⨯.【点睛】本题考查了科学记数法,熟记定义是解题关键.13.3【解析】∵m+n=-1,∴(m+n )2-2m-2n =(m+n )2-2(m+n)=(-1)2-2×(-1)=1+2=3.14.2【分析】观察折线图即可得出答案.【详解】由折线图可知睡眠够9小时的只有周五,周六两天.故答案是:2.【点睛】本题主要考察了折线统计图,看清题目要求再找出符合条件答案是解题关键.15.1【分析】把2x =代入方程即可求出结果.【详解】解:把2x =代入250x m +-=得:2250m ⨯+-=解得:1m =故答案是1.【点睛】本题主要考察是一元一次方程的解,难度较小.16.①④【分析】根据角和线段、直线的有关性质判断即可.解:①点C 是线段AB 的中点,则2AB AC =,正确;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画6条直线,错误;③锐角和钝角不一定互补,错误;④35322435.54'''︒=︒,正确;故答案为:①④.【点睛】本题考查了线段的中点,两点确定一条直线,角的单位转换,互补的定义,解题关键是扎实掌握有关性质和定理,熟练进行单位转换.17.-3a+2b【分析】本题考查了同类项及合并同类项,先找出题目中的同类项,再合并同类项即可.【详解】−3a −a +b +2b ²+a +b −2b ²=(−3−1+1)a +(1+1)b +(2−2)b ²=−3a +2b【点睛】这类题目的解题关键是找出题目中的同类项,利用合并同类项法则,把各同类项的系数相加减,字母与字母的指数不变,求出结果.18.(1)6;(2)23【分析】根据计算的优先级顺序,先算乘方和绝对值,再算乘除加减,乘除同时有谁在前面先算谁,有括号的先算括号,逐个计算即可.【详解】(1)原式70.22 1.2=--+7 1.20.22=+--6=(2)原式41120=-+⨯320=+23=本题主要考察有理数计算,准确记住计算的优先级顺序规则即可准确算出各题.19.22x y +,5【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:()()222232522x xy y x xy y -+--+2222325224x xy y x xy y =-+-+-22x y =+当1x =,2y =-时,原式()2212=+-5=【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.20.(1)2x =-;(2)1x =【分析】根据一元一次方程的解题步骤,去分母,去括号,移项合并同类项,系数化为1,即可解出答案.【详解】(1)移项得:4231x x -=--,24x =-,解得:2x =-;(2)去分母得:()()31222x x -=-,去括号得:3344x x-=-移项得3443x x +=+解得:1x =.【点睛】本题主要考察了一元一次方程的解法,准确记住解题步骤是解题关键.21.(1)200,图见解析;(2)108°;(3)180人【分析】(1)利用A 选项的人数除以A 选项的百分比即可解答;(2)利用总人数减去其他选项的人数得到B 选项的人数补全条形图,再求出B 选项的百分比在乘以360︒即可;(3)利用样本估计总体即可计算.【详解】(1)3015%200÷=所以学校这次调查共抽取了200人;B 选项人数:20030902060---=人,补全图形如下:(2)B 选项所占的百分比为60100%30%200⨯=B 选项所对应的圆心角度数为36030%108︒⨯=︒(3)D 不太了解的人数为20人所占百分比为20100%10%200⨯=180010%180⨯=(人)所以“不太了解”垃圾分类知识的学生大约为180人.【点睛】本题考查了条形统计图和扇形统计图综合运用,读懂统计图,能从统计图中得到想要的信息是解题关键.22.(1)70°,20°;(2)150°【分析】(1)根据题意及余角、对顶角的意义可直接进行求解;(2)设BOD x ∠=,则2COE x ∠=,则有290180x x +︒+=︒,进而根据角的和差关系可求解.【详解】解:(1)90AOE ∠=︒ ,20AOC ∠=︒,902070COE AOE AOC ∴∠=∠-∠=︒-︒=︒,20BOD AOC ∠=∠=︒;(2)设BOD x ∠=,则2COE x ∠=,180COE BOE BOD ∠+∠+∠=︒ ,即290180x x +︒+=︒,解得30x =︒,260x =︒,60COE ∴∠=︒,6090150BOC COE BOE ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查余补角、对顶角的意义及一元一次方程的应用,熟练掌握余补角、对顶角的意义及一元一次方程的应用是解题的关键.23.该型号彩电的标价为5250元.【分析】根据利润公式:利润=售价-进价=进价×利润率,设未知数带入求解即可.【详解】解:设彩电标价为每台x 元,由题意得0.8400040005%x -=⨯解得5250x =所以该型号彩电的标价为5250元.【点睛】本题主要考察了一元一次方程销售问题,记住公式,找出等量关系是解题关键.24.(1)4,2;(2)①5x +,1x -;②-2.4或0.4;(3)①见解析;②当t 为2秒时,Q 点可以追上P 点,此时两者相遇的点在数轴上对应的数为-5.【分析】(1)由题意易得点B 表示的数为-1,点C 表示的数为1,然后根据数轴上的两点距离公式可进行求解;(2)①由题意可直接进行求解;②由题意及①可分当点P 在AB 上时和当点P 在BC 上时进行分类求解即可;(3)①由题意易得2BP t =,3CQ t =,则有42AP t =-,2PQ t =-,进而问题可求解;②由追及问题可得223t t +=,进而可得BP=4,然后问题可求解.【详解】解:(1)由题意得点B 表示的数为-1,点C 表示的数为1,∴AB=4,BC=2,故答案为4,2;(2)①由题意可得:5PA x =+,1PC x =-,故答案为5x +,1x -;②7.4PA PB PC ++= ,∴(Ⅰ)当点P 在线段AB 上时,51157.4PA PB PC x x x x ++=+--+-=-=,解得 2.4x =-;(Ⅱ)当点P 在线段BC 上时,51177.4PA PB PC x x x x ++=++++-=+=解得:0.4x =;综上所述,x 的值是-2.4或0.4;(3)①4AB =Q ,2BC =,2BP t =,3CQ t =,42AP AB BP t ∴=-=-,2232PQ BP BQ BP BC CQ t t t =+=+-=+-=-,2AP PQ ∴=;②由题意得:223t t +=,解得:2t =,24BP t ==此时,相遇点在数轴上对应的数为-4.∴当t 为2秒时,Q 点可以追上P 点,此时两者相遇的点在数轴上对应的数为-5.【点睛】本题主要考查数轴上的动点问题、一元一次方程的应用及线段的和差关系,熟练掌握数轴上的动点问题、一元一次方程的应用及线段的和差关系是解题的关键.25.(1)30;(2)1;(3)12【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果.【详解】(1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC∠=∠+∠ BOM BOC MOC∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC=∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠ ,1MOC NOC AON BOM∠-∠∴=∠-∠(3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠,又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC=∠-∠1122AOD BOC =∠-∠()12AOD BOC =∠-∠12MOC NOD AOD BOC ∠-∠∴=∠-∠;【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.27的倒数是()A .27B .-27C .72D .-722.下列各数中,比12-小的数是()A .-1B .0C .1D .-133.下列各式是一元一次方程的是()A .41y +B .313x+=C .21x x+=D .3x y +=4.下列等式变形正确的是()A .如果ax =ay ,那么x =yB .如果a =b ,那么a ﹣5=5﹣bC .如果a =b ,那么2a =3bD .如果a+1=b+1,那么a =b 5.“a 与b 的差的5倍”用代数式表示为()A .5a b -B .5(a-b )C .5a-bD .a-5b6.如果(x ﹣3)2+|y+1|=0,那么x ﹣y 等于()A .﹣4B .﹣2C .2D .47.下列说法错误的是()A .2231x xy --是二次三项式B .1x -+不是单项式C .213xy π-的系数是-13D .222xab -的次数是48.如图是一个小正方体的展开图,把展开图折叠成小正方体后,与“数”这个汉字相对的面上的汉字是()A .我B .很C .喜D .欢9.如果12313a a x y++与2213b x y --是同类项,那么a ,b 的值分别是()A .1a =,2b =B .1a =,3b =C .2a =,3b =D .3a =,2b =10.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A .这种调查的方式是抽样调查B .800名学生是总体C .每名学生的期中数学成绩是个体D .100名学生的期中数学成绩是总体的一个样本11.已知点A 、B 、C 三个点在同一条直线上,若线段AB =7,BC =5,则线段AC 的长为()A .2B .5C .12D .2或1212.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A .-8B .-23C .-68D .-32二、填空题13.将数据850000000用科学记数法表示为___.14.若52x +与27-+x 互为相反数,则x 的值为______.15.要反映我市一周内每天的最高气温的变化情况,宜采用___统计图(填“条形”、“折线”或“扇形”).16.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.17.已知:122=,224=,328=,42的个位数是6,52的个位数是2,62的个位数是4,……,则20212的个位数是___.18.已知方程||(1)30a a x -+=是关于x 的一元一次方程,则=a ____________.三、解答题19.计算:(1)253-+--;(2)2323323⎡⎤⎛⎫-÷-⨯-- ⎪⎢⎥⎝⎭⎣⎦.20.解方程(1)4321x x +=-;(2)223146x x +--=.21.先化简,再求值:()22222)3223(y x x xy x xy y -+--++,其中1x =,2y =-.22.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来.23.按要求解题:(1)如图,已知A 、B 、M 、N 四点,读下列语句,按要求作出图形(不写作法);①作线段AB ,射线AN ,直线BM ,且射线AN 与直线BM 相交于点P ;②在线段AB 的延长线上取点C ,使2BC AB =;(2)在图中,若AB =2cm ,D 为AB 的中点,E 为AC 的中点,求DE 的长.24.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h ,当逆风飞行时则需3.2h .已知风速为30km/h ,求无风时飞机的航速和这两个城市之间的距离.25.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,并按成绩分为“优秀、良好、合格、不合格”四个等级,绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)随机抽取了多少名学生的成绩进行分析?(2)请将两幅统计图补充完整;(3)若合格及以上等级均视为达标,则这次随机抽取的学生中有多少人达标?26.如图,点O 为直线AB 上一点,过点O 作直线OC ,已知∠AOC≠90°,射线OD 平分∠AOC ,射线OE 平分∠BOC ,射线OF 平分∠DOE .(1)求∠DOE 和∠DOF 的度数;(2)若∠DOC=3∠COF ,求∠AOC 的度数;(3)求∠BOF+∠DOC 的度数.27.一建筑公司在一次施工中,需要从工地运出80吨土方,现出动大、小不同的两种类型汽车,其中大型汽车比小型汽车多8辆,大型汽车每次可以运土方5吨,小型汽车每次可以运土方3吨.如果把这些土方全部运完,问需要大、小不同的两种类型汽车各多少辆?28.已知直线AB 经过点,90,O COD OE ∠=︒是BOC ∠的平分线.(1)如图1,若50AOC ∠=︒,则DOE ∠=_;(2)如图1,若AOC a ∠=,则DOE ∠=__;(用含a 的代数式表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置,其它条件不变,()2中的结论是否还成立?试说明理由参考答案1.C【分析】根据倒数的定义:相乘等于1的两数互为倒数直接判断即可.【详解】解:27的倒数是72,故选C.【点睛】本题考查了倒数的定义,掌握倒数的定义是解题的关键.2.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵|−1|>|12-|>|-13|,∴−1<12-<-13<0<2,∴比12-小的数是−1.故选:A.【点睛】此题主要考查了有理数大小比较,掌握有理数大小比较法则是解答本题的关键.3.C【分析】根据一元一次方程的定义逐个判断即可.【详解】解:A.不是方程,不是一元一次方程,故本选项不符合题意;B.不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.不是一元一次方程,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.D 【分析】根据等式基本性质逐项分析即可.【详解】A.如果ax =ay ,且0a ≠,那么x =y ,故该选项不正确,不符合题意;B.如果a =b ,那么a ﹣5=b ﹣5,故该选项不正确,不符合题意;C.如果a =b ,那么2a =2b ,故该选项不正确,不符合题意;D.如果a+1=b+1,那么a =b ,故该选项正确,符合题意;故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.5.B 【分析】根据题意,先算a 与b 的差,再算差的5倍,列式即可.【详解】解:∵a 与b 的差的5倍,∴列式为:5(a-b ).故选:B .【点睛】本题考查了列代数式,做题的关键是认真读题,理解题意中的关键词.6.D 【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值进而得出答案.【详解】解:2(3)|1|0x y -++= ,30x ∴-=,10y +=,解得:3x =,1y =-,则3(1)4x y -=--=.故选:D .【点睛】本题主要考查了非负数的性质,解题的关键是正确得出x ,y 的值.7.C 【分析】根据单项式和多项式的系数和次数的确定方法,逐项判断即可求解.【详解】解:A 、2231x xy --是二次三项式,正确,不符合题意;B 、1x -+不是单项式,正确,不符合题意;C 、213xy π-的系数为13π-,选项错误,符合题意;D 、222xab -的次数是4,正确,不符合题意;故选:C .【点睛】本题主要考查了单项式和多项式,熟练掌握单项式和多项式的系数和次数的确定方法是解题的关键.8.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,与“很”字相对的面上的汉字是“欢”,与“喜”字相对的面上的汉字是“数”,与“学”字相对的面上的汉字是“我”,故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.9.B 10.B 11.D 12.D 13.8.5×10814.-315.折线【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要反映我市一周内每天的最高气温的变化情况,宜采用折线统计图.故答案为:折线.16.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.17.2【分析】通过观察发现个位数字每4个循环一次,则22022的个位数字与21相同.【详解】解:∵21=2,22=4,23=8,24的个位数是6,25的个位数是2,…,∴个位数字每4个循环一次,∵2021÷4=505…1,∴22021的个位数字与21相同,∴22021的个位数字是2,故答案为:2.18.-1【分析】根据一元一次方程的定义可知|a|=1且a−1≠0.【详解】∵方程||(1)30a a x -+=是关于x 的一元一次方程,∴|a|=1且a−1≠0.解得a =−1.故答案是:−1.1,一次项系数不是0,这是这类题目考查的重点.19.(1)0(2)12-【分析】(1)先去绝对值,再按照有理数的加减运算法则计算即可;(2)先计算乘方,再按照有理数的运算顺序进行计算.(1)解:(1)原式=253-+-=0(2)=12-20.(1)2x =-(2)0x =【分析】(1)先移项、合并同类项,再求解即可;(2)先去分母,再去括号,然后移项、合并同类项,即可求解方程.(1)解:移项得:424x x -=-,合并得:24x =-,两边都除以2,得:2x =-因此,原方程的解是2x =-;(2)去分母,得:3(2)2(23)12x x +--=去括号,得:364612x x +-+=合并,得:x 0-=两边都乘以-1,得:0x =因此,原方程的解是0x =.21.5xy -,10【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【详解】解:()22222)3223(y x x xy x xy y -+--++=22222342333y x x xy x xy y -+----=5xy -;当1x =,2y =-时,原式=()512-⨯⨯-=10.22.(1)见解析(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2(3)存在;-4和3;122-和142【分析】(1)将已知数表示在数轴上即可;(2)根据相反数的定义,找出互为相反数的两个数,并写出这两个数之间的所有整数即可;(3)根据数轴上两点的距离等于7,即可求得.(1)解:将-4,122-,142,-1,2.5,3表示在数轴上,如图所示:(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2.(3)存在;∵437--=,1124722--=,∴两点之间的距离等于7的有:-4和3,122-和142.23.(1)①见解析;②见解析;(2)2cm 【分析】(1)根据题意画出图形即可;(2)根据中点的定义与线段的和差即可求得DE 的长.【详解】解:(1)①如图,连接AB 即为线段AB ,连接AN 并延长即为射线AN ,连接BM 并双向延长,交点为P ,②如图所示,BC=2AB ;(2)如图所示,标注字母:因为D 为AB 的中点,AB =2cm ,所以AD =1cm ,又因为BC =2AB ,则BC =4cm ,AC =6cm ,由于E 为AC 的中点,得:AE =3cm ,所以DE =AE -AD =2cm .24.无风时飞机的航速为610km/h ,这两个城市之间的距离为1856km 【分析】设无风时飞机的航速为x km/h ,根据题意,列出方程,即可求解.【详解】解:设无风时飞机的航速为x km/h ,由题意可得:2.9(30)3.2(30)x x ⨯+=⨯-,去括号得:2.987 3.296x x +=-,x=,移项合并得:0.3183x=,所以:610⨯+=km,两个城市之间的距离为:2.9(61030)1856答:无风时飞机的航速为610km/h,这两个城市之间的距离为1856km.25.(1)120名(2)见解析(3)108人【分析】(1)用不合格人数除以它对应的比例10%即可得出随机抽取的人数;(2)用1分别减去其它所占比例,即可求出合格级所占的百分比;用总人数乘良好级所占比例,即可得出良好的人数,将两幅统计图中的空缺补充完整;(3)用总人数减去不合格人数即可.(1)÷=(人)1210%120答:随机抽取了120名学生的成绩进行分析.(2)---=合格占:145%25%10%20%⨯=(人)良好的人数有:12025%30如图所示:(3)-=(人)12012108答:该校被抽取的学生中有108人达标.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD平分∠AOC,射线OE平分∠BOC,即可求出∠DOE,再根据OF平分∠DOE,即可求出∠DOF的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.27.大型汽车13辆,小型汽车5辆.【分析】设小型汽车x 辆,则大型汽车()8x +辆,根据题意列出一元一次方程进行求解.【详解】设小型汽车x 辆,则大型汽车()8x +辆,根据题意得()58380x x ++=解得,5x =大型汽车5813+=(辆)答:大型汽车13辆,小型汽车5辆.28.(1)25o ;(2)12DOE a ∠=;(3)成立,见解析.【分析】(1)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得40BOD ∠=︒、130BOC ∠=︒,再由角平分线的性质解得65BOE ∠=︒,最后由角的和差解题即可;(2)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得90BOD α∠=︒-、180BOC α∠=︒-,再由角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOE BOD ∠=∠-∠解题即可;(3)由角的补角定义解得180BOC α∠=︒-,由角的和差得 =90BOD COD BOC α∠=∠-∠- ,根据角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOD BOE ∠=∠+∠解题即可.【详解】解:(1)90COD ∠=︒ 90AOC BOD ∴∠+∠=︒50AOC ∠=︒40BOD ∴∠=︒9040130BOC COD BOD ∴∠=∠+∠=︒+︒=︒OE 平分BOC ∠1652BOE BOC ∴∠==︒654025DOE BOE BOD ∴∠=∠-∠=︒-︒=o故答案为:25o ;(2)由(1)知90AOC BOD ∠+∠=︒AOC α∠= 90BOD α∴∠=︒-180BOC α∴∠=︒-119022BOE BOC α∴∠=∠=︒-1190(90)22DOE BOE BOD a αα∴∠=∠-∠=︒--︒-=故答案为:12a ;(3)成立,理由如下:AOC α∠=180,BOC α∴∠=︒- 90COD ∠=90()18090BOD COD BOC αα∴∠=∠-∠=-︒-=- OE 是BOC ∠的平分线119022BOE BOC a∴∠=∠=- 11909022DOE BOD BOE a a a ∴∠=∠+∠=-+-= .。

湘教版七年级上册数学期末考试试卷有答案

湘教版七年级上册数学期末考试试卷有答案

湘教版七年级上册数学期末考试试题一、单选题1.2022-的倒数是()A .2022B .2022-C .12022D .12022-2.在1,0,1-,3-四个数中,最小的数是()A .1B .0C .1-D .3-3.将2140000000用科学记数法表示为()A .821.410⨯B .92.1410⨯C .721410⨯D .100.21410⨯4.下列各式变形正确的是()A .2()2a b c a b c +-=+-B .()333a b c a c b --=+-C .()222a b c a b c --=--D .()a b c a b c---=-++5.下列叙述中,正确的是()A .单项式21π2xy 的系数是12,次数是4B .a ,π,0,22都是单项式C .多项式32321a b a +-的常数项是1D .2m n+是二次二项式6.下列变形正确的是()A .由ac bc =,得a b =B .由155a b=-,得1a b =-C .由23a a -=,得3a =D .由2131a a -=+,得2a =7.下列说法:①两点确定一条直线;②两点之间,线段最短;③若AB BC =,则点B 是线段AC 的中点;④若12180∠+∠=︒,则1∠与2∠互为补角;⑤连接两点之间的线段叫两点间的距离.其中正确的有()A .1个B .2个C .3个D .4个8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是()A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.如图,AB=8cm ,AD=BC=5cm ,则CD 等于()A .1cmB .2cmC .3cmD .4cm二、填空题11.﹣8的绝对值是_____.12.如果35a ∠=︒,那么a ∠的补角等于______.13.在数轴上,表示2022-的点与原点的距离是______.14.要把木条固定在墙上,至少要钉两个钉子,这说明一个几何事实:______.15.当()2121a a xa --+-=是关于x 的一元一次方程,则=a ______.16.若a 可取任意有理数,则2a -+3的最小值是_______.17.电视机厂要了解一批显象管的使用寿命,可以采用的调查方式是_________.(选填“全面调查”或“抽样调查”)18.已知点A ,B ,C 在同一条直线上,10cm AB =,8cm AC =,点M 、N 分别是AB 、AC 的中点,那么线段MN 的长度为____________cm .19.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.三、解答题20.计算:(1)()()642-+---;(2)()2022222321-+--⨯-.21.解方程:(1)()32105x x --=;(2)5121163x x +--=.22.多项式A ,B 满足2277A B a ab -=-,267B a ab =-++.(1)求A ;(2)已知()2120a b ++-=,求A 的值.23.如图,点C 在线段AB 上,且:2:3AC BC =,点D 在线段AB 的延长线上,BD AC =,E 为AD 的中点.若40cm AB =,求线段CE 的长.24.某公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校七年级(2101)(2102)两个班共104人去游园,其中(2101)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元.问:(1)两班各多少学生?(要求列一元一次方程求解...........)(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果(2101)班单独去游园,作为组织者的你将如何购票才最省钱?25.某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是_____________度.26.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M 从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?27.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?28.(1)如图,点O在直线AB上,OC是∠AOB内的一条射线,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.(2)如果将“点O在直线AB上”改为“∠AOB=90°”,其他条件不变,求∠DOE的度数.(3)如果将“点O在直线AB上”改为“∠AOB=α”,其他条件不变,直接写出∠DOE的度数.参考答案1.D【分析】根据倒数定义解答.【详解】解:-2022的倒数是1 2022 -,故选:D.【点睛】此题考查了倒数的定义,熟记定义是解题的关键.2.D【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-3<-1<0<1,∴在1,0,-1,-3这四个数中,最小的数是-3.故选:D.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.B 【分析】】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:2140000000=2.14×109.故选:B .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.B 【分析】根据去括号法则,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号,对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】因为2()22a b c a b c +-=+-,所以A 错误;因为()333a b c a c b --=+-,所以B 正确;因为()222a b c a b c --=-+,所以C 错误;因为()a b c a b c ---=-+-,所以D 错误.【点睛】本题考查去括号,解题的关键是掌握去括号法则.5.B 【分析】直接利用单项式的定义以及单项式的系数与次数、多项式的项数与次数分别判断得出答案.【详解】解:A.单项式21π2xy 的系数是12,次数是3,故此选项不合题意;B.a ,π,0,22都是单项式,故此选项符合题意;C.多项式32321a b a +-的常数项是-1,故此选项不合题意;D.2m n+是一次二项式,故此选项不合题意;故选B6.C 【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,逐项判断即可解决.【详解】解:A 、由ac=bc ,当c=0时,a 不一定等于b ,故该选项不正确,不符合题意;B 、由155a b=-,得a=b-5,,故该选项不正确,不符合题意;C 、由2a-3=a ,得a=3,故该选项正确,符合题意;D 、由2a-1=3a+1,得a=-2,,故该选项不正确,不符合题意.故选:C .【点睛】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.7.C 【分析】由直线的性质与特点可判断①,由线段的性质可判断②,由中点的定义可判断③,由互为补角的概念可判断④,由两点间的距离的概念判断⑤,从而可得答案.【详解】解:两点确定一条直线;正确,故①符合题意,两点之间,线段最短;正确,故②符合题意,若AB BC =,B 在线段AC 上,则点B 是线段AC 的中点;故③不符合题意,若12180∠+∠=︒,则1∠与2∠互为补角;正确,故④符合题意,连接两点之间的线段的长度叫两点间的距离;故⑤不符合题意,故选:.C 【点睛】本题考查的是直线,线段的性质,中点的概念,互为补角的含义,两点间的距离的含义,掌握以上知识是解题的关键.8.D 【分析】个体是总体中的每一个调查的对象,据此判定即可.【详解】在这次调查中,个体是每一名学生对“世界读书日”的知晓情况故选:D .【点睛】本题考查了调查中个体的定义,掌握理解个体的概念是解题关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.B 【分析】首先根据已知条件求出线段DB 的长度,再求出线段CD 长度即可.【详解】解:∵AB=8cm ,AD=5cm ,∴BD=AB ﹣AD=3cm ,∵BC=5cm ,∴CD=CB ﹣BD=2cm ,故选B .11.8【分析】根据数a 的绝对值是指数轴上表示数a 的点与原点的距离进行求解即可得.【详解】数轴上表示-8的点到原点的距离是8,所以-8的绝对值是8,故答案为8.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义是解题的关键.12.145°##145度【分析】互为补角的两角和为180°,用180°减去∠α的度数计算可得.【详解】解:∵∠α=35°,∴∠α的补角的度数为:180°-35°=145°.故答案为:145°.【点睛】本题考查了补角,关键是熟悉互为补角的两角和为180°.13.2022【分析】根据绝对值的意义求解即可.【详解】解:表示2022-的点与原点的距离是20222022-=故答案为:2022【点睛】本题考查了绝对值的意义,理解任意一点到原点的距离等于这个点表示的数的绝对值是解题的关键.14.两点确定一条直线【分析】根据直线的性质,可得答案.【详解】解:要把木条固定在墙上,至少要钉两个钉子,这说明一个几何事实:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,利用直线的性质是解题关键.15.3【分析】根据一元一次方程的定义得到|a-2|=1且a-1≠0,由此可以求得a 的值.【详解】解:()2121a a x a --+-=是关于x 的一元一次方程,2110a a ⎧-=∴⎨-≠⎩解得a=3.故答案为:3.【点睛】本题考查了一元一次方程的定义.我们将ax+b=0(其中x 是未知数,a 、b 是已知数,并且a≠0)叫一元一次方程的标准形式.这里a 是未知数的系数,b 是常数,x 的次数必须是1.16.3【分析】根据绝对值都是非负数,可得答案.【详解】解:当a=2时,|a-2|+3的最小值是3.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质,利用非负数最小时和最小.17.抽样调查【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:了解一批显象管的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批显象管全部用于实验,故答案为:抽样调查.【点睛】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.18.1或9【分析】根据题意可以画出相应的图形,然后根据题目中的条件和分类讨论的方法可以求得线段MN的长度.【详解】解:当点C点A和点B之间时,∵点A,B,C在同一条直线上,AB=10cm,AC=8cm,点M、N分别是AB、AC的中点,∴AM=5cm,AN=4cm,∴MN=AM-AN=5-4=1cm,当点C位于点A的左侧时,∵点A,B,C在同一条直线上,AB=10cm,AC=8cm,点M、N分别是AB、AC的中点,∴AM=5cm,AN=4cm,∴MN=AM+AN=5+4=9cm,由上可得,线段MN的长为1或9cm,故答案为:1或9.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想和分类讨论.19.55【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.20.(1)-8(2)-5【分析】(1)先转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和去绝对值,然后计算乘法、最后计算加减法即可.(1)-6+(-4)-(-2)=(-6)+(-4)+2=-8(2)-22+|2-3|-2×(-1)2022=-4+1-2×1=-4+1-2=-5【点睛】本题考查有理数混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.21.(1)x=5(2)x=3【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.(1)去括号,可得:3x-20+2x=5,移项,可得:3x+2x=5+20,合并同类项,可得:5x=25,系数化为1,可得:x=5.(2)去分母,可得:(5x+1)-2(2x-1)=6,去括号,可得:5x+1-4x+2=6,移项,可得:5x-4x=6-1-2,合并同类项,可得:x=3.22.(1)5a2+5ab+14(2)9【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.(1)由题意得:A=2(-a2+6ab+7)+(7a2-7ab)=-2a2+12ab+14+7a2-7ab=5a2+5ab+14(2)∵(a+1)2+|b-2|=0,∴a+1=0,b-2=0,解得a=-1,b=2,则原式=5×(-1)2+5×(-1)×2+14=5-10+14=9【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.12cm【分析】根据题意得出:AC:BC=2:3,BD=AC,设AC=BD=2x,BC=3x,进而得出AC,BD的长,再求出AE的长,即可得出答案.【详解】解:∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∴AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,∵E为AD的中点,AB=40cm,∴AE=ED=28cm,∴EC=28-16=12(cm).24.(1)2101班有48个学生,2102班有56个学生.(2)可省304元钱.(3)如果2101班单独组织去游园,购买51张门票最省钱【分析】(1)设2101班有x个学生,则2102班有(104-x)个学生,根据购票总费用=(1)班购票费用+(2)班购票费用即可得出关于x的一元一次方程,解之即可得出结论;(2)求出购买104张票的总钱数,将其与1240做差即可得出结论;(3)分别求出购买48张门票以及购买51张门票的总钱数,比较后即可得出结论.(1)解:设2101班有x个学生,则2102班有(104-x)个学生,根据题意得:13x+11(104-x)=1240,解得:x=48,∴104-x=56.答:2101班有48个学生,2102班有56个学生.(2)1240-9×104=304(元).答:如果两班联合起来,作为一个团体购票,可省304元钱.(3)51×11=561(元),48×13=624(元),∴561<624,∴如果2101班单独组织去游园,购买51张门票最省钱.25.(1)见解析(2)72【分析】(1)首先根据成绩类别为“差”的是8人,占总人数的16%,据此即可求得总人数,然后利用总人数乘以“中”的类型所占的百分比即可求出“中”的类型的人数,补全图统计图即可;(2)利用360°乘以对应的百分比即可求解.(1)解:总人数是:816%50÷=(人),则类别是“中”的人数是:5022%11⨯=(人).条形统计图:(2)表示成绩类别为“优”的扇形所对应的圆心角是360(116%20%44%)=72⨯---︒度.故答案是:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)5;(2)72或13.【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过x 秒点P 到点M ,N 的距离相等,得出(2t+6)﹣t=(6t ﹣8)﹣t 或(2t+6)﹣t=t ﹣(6t ﹣8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:26+1454x x +=,解得5x =.答:经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.()()2668t t t t +-=--或()()2668t t t t +-=--,658t t +=-或685t t +=-,解得:72t =或13t =,答:经过72或13秒点P 到点M ,N 的距离相等.27.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.【分析】(1)设这批学生有x 人,原计划租用45座客车y 辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)找出每个学生都有座位时需要租两种客车各多少辆,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.【详解】(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得:()=4515=601x y x y +⎧⎨-⎩,解得:=240=5x y ⎧⎨⎩,答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5-1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.【点睛】此题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)求出租两种客车各需多少费用.28.(1)90°(2)45°(3)12α【分析】(1)根据OD 平分∠AOC ,OE 平分∠BOC ,得出∠AOD=∠COD ,∠BOE=∠COE ,根据∠AOD+∠COD+∠BOE+∠COE=∠AOB=180°,即可得∠DOE=∠COE+∠COD=90°;(2)先根据OD 平分∠AOC ,OE 平分∠BOC ,推出∠AOD=∠COD ,∠BOE=∠COE ,再根据∠AOD+∠COD+∠BOE+∠COE=∠AOB=90°,可得出∠DOE ;(3)先推出∠AOD=∠COD ,∠BOE=∠COE ,根据∠AOD+∠COD+∠BOE+∠COE=∠AOB=α,即可得出∠DOE .【详解】(1)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠AOD=∠COD ,∠BOE=∠COE ,又∵∠AOD+∠COD+∠BOE+∠COE=∠AOB=180°,∴∠DOE=∠COE+∠COD=90°;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠AOD=∠COD ,∠BOE=∠COE ,又∵∠AOD+∠COD+∠BOE+∠COE=∠AOB=90°,∴∠DOE=∠COE+∠COD=45°;(3)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠AOD=∠COD ,∠BOE=∠COE ,又∵∠AOD+∠COD+∠BOE+∠COE=∠AOB=α,∴∠DOE=∠COE+∠COD=2α.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是34.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x-=+5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10v D .()510v +8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.10.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.15.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.16.已知13625'∠=︒,则∠1的补角是________.17.单项式12ab 的系数是____________;次数是_____________.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭19.解方程:2131163x x -+-=20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.25.某校开展了以“建功新时代”为主题的系列活动,举办了A 合唱,B 舞蹈,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?参考答案一、单选题1.下列说法正确的是()A .a -一定是负数B .()0.50.5-+=C .绝对值小于2的整数的乘积0D .()()3223-=-【答案】C2.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元【答案】B3.下列说法正确的是()A .2231x x --的常数项是1B .0不是单项式C .多项式321ab a -+的次数是3D .22ab π-的系数是2π-,次数是3【答案】D4.下列解方程变形正确的是()A .由方程1232x x -=+,得3221x x -=-B .由方程()()123131x x --=-,得16233x x --=-C .由方程123x x-=,得312x x -=D .由方程()4132x x --=,得4243x x -=+【答案】D5.如图是某几何体的表而展开图,则这个几何体是()A .正三棱柱B .正方体C .圆柱D .圆锥【答案】A6.已知a 、b 、c 三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②abc >0;③a+b >0;④c ﹣a >0,其中结论正确的有()A .1个B .2个C .3个D .4个【答案】C7.小兰家距学校5km ,她步行的速度是km/h v ,而骑自行车比步行快10km/h ,则她骑自行车从家到学校需()h .A .5vB .510v +C .10vD .()510v +【答案】B8.将360000用科学记数法表示为()A .43.610⨯B .53.610⨯C .43610⨯D .40.3610⨯9.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第2次运算则输出的结果是6,第3次运算则输出的结果是3,……,则第2021次输出的结果是________.【答案】410.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种【答案】B11.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°【答案】C12.如图,长方形的长是3a ,宽是2a ﹣b ,则长方形的周长是()A .10a ﹣2bB .10a+2bC .6a ﹣2bD .10a ﹣b【答案】A二、填空题13.若方程3511x +=与6318x a +=的解相同,则=a ____________.14.如果单项式13a x y +与222b x y -是同类项,那么a +b =________.【答案】615.如图,若2AB =,5BC =,C 是BD 的中点,则AD=______.【答案】1216.已知13625'∠=︒,则∠1的补角是________.【答案】143°35′17.单项式12ab 的系数是____________;次数是_____________.【答案】122.三、解答题18.计算:(1)11(2)(2)22-⨯÷⨯-(2)()51132248⎛⎫-⨯--⎪⎝⎭【答案】(1)4(2)419.解方程:2131163x x -+-=【答案】58x =20.先化简,再求值:若单项式23m a b --与12n b a -是同类项,求代数式()222332m mn n n --++的值.【答案】22,34mmn n +--【分析】根据单项式23m a b --与12n b a -是同类项,可得22m -=,11n -=,再将代数式化简,然后再代入,即可求解.【详解】解:∵单项式23m a b --与12n b a -是同类项,∴22m -=,11n -=,解得:0m =,2n =,()222222223323323m mn n n m mn n n m mn n --++=+-+=+-当0m =,2n =时,2230044m mn n +-=+-=-.21.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果).(2)什么情况下两家商场的收费相同?【答案】(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【分析】(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.22.如图,已知线段a 、b 、c ,用圆规和直尺画线段,使它等于2a b c +-,要求:不写画法,但保留画图痕迹.【答案】首先画一条射线,再用圆规再射线上依次截取线段AB=a ,BC=b ,CD=b ,再以D 为端点截取DE=c 即可得到AE=a+2b-c .【详解】如图所示:.23.小明针对自行车和长跑项目进行专项训练某次训练中,小明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.【答案】自行车路段的长度为3000米,长跑路段的长度为2000米.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x-+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.24.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并作射线OC 平分MOB ∠.(1)若40BON ∠=︒,求AOM ∠的度数;(2)试猜想AOM ∠与NOC ∠之间的数量关系,并说明理由.【答案】(1)∠AOM =50°(2)∠AOM =2∠NOC ,见解析【分析】(1)解:(1)由题意得:∠MON=90°,∵∠BON=40°,∴∠MOB=∠MON+∠BON=130°.∴∠AOM=180°-∠MOB=50°;(2)∠AOM=2∠NOC,理由:由题意得:∠MON=90°,则:∠MOB=∠MON+∠NOB=90°+∠NOB.∵射线OC平分∠MOB,∴∠BOC=12∠MOB=45°+12∠BON,∴∠NOC=∠BOC-∠BON=45°-12∠BON=12(90°-∠BON).∵∠AOM+∠MON+∠BON=180°,∴∠AOM=180°-90°-∠BON=90°-∠BON,∴AOM=2∠NOC.25.某校开展了以“建功新时代”为主题的系列活动,举办了A合唱,B舞蹈,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图.请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?(2)请将条形统计图补充完整;并计算扇形统计图中“D”部分的圆心角度数是多少?(3)若全校共有4000名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?【答案】(1)200人(2)见解析,18°(3)1000人【分析】(1)解:本次调查的学生总人数是120÷60%=200(人)(2)解:选择C的有:200-120-52-8=20(人),补全的条形统计图如图所示;扇形统计图中“D”部分的圆心角度数是10200×360°=18°;(3)估计该校报名参加书法和演讲比赛的学生共有4000×1040200=1000(人).。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.2021-的倒数是()A .12021B .12021-C .12021±D .20212.下面几种几何图形中,属于立体图形的是()①三角形②长方形③正方体④圆⑤圆柱A .①②④B .②③⑤C .③④⑤D .③⑤3.下列各组单项式中,是同类项的是()A .23a b 与22ba -B .233m 与322mC .xy -与22x yD .2ab-与2abc 4.将30万用科学记数法可表示为()A .4310⨯B .5310⨯C .6310⨯D .7310⨯5.下列方程中,是一元一次方程的是()A .1x y +=B .21x x +=C .41+=x xD .421+=x 6.下列去括号正确的是()A .()a b c a b c---=-++B .()2222---=---a b c a b c C .()a b c a b c---=---D .()2222---=-+-a b c a b c 7.若()()3173-=+x x ,那么x 的值是()A .3-B .3C .6-D .68.长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,设黄河的长度为x 千米,则可列方程为()A .()668361284x x --=B .()658361284x x -+=C .()683651284x x +-=D .()683651284x x --=9.某市有3.5万名学生参加中考,为了解这些学生的数学成绩,从中抽取500名考生的数学成绩进行统计,以下说法正确的是()A .这500名考生是总体的一个样本B .近3.5万名考生是总体C .500名学生是样本容量D .每位考生的数学成绩是个体10.下列图形中()可以折成正方体.A .AB .BC .CD .D11.甲、乙两人同时从相距2000米的两地出发,相向而行,甲每分钟走45米,乙每分钟走55米,一只小狗以每分钟200米的速度与甲同时、同地、同向而行,遇到乙后立即转头向甲跑去,如此循环,直到两人相遇,则这只小狗一共跑了()米A .3000B .4000C .5000D .600012.按如图所示的运算程序,能使运算输出的结果为2的是()A .x =0,y =﹣2B .x =5,y =﹣1C .x =﹣3,y =1D .x =﹣1,y =﹣1二、填空题13.若2x =,则x =_________.14.用代数式表示:a 与b 的平方差________.15.一个角的度数是1030'︒,则它的补角的度数为_________.16.111211143⎛⎫-⨯-++=⎪⎝⎭_________.17.如图,C 为线段AB 上一点,D 是线段BC 的中点,AC=7,BD=4,则线段AB=_________.18.已知52310+=+a b b ,利用等式性质可求得102a b -的值是_________.19.若3x=是关于x 的方程2152x kx x -+=-的解,那么k 的值是_________.20.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第n 个图形中实心圆点的个数为________.三、解答题21.(1)计算:()()2021422129373-+-+⨯-+⨯÷(2)解方程:143123--=-x x 22.已知()2150++-=m n (1)求m ,n 的值.(2)先化简,再求值:()()2222-++-m m n m n m .23.平面上有四个点A 、B 、C 、D ,按照以下要求作图(保留作图痕迹):(1)连接BA 并延长BA 至E ,使AE AB =;(2)作射线CB ;(3)在直线BD 上确定点G ,使得AG GC +最短.24.如图120AOB ∠=o ,OF 平分AOB ∠,212∠=∠(1)判断1∠与2∠互余吗?试说明理由.(2)2∠与AOB ∠互补吗?试说明理由.25.为了了解某校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在扇形统计图中,“漫画”所在扇形圆心角等于_________度;(3)补全条形统计图;(4)若该年级有800名学生,估计该年级喜欢“漫画”的学生人数约是_________人.26.某市为鼓励居民节约用水,采取分段计费的方法按月计算每户家庭的水费,月用水量与水费的单价如表:月用水量不超过24立方米超过24立方米不超过24立方米的部分仍按4元/立方米计费,水费单价4元/立方米超过部分按6元/立方米计费(1)每户用水量为a立方米,用式子表示:①当月用水量不超过24立方米时,应收水费______元.②当月用水量超过24立方米时,应收水费______元.③小明家五月份用水20立方米,六月份用水30立方米,请帮小明计算他家这两个月共应交多少元的水费.(2)小明家七、八月份共用水50立方米,共交水费208元,已知七月份用水不超过24立方米,请帮小明计算他家这两个月各用多少立方米的水.27.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点===-,当A、B两中有一点为原点时,不妨设A点在原点.如图所示,则AB OB b a b点都不在原点时:(1)如图所示,点A 、B 都在原点的右边,不妨设点A 在点B 的左侧.则AB OB OA b a b a b a a b=-=-=-=-=-(2)如图所示,点A 、B 都在原点的左边,不妨设点A 在点B 的右侧.则()AB OB OA b a b a a b a b=-=-=---=-=-(3)如图所示,点A 、B 分别在原点的两边,不妨设点A 在原点的右侧,则()AB OB OA b a a b a b=+=+=+-=-回答下列问题:(1)综上所述,数轴上A 、B 两点之间的距离AB =_______________.(2)数轴上表示3和5-的两点A 和B 之间的距离AB =_______________.(3)数轴上表示x 和5-的两点A 和B 之间的距离AB =_______________.如果3AB =,则x 的值为_______________.(4)若代数式52x x ++-有最小值,则最小值为_______________.参考答案1.B2.D3.A4.B5.D6.A7.C8.B9.D10.B11.B12.D13.2±【详解】解:绝对值是2的数是2±,x=±,∴2故答案为:2±.14.a2-b2【分析】根据题目中的语句可以用相应的代数式表示,从而可以解答本题.【详解】解:“a与b的平方差”为:a2-b2,故答案为:a2-b2.︒15.16930'【分析】根据补角的性质计算,即可得到答案.︒,【详解】解:∵一个角的度数是1030'︒-︒=169︒30.∴它的补角的度数为1801030''169︒30.故答案为:'【点睛】本题考查了补角与角度单位互化的知识;解题的关键是熟练掌握补角的性质,从而完成求解.16.0【分析】根据有理数的混合计算法则求解即可.【详解】解:111211143⎛⎫-⨯-++ ⎪⎝⎭()()1112121211143=-⨯--⨯+-⨯+341211=-+-+0=,故答案为:0.【点睛】本题主要考查了有理数的混合计算,熟知相关计算法则是解题的关键.17.15【分析】先根据BD=4,由D 为线段BC 的中点求出BC 的长,再由AC=7,再进而可得出结论.【详解】解:∵D 是线段BC 的中点,BD=4,∴BC=2BD=8,∴AB=AC+BC=7+8=15,故答案为:15.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.20【分析】根据等式的性质进行运算即可.【详解】解:52310+=+a b b 两边同时减3b 得,510a b -=两边同时乘以2得,()2520a b ⨯-=∴10220a b -=故答案为:20.【点睛】本题考查了代数式的求值,等式的性质.解题的关键在于明确等式两边同时乘以或减去一个数等式仍成立.19.2-【分析】把x=3代入方程2x-kx+l=5x-2得出6-3k+1=15-2,再求出方程的解即可.【详解】解:把x=3代入方程2x-kx+l=5x-2得:6-3k+1=15-2,解得:2,k =-故答案为:2-.20.32n +【分析】根据已知图形中实心圆点的个数得出规律:第n 个图形中实心圆点的个数为2n+n+2,据此求解可得.【详解】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第n 个图形中实心圆点的个数为2×n+n+2=32n +,故答案为:32n +.21.(1)19;(2)1511x =【分析】(1)先进行有理数乘方的运算和括号内的运算,再进行有理数乘除法的运算,最后进行有理数的加减法运算,即可解答;(2)根据解含分数系数的一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、系数化为1即可求解.【详解】(1)解:()()2021422129373-+-+⨯-+⨯÷()16129973=--+⨯-+⨯÷19=;(2)解:去分母,得()()316243-=--x x ,去括号,得33686-=-+x x 移项,得3x+8x=6+6+3合并同类项,得11x=15系数化为1,1511x =.22.(1)15=-=,m n (2)2n ,25【分析】(1)分别根据绝对值的非负数、完全平方数的非负数列出m 、n 的方程,解之即可求出m 、n 的值;(2)先利用整式的运算法则化简,再代入m 、n 值计算即可求解.(1)解:∵()2150++-=m n ,()21050m n +≥-≥,,∴1=050m n +-=,,解得:-1,5m n ==,(2)解:()()2222-++-m m n m n m =2222222m mn m mn n m -+++-=2n ,当n=5时,原式=52=25.23.(1)见解析(2)见解析(3)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)根据几何语言画出对应的几何图形;(3)连接BD 、AC ,它们的交点为G ,则根据两点之间线段最短可判断G 点满足条件.(1)如图,AE 为所作;(2)如图,射线CB 为所作;(3)如图,点G 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.(1)1∠与2∠互余,理由见解析(2)2∠与AOB ∠互补,理由见解析【分析】(1)根据OF 平分AOB ∠,得出12==602∠∠︒AOB ,根据21=2∠∠可求1=30∠︒即可;(2)OF 平分AOB ∠,得出12==602∠∠︒AOB ,然后∠2+∠AOB=60°+120°=180°即可.(1)解:1∠与2∠互余,理由如下:∵120AOB ∠=︒,OF 平分AOB ∠,∴12==602∠∠︒AOB ,∵21=2∠∠,∴1=30∠︒,∴1+2=30+60=90∠∠︒︒︒,∴1∠与2∠互余;(2)解:2∠与AOB ∠互补,理由如下:∵∠AOB=120°,OF 平分AOB ∠,∴12==602∠∠︒AOB ,∴∠2+∠AOB=60°+120°=180°,∴2∠与AOB ∠互补.【点睛】本题考查角平分线定义,两角互余,互补的判定,掌握角平分线定义,两角互余,互补的判定是解题关键.25.(1)200(2)72(3)见解析(4)160【分析】(1)根据调查的总人数=小说人数÷对应的百分数;(2)运用“漫画”的人数除以总人数求出百分比再乘以360°;(3)先求出科普的人数,再补全条形统计图;(4)用总人数乘以样本中“漫画”的比例即可.(1)解:由题意得:调查的总人数是:80÷40%=200名,故答案为:200;(2)解:扇形统计图中“漫画”中的扇形圆心角的度数为:4036072 200⨯︒=︒,故答案为:72;(3)解:选择科普常识的人数:30200=60100⨯名,如图所示:(4)解:选择漫画的人数:40800=160200⨯人,∴估计该年级喜欢“漫画”的学生人数约是160人.【点睛】本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是能从条形统计图,扇形统计图准确找出数据..26.(1)①4a;②(6a﹣48);③小明家这两个月共应交212元水费;(2)小明家七月份用水22立方米,八月份用水28立方米.【分析】(1)①根据分段计费的收费标准,可用含a的代数式表示出当a不超过24立方米时应收水费;②根据分段计费的收费标准,可用含a的代数式表示出当当a超过24立方米时的应收水费;③将a的值代入①②中的代数式中求值即可;(3)设七月份用水m 立方米(0<m≤24),则八月份用水(50﹣m )立方米,由(1)的结论结合小明家七、八月份共交水费208元,即可得出关于m 的一元一次方程,解之即可得出结论.(1)解:①当a 不超过24立方米时,应收水费为4a 元;②当a 超过24立方米时,应收水费为:24×4+6(a ﹣24)=6a ﹣48元;故答案为①4a ;②(6a ﹣48);③当a =20时,4a =80;当a =30时,6a ﹣48=132.∴80+132=212(元).答:小明家这两个月共应交212元水费;(2)解:设小明家七月份用水m 立方米(0<m≤24),则八月份用水(50﹣m )立方米,依题意,得:4m+6×(50﹣m )﹣48=208,解得:m =22,∴50﹣m =28.答:小明家七月份用水22立方米,八月份用水28立方米.【点睛】本题考查了一元一次方程的应用、列代数式、代数式求值以及有理数的混合运算,理解题意,准确列出方程代数式是解题关键.27.(1)AB a b=-(2)8(3)5x +,28x =-或-(4)7【分析】(1)根据数轴上A ,B 两点的位置即可得出答案;(2)按照数轴上的位置进行计算即可;(3)根据数轴进行计算,列方程解绝对值方程即可;(4)根据绝对值的性质进行化简即可.(1)解:综上所述,数轴上两点A 和B 之间的距离AB a b =-;故答案为:a b -;(2)解:数轴上表示3和5-的两点A 和B 之间的距离()35358AB =--=+=;故答案为:8;(3)解:数轴上表示x 和5-的两点A 和B 之间的距离5,AB x =+如果3AB =,∴53x +=,∴53x +=或53x +=-,解得2x =-或8x =-,则x 的值为-2或-8;故答案为5x +;-2或-8;(4)解若代数式52x x ++-有最小值,52x x ++-的值即为-5与2两点间的距离,此时最小,最小值为|2−(−5)|=7,则最小值为7.故答案为7.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.7-的绝对值为()A .7B .17C .17-D .7-2.当4x =时,代数式1x -+的值是()A .1-B .1C .3D .3-3.如图示,数轴上点A 所表示的数的绝对值为()A .2B .﹣2C .±2D .以上均不对4.将39000000000用科学记数法表示为()A .3.9×1010B .3.9×109C .0.39×1011D .39×1095.由若干个相同的小正方体,摆成几何体的主视图和左视图均为如图所示,则最少使用小正方体的个数为()A .9B .7C .5D .36.如图,直线AB CD 、相交于点E ,EF AB ⊥于E ,若56CEF ∠=︒,则BED ∠的度数为A .24︒B .26︒C .34︒D .44︒7.下列运算正确的是()A .2325a a a +=B .333a b ab +=C .2222a bc a bc a bc -=D .523a a a -=8.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A .﹣8+4﹣5+2B .﹣8﹣4﹣5+2C .﹣8﹣4+5+2D .8﹣4﹣5+29.如图,点O 在直线AB 上,若∠AOC=60°,则∠BOC 的大小是()A .60︒B .90︒C .120︒D .150︒10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=25°,则∠2的度数是()A .55︒B .60︒C .65︒D .70︒二、填空题11.-5的相反数是_______12.温度升高1℃记为+1℃,气温下降9℃记为_____13.已知x=2,|y|=5,且x >y ,则x+y=_________.14.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数有_____个.15.有理数5.613精确到百分位的近似数为________.16.某商品原价是x 元,提价10%后的价格是__________.17.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.18.若|x+1|+(y ﹣2)2=0,则x+y=_____.19.如图是一个正方体的展开图,请问1号面的对面是_____号面.20.如图,下列条件中:①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;则一定能判定AB//CD 的条件有_________(填写所有正确的序号).三、解答题21.计算(1)()69---(2)()51112248⎛⎫-⨯-- ⎪⎝⎭(3)()()7356x x -+-(4)()()3232xy x xy xy x --+-22.解方程533523x x ++=23.如图,B 是线段AD 上一点,C 是线段BD 的中点.(1)若AD =8,BC =3,求线段CD ,AB 的长;(2)试说明:AD +AB =2AC.24.如图,已知∠BOC=2∠AOC ,OD 平分∠AOB ,且∠AOC=40°,求∠COD 的度数.25.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)26.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若一般和优秀均被视为达标成绩,则该校被抽取的学生中有多少人达标?27.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.参考答案1.A2.D3.A4.A5.D6.C7.C8.B9.C10.A11.512.﹣9℃13.-314.315.5.6116.(1+10%)x 元17.四五18.119.520.①③④21.(1)3;(2)-4;(3)21x +;(4)65xy x-【分析】(1)先运用有理数的减法变形,再进行加法运算;(2)先进行有理数的乘方,再进行乘法,最后算加减;(3)先去括号,再合并同类项即可求解.【详解】解:(1)原式=693-+=,(2)原式=11132248⎛⎫-⨯-- ⎝⎭=1684-++=4-;(3)原式7356x x =-+-21x =+;(4)原式3232xy x xy xy x =-++-65xy x =-.22.9x =【分析】左右同乘6进行去分母,再去括号,移项合并,化系数为1即可求解.【详解】解:去分母:()()353235x x +=+去括号:159610x x+=+移项,合并同类项:9x -=-化系数为1:9x =【点睛】本题考查解一元一次方程,熟练掌握求解步骤,注意变号情况是解题关键.23.(1)2;(2)详见解析.【详解】试题分析:(1)根据中点的定义即可求得CD=BC=3,根据图中相关线段间的和差关系即可求得AB 的长度;(2)根据图示可得AD+AB=AC+CD+AB ,BC=CD ,然后由等量代换即可证得结论.试题解析:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC.24.∠COD =20°.【详解】因为BOC 2AOC ∠=∠,AOC 40∠=︒,所以BOC 24080∠=⨯︒=︒,所以AOB BOC AOC 8040120∠=∠+∠=︒+︒=︒,因为OD 平分∠AOB ,所以11AOD AOB=1206022∠=∠⨯︒=︒,所以COD AOD AOC 6040∠=∠-∠=︒-︒20=︒25.(1)35元;(2)黄老师家5月份用水14吨;(3)当0<a≤10时,应交水费为2a (元),当a >10时,应交水费为2.5a-5(元)【分析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a >10时,分别进行计算即可.【详解】(1)10×2+(16-10)×2.5=35(元),答:应交水费35元;(2)设黄老师家6月份用水x 吨,由题意得10×2+2.5×(x-10)=30,解得x=14,答:黄老师家6月份用水14吨;(3)①当0<a≤10时,应交水费为2a (元),②当a>10时,应交水费为:20+2.5(a-10)=2.5a-5(元).26.(1)见解析;(2)96【分析】(1)由不合格人数及其百分比求得总人数,总人数减去不合格与一般的人数求得优秀的人数,再根据百分比之和为1可得一般对应的百分比;(2)由条形统计图可得两个等级的具体人数,据此可得.【详解】解:(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,补充图形如下所示:;(2)该校被抽取的学生中达标的人数=36+60=96(人).答:该校被抽取的学生中有96人达标.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂条形统计图及扇形统计图,能从中找到必要的数据.27.BF、DE互相平行【分析】设AB与DE相交于H,由∠3=∠4,根据内错角相等,两直线平行可证得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6,即可得∠BAF=∠6,根据同位角相等,两直线平行可得AB∥CD,根据平行线的性质可得∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断BF∥DE.【详解】BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.下列四组数中互为相反数的是()A .-(+3)和+(-3)B .+(-2)和-2C .+(-4)和-(-4)D .-(-1)和12.下列式子计算正确的个数有()①224a a a +=;②22321xy xy -=;③32ab ab ab -=;④322()17(3)---=-.A .1个B .2个C .3个D .0个3.若(m+2)x 2m-3=5是一元一次方程,则m 的值为()A .2B .-2C .2±D .44.如图,点O 在直线AB 上,OD 是∠AOC 的平分线,OE 是∠COB 的平分线.若∠DOC=70°,则∠BOE 的度数是()A .30°B .40°C .25°D .20°5.单项式﹣2435x yz 的系数和次数分别为()A .35,4B .﹣35,4C .﹣35,6D .﹣35,76.下列调查中,适合用全面调查方式的是()A .调查北海市市民的吸烟情况B .调查北海市电视台某节目的收视率C .调查北海市某校某班学生对“创建卫生城市”的知晓率D .调查北海市市民家庭日常生活支出情况7.A ,B ,C 三点在同一直线上,线段AB =5cm ,BC =4cm ,那么A ,C 两点的距离是()A .1cmB .9cmC .1cm 或9cmD .以上答案都不对8.把680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元9.已知小红5岁,爸爸32岁,如果x 年后小红年龄是爸爸年龄的14,那么可列方程()A .15324x +=⨯B .15324x x +=⨯+C .15(32)4x x +=+D .15324x x+=+10.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是()A .82B .86C .88D .120二、填空题11.已知5是关于x 的方程3x ﹣2a=7的解,则a 的值为______.12.比0小4的数是_________,比3小4的数是_________,比-5小-2的数是_________.13.小明有五张写着不同数字的卡片、从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是____.14.一学校图书馆理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有225本,则丙类书有__本.15.如果一个角的补角是150°,那么这个角的余角的度数是__________.16.如果123m ab -与79m ab +是同类项,那么m 的值为_________.17.规定一种新运算:a ⊗b =a 2﹣2b ,若2⊗[3⊗(﹣x )]=6,则x 的值为_______18.如图,OC 平分∠AOB ,从点O 引一条射线OE ,若∠AOB =50°,∠AOE =10°,则∠COE 的度数是_____.三、解答题19.计算:(1)13–[26–(–21)+(–18)];(2)(–1)3–14×[2–(–3)2].20.先化简,再求值:()122232x y x y ⎛⎫---⎪⎝⎭,其中1x =-,2y =.21.解下列方程:(1)12212x x -=+(2)2131510x x ++-=22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆-1+3-2+4+7-5-10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?比原计划是增加(或减少)了多少辆?23.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.24.每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为.(3)将条形统计图补充完整.25.某超市用6800元购进甲.乙两种商品共120件,这两种商品的进价,标价如下表:价格\类型甲种乙种进价(元/件)3070标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的8折出售,乙种商品按标价的9折出售,那么这批商品全部售出后,超市共获利多少元?26.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC .(1)将三角板放置到如图所示位置,使OC 恰好平分∠MOB ,且∠BON =2∠NOC ,求∠AOM 的度数;(2)若仍将三角板按照如图所示的方式放置,仅满足OC 平分∠MOB ,试猜想∠AOM 与∠NOC 之间的数量关系,并说明理由.参考答案1.C【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【详解】A.−(+3)=−3,+(−3)=−3,相等,不是互为相反数,故本选项错误;B.+(−2)=−2,与−2相等,不是互为相反数,故本选项错误;C.+(−4)=−4,−(−4)=4,互为相反数,故本选项正确;D.−(−1)=1与1相等,不是互为相反数,故本选项错误.故选C.【点睛】此题考查相反数,解题关键在于掌握其定义.2.B【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【详解】解:①2222a a a +=,故①错误;②22232xy xy xy -=,故②错误;③32ab ab ab -=,故③正确;④322()17(3)---=-,故④正确,计算正确的有2个,故选:B .【点睛】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.3.A【分析】根据一元一次方程的定义,可得2m-3=1且m+2≠0;然后再解上述方程以及不等式,即可求得m的值.【详解】∵(m+2)x2m-3=5是关于x的一元一次方程,∴2m-3=1且m+2≠0,解得m=2.故选A.【点睛】此题考查一元一次方程的定义,解题关键在于掌握其定义.4.D【分析】根据角平分线的定义求出∠AOC,根据邻补角的定义求出∠BOC,根据角平分线的定义计算即可.【详解】∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°-∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=12∠BOC=20°,故选D.【点睛】本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.5.D【分析】直接利用单项式的次数与系数的定义分析得出答案.【详解】单项式﹣2435x yz的系数和次数分别为:﹣35,7.故选D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的确定方法是解题关键.6.C【分析】根据调查范围大小选择调查方式,逐项判断即可.【详解】A.调查北海市市民的吸烟情况,调查范围广,适合抽样调查,故A错误;B.调查北海市电视台某节目的收视率,调查范围广,适合抽样调查,故B错误;C.调查北海市某校某班学生对“创建卫生城市”的知晓率,调查范围小,适合普查,故C正确;D.调查北海市市民家庭日常生活支出情况,调查范围广,适合抽样调查,故D错误.故选:C.【点睛】本题主要考查了全面调查的选择,掌握全面调查的定义及全面调查方式的特点是解题的关键.7.C【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【详解】第一种情况:C点在线段AB上时,故AC=AB-BC=1cm;第二种情况:当C点在线段AB的延长线上时,AC=AB+BC=9cm,故选C.【点睛】本题考查两点间的距离,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.B【详解】680000000元=6.8×108元.故选:B.【点睛】考点:科学记数法—表示较大的数.9.C【分析】根据x年后小红年龄是爸爸年龄的14,列出方程即可.【详解】解:根据题意可得方程:15(32)4x x+=+,故选:C.【点睛】本题考查了一元一次方程的应用,读懂题意,理清数量关系是解本题的关键.10.A【分析】根据所给的图形可得,发现每多一张餐桌,就多4张椅子,以此类推,从而得出共有n张餐桌时,就有6+4(n−1)=4n+2张椅子,即可求解.【详解】解:根据题意得:1张餐桌时,是6张椅子,在6的基础上,每多一张餐桌,就多4张椅子.所以共有n张餐桌时,就有6+4(n−1)=4n+2,当n=20时,原式=4×20+2=82.故选:A【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.11.4【详解】∵关于x的方程3x﹣2a=7的解是5,∴3×5﹣2a=7,∴a=4.故答案为4.12.-4-1-3【分析】根据有理数减法法则逐个计算即可.【详解】解:∵0-4=-4,∴比0小4的数是:-4;∵3-4=-1,∴比3小4的数是:-1;∵-5-(-2)=-3,∴比-5小-2的数是:-3,故答案为-4,-1,-3.【点睛】本题考查了有理数的减法运算,熟知减去一个数,等于加上这个数的相反数是解题关键.13.15【分析】题意即为,5个数两两相乘积为最大值时,最大值是多少,这里我们知道正数>0>负数,所以我们只需要找到两两相乘为正且最大即可.【详解】因为正数>0>负数所以找到两两相乘为正且最大即可因为同号相乘得正所以有(-3)×(-5)=15,3×4=12,这两种情况即最大值为15故答案为15【点睛】本题解题关键,首先清楚正数>0>负数,然后再找乘积为正数的组合,最后找最大值.14.600【分析】先根据甲类书籍的数量及其所占百分比求出书籍的总数量、根据各部分所占百分比之和等于1求出丙类书籍的百分比,再用总数量乘以丙类书籍所占百分比即可得.【详解】解:∵书籍的总数为225÷15%=1500(本),丙类书籍所占百分比为1﹣15%﹣45%=40%,∴丙类书籍的数量为1500×40%=600(本),故答案为:600【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.60°【分析】首先根据补角的定义求得这个角的度数,然后根据余角的定义即可求出这个角的余角.【详解】解:∵一个角的补角是150°,∴这个角是180°−150°=30°,∴这个角的余角是90°−30°=60°.故答案是:60°.【点睛】此题主要考查的是补角和余角的定义,属于基础题,较简单,主要记住互为余角的两个角的和为90°;互为补角的两个角的和为180°.16.-2【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【详解】解:∵123m ab -与79m ab +是同类项,∴127m m -=+,∴2m =-,故答案为:-2.【点睛】本题主要考查了同类项中的字母求值,解题的关键在于能够熟练掌握同类项的定义.17.﹣5【分析】首先根据题意,可得:3⊗[(﹣x )=32﹣2×(﹣x )=9+2x ,所以2⊗[(9+2x )=6,所以22﹣2(9+2x )=6;然后根据解一元一次方程的方法,求出x 的值即可.【详解】解:∵a ⊗b =a 2﹣2b ,∴3⊗(﹣x)=32﹣2×(﹣x)=9+2x,∵2⊗[3⊗(﹣x)]=6,∴2*(9+2x)=6,∴22﹣2(9+2x)=6,去括号,可得:4﹣18﹣4x=6,移项,可得:﹣4x=6﹣4+18,合并同类项,可得:﹣4x=20,系数化为1,可得:x=﹣5.故答案为:﹣5.【点睛】此题主要考查新定义运算,列代数式与解方程,解题的关键是根据题意得到一元一次方程.18.15°【分析】根据角的平分线的定义求得∠AOC的度数,再根据各角之间的关系即可求解.【详解】∵OC平分∠AOB,∠AOB=50°,∴∠AOC=25°,∵∠AOE=10°∴∠COE=25°﹣10°=15°,故答案为15°【点睛】本题考查了角平分线的定义,利用角平分线的定义求得∠AOC的度数是解决问题的关键.19.(1)-16;(2)3 4.【分析】(1)原式先去括号,再根据有理数加减法法则计算即可;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可得到结果.【详解】(1)原式=13–26–21+18=31–47=–16;(2)原式=–1–14×(–7)=–1+74=34.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.2x y--,0【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可【详解】解:()122232x y x y ⎛⎫--- ⎪⎝⎭426x y x y=--+2x y =--,当1x =-,2y =时,原式()212220=-⨯--=-=.【点睛】本题主要考查了整式的化简求值,熟知相关计算法则是解题的关键.21.(1)x =2;(2)x=1【分析】(1)根据移项,合并,系数化为1的步骤解方程即可;(2)根据去分母,去括号,移项,合并,系数化为1的步骤解方程即可.(1)解:12212x x -=+移项得:12122x x -=+,合并得:332x =,系数化为1得:2x =;(2)解:2131510x x ++-=去分母得:()102213x x -+=+,去括号得:10423x x --=+,移项得:43102x x --=-+,合并得:55x -=-,系数化为1得:1x =.22.(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总的生产量是696辆,比原计划是减少了4辆【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】解:(1)7(10)17+--=(辆)所以生产量最多的一天比生产量最少的一天多生产17辆(2)1007(1)(3)(2)(4)(7)(5)(10)696⨯+-+++-+++++-+-=(辆)6967004-=(辆)所以本周总的生产量是696辆,比原计划是减少了4辆.【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.23.①OP=6cm;②AM=16cm或24cm.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【详解】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=287AB=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点睛】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.24.(1)40;(2)90°;(3)见解析.【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图.【详解】解:(1)18÷45%=40(人),故答案为:40;(2)360°×1040=90°,故答案为:90°;(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.25.(1)甲种商品40件,乙种商品80件;(2)超市共获利2000元.【分析】(1)购进甲种商品x 件,则乙种商品(120)-x 件,根据题意列方程求解即可;(2)用总售价减去总进价,即可求解.【详解】(1)设购进甲种商品x 件,则乙种商品(120)-x 件.根据题意列出方程()30701206800x x +-=.整理得:308400706800x x +-=401600x =解得:40x =1204080-=(件)答:甲种商品40件,乙种商品80件.(2)依题意列式500.8401000.98068002000⨯⨯+⨯⨯-=(元)答:超市共获利2000元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.26.(1)∠AOM =45°;(2)∠AOM =2∠NOC .理由见解析.【分析】(1)根据互余、互补、角平分线的意义,得出各个角之间的关系,从而求出答案;(2)设未知数,表示图中的各个角,再利用互补得出结论.【详解】解:(1)2BON NOC ∠=∠ ,OC 平分MOB ∠,3MOC BOC NOC ∴∠=∠=∠,90MOC NOC MON ∠+∠=∠=︒ ,390NOC NOC ∴∠+∠=︒,490NOC ∴∠=︒,245BON NOC ∴∠=∠=︒,180180904545AOM MON BON ∴∠=︒-∠-∠=︒-︒-︒=︒;(2)2AOM NOC ∠=∠.令NOC ∠为α,AOM ∠为β,90MOC α∠=︒-,180AOM MOC BOC ∠+∠+∠=︒ ,9090180βαα∴+︒-+︒-=︒,20βα∴-=,即2βα=,2AOM NOC ∴∠=∠.。

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.2021-的绝对值是()A .2021B .12021C .2021-D .2021±2.方程62x x -+=的解为()A .6x =B .4x =C .2x =D .0x =3.下图中的几何体是棱柱的是()A .B .C .D .4.下列说法正确的是()A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线5.下列各组中是同类项的是()A .x 与yB .4ab 与4abcC .3mn 与﹣3mnD .2x 2y 与2xy 26.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为()A .518=2(106+x )B .518﹣x=2×106C .518﹣x=2(106+x )D .518+x=2(106﹣x )7.某市出租车收费标准为:起步价8元,3千米后超过部分每千米a 元,李老师乘车()3x x >千米,应付费()A .[8(3)]a x +-元B .(8)a x +元C .(8)ax +元D .(8)ax -元8.有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是()A .0a b -<<B .0a b <-<C .0b a<<-D .0b a <-<9.设P =2y -2,Q =2y +3,且3P -Q =1,则y 的值是()A .0.4B .2.5C .-0.4D .-2.510.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周长是()A .2m+6B .4m+12C .2m+3D .m+6二、填空题11.如果向东走5km ,记作m 5k +,那么向西走3km 表示为_____km .12.某船顺流航行的速度为20km/h ,逆流航行的速度为16km/h ,则水流的速度为___________km/h13.已知2|1|(8)0a b ++-=,则a b -=_______.14.已知代数式2346x x -+的值为9,则代数式2463x x -+的值为___________.15.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.16.如图,把长方形的一角折叠,得到折痕EF ,已知35EFB ∠=°,则BFC ∠=______度.17.今年是2021年,兄妹两人的年龄分别是16岁和5岁,那么当哥哥的年龄是妹妹的年龄的2倍时,应是_________年.18.如下表,从左到右在每一个小格子中填入一个整数,使得其中任意三个相邻格子所填整数之和都相等3a b c 2-…那么c =______,第2021个数是________.三、解答题19.计算:(1)(25.3)(7.3)(13.7)7.3-+-+-+(2)2108(2)(4)(3)-+÷---⨯-20.解方程:(1)3x -7(x -1)=3-2(x+3)(2)5731164x x --+=21.先化简,再求值:5xy ﹣(2x 2﹣xy )+2(x 2+3),其中x =1,y =﹣2.22.根据下列语句画图、计算:(1)作线段AB ,在AB 的延长线上取点C ,使2BC AB =,M 是AC 的中点;(2)若5cm AB =,求BM 的长.23.李明同学在解关于x 的方程21133x x a -+=-,去分母时,方程右边的1-没有乘以3,因而求得方程的解为2x =,试求a 的值.24.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度.(2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.25.如图,P 是线段AB 上任一点,AB=12cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为2cm/s ,D 点的运动速度为3cm/s ,运动的时间为ts .(1)若AP=8cm ,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明AC=2CD ;(2)如果t=2s 时,CD=1cm ,试探索AP 的值.26.超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?27.如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线.(1)如图①,当AOB ∠是直角,60BOC ∠=︒时,则MON ∠=___________(2)如图②,当AOB α∠=,60BOC ∠=︒时,猜想MON ∠与α的数量关系,并说明理由.(3)如图③,当AOB α∠=,BOC β∠=时,猜想:MON ∠与α、β有数量关系吗?如果有,指出结论并说明理由.参考答案1.A【分析】根据绝对值的定义即可求解.【详解】2021-的绝对值是2021故选A .【点睛】此题主要考查绝对值的求解,解题的关键是熟知绝对值的定义与性质.2.C【分析】对62x x -+=移项得到62x x =+,再合并同类项系数化为1得到2x =.【详解】62x x-+=移项得到62x x=+合并同类项得到63x=系数化为1得到2x =,故选择C.【点睛】本题考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.3.D【分析】根据棱柱的定义逐一进行判断即可得.【详解】A 、是球体,不符合题意;B 、是圆柱,不符合题意;C 、是圆锥,不符合题意;D 、是三棱柱,符合题意,故选D.【点睛】本题考查了棱柱,棱柱有两个互相平行的平面,其余各面为平行四边形的多面体,熟练掌握棱柱的定义以及常见几何体的特征是解题的关键.4.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.5.C【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【详解】A、字母不同,不是同类项,故A错误;B、字母不同,不是同类项,故B错误;C、字母项且相同字母的指数也相同,是同类项,故C正确;D、相同字母的指数不同,不是同类项,故D错误.故选C.6.C【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【详解】设从甲煤场运煤x吨到乙煤场,根据题意可得:518﹣x=2(106+x),故选:C.【点睛】本题考查由实际问题抽象出一元一次方程,正确得出等量关系是解题关键.7.A【分析】这是一道费用问题,我们只要用基本费用(起步价)+超出费用即可列式,超出费用等于超出3千米的路程乘以单价即可.【详解】解:由题意知:李老师超过3千米的路程为(x-3)千米,所以超出部分费用为a(x-3),所以李老师的总费用为[8+a(x-3)]元.故选:A.【点睛】此题主要考查了用代数式表示费用问题,准确把握题中数量关系是解题的关键,注意计费中不要重复计费,避免出现(8+ax)元的错误.8.B【分析】根据数轴确定a,b的符号和绝对值的大小,根据有理数的大小比较法则解答.【详解】解:由数轴可知,a<0<b,|a|<|b|,∴0<−a<b,故选:B.【点睛】本题考查的是数轴的概念,有理数的大小比较,根据数轴的概念正确判断有理数的大小是解题的关键.9.B【分析】把P 和Q 的值代入31P Q -=,得出关于y 的方程,求出方程的解即可.【详解】解:22P y =- ,23Q y =+,31P Q -=,∴代入得:3(22)(23)1y y --+=,66231y y ---=,410y =,2.5y =.故选:B .【点睛】本题考查了解一元一次方程和等式的性质,解题的关键是掌握等式的性质解方程的能力,题目比较好,难度不大.10.B【分析】依据操作的过程可知,矩形的另一边长是(m +3)+m=2m+3,由此解答即可.【详解】解:根据题意得,长方形的长为2m+3,宽为3,∴周长=2(2m+3+3)=4m+12.故选B .【点睛】本题考查整式的加减,解答的关键是读懂题意,看懂图形.11.-3【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,如果向东走5km 表示+5km ,那么向西走3km 记作-3km .故答案为:-3.12.2【分析】根据顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度列方程求解.【详解】设水流的速度为xkm/h ,依题意得2x=20−16,解得,x=2.故答案为2.13.-9【分析】直接利用非负数的性质得出a ,b 的值,进而得出答案.【详解】解:∵2|1|(8)0a b ++-=,∴a+1=0,8-b=0,解得:a=-1,b=8,故a-b=-1-8=-9.故答案为:-9.14.7【详解】由题意可得2346x x -+=9,根据等式的基本性质可得2413x x -=,代入得2463x x -+=1+6=7.故答案为715.240【分析】设这种商品的标价是x 元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】解:设这种商品的标价是x 元,90%x-180=180×20%x=240这种商品的标价是240元.故答案为:240.16.110.【分析】如图,由对折先求解,BFN ∠再利用邻补角的含义可得答案.【详解】解:如图,标注字母,35EFB ∠=°由折叠可得:223570BFN BFE ∠=∠=⨯︒=︒,180********.BFC BFN ∴∠=︒-∠=︒-︒=︒故答案为:110.【点睛】本题考查的是折叠问题,邻补角的含义,掌握以上知识是解题的关键.17.2027【分析】可以设n年后,哥哥的年龄是妹妹年龄的2倍,则n年后哥的年龄为16+n,妹妹的年龄为5+n,根据2倍关系可得到方程,求方程的解即可得解.【详解】解:设n年后,哥哥的年龄是妹妹年龄的2倍,根据题意得:16+n=2(5+n),解得:n=6,则2027年时,哥哥的年龄是妹妹年龄的2倍.故答案为:2027.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.3-2【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,然后找出格子中的数每3个为一个循环组依次循环,再用2021除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴3+a+b=a+b+c,解得c=3,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为3、-2、b、3、-2、b,第9个数与第三个数相同,即b=2,所以,每3个数“3、-2、b”为一个循环组依次循环,∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-2.故答案为:3,-2.【点睛】本题是对数字变化规律的考查,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.-19.(1)39-(2)20【分析】(1)根据加法交换律和结合律简便计算;(2)先算乘方,再算乘除,最后算减法.(1)解:(25.3)(7.3)(13.7)7.3-+-+-+=25.37.313.77.3---+=()25.313.77.37.3-++-=39-;(2)2108(2)(4)(3)-+÷---⨯-=108443-+÷-⨯=10212-+-=20-【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(1)5;x =(2) 1.x =-【详解】试题分析:(1)对方程去括号、移项、合并同类项、未知数系数化为1即可求出方程的解;(2)对方程去分母、去括号、移项、合并同类项、未知数系数化为1即可求出方程的解.试题解析:(1)377326,x x x -+=--372367,x x x -+=--210,5;x x -=-=(2)2(57)123(31),x x -+=-10141293,x x -+=-10931412,x x -=-+-1.x ∴=-考点:一元一次方程的解法.21.﹣6.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=5xy﹣2x2+xy+2x2+6=6xy+6,当x=1,y=﹣2时,原式=﹣12+6=﹣6.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.(1)见解析(2)52 cm【分析】(1)根据题目中的几何语言画出对应的几何图形;(2)先求出BC,根据M是AC的中点求出AM,减去AB即可得到BM.(1)解:如图,(2)∵BC=2AB,∴BC=2×5=10cm,∴AC=AB+BC=15cm,∵M是AC的中点,∴AM=CM=12AC=152cm,∴BM=AM-AB=152-5=52cm,即BM的长为52 cm.23.2【分析】先按此方法去分母,再将x=2代入方程,求得a的值.【详解】解:按此方法去分母,得2x-1=x+a-1,把x=2代入,得4-1=2+a-1,解得a=2.【点睛】本题主要考查的是一元一次方程的解,明确x=2是方程2x-1=x+a-1的解是解题的关键.24.(1)1个单位/秒(2)4秒和20秒(3)43个单位/秒【分析】(1)根据速度=路程÷时间,即可解决问题;(2)由OA+OB 大于8个单位长度,分两种情况,一种B 在右侧,一种A 点在右侧,再根据时间=路程÷速度,即可解决问题;(3)要想始终保持CA=2CB ,则C 点的速度应介于A 、B 两者之间,设出C 点速度为x 个单位/秒,联立方程,解方程即可得出结论.(1)解:B 点的运动速度为:8422OA OB ÷=÷=1个单位/秒.(2)∵OA+OB=8+4=12>8,且A 点运动速度大于B 点的速度,∴分两种情况,①当点B 在点A 的右侧时,运动时间为1281821OA OB -+-=-=4秒.②当点A 在点B 的右侧时,运动时间为1281821OA OB +++=-=20秒,综合①②得,4秒和20秒时,两点相距都是8个单位长度;(3)设点C 的运动速度为x 个单位/秒,运动时间为t ,根据题意得知8+(2-x )×t=[4+(x-1)×t]×2,整理,得2-x=2x-2,解得x=43,故C 点的运动速度为43个单位/秒.25.(1)①3CD cm =,②理由见解析;(2)AP=9cm 或11cm .【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DB 即可求出答案.②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)当t=2时,求出CP 、DB 的长度,由于没有说明D 点在C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB-AP=4cm∴CD=CP+PB-DB=2+4-3=3cm②由题意可知:CP=2t,BD=3t∴AC=8-2t,DP=4-3t,∴CD=DP+CP=2t+4-3t=4-t,∴AC=2CD(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm当点D在C的右边时∵CD=1cm∴CB=CD+DB=7cm∴AC=AB-CB=5cm∴AP=AC+CP=9cm当点D在C的左边时∴AD=AB-DB=6cm∴AP=AD+CD+CP=11cm综上所述,AP=9cm或11cm26.(1)不足5.5千克;(2)194.5千克;(3)58.35元【分析】(1)将1.5,-3,2,-0.5,1,-2,-2,-2.5相加即可得出答案;(2)先求出8筐白菜的标准质量的和,再加上第(1)问中的计算结果即可;(3)分别求出白菜原计划和实际所卖的钱数,然后作差即可.【详解】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.27.(1)45°(2)∠MON=12α,理由见解析(3)∠MON=12α,与β的大小无关,理由见解析【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可.(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°∴∠MON=∠MOC-∠NOC=45°.故答案为:45°;(2)∠MON=12α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30°∴∠MON=∠MOC-∠NOC=(12α+30°)-30°=12α.(3)∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC-∠NOC=12(α+β)-12β=12α,即∠MON=12α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末试卷
姓名 班级
一、精心选一选:(每小题3分,共24分)
1、下列各组中两个式子的值相等的是( )
A. 23与23-
B. 2)2(-与22-
C. |2|-与|2|+-
D. 3)2(-与32-
2、若0,0>>+ab b a ,则( )
A .0,0>>b a
B .0,0<>b a
C .0,0><b a
D 0,0<<b a
3、解方程44
31212-=+--x x 时,去分母后得到的方程正确的是( ) A.16)31()12(2-=+--x x B.1)31()12(2-=+--x x
C.4)31()12(2-=+--x x
D.431)12(2-=+--x x
4、记录一个人的体温变化情况,最好选用( )
A.扇形统计图
B. 条形统计图
C.折线统计图
D.统计表
5、下面的说法正确的是( )
A .2-不是单项式
B .a -表示负数
C .35
ab 的系数是3 D .1a x x ++不是多项式 6、已知()0232=++-n m ,则2m n -的值是( )
A .-8
B .4
C .8
D .-4
7、若︒+︒=∠︒-︒=∠m m 90,90βα,则∠α与∠β的关系是( )
A 、互补
B 、互余
C 、和为钝角
D 、和为周角
8、用一根长80 cm 的绳子围成一个长方形,且长方形的长比宽多10 cm ,则这个长方形的面积是 ( )
A 、252cm
B 、452cm
C 、375 2cm
D 、15752cm
二、细心填一填:(每小题3分,共24分)
9、若n m 2-与y x n m 是同类项,则=+y x .
10、关于x 的方程==--a x a ,那么的解是204)1(
11、、要在墙上固定一根木条,至少要有两个钉子,根据的原理是 ;
12、5-的相反数是_________;
13、已知α∠与β∠互余,且40α=∠51',则β∠为 ;
14、校园内刚栽下一棵1.5米高的小树苗,以后每年长0.2米,则n 年后树苗 的高度为 米。

(用含n 的代数式表示)
15、观察下列有规律的数,并根据此规律写出第五个数
错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,________,错误!未找到引用源。

,…
16、为了调查电视机的使用寿命,从一批电视机中抽取20台进行测试,这个问题中,样本是____________________,样本容量是________。

三、(本大题共52分)用心做一做:
17、(本题4分)计算:)(2
113)2(2224-÷----
18、(本题4分)计算: )(60
1)54433221(-÷-+-
19、先化简,再求值(本题6分)
(-3x 2-4y )-2(2x 2-5y+6)+(x 2-5y-1) 其中 x=-3 ,y=-1
20、解方程:(每小题3分,共6分)
(1) 10)2(35=--x x (2)122312=+--x x
21、(本题6分)如图,已知CB =4,DB =7,D 是AC 的中点,求AC 的长度。

22、如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线(8分)
(1)、如果∠BOD=90°,∠AOD=40°那么∠COE 是多少度?
(2)、若∠AOB=120°,你能求出∠COE 是多少度吗?
A B C D
23、(8分)某班课外活动小组,就本班同学的上学方式进行了一次调查统计,图甲和图乙是他们通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)在扇形统计图中,计算“步行”部分所对应的百分比。

(2)求该班共有多少学生?
(3)在条形统计图中,将表示“乘车”的部分补充完整。

24、希望中学组织七年级学生春游,如果单独租用45座客车若干辆,刚好坐满, 如果单独租用60座客车,可少租一辆,且余15个座位。

(1)、求参加春游人数;
(2)、已知租用45座的客车每日租金为每辆250元,60座客车每日租金为每辆300元. 若只租一种客车,问租用哪种车更合算?(每小题5分,共10分) 骑车50%
乘车20% 步行 骑车 乘车 步行 上学方式
25
15
5。

相关文档
最新文档