导数的几何意义-教案(详案)

合集下载

导数的概念及其几何意义教案

导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。

在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。

2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。

导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。

二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。

对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。

通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。

2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。

对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。

通过导数,我们可以更直观地理解函数的整体形态和特性。

三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。

通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。

2. 导数与积分的关系在微积分中,导数和积分是密切相关的。

导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。

导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。

结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。

通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。

导数几何意义教学设计

导数几何意义教学设计

导数的几何意义教学设计导数的几何意义一、 教材分析:本节课是在学生学习了平均变化率、瞬时变化率,以及用极限定义导数的基础上,进一步从几何意义上理解导数的含义与价值. 导数的几何意义的学习为常见函数导数的计算、导数的应用奠定了基础. 因此,导数的几何意义有着承前启后的作用,是本节的重要概念.根据上述教材分析,制定了如下教学目标和重点难点.二、教学目标知识与技能:通过观察探究,理解导数的几何意义;体会导数在刻画函数性质中的作用;过程与方法:培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法.情感态度与价值观:渗透逼近和以直代曲思想,激发学生学习兴趣,培养学生不断发现、探索新知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力.教学重点:导数的几何意义.教学难点:发现和理解导数的几何意义;运用导数的几何意义解决实际问题.三、教法分析1.学情分析:从知识上看,学生通过学习平均变化率,特别是函数的瞬时变化率及导数的概念,对导数概念有一定的理解与认识,也在思考导数的另外一种体现方式——形,学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的了解与认识.从学习能力上看,经过一年多的学习实践,学生掌握了一定的探究问题的经验,具备了一定的想象能力和研究问题的能力.2.教法分析:“教有法而教无定法”只有方法得当才会有效. 根据新课标的“自主——合作——探究”的教学要求,本节课将采用开放式探究、启发式引导、小组合作讨论、反馈式评价等教学方法. 采用“问题驱动”的教学模式,增强课堂的时效性.3.教学手段:由于本节课几何特点强,采用多媒体辅助教学,为学生提供直观感性的材料,激发学生的学习兴趣.四、学法指导“授人以鱼,不如授人以渔”最有价值的知识是关于方法的知识,学生作为教学活动的主体. 在学习过程中的参与度是影响教学效果最重要的因素. 在学法上,主要采用:自主探究、观察发现、合作交流、归纳总结的学习方法.五、教学过程为了打造和谐高效课堂,这节课采用了我校推行的五环节教学法. 如图所示,为本节课的教学过程和结构设计.第一个环节,创设情境,导入新课首先,通过3个问题作为引入和切入点. 问题是数学的灵魂,提出问题,解决问题,能够激发学生探究新知的欲望,变被动学习为主动探究. 设计意图是:通过类比,构建认知冲突. 接着提问学生,复习回顾,求()0'x f 的步骤. 设计意图:从“数”的角度描述导数,为探求导数的几何意义做好准备.第二个环节,自主探究,合作学习要研究导数的几何意义,就要结合导数的概念,探究△x →0时图像的变化情况.所以第二个环节是组织学生带着需要探究的问题,小组探究,合作交流.观察下面的动画,通过flash 动画,从数和形两个角度生动形象展示,使学生感受到由割线到切线的变化过程,消除学生对极限的神秘感.通过小组合作讨论,启发引导学生回答,探究1:平均变化率表示割线的斜率.探究2:让学生分别从“数”和“形”的角度描述△x →0的变化过程,引导出一般曲线的切线定义.同时给出探究3:引入问题的合理解释.强化切线的真实直观本质.探究4:从上述过程中引导学生概括出()0'x f 的几何意义,即切线PT 的斜率. 设计意图:借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点,突出重点.学生在探究过程中,可以体会逼近的思想方法,能够同时从数与形两个角度强化学生对导数概念的理解.第三个环节,成果展示,汇报交流在小组合作讨论之后,进入第三个环节,以学习小组为单位,展示探究成果. 通过板演问答,给出切线的定义和导数的几何意义. 师生合作共同对这两个知识点进行理解、分析、阐述.适时引导、讨论,即时评价. 通过师生互动,实现提出问题,解决问题的能力提升. 同时介绍微积分中重要思想方法——以直代曲.在前面的讨论交流过程中,意识到学生对切线的概念还有一些模糊,为此特地设计了下面的思考题,让学生根据切线的概念讨论y=x 3在0x =0处的切线是否存在. 从形的角度,发现它的位置. 转而思考,从数的角度,如何求解这条切线方程,需要哪些条件?引出了几何意义中最常见的题型,求切线方程,恰到好处的实现由形到数的自然过渡. 进入第四环节.第四个环节,归纳总结,提升拓展通过例1.发现求切线方程的条件是切线的斜率和一个点的坐标,引导学生自主归纳总结解题步骤. 通过例2让学生动手练习,巩固做题步骤,突出导数几何意义的应用这一难点.关于求切线方程问题有一个常见的易错点——“曲线在P 点处的切线”与“曲线过点P 处的切线”的区别,为了解决这个问题,要求学生合作交流,积极探索,结合课件的动画展示,共同发现,找出本质区别. 在P 点处的切线,P 一定是切点,直接由例1总结方法求解. 过P 点的切线,分点P 在曲线上和点P 不在曲线上.点P 不在曲线上,就一定不是切点. 点P 在曲线上,也未必就是切点.因此解决这类问题的关键就是设出切点. 利用切点处的导数值等于点P 与切点共同确定的切线斜率.来求出切点坐标,从而得到切线方程. 进一步突出了导数的几何意义这一重点.通过例3对探究成果,实战演练,并引导学生归纳总结,求曲线过点P 的切线方程的分析思路,轻松解决易错点,强化这节课的重点.第五个环节,反馈练习,巩固落实为了掌握和巩固知识的多样化、多元化,提高学生的解题能力和应变技巧,最后一环节设计了4道反馈练习.当堂完成,即时点评纠错,使教学更有针对性,同时提高了教学效率.借着高涨的学习气氛,对本节课的内容进行总结反思.采取一名同学总结,其他同学补充,教师完善的方式进行. 最后布置作业,专题专练. 以下是板书设计和时间安排. 六、评价与感悟本节课设计为一节“科学探究——合作学习”的活动课,在整个教学过程中,学生以研究者的身份学习,在问题解决的过程中,通过自身的体验,对知识的认识从模糊到清晰,从直观感悟到精确掌握.力求使学生体会微积分的基本思想,感受近似与精确的统一,运动与静止的统一,感受量变到质变的转化. 教师在这个过程中始终扮演学生学习的协助者和指导者. 学生通过自身的情感体验,能够很快的形成知识结构,转化为数学能力.。

导数的几何意义优秀公开课教案(后附教学反思)

导数的几何意义优秀公开课教案(后附教学反思)

导数的几何意义教案一、【教学目标】 1.知识与技能目标:(1)使学生掌握函数)(x f 在0x x =处的导数()0/x f 的几何意义就是函数)(x f 的图像在0x x =处的切线的斜率。

(数形结合),即:()()xx f x x f x f x ∆-∆+=→∆)(lim0000/=切线的斜率(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。

2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。

3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。

培养学生学数学,用数学的意识。

【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。

【课型】探究课【教学重点与难点】重点:导数的几何意义及“数形结合,以直代曲”的思想方法。

难点:发现、理解及应用导数的几何意义 二、【教学过程】(一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。

(承上启下,自然过渡)。

师:导数的本质是什么?写出它的表达式。

(一位学生板书),其他学生在“学案”中写:导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即:()()xx f x x f x f x ∆-∆+=→∆)(lim0000/(注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意义奠定基础)师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角度来探究导数的几何意义(板书课题),应从哪儿入手呢? (教师引导学生:数形结合是重要的思想方法。

要研究“形”,自然要结合“数”) 生1:研究导数的代数表达式。

导数的几何意义教案及说明

导数的几何意义教案及说明

导数的几何意义教案及说明教案章节:一、导数的定义;二、导数的计算;三、导数的应用;四、导数与曲线的切线;五、导数与函数的单调性一、导数的定义1. 教学目标:理解导数的定义,掌握导数的几何意义。

2. 教学内容:引入导数的概念,解释导数的几何意义,举例说明导数表示曲线的切线斜率。

3. 教学步骤:a. 引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

b. 解释导数的几何意义,即导数表示曲线的切线斜率。

c. 举例说明导数表示曲线的切线斜率,通过图形演示导数的变化。

4. 教学练习:a. 练习计算函数在某一点的导数。

b. 练习根据导数的几何意义,确定曲线的切线斜率。

二、导数的计算1. 教学目标:掌握导数的计算方法,能够计算常见函数的导数。

2. 教学内容:介绍导数的计算方法,包括常数函数、幂函数、指数函数、对数函数的导数。

3. 教学步骤:a. 介绍导数的计算方法,包括常数函数的导数为0,幂函数的导数按幂次降次,指数函数的导数为自身,对数函数的导数为1/x。

b. 举例说明常见函数的导数计算,包括正弦函数、余弦函数、绝对值函数等。

4. 教学练习:a. 练习计算常见函数的导数。

b. 练习根据导数的计算结果,分析函数的单调性。

三、导数的应用1. 教学目标:理解导数在实际问题中的应用,掌握导数的基本应用方法。

2. 教学内容:介绍导数在实际问题中的应用,包括速度、加速度、优化问题等。

3. 教学步骤:a. 介绍导数在速度和加速度中的应用,解释速度是位置关于时间的导数,加速度是速度关于时间的导数。

b. 举例说明导数在优化问题中的应用,通过导数找到函数的最大值和最小值。

4. 教学练习:a. 练习根据导数计算速度和加速度。

b. 练习使用导数解决优化问题。

四、导数与曲线的切线1. 教学目标:理解导数与曲线的切线的关系,掌握求解切线方程的方法。

2. 教学内容:解释导数与曲线的切线的关系,介绍求解切线方程的方法。

3. 教学步骤:a. 解释导数与曲线的切线的关系,即导数表示曲线的切线斜率。

导数的几何意义教案及说明

导数的几何意义教案及说明

导数的几何意义教案及说明一、教学目标1. 理解导数的定义和几何意义2. 掌握导数的计算方法3. 能够运用导数解决实际问题二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法2. 难点:导数的计算方法和在实际问题中的应用四、教学方法1. 采用问题驱动法,引导学生主动探究导数的定义和几何意义2. 通过图形演示和实例分析,帮助学生理解导数的概念和应用3. 利用练习题和实践项目,巩固学生的理解和应用能力五、教学准备1. 教学PPT或黑板2. 导数的定义和几何意义的讲解材料3. 练习题和实践项目教案说明:本教案旨在帮助学生理解和掌握导数的定义、几何意义和计算方法,并能够运用导数解决实际问题。

通过问题驱动法和图形演示,引导学生主动探究导数的概念,并通过练习题和实践项目巩固学生的理解和应用能力。

六、教学过程1. 引入:通过回顾函数的图像,引导学生思考函数在某一点的切线斜率与函数值的变化关系。

2. 导数的定义:解释导数的定义,即函数在某一点的导数是其切线斜率。

引导学生通过图形演示和实例分析来理解导数的几何意义。

3. 导数的计算方法:介绍导数的计算方法,包括基本的求导法则和导数的运算法则。

通过示例和练习题,让学生掌握求导的方法和技巧。

4. 导数在实际问题中的应用:通过实际问题实例,展示导数在解决实际问题中的应用,如运动物体的速度和加速度、函数的极值和最大值等。

七、练习与巩固1. 针对本节课的内容,设计一些相关的练习题,包括选择题、填空题和解答题,以巩固学生对导数的定义和计算方法的理解。

2. 组织学生进行小组讨论和合作,共同解决练习题,促进学生之间的交流和互助。

八、拓展与延伸1. 引导学生思考导数的其他几何意义,如切线与曲线的切点处的切线斜率、曲线的凹凸性等。

2. 引入高阶导数的概念,即函数的导数的导数,解释其几何意义和应用。

导数的几何意义教案70278

导数的几何意义教案70278

导数的几何意义教案70278教案:导数的几何意义一、教学目标:了解导数的几何意义;掌握导数的定义;理解导数与函数的变化率的关系;能够利用导数解决几何问题。

二、教学内容:1.导数的定义2.导数与函数的变化率的关系3.几何问题中的导数应用三、教学过程:第一步:导入导数的概念(10分钟)1.引导学生回顾函数的变化率及其意义。

2.提问:在几何中,如何计算图像的切线的斜率呢?第二步:导数的定义(20分钟)1.引导学生观察并思考曲线上其中一点的切线问题。

2.引导学生找到切线的斜率与函数的变化率之间的关系。

3.引导学生运用极限的思想,得出导数的定义。

4.指导学生通过求导的方法计算导数,并讲解求导法则。

第三步:导数与函数的变化率的关系(30分钟)1.引导学生观察并思考函数的导数与函数的变化率之间的关系。

2.引导学生发现当函数的导数为正时,函数递增;当导数为负时,函数递减;当导数为零时,函数取极值。

3.结合具体函数的图像,让学生理解导数与函数的变化率之间的关系。

第四步:几何问题中的导数应用(30分钟)1.通过具体实例,引导学生利用导数解决几何问题,如判断曲线上其中一点的凹凸性,求切线与曲线的交点等。

2.引导学生使用导数求解极值问题,并指导他们如何判别极值的种类。

3.给予学生充分的练习时间,并进行评价和讨论。

四、教学资源:PPT课件、练习题五、教学评价:1.教师观察学生的学习状态,及时给予指导和帮助。

2.利用课堂讨论、小组合作等形式,促进学生的主动学习和思考。

3.针对学生练习题的答案和思路,进行评价和反馈。

六、教学反思:本节课通过引导学生观察和思考,使他们逐步理解导数的定义和几何意义,并能够应用导数解决几何问题。

但是,在给予学生练习的过程中,遇到了一些学生理解困难的情况,导致课堂进展较慢。

因此,在今后的教学中,可以设置更多的例题和练习,帮助学生深入理解导数的几何意义,提高他们的应用能力。

导数的几何意义教案

导数的几何意义教案

导数的几何意义教案导数的几何意义精选教案学习目标掌握切线斜率由割线斜率的无限逼近而得,掌握切线斜率的求法学习重点(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率.学习难点(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率.学法指导探析归纳,讲练结合学习过程一自主学习1.情境:设是曲线上的一点,将点附近的曲线放大、再放大,则点附近将逼近一条确定的直线.2.问题:怎样找到在曲线上的一点处最逼曲线的直线呢?如上图直线为经过曲线上一点的两条直线.(1)判断哪一条直线在点附近更加逼近曲线.(2)在点附近能作出一条比更加逼近曲线的`直线吗?(3)在点附近能作出一条比更加逼近曲线的直线吗?3.归纳(1).割线及其斜率:连结曲线上的两点的直线叫曲线的割线,设曲线上的一点,过点的一条割线交曲线于另一点,则割线的斜率为.(2).切线的定义:随着点沿着曲线向点运动,割线在点附近越来越逼近曲线。

当点无限逼近点时,直线最终就成为在点处最逼近曲线的直线,这条直线也称为曲线在点处的切线;(3).切线的斜率:当点沿着曲线向点运动,并无限靠近点时,割线逼近点处的切线,从而割线的斜率逼近切线的斜率,即当无限趋近于时,无限趋近于点处的切线的斜率.二师生互动例1.已知曲线,(1)判断曲线在点处是否有切线,如果有,求切线的斜率,然后写出切线的方程.(2)求曲线在处的切线斜率。

分析:(1)若是曲线上点附近的一点,当沿着曲线无限接近点时,割线的斜率是否无限接近于一个常数.若有,则这个常数是曲线在点处的切线的斜率;(2)为求得过点的切线斜率,我们从经过点的任意一点直线(割线)入手。

例2.已知,求曲线在处的切线的斜率.分析:为了求过点的切线的斜率,要从经过点的任意一条割线入手.例3.已知曲线方程,求曲线在处的切线方程.三、自我检测练习第 1,2,3题;习题2-2A组中第 3题四、课堂反思1、这节课我们学到哪些知识?学到什么新的方法?2、你觉得哪些知识,哪些知识还需要课后继续加深理解?五、拓展提高1、补充:判断曲线在点处是否有切线?如果有,求出切线的方程.2、习题2-2中B组 1、2。

《导数的几何意义》教学设计完美版精选全文

《导数的几何意义》教学设计完美版精选全文

可编辑修改精选全文完整版《导数的几何意义》教学设计海口市琼山中学郭小兰教材:人教A版选修2-2教学目标:1、知识与技能 :理解导数的几何意义;2、过程与方法:经历导数几何意义的学习过程,体会用导数的几何意义分析图象上点的变化情况的方法。

3、情感态度与价值观:体会导数与曲线的联系,初步认识数学的科学价值,发展理性思维能力。

教学重点:理解导数的几何意义;教学难点:理解函数的导数就是在某点处的切线的斜率。

教具准备:多媒体课件,三角板。

教学过程:一、引入新课师:在前面的学习中,我们知道函数y=f(x)在x=x0处的导数就是函数y=f(x)在x=x0处的瞬时变化率,这是导数的物理意义,那么导数的几何意义是什么呢?我们本节课就来学习导数的几何意义。

二.讲授新课教师引导学生观察右图,回答下面问题:师:初中平面几何中我们是如何定义圆的切线和割线的?有两个交点时,直线是圆的割线。

师补充说明1.圆的切线在点P附近位于圆的一侧(为一般曲线的切线做准备);2.当点P n趋近于点P时,圆的割线PP n趋近于圆的切线PT。

当点P n与点P重合时,割线变成了切线。

师:对于一般曲线的切线和割线,它们又具有怎样的位置关系呢?探究一:观察一般曲线y =f (x )割线的变化趋势,教师引导学生给出一般曲线的切线定义。

师:过一般曲线上任一点P ,我们可以在点P 附近类似圆的切线做一条直线PT ,使得直线在点P师:同样的,我们可以在曲线上找另一 点P n ,连接PP n ,易知PP n 是曲线在点 P 处的割线。

师:我们发现,当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 叫做曲线在点P探究二:割线n PP 的斜率n k 与切线PT 师:我们首先来看这样一个问题:你能借助图象说说割线PP n 的斜率是多少吗? 生:平均变化率xx f x x f ∆-∆+)()(00。

师继续引导学生发现并说出:当0→∆x 时,割线PP n →切线PT ,所以割线PP n 的斜率→切线PT 的斜率。

导数的几何意义教案(后附教学反思

导数的几何意义教案(后附教学反思

导数的几何意义教案(后附教学反思)一、教学目标1. 让学生理解导数的定义,掌握导数的几何意义。

2. 能够运用导数求解曲线的切线斜率。

3. 培养学生的逻辑思维能力和空间想象能力。

二、教学内容1. 导数的定义2. 导数的几何意义3. 导数与切线斜率的关系4. 求解曲线的切线斜率5. 应用实例三、教学重点与难点1. 重点:导数的定义,导数的几何意义,求解曲线的切线斜率。

2. 难点:导数的几何意义的理解,求解曲线的切线斜率的应用。

四、教学方法1. 采用讲解法、问答法、案例分析法、互动讨论法等。

2. 通过图形演示、实例分析,引导学生直观理解导数的几何意义。

3. 以学生为主体,鼓励学生主动探究、积极参与,培养学生的动手能力和思考能力。

五、教学过程1. 导入:回顾初中阶段学习的函数图像,引导学生思考如何描述曲线的变化率。

2. 讲解导数的定义:引入极限的概念,讲解导数的定义,强调导数表示的是函数在某一点的瞬时变化率。

3. 导数的几何意义:通过图形演示,解释导数表示的是曲线在某一点的切线斜率。

引导学生直观理解导数的几何意义。

4. 导数与切线斜率的关系:讲解导数与切线斜率的关系,引导学生掌握求解曲线的切线斜率的方法。

5. 应用实例:分析实际问题,运用导数求解曲线的切线斜率,巩固所学知识。

6. 课堂练习:布置练习题,让学生巩固导数的几何意义及求解切线斜率的方法。

7. 总结:对本节课的内容进行总结,强调导数的几何意义及求解切线斜率的方法。

8. 布置作业:布置课后作业,巩固所学知识。

教学反思:1. 讲解导数的定义时,要注重极限思想的理解,引导学生明白导数表示的是函数在某一点的瞬时变化率。

2. 通过图形演示,让学生直观地理解导数的几何意义,强化空间想象能力。

3. 结合实际问题,让学生学会运用导数求解曲线的切线斜率,提高学生的应用能力。

4. 课堂练习环节,要注意引导学生主动思考,培养学生的解决问题能力。

5. 教学过程中,关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够扎实掌握所学知识。

《导数的几何意义》优秀教学设计 比赛课优秀教案(公开课教案)

《导数的几何意义》优秀教学设计  比赛课优秀教案(公开课教案)

《导数的几何意义》教学设计教学内容解析1、教材分析《导数的几何意义》是人教A版选修2-2第一章《导数及其应用》§1.1.3的内容,本节课为第一课时。

微积分学是人类思维的伟大成果之一,它开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法。

导数是微积分的核心概念之一,有极其丰富的实际背景和广泛的应用。

导数的几何意义作为导数的概念的下位知识课,是学生掌握了上位知识——平均变化率、瞬时变化率以及导数的概念的基础上进一步从几何意义的角度理解导数的含义与价值,体会逼近,以直代曲和数形结合的数学思想方法。

同时,本节的学习也为下位知识——导数的计算以及导数在研究函数中的应用奠定坚实的基础。

因此,导数的几何意义具有承前启后的重要作用,是本章的关键内容。

2、教学重点与难点教学重点:理解导数的几何意义及其应用。

教学难点:逼近思想,以直代曲的思想。

二、教学目标设置(一)知识与技能:(1)会描述一般曲线的切线定义;(2)会根据导数的几何意义求切线斜率,并会用其分析描述“曲线在某点附近的变化情况”。

(二)过程与方法:(1)通过观察类比,合作探究,概括出一般曲线的切线定义;(2)经历发现导数的几何意义的过程,体会逼近、类比、数形结合的思想方法。

(三)情感态度与价值观:领悟有限与无限,量变与质变的辩证关系,感受人类理性思维的作用。

三、学生学情分析从知识储备上看,学生通过了对实例的分析,经历了由平均变化率过渡到瞬时变化率的过程,了解了导数概念的实际背景,知道瞬时变化率就是导数,从数上体会了“逼近”的思想;同时,学生已经学习了直线的斜率与直线方程的相关知识。

从学习能力上看,教学对象是高二理科班的学生,思维活跃,具有一定的想象能力和研究问题的能力。

经过半年多的训练,学生逐步形成小组合作探究,代表上台解释概括总结的学习模式。

从学习心理上看,学生已经从实际意义,数值意义这些“数”的角度理解了导数,学生也渴求从几何意义,即“形”的角度来理解导数,但学生对切线认识存在一定的思维定势——“与曲线仅有一个公共点的直线是曲线的切线”。

导数的几何意义的教案.doc

导数的几何意义的教案.doc

导数的几何意义的教案1.1.3导数的几何意义教学目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直.观地理解导数的几何意义,并会用导数的几何意义解题;4.体会化曲为直的极限思想。

教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义.教学过程:%1.创设情景(%1)平均变化率、割线的斜率(%1)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=xO处的瞬时变化率,反映了函数y=f(x)在x=xO 附近的变化情况,导数f (xO)的几何意义是什么呢?%1.新课讲授(一)曲线的切线及切线的斜率:如图3. 1-2,当P)(n 1,2, 3, 4)n(xn,f(xn)曲线f(x) 趋近于点P(xO, f(xO))时,割线PPn的变化趋势是什么?沿着我们发现,当点Pn沿着曲线无限接近点P即△ x-0时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.k问题:⑴割线PPn的斜率kn与切线PT的斜率有什么关系?⑵切线PT的斜率k为多少?f (xn) f (xO),当点Pn沿着曲线无限接近点Pxn xOf (xO x) f (xO) f (xO)时,kn无限趋近于切线PT的斜率k,即k lim x 0 x容易知道,割线PPn的斜率是kn说明:(1)设切线的倾斜角为a,那么当△x-O时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念:①提供了求曲线上某点切线的斜率的一•种方法;②切线斜率的本质一函数在x xO处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,旦切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=xO处的导数等于在该点(xO, f(xO))处的切线的斜率,即f (xO) 1 im x Of (xO x) f (xO) k x说明:求曲线在某点处的切线方程的基本步骤:%1求出P点的坐标;%1求出函数在点xO处的变化率f (xO) lim在点(xO, f (xO))的切线的斜率;%1利用点斜式求切线方程.%1.典例分析题型一:导数的几何意义的概念例1.下列说法正确的是(C )A.若f (xO)不存在,则曲线y f(x)在点(xO,.f(xO))处就没有切线;x Of (xO x) f (xO) k ,得到曲线xB.若曲线y f(x)在点(xO,. f (xO))有切线, 则f (xO)必存在;C.若f (x)不存在,则曲线y f(x)在点(x,. f (x))处的切线斜率不000存在。

导数的几何意义教案(后附教学反思

导数的几何意义教案(后附教学反思

导数的几何意义教案(后附教学反思)教学目标:1. 理解导数的定义和几何意义;2. 学会计算常见函数的导数;3. 能够运用导数的几何意义解决实际问题。

教学重点:1. 导数的定义和几何意义;2. 常见函数的导数。

教学难点:1. 导数的计算;2. 运用导数的几何意义解决实际问题。

教学准备:1. 教学PPT;2. 教案和教学反思。

教学过程:一、导入(5分钟)1. 引入导数的定义和几何意义;2. 引导学生回顾函数的极限概念。

二、导数的定义(10分钟)1. 讲解导数的定义;2. 通过示例演示导数的计算过程;3. 引导学生理解导数的几何意义。

三、常见函数的导数(10分钟)1. 讲解常见函数的导数;2. 通过示例演示常见函数导数的计算过程;3. 引导学生运用导数的几何意义解决问题。

四、运用导数的几何意义解决实际问题(10分钟)1. 提供实际问题案例;2. 引导学生运用导数的几何意义解决问题;3. 讨论并解释解题过程和结果。

五、课堂小结(5分钟)1. 回顾本节课学习的内容;2. 强调导数的几何意义及其应用。

教学反思:本节课通过讲解导数的定义和几何意义,以及常见函数的导数,使学生能够理解导数的概念并运用其解决实际问题。

在教学过程中,通过示例和实际问题案例,使学生更好地理解导数的几何意义,并能够运用其解决实际问题。

通过课堂讨论和解释解题过程,帮助学生巩固导数的计算和应用。

在教学过程中,发现部分学生对导数的计算和应用还存在一定的困难,在今后的教学中,需要更加关注这部分学生的学习情况,提供更多的辅导和练习机会,帮助他们克服困难,提高导数的计算和应用能力。

导数的几何意义教案(后附教学反思)教学目标:1. 理解导数的定义和几何意义;2. 学会计算常见函数的导数;3. 能够运用导数的几何意义解决实际问题。

教学重点:1. 导数的定义和几何意义;2. 常见函数的导数。

教学难点:1. 导数的计算;2. 运用导数的几何意义解决实际问题。

导数的几何意义教案

导数的几何意义教案

导数的几何意义教案一、教学目标:1.知识与能力目标:*了解导数的定义和几何意义。

*了解导数与函数图像的关系,掌握导数的图像与函数图像之间的变化规律。

*了解导数的增减性和边缘点的求解方法。

2.过程与方法目标:*采用合作学习和探究学习的方法,引导学生主动参与导数的几何意义的探索。

*提供大量的实例和练习,培养学生的运算能力和解决问题的能力。

*注重培养学生的数学思维和逻辑推理能力。

3.情感态度目标:*培养学生主动学习的兴趣,激发学生对数学的好奇心。

*培养学生的观察力和耐心,培养他们发现问题、分析问题和解决问题的能力。

二、教学重难点:1.导数的定义和几何意义。

2.导数与函数图像的关系。

3.导数的增减性和边缘点的求解方法。

三、教学过程:1.导入(5分钟)*老师出示一段直线的图像,问学生是否了解这个图像的特点。

*学生回答后,引导学生思考直线的斜率与直线图像之间的关系。

2.导数的定义和几何意义(15分钟)*通过图示和实例,教师解释导数的定义。

例如,可以选择一条曲线,计算不同点处的斜率并观察其变化规律。

*学生通过思考和讨论,总结出导数的几何意义是刻画函数图像上每一点处的变化率。

3.导数与函数图像的关系(20分钟)*引导学生观察函数图像与导数图像之间的变化规律。

通过对比函数图像和导数图像的变化趋势,学生可以发现二者之间的关系。

*通过实例和图示,教师解释导数图像中的波动与函数图像中的拐点、极值和凹凸点之间的对应关系。

4.导数的增减性和边缘点的求解方法(20分钟)*引导学生认识到导数的正负与函数的增减关系。

即导数大于零时,函数递增;导数小于零时,函数递减。

*引导学生通过求导数的方法来求函数的极值和凹凸点,即导数等于零和导数不存在的点。

*通过实例和练习,让学生掌握求解边缘点的方法和技巧。

5.总结与拓展(10分钟)*学生总结导数的几何意义和应用,通过小组汇报的形式分享自己的思考和体会。

*教师巩固学生的理解,提问一些综合性的问题,进行拓展讨论。

导数的几何意义教案

导数的几何意义教案

导数的几何意义教案教案标题:导数的几何意义教案目标:1. 理解导数的几何意义及其在几何中的应用。

2. 掌握导数的计算方法。

3. 能够将导数应用于解决几何问题。

教学重点:1. 导数的几何意义。

2. 导数的计算方法。

3. 导数在几何中的应用。

教学难点:1. 理解导数的几何意义。

2. 能够将导数应用于解决几何问题。

教学准备:1. 教师准备:教学课件、教学素材、导数的几何意义的示意图。

2. 学生准备:几何工具、笔记本。

教学过程:Step 1: 引入导数的概念(10分钟)1. 教师通过示意图或实际物体展示,引导学生思考两点间的斜率和变化率的概念。

2. 引导学生思考斜率和变化率的关系,并引出导数的概念。

Step 2: 导数的几何意义(20分钟)1. 教师通过示意图和实例,解释导数的几何意义是函数图像上某一点处的切线斜率。

2. 引导学生思考导数与函数图像的变化趋势之间的关系。

3. 引导学生通过观察导数的正负和零点,理解函数图像的增减性和极值点。

Step 3: 导数的计算方法(20分钟)1. 教师介绍导数的计算方法:使用极限定义或基本导数公式。

2. 通过示例演示如何计算导数,并引导学生进行练习。

Step 4: 导数在几何中的应用(20分钟)1. 教师通过几何问题的实例,展示导数在几何中的应用。

2. 引导学生通过计算导数,解决几何问题,如求切线方程、判断函数图像的凸凹性等。

Step 5: 总结与拓展(10分钟)1. 教师与学生一起总结导数的几何意义及应用。

2. 鼓励学生思考导数在其他学科中的应用,如物理、经济等领域。

教学延伸:1. 学生可以通过绘制函数图像和计算导数,进一步加深对导数的几何意义的理解。

2. 学生可以选择一个几何问题,应用导数的知识进行解决,并进行展示和分享。

教学评估:1. 教师通过课堂练习和问题解答,检查学生对导数的几何意义的理解情况。

2. 学生完成课后作业,包括计算导数和应用导数解决几何问题。

教学反思:本节课通过引入导数的概念,结合几何意义和应用,帮助学生理解导数的几何意义。

导数的几何意义-教案

导数的几何意义-教案
发现、理解及应用导数的几何意义
疑点
以直代曲”的思想方法
学法引导
在学习时多从生活中的实例,借助于图形直观帮助对概念的理解。
课时安排
1课时
教法
启发式
教学手段
多媒体辅助教学














教与学过程设计
设计意图
一、创设情境、导入新课
(1)求导数 的步骤有哪几步?
(2)观察函数 的图象,平均变化率 在图形中表示什么?
情感、态度与价值观
导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识感受数学产生和发展的规律以及人类智慧和文明的传承,体会数学的博大精深以及学习数学的意义
教材分析
重点
导数的几何意义及“数形结合,以直代曲”的思想方法
难点
五、归纳小结:(开放式,由学生总结)
六、作业布置,分层要求
分三个层次
七、板书设计(略)
老师引导学生回忆联系本节课的旧知识,下面探究导数的几何意义也是依据导数概念的形成,寻求解决问题的途径。
带着问题观察动画,借助熟悉的圆中的某点处的割线和切线,学生更易感知当 ,割线的变化趋势。
通过将曲线一点处的局部“放大、放大、再放大”的直观方法,形象而逼真地再现“以直代曲”思想。
把点P附近函数的图象放大,引导学生理解以直代曲思想是指某点附近一个很小的研究区域内,曲线与切线的变化趋势基本一致,故可由曲线上某点处的切线近似代替这一点附近的曲线。
三、知识应用、巩固理解
例1应用几何意义
例2体会导数与单调性的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教 学 过 程设 计 意 图一、创设情境、导入新课1.回顾旧知、引出研究的问题:前面我们初步了解了一些微积分背景知识,对有“微积分之父”之称的牛顿和莱布尼慈,也相识了(幽默:同时知道当爹的不易),之后重点学习了函数在0x x =处的导数0()f x '就是函数在该点处的瞬时变化....率.。

那么: 提问:(1) 求导数0()f x '的步骤有哪几步? 生:总共分三步(拉音,模仿赵本山): 第一步:求增量y ∆第二步:求平均变化率()00()f x x f x y xx+∆-∆=∆∆;第三步:求瞬时变化率()0000()()lim x f x x f x f x x∆→+∆-'=∆.(即0x ∆→,平均变化率趋近..于的确定常数....就是该点导数..) (2)观察函数()y f x =的图象,平均变化率()00()f x x f x y xx+∆-∆=∆∆在图形中表示什么?生:平均变化率表示的是割线n PP 的斜率.师:这就是平均变化率.....(.y x ∆∆).的几何意义.....,那么瞬时变化率(0lim x yx∆→∆∆)在图中又表示什么呢?今天我们就来探究导数的几何意义。

板书老师引导学生回忆联系本节课的旧知识,下面探究导数的几何意义也是依据导数概念的形成,寻求解决问题的途径。

教师板书,便于学生数形结合探究导数的几何意义。

突破平均变化率的几何意义,后面在表示割线斜率时能直接联系此知识。

同时引出本节课的研究问题——导数几何意义是什么?(复习引入 用时约3分钟)二、引导探究、获得新知1.动画类比,得到切线的新定义要研究导数的几何意义,结合导数的概念,即要探究0x ∆→,割线的变化趋势.......,看下面的动画。

◆多媒体显示【动画1】:圆上点P 处的切线PT 和割线PPn ,演示点Pn 从右边沿着圆逼近点P ,然后再从左边沿着圆逼近点P ,即0x ∆→,割线PPn 的变化趋势。

教师引导学生观察割线与切线是否有某种内在联系呢?生:先感知后发现,当0x ∆→,随着点Pn 沿着圆逼近点P ,割线PPn 无限趋近于点P 处的切线。

◆把割线逼近切线的结论从圆推广到一般曲线,可得:多媒体显示【动画2】:动态演示教材上点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势图。

师:类比【动画1】,当点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,即0x ∆→,研究割线n PP 的变化趋势。

学生观察【动画2】,类比得出一般曲线的切线定义:当点00(,())n P x x f x x +∆+∆沿着曲线()f x 逼近点00(,())P x f x 时,以求导数的两个步.......骤为依据....,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ∆→的联系,在图形上从割线入手来研究问题。

带着问题观察动画,借助熟悉的圆中的某点处的割线和切线,学生更易感知当0x ∆→,割线的变化趋势。

用逼近的方法体会割线逼近切线,消除学生对极限的神秘感。

肯定学生的研究结果,并引导学生把这种由割线逼近的方法得到切线推广到一般曲线,并由此得出割线的变化趋势,为研究几何意义做好铺垫。

两个动画,探索一般曲线中的切线定义,让不同程度的学生都能借助直观的图象感知和发现,得出:0x ∆→,割线逼近该点处的切线即 0000()()lim ()x f x x f x k f x x∆→+∆-'==∆切线PT 的斜率k 即为函数在0x x =处的导数。

导数的几何意义:00000()()()lim x f x x f x f x x x k x∆→+∆-'===∆曲线在处的切线的斜率师:由导数的几何意义,我们可以解决哪些问题?生:已知某点处的导数或者切线的斜率可以求另外一个量。

2l 1l xyABC2.了解以直代曲思想把点P 附近函数的图象放大,引导学生理解以直代曲思想是指某点附近一个很小的研究区域内,曲线与切线的变化趋势基本一致,故可由曲线上某点处的切线近似代替这一点附近的曲线。

师:在某点附近一个很小的研究区域内,曲线与切线的变化趋势有何关系?如果切线的斜率为正,则该点附近曲线的增减情况怎样? 生:点P 附近,曲线和该点处的切线的增减变化情况一致。

如果切线的斜率为正,则该点附近曲线呈上升趋势。

建构知识。

突破导数的几何意义这个学习重点。

通过将曲线一点处的局部“放大、放大、再放大”的直观方法,形象而逼真地再现“以直代曲”思想。

渗透用导数的几何意义研究函数的增减性至此突破学习重点和难点,用时约15分钟初中平面几何中,圆的切线的的定义:直线和圆有惟一公共点时,叫做直线和圆相切。

这时,直线叫做圆的切线,惟一的公共点叫做切点。

圆是一种特殊的曲线。

这种定义并不适用于一般曲线的切线。

例如上图中,直线1l 虽然与曲线有惟一的公共点,但我们不能认为它与曲线相切;而另一条直线1l 虽然与曲线有不只一个公共点,我们还是认为它是曲线的切线。

因此,以上圆的切线定义并不适用于一般的曲线。

通过逼近的方法,将割线趋于确定位置的直线定义为切线(交点可能不惟一),适用于各种曲线。

所以,这种定义才真正反映了切线的直观本质。

PPP四、知识应用、巩固理解1.导数几何意义的应用例题1:简单小题例题2:如图,它表示跳水运动中高度随时间变化的函数105.69.4)(2++-=t t t h 的图象。

(1)(2)【探究二】1.用图形体现3.3)1(/-=h ,6.1)5.0(/=h 的几何意义。

2.导数值的正负,反应该点附近的曲线有何变化趋势? 3.请描述、比较曲线)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况。

在43,t t 附近呢?分析:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数。

可借助切线的变化趋势得到导数的情况。

生:作出曲线在这些点处的切线,在0t 处切线平行于x 轴,即见学案“学生活动”要求学生动脑(审题),动手(画切线),动口(讨论),体会利用导数的几何意义及运用导数来研究函数在某点附近的单调性,渗透“数形结合”的思想方法,运用以直代曲的思想方法。

问题1由具体的导数入手,熟悉导数的几何意义,帮助学生感知导数与函数单调性之间的联系。

问题2引导学生感知导数反映变化率的本质。

问题3运用导数的几何意义,借由切线的变化趋势,得出切线的斜率即该点处的导数的情况,进而判断函数的单调性。

tO5.0 0.1hhtO3t 4t 0t1t 2t0()0h t '=,说明在0t 时刻附近变化率为0,函数几乎没有增减;在12,t t 作出切线,切线呈下降趋势,即12()0,()0h t h t ''<<,函数在点附近单调递减。

曲线在2t 附近比在1t 附近下降得更快,则是因为12|()||()|h t h t ''<。

小结:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数。

导数的正负即对应函数的增减。

作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。

都反应了导数是研究函数增减、变化快慢的有效工具。

例3 如图表示人体血管中的药物浓度)(t f c =(单位:mL mg /)随时间t (单位:min )变化的函数图像,根据图像,估计8.0,6.0,4.0,2.0=t (min )时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。

(精确到0.1)t0.20.40.60.8药物浓度的瞬时变化率(注记:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。

) 抽象概括,(先由学生小结)抽象概括出导函数(简称导数)的概念:给出曲线上各点的切线的变化图,体会导数就是反映函数变化率的,借助曲线可以得出切线斜率的情况即该点处导数的情况。

体会导数在研究函数增减和变化快慢的应用。

3.请给出求函数)(x f y =在0x x =处的切线方程的一个算法,并小组自编四个求切线的题目。

(探索:若把3 .“在点))(,(00x f x 处”改为“过点))(,(00x f x ”,算法有何不同?并小组自编四个求切线的题目。

)(八)板书设计我们学校的黑板是由四部分组成,上下可以拉动的,以往老师们用汇报课上课板书非常少,甚至没有,其实多媒体只是辅助教学的手段,绝不能象放电影一样,从头放到尾,尤其是学习数学的,老师用课件放一遍和老师用粉笔在黑板上写一遍是完全不同的,说多了!1.1.3导数的几何意义 1、曲线的切线新定义 2、导数的几何意义 3、“以曲代直”的思想 4、导函数的定义画框图(本节课的网络图形) (在最下面)例1 (找学生上黑板来做) 例2 (电脑演示) 例3 (电脑演示)刚开始的时候画图象(引出几何意义)()5043)(3≤≤=V VV r πrV O。

相关文档
最新文档