北师大版七年级数学上册1.2展开与折叠(二)
七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版
2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。
北师大版七年级数学1.2 展开与折叠(2)教案
北师大版七年级数学上第一章《丰富的图形世界》1.2《展开与折叠》第二课时教案【教学目标】1.知识与技能〔1〕.通过展开与折叠活动,了解圆柱、圆锥、棱柱的侧面展开图;能认识棱柱的某些特性;能根据展开图判断或设计制作简单的立体模型。
. 〔2〕通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系。
〔3〕在经历和体验图形的展开与折叠过程中,初步建立空间观念,开展几何直觉,积累数学活动经验2.过程与方法通过数学活动体验图形的变化过程,培养学生动手解决问题的能力及语言归纳表达的能力,开展空间观念。
3.情感态度和价值观让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
【教学重点】通过操作活动,体会立体图形与平面图形的展开与折叠过程,开展空间观念.【教学难点】通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系.外表展开图的识别【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、回忆思考正方体的11种不同的展开图141,132,33,222,二、探究新知1.圆柱的展开图圆A、B两点沿着侧面的最短线路是什么?锥的展开图3.棱柱的展开图将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?以五棱柱为例三、归纳总结:长方体的展开图五棱柱的展开图四、闯关练习:1.如图,上面的图形分别是下面哪个立体图形展开的形状?把它们用线连起来。
2.以下图形是什么多面体的展开图?3以下哪些图形经过折叠可以围成一个棱柱?如果能,请说知名称。
4.判断以下哪些图可以是三棱柱的展开图?三棱柱的展开图可以是①②③有些立体图形展开平面图形;有些平面图形折叠立体图形。
总结:一个平面图形能折叠成棱柱的关键:1.侧面的个数要与底面的边数相同;2.两个底面要位于侧面的两侧。
五、稳固练习:1.下面几个图形是一些常见几何体的展开图,你能正确说出这些几何体的名字么?2、以下图形哪个不是长方体的外表展开图?〔B 〕3.如图的展开图能折叠成的长方体是( D )4.如图,添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( B )A.7种B.4种C.3种D.2种由四棱柱四个侧面和上下两个底面的特征可知,不同的添法共有4种,即在没有小正方形的一侧,每一个长方形的宽的左边添加都可以.应选B.六、中考链接2.如图是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?假设能,请画出它的几何图形,并计算它的体积;假设不能,请说明理由.〔3〕折叠之后与A重合的是哪个字母?长方体的体积为3×2×1=6〔立方米〕.七、谈谈收获八、开放作业请你来当小小设计师:用一张美术用纸,通过画一画、折一折、剪一剪为某公司设计制作一个棱柱或棱锥形包装盒子,并说说你的创意。
1.2 第2课时 棱柱、圆柱、圆锥的展开与折叠 (课件)北师大版(2024)数学七年级上册)
探究新知
展开 四棱锥的平面展开图
探究新知
展开 五棱锥的平面展开图
巩固练习
想一想: 下面几个图形是一些常见几何体的展开图,
你能正确说出这些几何体的名字么?
圆锥
三棱锥
四棱锥
六棱锥
长方体
三棱柱
三棱柱
圆柱
当堂检测
1.一个棱柱的侧面展开图如图所示,
则该棱柱底面的形状是( B )
A
B
C
D
当堂检测
2.有一种包装盒如图所示,若不考虑粘贴 处的重叠部分,将下面展开图沿虚线折叠,
颜色
红黄蓝白紫绿
花的朵数 1 2 3 4 5 6
现将上述大小相同、颜色、花朵分布完全一样的
四个正方体拼成一个水平旋转的长方体,如图所示,
那么长方体的下底面共有 17 朵花.
综合运用 例1 如图所示是一个五棱柱,它的底面 边长都是4 cm,侧棱长都是6 cm.
(1)这个五棱柱共有多少个面?它们分别是什么形状? 哪些面的形状、面积完全相同? 解:这个五棱柱共有7个面,其中上、下两个底面,5个侧面.上、 下底面都是五边形,侧面都是长方形,上、下底面的形状、面积完 全相同.5个侧面的形状、面积完全相同.
探究新知
知识点 3 圆柱、圆锥的展开图
1.把圆柱的侧面展开,会得到什么图形?
探究新知
思考2 圆柱展开后的平面图形是什么样的?
结论:圆柱展开图是由两个等圆 和一个长方形组成,其中侧面展 开图的一边的长是底面圆的周长, 另一边的长是圆柱的高.
探究新知 2.把圆锥的侧面展开,会得到什么图形?
探究新知
第一章 丰富的图形世界 1.2 从立体图形到平面图形
第2课时 棱柱、圆柱、圆锥的展开与折叠
《展开与折叠》第2课时示范课教学设计【数学七年级上册北师大】
《展开与折叠》教学设计第2课时一、教学目标1.通过展开与折叠活动,了解棱柱、圆柱和圆锥的展开图.2.能根据展开图判断和制作简单的立体模型.3.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动的经验.4.在动手实践制作的过程中学会与人合作,学会交流自己的思维和方法.二、教学重难点重点:通过展开与折叠活动,了解棱柱、圆柱和圆锥的展开图.难点:能根据展开图判断和制作简单的立体模型.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计预设答案:追问:这些棱柱的展开图有什么特征呢?预设答案:(1)棱柱有上下两个底面,它们的形状相同,且不在同侧.(2)棱柱侧面的形状都是长方形.(3)棱柱侧面的个数和底面图形的边数相等.(4)棱柱所有侧棱长度都相等.【想一想】问题:按照如图所示的方法将圆柱,圆锥的侧面展开,会得到什么图形呢?预设答案:圆柱的侧面展开是一个长方形.圆锥的侧面展开是一个长方形.归纳总结:圆柱展开后,得到一个长方形和两个圆.圆锥展开后,得到一个扇形和一个圆.【典型例题】例1 如图是立体图形的展开图,你能说出这些立体图形的名称吗?分析:两个底面大小相等,且不在同侧,底面边数=侧面个数,围成的立体图形是棱柱.答案:(1)四棱柱;(2)五棱柱例2 下面图形经过折叠能否围成棱柱?分析:(1) 侧面数不等于底面边数,不能围成棱柱.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.下列图形中可以作为三棱柱的展开图的是()解析:三棱柱展开图的两个底面是大小相等的三角形;两个底面不在同侧,侧面有3个长方形. 答案:A2.图中的两个图形经过折叠能否围成棱柱?解析:(1)有两个大小相等的三角形底面,侧面是3个长方形,可以折叠成三棱柱.(2)两个底面在侧面展开图的同侧,不可以折叠成棱柱.答案:图(1)可以折叠成棱柱;图(2) 不可以折叠成棱柱.3.如图是立体图形的展开图,你能说出它们的名称吗?解析:一个扇形和一个圆,是圆锥的展开图.两个底面是五边形,侧面有5个长方形,是五棱柱的展开图.一个长方形和两个圆,是圆柱的展开图.答案:圆锥;五棱柱;圆柱.。
北师大数学七年级上册第一单元《丰富的图形世界》1.2 展开与折叠2教案学案
1.2 展开与折叠2【学习目标】:1.通过折叠几何体,发展学生空间观念,积累数学活动经验。
2.能根据展开图判断和制作简单的立体模型。
3.经历和体验图形的变化过程,体会几何体与它的展开图之间的关系。
【学习重点】:利用模型将展开图折叠成几何体是重点。
【学习难点】:不用模型,展开想象,由展开图怎样叠成几何体。
导学过程:一、温故知新1:下面每个图片都是由6个大小相同的正方形组成,其中不能折成正方体的是 (B)2:下列图形中(每个小正方形皆为全等的正方形),可以是一个正方体表面展开图的是 (C)二、创设问题情景生活中,我们也经常见到其他几何体的盒子,如长方体的、三棱柱的,圆柱的等等的盒子。
为了设计和制作的需要,我们要了解它们的展开图。
那么,你知道长方体、其它棱柱等的展开图吗?三、探索其它棱柱的展开图解:棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的N边形(底面)和N个长方形(侧面).四、平面图形折叠成棱柱练一练:如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:答案:三棱柱六棱柱长方体三棱柱五、探索圆柱、圆锥的侧面展开图08 圆柱圆锥侧面展开图形.swf六、练习巩固解:1图(1)底面是四边形,它是长方体的展开图;图(2)底面是五边形,它是五棱柱的展开图。
2图(1)能折叠成三棱柱,图(2)因2个底面同侧,所以它不能折叠成长方体。
解:(1)为三棱柱;(2)为圆柱;(3)为六棱柱;(4)为圆锥七、当堂小测1、想一想,再折一折,下面两图经过折叠能否围成棱柱?2、如下图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.3、下面图形经过折叠能否围成棱柱?4、下图中哪一个是六棱柱的平面展开图5、生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?(A)(C)(D)。
【北师大版】七年级上册数学ppt课件.展开与折叠 第二课时
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
数 学 精 品 课 件
北 师 大 版
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
数学:1.2《展开与折叠》课件2(北师大版七年级上)
安宫牛黄丸与行军散共有的药是A.火硝B.山栀C.朱砂D.硼砂E.麝香 不利于合成氨N2+3H22NH3+92.4kJ的条件是。A、加正催化剂B、升高温度C、增大压强D、不断地让氨气分离出来,并及时补充氮气和氢气 委托贷款属于我行业务。A、资产业务B、负债业务C、中间业务D、理财业务 基孔制的基准孔,其下偏差等于。A、0B、1C、2D、3 关于脑出血,最确切的诊断依据是。A.60岁以上发病B.均有偏瘫C.脑脊液血性D.突然偏瘫、头部CT见底节附近高密度影E.均有脑膜刺激征 目前在建筑材料与装饰材料中最引起人们关注的物质是()A.甲醇和氡B.甲醛和氡C.甲醇和氨D.甲醛和氨E.氨和氡 直流电检查时其极性规律()A.阳通>阴通>阳断>阴断B.阴通>阳通>阴断>阳断C.阴通>阳通>阳断>阴断D.阳通>阴通>阴断>阳断E.阳断>阴断>阳通>阴通 以下哪类患者不适合进行心理治疗A.重性精神病急性发作期B.人格障碍C.心身疾病D.进食障碍E.各类神经症 下列关于财务目标的表述中,正确的有()。A.如果假设投入资本相同、利润取得的时间相同,利润最大化是一个可以接受的观念B.假设股东投资资本不变,则股价最大化与增加股东财富具有同等意义C.假设股东投资资本和债务价值不变,则企业价值最大化与增加股东财富具有相同意义D.股东财富 不是心力衰竭代偿机制的是A.Frank-Starling机制B.心肌肥厚C.交感神经兴奋性增强D.RAS激活E.心肌耗氧增加 辐射通量密度 下岗女工王某开办了一个商品经销部,按规定享有一定期限的免税政策,她认为,既然免税就不需要办理税务登记,分析王某的观点是否正确。A.正确B.错误 对于患肝疾病出血和手术出血的病人应该输注的是()A.白蛋白B.红细胞C.白细胞D.血小板E.凝血酶原复合物 根据《文物保护法》规定,以下不属于国家文物保护范围的是()
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计
(二)讲授新知
1.教学内容:介绍展开与折叠的基本概念,让学生理解立体图形可以通过展开变成平面图形,反之,平面图形也可以通过折叠变成立体图形。
-展开图:将立体图形展开成平面图形的过程。
2.教学活动:邀请学生分享自己在课堂上的收获和感悟,引导他们从空间想象力、逻辑思维能力等方面进行自我评价。
3.设计意图:通过总结归纳,帮助学生巩固所知识,培养他们的反思能力和自主学习能力,为后续的学习奠定基础。
在整个教学内容与过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,使学生在掌握知识的同时,提高各方面的能力。
2.分层次教学,注重个体差异:针对学生在空间想象力、抽象思维能力和动手操作能力上的差异,设计不同难度的教学任务,使每个学生都能在课堂上得到有效的提升。
3.合作探究,培养学生的团队协作能力:采用小组合作、讨论交流等形式,让学生在合作探究中掌握展开与折叠的知识,提高学生的团队协作能力和表达能力。
4.理论与实践相结合,提高学生的动手操作能力:设置丰富的实践活动,如制作立体图形、展开图的绘制等,让学生在实际操作中加深对知识的理解。
2.教学指导:引导学生观察、思考、实践,鼓励他们发表自己的观点,培养团队协作能力和表达能力。
3.设计意图:通过小组讨论,让学生在合作探究中深入理解展开与折叠的原理,提高学生的空间想象力和动手操作能力。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成,巩固所学知识。
-简单题:识别常见立体图形的展开图,并能正确折叠成立体图形。
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计
北师大版七年级数学上册1.2《展开与折叠》教学设计(第2课时)
a.平面图形与立体图形之间的转换方法有哪些?
b.在实际生活中,展开与折叠知识有哪些应用?
c.如何运用展开与折叠知识解决实际问题?
要求:论文结构清晰,观点明确,论据充分,字数不限。
4.鼓励学生进行课后拓展学习,通过网络、书籍等途径了解以下内容:
a.其他有趣的几何变换方法;
(三)教学设想
1.创设情境,激发兴趣:以生活中的实际例子引入展开与折叠的概念,让学生感受到数学与生活的紧密联系,激发学习兴趣。
2.自主探究,合作交流:设计具有启发性的问题,引导学生通过观察、实践、讨论等方式,自主探究展开与折叠的规律。在此过程中,鼓励学生进行小组合作,分享彼此的想法,形成共同的认识。
(二)过程与方法
1.采用探究式教学方法,引导学生通过观察、实践、讨论等环节,自主发现展开图与折叠的规律。
2.利用信息技术手段,如多媒体课件、网络资源等,辅助教学,提高学生的学习兴趣和效果。
3.设计丰富的课堂活动,如小组合作、竞赛等,激发学生的学习积极性,培养合作意识和竞争意识。
4.通过对典型例题的分析与讲解,使学生掌握解题方法,形成解决问题的策略。
2.学生独立思考,尝试解决练习题,教师巡回辅导,关注学生的解题过程和方法。
3.邀请部分学生上台展示自己的解题过程,其他学生进行评价,教师给予点评和指导。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结展开与折叠的基本概念、几何变换方法以及解决实际问题的策略。
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
2.学生分享观察到的展开图特点,教师适时给出展开图和折叠的定义,并强调它们之间的相互关系。
3.讲解几何变换方法,如平移、旋转等,并举例说明如何运用这些方法将平面图形转换为立体图形,反之亦然。
七年级数学上册 1.2.2 展开与折叠教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教案
课题:1.2 展开与折叠(2)教学目标:1.通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;理解棱柱、圆柱、圆锥平面展开图的特征.2.能由一个几何体想象其表面展开图或由表面展开图想象出几何体.3.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法.教学重、难点:重点:在实践中理解棱柱、圆柱、圆锥的展开与折叠.了解棱柱、圆柱、圆锥的侧面展开图,能在操作实践中认识棱柱的某些性质.难点:发展学生空间观念,培养观察能力和动手能力课前准备:教师准备:棱柱、圆柱、圆锥实物、展开图的模板图形,多媒体课件.学生准备:收集一些实际生活中棱柱、圆柱、圆锥的例子,剪刀、直尺及硬纸板,用于做实际的模型.教学过程:一、创设情景,导入课题活动:让学生观看生活中常见的棱柱、圆柱、圆锥图片.提问:同学们你们认识这些几何体吗?处理方式:学生举手回答.导入语:上一节课我们学习了正方体的展开与折叠,这节课我们共同学习棱柱、圆柱、圆锥的展开与折叠.【师板书课题:1.2展开与折叠(2)】设计意图:利用学生常见的几何体模型,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣.二、提出问题,合作探究活动1:棱柱的展开图问题1:请同学们拿出你们收集的三棱柱、长方体、五棱柱,将下图中的棱柱沿某条棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?处理方式:学生分组动手裁剪,教师巡视并辅导裁剪出现问题的小组..学生剪好的平面图形贴在黑板上并编号(重复的不再贴),得出棱柱不同的展开图:(附展开图)三棱柱:……长方体:……五棱柱:……问题2:如果你剪出的平面图形与其它同学的不一样,你可以验证其他同学的平面图形,看他们的剪出的平面图形是否可以折叠成对应的棱柱.处理方式:让学生开始验证.在教师的指导下每个学习小组动手折叠,粘贴成棱柱.学生展示自己制作的棱柱,教师可将折好的棱柱展示.设计意图:提出问题让学生思考,也让每个学生动手,初步建立学生的空间观念,唤起他们的学习欲望.活动2:我思我得小组活动:分组讨论如下问题(1)棱柱的展开图中完全是否存在形状、大小相同的多边形,是如何得到的?(2)底面位置如何摆放,有没有固定的位置?(3)侧面展开是什么形状,要注意什么?(4)同一棱柱的展开图是唯一的吗?为什么?(5)最后能总结一下棱柱展开图的特点吗?处理方式:学生分组交流,教师参与个别小组讨论,在充分的小组交流讨论后回答上述问题.师温馨提示:1.棱柱的平面展开图中有两个形状、大小完全相同的多边形,它们是棱柱的两个底面展开得到的,它们的位置不固定,一般分布在侧面展开图的两侧;2.棱柱的平面展开图中有多个相连的长方形,它们是棱柱的侧面展开得到的,长方形的个数和侧面的个数相同;3.同一个棱柱的平面展开图可能会出现不同形状,这和裁剪的方式有关.设计意图:让学生经历小组交流活动,自主发现棱柱的展开图形状,操作—思考—总结,由浅入深,由具体到抽象,符合学生的思维和知识的形成过程,使学生经历立体图到平面图的变化过程,培养空间概念,达到知识的形成.活动3:想一想问题1:以下哪些图形经过折叠可以围成一个棱柱?(1)(2)(3)(4)问题2:你能将不能围成棱柱的图形做适当修改使其能折叠成棱柱吗?处理方式:鼓励学生讨论交流,老师给予及时评价和鼓励.设计意图:在学生经历了折叠棱柱的过程后,给出几个图形让学生想一想是否能折成棱柱,使学生经历平面图到立体图的变化过程,培养空间概念,是对学生空间想像能力的更高要求.活动4:圆柱、圆锥的展开图问题1:按照如图所示的方法把圆柱、圆锥的侧面展开,会得到什么图形?先想一想,再试一试.处理方式:学生先思考,再进行裁剪,教师巡视.把学生剪好的圆柱、圆锥的侧面展开图贴在黑板上.问题2:那连同圆柱的底面一起展开,你能想象展开图是什么形状吗?圆锥呢?问题3:现在我们来验证一下自己的猜想,拿出你们收集的圆柱形的纸盒和剪刀,小心的把它剪开铺平,观察它的形状.多媒体展示:处理方式:生讨论,谈想法.然后学生分组动手实验.师巡视并辅导裁剪出现问题的小组.设计意图:学生从侧面展开图到平面展开图实现了自然的过渡和学习,学习过程轻松自然,学生在不知不觉中完成了新知识的学习,效果较好.三.巩固训练,应用新知1.哪种几何体的表面能展开成下面的平面图形?(1)(2)(3)(4)2.图中的两个图形经过折叠能否围成棱柱?(1)(2)处理方式:学生独立完成,师巡视、了解情况,等大多数都完成时,让生辨析正误,同时同桌互换批改,老师可以稍作点拨,让出错的同学纠错.设计意图:在练习中学生得到更多的体验、感悟,学生在解决问题中逐步提高个人的运用知识解决问题的能力,同时也完善了自己的认知结构.四.课堂小结,纳入系统问题:通过一节课的学习,同学们一定有许多感想与收获,能把自己的感想与收获说出来与大家分享一下吗?处理方式:以小组的形式总结,让学生进行比较完整的总结和反思,老师加以引导。
北师大版数学七年级上册1.2《展开与折叠》(第2课时)教学设计
北师大版数学七年级上册1.2《展开与折叠》(第2课时)教学设计一. 教材分析《展开与折叠》是北师大版数学七年级上册1.2的教学内容,本节课主要让学生通过实际操作,探索平面图形的折叠问题,培养学生的空间想象能力和动手操作能力。
教材中提供了丰富的图片和实例,便于学生理解和掌握展开与折叠的原理和方法。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和动手操作能力,但对于一些复杂图形的折叠问题,可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生给予适当的引导和帮助。
三. 教学目标1.理解展开与折叠的概念,掌握平面图形折叠的基本方法。
2.培养学生的空间想象能力和动手操作能力。
3.能够运用展开与折叠的知识解决实际问题。
四. 教学重难点1.重难点:平面图形的折叠方法,以及如何解决实际问题。
2.难点:对于一些复杂图形的折叠问题,如何引导学生正确操作和解决。
五. 教学方法1.讲授法:教师讲解展开与折叠的基本概念和方法。
2.演示法:教师展示实物图形的折叠过程。
3.实践操作法:学生动手操作,探索图形的折叠方法。
4.问题驱动法:教师提出问题,引导学生思考和探讨。
六. 教学准备1.准备一些实物图形,如纸片、几何模型等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实物图形的展开与折叠过程,引发学生的兴趣,提问学生:“你们知道这些图形是如何展开和折叠的吗?”引导学生思考和回答,从而引出本节课的主题。
2.呈现(10分钟)教师讲解展开与折叠的基本概念和方法,引导学生理解平面图形的折叠过程。
通过展示实物图形和动画演示,让学生直观地感受折叠过程,并讲解如何解决折叠问题。
3.操练(10分钟)学生分组进行实践操作,尝试折叠一些简单的平面图形,如正方形、长方形等。
教师巡回指导,解答学生的问题,并纠正一些常见的错误。
北师大版(2024数学七年级上册1.2 从立体图形到平面图形 第2课时 棱柱、圆柱、圆锥的展开与折叠
底面形状
侧面形状
侧面展开 图的形状
正方形 正方形 长方形
长方体
长方形 长方形 长方形
五棱柱
五边形 长方形 长方形
【对应训练】【教材 P11 随堂练习 第 2 题】
图中的两个图形经过折叠能否围成棱柱?先想一想,再折一折。
能
不能
探究点 2 圆柱、圆锥的展开与折叠
按照如图所示的方法把无底面的圆柱、圆锥的侧面展开, 会得到什么图形?先想一想,再做一做。
第 2 课时 棱柱、圆柱、圆锥的展开与折叠
北师大版·七年级上册
【情境引入】
上图是几种比较常见的棱柱,你能想象出它们的展开图吗?
探究点 1 棱柱的展开与折叠
展开图:
问题 1 结合棱柱的特征,观察下面棱柱的展开图, 分小组讨论,它们具有哪些特征?
棱柱展开后具有下列特征: ①一定有两个形状、大小相同的多边形(即底面),且剩下 的图形都是长方形,长方形的个数与多边形的边数相等; ②棱柱的侧面展开后是一个长方形,两个底面分别在侧面展 开图的两侧。
扇形
侧面都是一 个曲的面
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
下列图形中,可能是如图所示的圆锥的侧面展开图的 是( D )
例 如图所示为某些几何体的展开图,则从左到右,其 对应的几何体名称分别为( D )
A.正方体,圆锥,圆柱,三棱锥 B.正方体,圆锥,圆柱,四棱锥 C.正方体,圆锥,圆柱,四棱柱 D.正方体,圆锥,圆柱,三棱柱
【对应训练】【教材 P11 随堂练习 第 1 题】
问题 2 下图中哪些图形经过折叠可以围成一个 棱柱? 先想一想,再折一折。
①
底面是四边形,要 围成棱柱,侧面应 该有四个长方形
七年级数学上册第1章《展开与折叠(2课时)》名师教案(北师大版)
北师大版数学七年级上册1.2折叠与展开教学设计课题 1.2折叠与展开单元第一单元学科数学年级七年级上教材分析折叠与展开是北师大版七年级上册第一单元第二课时重要内容,该课时主要围绕立体图形的展开、平面图形的折叠等知识展开深入的讲解和探讨,主要培养学生的平面图形与立体图形之间的转换能力。
学情分析折叠与展开这一课时的内容,不光需要学生对平面图形和立体图形有一定的感性认识,而且需要学生对平面图形与立体图形之间的联系有一个更加清晰的理性认识,通过实际操作,深入探讨折叠与展开之间的联系。
学习目标知识与技能目标:(1)认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;(2)由观察、折叠等数学活动认识棱柱的某些特征;(3)了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
过程与方法:通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
情感态度与价值观:让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
重点重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点正确判断哪些图形可以折叠成棱柱。
教学过程教学环节教师活动学生活动设计意图导入新课观察几个立体图形,都能展开成平面图形吗教师引导学生认真观察几个立体图形,思考这些立体图形都能展开成平面图形吗?并且让学生积极地和同学们展开交流与合作,一起发现数学乐趣。
教师引导学生认真观察几个立体图形,,通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
讲授新课1、下图中的那些图形可以沿虚线折叠成长方体包装盒,先想一想,再折一折。
2、(1)这个愣住的上下底面一样吗?(2)这个棱柱有几个侧面?侧面的形状是什么图形?(3)侧面的个数与底面图形的边数有什么关系?(4)这个棱柱有几条侧棱?它们的长度之间有什么关系?答:1.棱柱有上下两个底面,它们的形状相同.2.侧面的形状都是长方形.3.侧面的个数和底面图形的边数相等.4. 所有侧棱长都相等.3 、4、课堂练习部分1、(2018.桂平一模)下列图形是正方形的表面展开图的是( C )教师引导学生学习的同时回顾相关知识点,然后再进入新知识的学习,由观察、折叠等数学活动认识棱柱的某些特征,以及棱柱的展开图。
2024秋季北师大版新教材七年级上册1.2-课时2-棱柱、圆柱、圆锥的展开与折叠
课堂练习
5.一种产品的包装盒如图所示.为了生产这种包装盒,需要 先画出其表面展开图的纸样(单位:cm). (1)如图给出三种纸样甲、乙、丙,在甲、乙、丙中,正确 的有 甲、丙 .
甲
乙
丙
(2)从已知正确的纸样中选出一种,在原图上标注出尺寸. 解:如图所示.
甲
(2)从已知正确的纸样中选出一种,在原图上标注出尺寸. 解:如图所示.
课堂练习
1. 下列各硬纸片分别沿虚线折叠,得不到长方体纸盒 的是 ③④ (填序号)
课堂练习
2. 把如图所示的纸片沿着虚线折叠,可以得到的
几何体是( A )
A.三棱柱
B.四棱柱
C.三棱锥
D.四棱锥
课堂练习
3. 下列选项中,左边的图形能够折成右边的立体图形的是( C )
A
B
C
D
课堂练习
4. 如图是一个长方体的展开图,每个面上都标注了字母, 将展开图折叠为长方体后,如果F面在前面,B面在左面 (字母在长方体的表面),那么在上面的字母是 C .
解:圆锥
三棱柱
圆柱
长方体 (四棱柱)
探究新知
例3 下列图形中,可能是如图所示圆锥的侧面展开图 的是( B )
归纳:
表面展开图
侧面展开图 表面展开图
示例
棱柱
两个相同的 多边形和一
些长方形
一些长方形
圆柱
两个相同的 圆和一个长
方形
长方形
圆锥 一个圆和一
个扇形
扇形
棱锥
一个多边形 和一些三角
形
一些三角形
棱柱的表面展开图中,上、下底面的边数均与侧面长方形的个数相等.
立体 图形
侧面展开图 长方形
北师大版数学七年级上册1.2《展开与折叠》(第2课时)课件
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26
下面是一个正方体的展开图,图中 已标出三个面在正方体中的位置,E表示前面, F表示右面,D表示上面,你能判断另外三个 面A、B、C在正方体中的位置吗?
A B C D E F
27
考考你
下面图形中,哪些是正方体的平面展开图? 祝 1
2 3 4 5 6 前 你 似 程 锦
A B C
D E F
(1)若是正方体的平面展开图,你能指出原来正 方体的相对的两个面吗? (2)若不是正方体的平面展开图,你能移动一个正 方形,使它成为正方体的平面展开图吗?
B
A
B
A和B为相对的两个面
22
间二、拐角邻面知
C
D
C
D
C和D为相邻的两个面
23
如图1—6的图形都是正方体的展开图吗?
图1 是
图2 是
图3 是
图4 是
图5 不是
图6
不是
24
下面图形都是正方体的展开图吗?
图(1)
图(2)
图(3)
不是
不是
是
图(4)
图(5)
图(6)
不是
不是
不是
25
如图是一个正方体纸盒的展开图,请在图中 的6个正方形中分别填入1、2、3、-1、-2、-3时, 展开图沿虚线折叠成正方体后相对面上的两个数 互为相反数。
28
课堂小结:
1、本节课我们通过对正方体表 面展开的深入研究,使我们对棱 柱的侧面展开有一定的认识。 2、通过动手操作,我们知道圆 柱、圆锥的侧面可以展开成平面 图形。
29
(Ⅳ)课堂小结
1、正方体的表面展开图
2、其它常见几何体的展开与折叠。
30
(Ⅴ)布置作业
1、课本习题1.4 中问题解决的第1、2题。 2、思考题
想一想,做一做
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
A B C D F
18
E
总结规律:
正方体的表面展开图用“口诀”:
一线不过四,
田凹应弃之;
相间、“Z”端是对面, 间二、拐角邻面知。
19
一线不过四
×
×
20
田凹应弃之
×
×
×
×
21
相间、“Z”端是对面
A
6
(Ⅱ)动手操作,探究新知
活动二
下面图形中,哪些能围成一个正方体?
(3) (2) 你有办法验证你的猜想吗? 你有别的方法,也能判定一个平面图 形能否围成一个正方体吗?
(1)
7
(Ⅱ)动手操作,探究新知
活动三
• 将一个正方体的表面沿某些棱剪开,能展成 一个平面图形吗?你能得到哪些平面图形? 与同伴进行交流.
(1)A与B两点沿着侧面的最短路线是什么? B B
A
A
31
(2)A与B两点沿着表面的最短路线是什么?
B
B
A
A
32
拓
展 将下图中五角星状的图形沿虚线折叠, 得到一个几何体,你在生活中见过和这 个几何体形状类似的物体吗?
教后反 思
(4)
33
15
(Ⅲ)先猜想再实践,发展几何直觉
想一想,做一做
把一个正方体的表面沿某些棱剪开, 展成一个平面图形,你能得到下面 的些平面图形吗?
16
(Ⅲ)先猜想再实践,发展几何直觉
想一想,做一做
把一个正方体的表面沿某些棱剪开, 展成一个平面图形,你能得到下面 的些平面图形吗?
17
(Ⅲ)先猜想再实践,发展几何直觉
8
(Ⅱ)动手操作,探究新知正方体 的11种不同的 展开图 Nhomakorabea9
(Ⅱ)动手操作,探究新知
问题
能否将得到的平面图形分类?
你是按什么规律来分类的?
10
(Ⅱ)动手操作,探究新知
第一类,1,4, 1型,共六种。
11
(Ⅱ)动手操作,探究新知
第二类,2,3,1型,共三种。
12
(Ⅱ)动手操作,探究新知
第三类,2,2,2型,只有一种。
(Ⅰ)创设情境,导入课题
活动一
观察圆柱形纸筒展开的侧面是一个什么图形
3
(Ⅰ)创设情境,导入课题
活动一
观察圆锥形圣诞帽的侧面是什么图形?
4
考考你 如图,上面的图形分别是下面哪个立体 图形展开的形状?把它们用线连起来。
5
想一想: 下面几个图形是一些常见几 何体的展开图,你能正确说出这些几 何体的名字么?
北师大版 七年级数学上册
第一章
丰富的图形世界
(第二课时)
1
一、教学目标 1、进一步熟习棱柱表面的展开图,初步尝试圆柱、圆锥表 面的异型图,能够做出一个棱柱、圆柱、圆锥形的模型,了解 几何体与它展开的平面图形的对应关系。 2、逐步提高由几何体想出展开图,由展开图可想出几何体 的识图能力及空间想象能力,培养动手制作能力。 3、通过识图想物、看物想图、画图制作等活动,培养学生 学数学、做数学、爱数学的情感,体会生活中的数学美。 二、教学重点与难点 重点:(1)进一步巩固、提高对棱柱表面展开图的识图能 力。 (2)认清圆柱、圆锥的侧面展开图的形状以及展开图中的 各个部位与立体图形各部位的对应关系。 难点:(1)由几何体想象出它的表面展开图。 (2)圆锥各部位与它的侧面展开图的各部位的对应关系也 是学生较难想象的,另外棱锥以及一个正方体的多种展开图。 2 三、教学方法:引导发现法 四、教学过程
第四类,3,3型,只有一种。
13
展开图巧记
中间四个面,上、下各一面; 中间三个面,一二隔河见; 中间两个面,楼梯天天见;
中间没有面,三三连接一线。
14
(Ⅱ)动手操作,探究新知
问题
1.既然都是正方体,为什么剪出的 平面图形会不一样呢? 2.一个正方体要将其展开成一个 平面图形,必须沿几条棱剪开?