《勾股定理》 单元培优练习题
【3套试卷】人教版数学八年级下册 第17章 勾股定理 培优单元卷
人教版数学八年级下册第17章勾股定理培优单元卷一.选择题(共10小题)1.在△ABC中,∠B=90°,若BC=6,AC=10,则AB等于()A.5 B.6 C.8 D.1362.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1 B.2 C.3 D.43.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169 B.119 C.13 D.1444.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a-b C.a2+b22D.a2-b225.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=136.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米7.下列为勾股数的是()A.2,3,4 B.3, 4, 5 C.6,7,8 D.5,12,138.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为()A .1.8B .2C .2.4D .2.59.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .2.7米B .2.5米C .2米D .1.8米10.已知△ABC 的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c .①c 2-a 2=b 2;②∠A=12∠B=13∠C;③c=2a=2b;④a=2,b=2 2,c=17.上述四个条件中,能判定△ABC 为直角三角形的有( )A .1个B .2个C .3个D .4个二.填空题(共7小题)11.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,AC=6,AD=7,则点D 到直线AB 的距离是 .12.小明从A 处出发沿北偏东40°的方向走了30米到达B 处:小军也从A 处出发,沿南偏东α°(0<α<90)的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α= .13.如图,在Rt △ABC 中,∠C=90°,DE 垂直平分AB ,连结AD ,若AC=6,BC=8,则CD 的长为 .14.游泳员小明横渡一条河,由于水流的影响,实际上岸地点C 偏离欲达到点B60米,结果他在水中实际游了100米,这条河宽为米.15.如图,AB=1.2m,BC=0.5m,AD=CE=0.2m,则加固小树的木棒DE的长是m.16.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm,高为12cm,吸管放进杯里(如图所示),杯口外面至少要露出3.6cm,为节省材料,管长acm的取值范围是.17.已知一组勾股数中有一个数是2mn(m、n都是正整数,且m>n≥2),尝试写出其它两个数(均用含m、n的代数式表示,只要写出一组):,三.解答题(共7小题)18.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,若AC=9,BC=12.求点D到AB的距离.19.问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上:.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别5a、8a、17a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.20.如图,在△ABC中,AD⊥BC于点D,AB=10,AC=BD=8.求△ABC的面积.21.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)边AC、AB、BC的长;(2)求△ABC的面积;(3)点C到AB边的距离.22.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.23.如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)求出AC、AB的长度;(2)△ABC是直角三角形吗?证明你的结论.24.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2)方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM.(即AM+BM)(如图3)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q在CD中间,DQ为多少时?△ABQ为等腰三角形?答案:1-5 CBACB6-10 DDDAC11.12. 5013.14.8015.1.716. 15.6cm≤a≤16.6cm17. m2-n2,m2+n218.∵AC=9,BC=12,∴AB==15,∵∠C=90°,AD是∠BAC 的角平分线,∴CD=DE,在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=9,BE=AB-AE=15-9=6,设DE=CD=x,则BD=12-x,在Rt△BDE中,DE2+BE2=BD2,∴62+x2=(12-x)2,解得x=.答:点D到AB的距离是.19.解:(1)△ABC的面积=3×3-×1×2-×1×3-×2×3=9-1--3=9-5.5=3.5;故答案为:3.5;(2)△ABC如图所示,△ABC的面积=2a•4a-×2a•a-×2a•2a-×4a•a =8a2-a2-2a2-2a2=3a2.20. 解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°,∵AB=10,BD=8,∴AD==6,∴CD==2∴BC=BD+DC=8+2∴△ABC的面积=BC•AD=×(8+2)×6=24+6.21. 解:(1)AC=,AB=BC=(2)△ABC的面积=3×3-×1×2-×3×2-×1×3=(3)点C到AB边的距离为h,则×AB×h=,即××h=,解得,h=22.解:设竹子折断处离地面x尺,则斜边为(10-x)尺,根据勾股定理得:x2+62=(10-x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.23.解:(1)∵CD=1,AD=2,BD=4,AD⊥BC,∴AC=;AB=2(2)∵AC=;AB=2,BC=CD+BD=5,∴AC2+AB2=BC2,∴△ABC是直角三角形.24.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=∵6<∴方案1更合适;(2)如图,①AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4==2∴QG=2+2(舍去)或2-2(舍去);②AB=BQ2=5或AB=BQ5=5时,DQ==3,∴QG=3+2=5或3-2=1(舍去),③G为CD中点时,当AQ3=BQ3时,(GQ3+2)2+11=(2-GQ3)2+42,解得:GQ3=,故当GQ=5或时,△ABQ为等腰三角形.人教版八年级数学下册第十七章勾股定理单元检测题含答案一、单选题(共10题;共30分)1.如果一个三角形的一条边的平方等于另外两条边的平方差,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断2.下列各组数中,是勾股数的是()A.2、3、4B.3、4、5C.4、5、6D.5、6、73.下列能构成直角三角形三边长的是()A.1,2,3B.C.D.4,5,64.如图是某地的长方形广场的示意图,如果小红要从点A走到点C,那么他至少要走()A. 90米B. 100米C. 120米D. 140米5.如图所示,在Rt△ABC,∠ACB=90°,AC=5,BC=12,将△ABC绕点B按顺时针方向旋转60°,得到△BDE,若连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44B.43C.42D.416.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5B.C.5或D.不确定7.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2aB.2 aC.3aD.8.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米9.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米10.如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1=4,S2=9,S3=8,S4=10,则S等于( )A.25B.31C.32D.40二、填空题(共8题;共24分)11.若直角三角形的斜边长是5,一条直角边的长是3,则该直角三角形的面积为________.12.为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,点D在BC上,且BD=AC=1.通过计算可得+1________ .(填“>”“<”或“=”)13.某楼梯如图所示,欲在楼梯上铺设红色地毯,若这种地毯每平方米售价30元,楼梯宽2 m,则购买这种地毯需要________元.(不计损耗)14.如图,有两棵树,一棵高12 m,另一棵高6 m,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行了________m.15.在中,AB=AC=13,BC=10,且⊥于点,则________16.为了推广城市绿色出行,小蓝车公司准备在十圩港沿岸AB段建设一个共享单车停放点,该路段附近有两个广场C和D(如图),CA⊥AB于A、DB⊥AB于B,AB=4km,CA=2km,DB=1km.则停放点E应建在距点A________km处,才能使它到两广场的距离相等.17.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为________.18.若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为________.三、解答题(共46分)19.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.20.如图是一块地的平面图,AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,求这块地的面积.21.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.据规定,小汽车在城市街道上行驶的速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直行,某一时刻刚好行驶到路边车速检测仪A处的正前方30 m的C处,过了2 s 后,测得小汽车与车速检测仪间的距离为50 m.这辆小汽车超速了吗?23.已知:如图等腰△ABC中,AB=AC,BC=10,BD⊥AC于D,且BD=8.求△ABC的面积S△ABC.答案解析部分一、单选题1. B2.B3. C4.B5. C6.C7. B8. A9. C 10. B二、填空题11. 6 12. >13. 420 14. 10 15.12 16.17.45018.6cm三、解答题19.解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB= =10,∵S△ABC= AB•CD= AC•BC,∴CD= = =4.820. 解:连接AC,在直角三角形ACD中,根据勾股定理可得,AC==5(cm)又∵AC2+BC2=52+122=AB2=132∴三角形ACB为直角三角形∴S△ACB=S△ABC-S△ACD=512-43=24(cm2)。
八年级下册第17章勾股定理培优试题(含答案)
人教版数学八年级下册第17章勾股定理培优试题一.选择题(共10小题)1.在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( )A .2B .3C .4D .342.如图,有一长方形空地ABCD,如果AB=6米,AD=8米,要从A 走到C ,至少要走( ) A .6米 B .8米 C .10米 D .14米3.以下各组数为三角形的三边长,其中不能够构成直角三角形的是( )A .32、42、52B .7、24、25C .0.3、0.4、0.5D .9、12、154.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( ) A .3 B .5 C .4.2 D .45.某直角三角形的一直角边长为8,另一直角边长与斜边长的和为32,则斜边的长为( ) A .8 B .10 C .15 D .176.满足下列条件的△ABC,不是直角三角形的是( )A .∠C=∠A+∠BB .∠C=∠A-∠BC .a :b :c=3:4:5D .∠A :∠B :∠C=3:4:57.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是( )A .8米B .10米C .12米D .13米8.下列各组数中,不是勾股数的是( )A .9,12,15B .8,15,17C .12,18,22D .5,12,13 9.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB,BC,AC,若BC 2+AC 2=AB 2,则∠A=90°;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A .0个B .1个C .2个D .3个10.如图,△ABC 中,AB=AC,AB=5,BC=8,AD 是∠BAC 的平分线,则AD 的长为( ) A .5 B .4 C .3 D .2二.填空题(共6小题)11.已知一个直角三角形的两直角边长分别是1和2,则斜边长为 .12.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E ,且DE=15cm,BE=8cm,则 BC= cm .13.平面直角坐标系上有点A(-3,4),则它到坐标原点的距离为 .14.如图,分别以直角△ABC 的三边为直径作半圆,若两直角边分别为6,8,则阴影部分的面积是 .15.定义:如图,点P 、Q 把线段AB 分割成线段AP 、PQ 和BQ ,若以AP 、PQ 、BQ 为边的三角形是一个直角三角形,则称点P 、Q 是线段AB 的勾股分割点.已知点P 、Q 是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ= .16.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了米.三.解答题(共8小题)17.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.我市鸭绿江边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.20.某广场内有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=6m,BC=8m,CD=26m,AD=24m.求四边形ABCD空地的面积.21.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=1.8.(1)求CD的长;(2)求AB的长;(3)△ABC是直角三角形吗?请说明理由.22.如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A ′D 为1.5米,求小巷有多宽.23.如图,长7.5m 的梯子靠在墙上,梯子的底部离墙的底端4.5m .(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?24.阅读下列一段文字,然后回答下列问题.已知在平面内有两点P 1()x 1,y 1、P 2()x 2,y 2,其两点间的距离P 1P 2=()x 1-x 22+()y 1-y 22,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x 2-x 1|或|y 2-y 1|.(1)已知A(2,4)、B(-3,-8),试求A、B两点间的距离;(2)已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为;(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.答案:1-5 CCACD6-10 DDCCC11.12.3213.514.2415.416.0.817. 解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=∴h=18.解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.解:(1)连接AC.在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC===25(米).∴这个四边形对角线AC的长度为25米.(2)在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=252=AC2,∴△ADC为直角三角形,∠ADC=90°,∴S四边形ABCD=S△ADC+S△ABC=×15×20+×7×24=234(平方米),∴四边形ABCD的面积为234平方米.20. 解:连接AC,在Rt△ABC中,AC2=AB2+BC2=62+82=102,∴AC=10.在△DAC中,CD2=262,AD2=242,而242+102=262,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+DC•AC,=×8×6+×24×10=144(m)2,答:四边形ABCD空地的面积是144m2.21.解:(1)∵CD是AB边上的高,∴△BDC是直角三角形,∴CD===2.4;(2)同(1)可知△ADC也是直角三角形,∴AD===3.2,∴AB=AD+BD=3.2+1.8=5;(3)△ABC是直角三角形,理由如下:又∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形.22.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+1.52=6.25,∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.23.解:(1)如图,在Rt△ABC中,AC2=AB2-BC2,∵AB=7.5m,BC=4.5m,∴AC==6(m),答:梯子的顶端到地面的距离为6m;(2)如图,∵BF=1.5m,∴CF=6m,∴EC==4.5(m),∴AE=1.5,答:梯子顶端向下滑1.5米.24.解:(1)AB==13,故答案为:13;(2)MN=4-(-1)=5;故答案为:5;(3)△ABC为等腰三角形.理由如下:∵DE=5,EF=4-(-2)=6,DF==5,∴DE=DF,∴△DEF为等腰三角形;。
苏科版八年级上册第三章《勾股定理》单元专题培优训练卷【含答案】
苏科版八年级上册第三章《勾股定理》单元专题培优训练卷一.选择题1.下列各组数中,不是勾股数的一组是()A.3,4,5B.4,5,6C.6,8,10D.5,12,132.三个正方形的面积如图所示,则S的值为()A.3B.12C.9D.43.在△ABC中,∠A、∠B、∠C的对边分别记为a、b、c.下列条件中;不能说明△ABC 是直角三角形的是()A.∠A=∠B=∠C B.a2=b2+c2C.∠A+∠B=∠C D.a:b:c=3:4:54.如图,∠C=90o,AB=12,BC=3,CD=4,若∠ABD=90°,则AD的长为()A.8B.10C.13D.155.如图,一棵大树在暴风雨中被台风刮倒,在离地面3米处折断,测得树顶端距离树根4米,已知大树垂直地面,则大树高约多少米?()A.5米B.8米C.9米D.256.若a、b、c是△ABC三条边的长,且满足a2﹣2ab+b2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形7.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是()A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24 8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③二.填空题9.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中5这条边所对的角便是直角.依据是.10.在△ABC中,若∠C=90°,∠A=46°,则∠B=°.11.在△ABC中,∠C=90°,若a=5,b=12,则c=.12.如图,是一个直角三角形以三边为边长向外作三个正方形,则字母A所代表的正方形的面积为.13.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=12,BC=5,则CD =.14.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要m.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.设这个水池深x尺,则根据题意,可列方程为.16.“赵爽弦图”巧妙的利用面积关系证明了勾股定理.如图所示的“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,若AB=10,EF=2,则AH=.三.解答题17.某中学校园有一块四边形草坪ABCD(加图所示),测得∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m,求这块四边形草坪的面积.18.如图,在四边形ABCD中,已知∠B=90°,AB=3,BC=4,CD=12,AD=13,求证AC⊥CD.19.八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米;(2)根据手中剩余线的长度计算出风筝线BC的长为65米;(3)牵线放风筝的小明身高1.68米.求风筝的高度CE.20.三水九道谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,经过10秒后游船移动到点D的位置,此时BD=6m,问工作人员拉绳子的速度是多少?21.在甲村至乙村的公路旁有一块山地需要开发,现有一C处需要爆破,已知点C与公路上的停靠点A的距离为800米,与公路上另一停靠点B的距离为600米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径450米范围内不得进入,问在进行爆破时,公路AB段是否有危险需要暂时封锁?请通过计算进行说明.22.我们根据图形的移、拼、补可以简单直观地推理验证数学规律和公式,这种方法称之为“无字证明”,它比严谨的数学证明更为优雅与有条理.下面是用三块全等的直角三角形移、拼、补所形成的“无字证明”图形.(1)此图可以用来证明你学过的什么定理?请写出定理的内容;(2)已知直角三角形直角边长分别为a、b,斜边长为c,图1、图2的面积相等,请你根据此图证明(1)中的定理.参考答案一.选择题1.解:A、32+42=52,能构成直角三角形,是整数,故是勾股数,此选项错误;B、42+52≠62,不是勾股数,此选项正确;C、62+82=102,三边是整数,同时能构成直角三角形,故是勾股数,此选项错误;D、52+122=132,是正整数,故是勾股数,此选项错误.故选:B.2.解:如图,由题意可得:AB=4,AC=5,∵AC2=AB2+BC2,∴BC2=25﹣16=9,∴S=9,故选:C.3.解:A、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,∴△ABC不为直角三角形,故此选项符合题意;B、∵a2=b2+c2,∴△ABC为直角三角形,故此选项不合题意;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC为直角三角形,故此选项不合题意;D、∵a:b:c=3:4:5,设a=3x,b=4x,c=5x,∵(3x)2+(4x)2=(5x)2,∴能构成直角三角形,故此选项不合题意;故选:A.4.解:在Rt△BCD中,∠C=90o,由勾股定理得:BD=,在Rt△ABD中,∠ABD=90°,由勾股定理得:AD=,故选:C.5.解:设大树高约有x米,由勾股定理得:(x﹣3)2=32+42,解得:x=8,答:大树高约8米.故选:B.6.解:∵a2﹣2ab+b2+|a2+b2﹣c2|=0,即(a﹣b)2+|a2+b2﹣c2|=0,∴(a﹣b)2=0,且|a2+b2﹣c2|=0,∴(a﹣b)2=0,且a2+b2=c2,∴a=b,且△ABC是直角三角形,∴△ABC是等腰直角三角形,故选:B.7.解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13(cm),故h=24﹣13=11(cm).故h的取值范围是:11cm≤h≤12cm.故选:C.8.解:由题意知,由①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴x+y=.∴结论①②③正确,④错误.故选:C.二.填空题9.解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.10.解:∵∠C=90°,∠A=46°,∴∠B=90°﹣46°=44°,故答案为:44.11.解:在△ABC中,∠C=90°,a=5,b=12,∴,故答案为:13.12.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案是:64.13.解:Rt△ABC中,∠C=90°,由勾股定理得:AB=,由S△ABC=得:∴5×12=13×CD,∴CD=.故答案为:.14.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(米).故答案为:17.15.解:设水池里水的深度是x尺,由题意得,(x+1)2=x2+25,故答案为:(x+1)2=x2+25.16.解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,AH=DE=6,∴AH=8﹣2=6.故答案为:6.三.解答题17.解:连接AC,如图:∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,∴S四边形ABCD=S△ABC+S△ADC=•AB•BC+•AD•DC=×24×7+×20×15=234(m2).答:这块四边形草坪的面积是234m2.18.证明:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,即AC⊥CD.19.解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.68=61.68(米),答:风筝的高度CE为61.68米.20.解:由题意得:∠B=90°,∵BC=8m,BD=6m,∴CD===10m,∵AC=17m,∴绳子移动了AC﹣DC=17﹣10=7(m),用时10秒,∴工作人员拉绳子的速度是7÷10=0.7米/秒.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).因为S△ABC=AB•CD=BC•AC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.22.解:(1)勾股定理:直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2;(2)图1的面积为:S1=,图2的面积为S2=,∵图1、图2的面积相等,∴=,∴a2+b2=c2.。
人教版八年级初二数学下学期勾股定理单元提优专项训练
人教版八年级初二数学下学期勾股定理单元提优专项训练一、解答题1.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 2.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =3ABCD 的面积.3.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.4.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.5.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.6.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).7.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.8.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .9.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?10.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .11.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.12.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)13.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.14.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为(1,0)的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD = 150︒,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为3),且∠DOB = 30︒,求OM的长.15.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.16.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).17.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.18.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.19.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.20.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形; (3)由(1)(2)可知,=23AC ,AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=3333 PQ CQ CP=--=,∴2223 =PE PQ EQ=+;②若点P在线段AC的延长线上,则253=3333 PQ CQ CP=++=,∴22221 =PE PQ EQ=+;综上,PE的长为23或221.【点睛】本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.2.(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=263.【解析】【分析】(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;(3)解直角三角形求出BC即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,AD BD A BDF AE DF =⎧⎪∠=∠⎨⎪=⎩,∴△DAE ≌△BDF ,∴∠ADE =∠DBF ,∵∠EGB =∠GDB+∠GBD =∠GDB+∠ADE =60°,∴∠BGD =180°﹣∠BGE =120°.(2)证明:如图1﹣2中,延长GE 到M ,使得GM =GB ,连接CG .∵∠MGB =60°,GM =GB ,∴△GMB 是等边三角形,∴∠MBG =∠DBC =60°,∴∠MBD =∠GBC ,在△MBD 和△GBC 中,MB GB MBD GBC BD BC =⎧⎪∠=∠⎨⎪=⎩,∴△MBD ≌△GBC ,∴DM =GC ,∠M =∠CGB =60°,∵CH ⊥BG ,∴∠GCH =30°,∴CG =2GH ,∵CG =DM =DG+GM =DG+GB ,∴2GH =DG+GB .(3)如图1﹣2中,由(2)可知,在Rt △CGH 中,CH =3GCH =30°, ∴tan30°=GH CH, ∴GH =4,∵BG =6,∴BH =2,在Rt △BCH 中,BC 22213BH CH +=∵△ABD ,△BDC 都是等边三角形,∴S四边形ABCD=2•S△BCD=2×3 4×(213)2=263.【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.3.(1),CM ME CM EM=⊥;(2)见解析;(3)25CM=.【解析】【分析】(1)证明ΔFME≌ΔAMH,得到HM=EM,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A、E、C在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC,EM,由(1)(2)可知,△CME是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM=ME,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,EFM MBHFM BMFME BMH∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME≌△BMH(ASA),∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接BD,∵四边形ABCD和四边形EDGF是正方形,∴45,45FDE CBD︒︒∠=∠=∴点B E D、、在同一条直线上,∵90,90BCF BEF︒︒∠=∠=,M为BF的中点,∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME 是等腰直角三角形, ∵22EC 26210+=∴CM =EM =25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4.(1)S=24(06)464(616)t t t <⎧⎨-+<<⎩(2)10,103⎛⎫ ⎪⎝⎭ (3)存在,(6,6)或(6,1027)- ,(6,272)【解析】【分析】(1)当P 在AC 段时,△BPD 的底BD 与高为固定值,求出此时面积;当P 在BC 段时,底边BD 为固定值,用t 表示出高,即可列出S 与t 的关系式;(2)当点B 的对应点B ′恰好落在AC 边上时,设P (m ,10),则PB=PB ′=m ,由勾股定理得m 2=22+(6-m )2,即可求出此时P 坐标;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵A ,B 的坐标分别是(6,0)、(0,10),∴OA=6,OB=10,当点P 在线段AC 上时,OD=2,BD=OB-OD=10-2=8,高为6,∴S=12×8×6=24;当点P在线段BC上时,BD=8,高为6+10-t=16-t,∴S=12×8×(16-t)=-4t+64;∴S与t之间的函数关系式为:240t6S4t64(6t16)<≤⎧=⎨-+<<⎩();(2)设P(m,10),则PB=PB′=m,如图1,∵OB′=OB=10,OA=6,∴AB′=22OB OA-'=8,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=103则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图2,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP1=10−7,即P1(6,10-27②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E=228627-=,∴AP3=AE+EP3=27+2,即P3(6,27+2),综上,满足题意的P坐标为(6,6)或(6,10-27),(6,27+2).【点睛】本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.5.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=13CF=13∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y xy x=-+⎧⎨=--⎩解得143643xy⎧=-⎪⎪⎨⎪=⎪⎩,∴点P的坐标为(1464,33 -).【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k=-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.6.(1)见解析;(2)26;(3)3a+ 【分析】 (1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH和△BEH中,∠CAH+∠ACH=∠EBH+∠BEH,而∠CAH=∠EBH,∴∠BEH=∠ACH=90°,∴△ABE为直角三角形由勾股定理得2222AB=AE BE=2410=26++(3)由(1)(2)可得△ACD≌△BCE,∴∠DAC=∠EBC,∵△ACB,△DCE都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM⊥DE,∴∠CMD=90°,DM=EM,∴CD=CE=2CM,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°,∴∠NBE=30°,∴BE=2EN,3EN∵BN=a∴23=AD∴2323+b【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 7.(1)t,45;(2)详见解析;(3)90°;(4)t212+1,BE3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS即可证明△ADE≌△CDF;(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE=t.∵CA =CB ,∠ACB =90°,CD ⊥AB ,∴∠BCD =∠ACD =45°.故答案为t ,45.(2)∵∠ACB =90°,CA =CB ,CD ⊥AB ,∴CD =AD =BD ,∴∠A =∠DCB =45°.∵AE =CF ,∴△ADE ≌△CDF (SAS ).(3)∵点E 在边AC 上运动时,△ADE ≌△CDF ,∴∠ADE =∠CDF ,∴∠EDF =∠ADC =90°.(4)①当点E 在AC 边上时,如图1.在Rt △ACB 中,∵∠ACB =90°,AC =CB ,AB =2,CD ⊥AB ,∴CD =AD =DB =1,AC =BC 2=. ∵CE =CD =1,∴AE =AC ﹣CE 2=-1,∴t 2=-1. ∵BC =22112+=,∴BE =22EC BC +=12+=3;②当点E 在AC 的延长线上时,如图2,AE =AC +EC 2=+1,∴t 2=+1. ∵BC =22112+=,∴BE =22EC BC +=12+=3;综上所述:满足条件的t 2121,BE 3【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒. ∴CED ADB ∠=∠. (2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =, ∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒. ∵△ABD 是等边三角形,8AB = ∴8AD BD AB ===, ∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=. ∵60CED ADB ∠=∠=︒. ∴60EFD ∠=︒.∴△EDF 是等边三角形. ∴2EF DF DE ===, ∴4CF CE EF =-=,2OF OD DF =-=. 在Rt △COF 中, ∴2223OC CF OF =-=. 在Rt △BOC 中,∴22224(23)27BC BO OC=+=+=.【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.9.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE=22CD CE-=222520-=15,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.10.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt △ABC 中,AC=4,AB=8,∴∵11AB AC=BC AH 22⋅⋅∴∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.11.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(32BF)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.12.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH 3,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.13.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(2AF )2+(2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.14.(1)2;(2)3q p =;(3)27OM = 【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =, ∴2MF =,23ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒, 在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.15.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.16.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.17.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+= ∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,。
八上第3章 勾股定理培优题含答案
第3章勾股定理综合提优卷(时间:60分钟满分:100分)一、填空题(每题3分,共30分)1.如图,在一次暴风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底4米处,那么这棵树折断之前的高度是_______米.2.直角三角形一条直角边与斜边分别为4 cm和5 cm,则斜边上的高等于_______cm.3.如图,在直角三角形ABC中,∠C=90°,AC=12,BC=5,则以AB为直径的半圆的面积为_______.4.如图,在四边形ABCD中,∠A=90°,若AB=4 cm,AD=3 cm,CD=12 cm,BC =13 cm,则四边形ABCD的面积是_______.5.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线为100 cm,则这个桌面_______.(填“合格”或“不合格”)6.甲、乙两人同时从同一地点出发,甲往东走了8 km,乙往南走了6 km,这时两人相距_______km.7.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了_______步路(假设2步为1米),却踩伤了花草.8.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为_______.9.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD =5,则CD=_______.10.动手操作:在矩形纸片ABCD 中,AB =3,BD =5.如图所示,折叠纸片使点A 落在边BC 上的A'处,折痕为PQ .当点A'在边BC 上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在边AB 、AD 上移动,则点A'在边BC 上可移动的最大距离为_______.二、选择题(每题3分,共30分)11.下列各组数中,可以构成勾股数的是( ).A .13,16,19B .17,21,23C .18,24,36D .12,35,3712.下列命题中,是假命题的是( ).A .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形13.一直角三角形的三边分别为2,3,x ,那么以x 为边长的正方形的面积为( ).A .13B .5C .13或5D .414.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D的边长分别是3,5,2,3,则最大的正方形E 的面积是( ).A .13B .26C .47D .9415.在Rt △ABC 中,∠C =90°,AC =3,BC =4,则点C 到AB 的距离是( ).A .125B .425C .34D . 9416.已知一直角三角形的木板,三边的平方和为1800 cm 2,则斜边长为( ).A .30 cmB .80 cmC .90 cmD .120 cm17.底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ).A .10B .8C .5D .418.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC ,交AD 于点E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .619.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.B.4 C.D.4.520.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ).A.0 B.1 C D三、解答题(共40分)21.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a +b,则a,b的值可能是多少?23.如图所示,一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距多远?24.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a ,b ,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)证明勾股定理.25.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC =1 km ,BD =3 km ,CD =3 km 现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20 000元/千米,请你在河CD 边上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用?26.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?参考答案1.8 2.2.4 3.16984.36 cm 2 5.合格 6. 10 7.8 8.22a 9.1.4 10.211.D 12.C 13.C 14.C 15.A 16.A 17.A 18.C 19.B 20.C21.(1)12 (2)2522.a=84,b=8523.2h后24.略25.作点A关于河CD的对称点A',连接A'B交河CD于O点,点O就是水厂的位置,26.24秒。
数学数学勾股定理的专项培优练习题(及解析
一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个2.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )A .5B .8C .13D .4.83.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm4.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③5.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则AB 的长是( )A .2B . 23C . 43D .46.以线段a 、b 、c 的长为边长能构成直角三角形的是( )A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=57.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm8.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或519.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c === B .5,5,52a b c === C .::3:4:5a b c =D .11,12,13a b c ===10.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C '处,B C '交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题11.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.12.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.13.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.14.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.15.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.16.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC的形状为___________17.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:3,则22MNBM的值为______________.18.如图,Rt△ABC中,∠BCA=90°,AB=5,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.19.如图,直线423y x=+与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将ABC∆沿BC折叠,点A恰好落在x轴上的'A处,则点C的坐标为______.20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=7EF,则正方形ABCD的面积为_______.三、解答题21.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.22.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O . (1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______. (2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长. 25.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.26.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ; ②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.29.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC . ∵FC ⊥AB ,FD ⊥FE , ∴∠AFD=∠CFE . ∴△AFD ≌△CFE (ASA ). 同理可证:△CFD ≌△BFE . 结论②正确,理由如下: ∵△AFD ≌△CFE , ∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍. 结论③错误,理由如下: ∵△AFD ≌△CFE , ∴CE=AD ,∴2FA . 结论④正确,理由如下: ∵△AFD ≌△CFE , ∴AD=CE ; ∵△CFD ≌△BFE , ∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=, ∴222AD BE DE += . 故选B . 【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.D解析:D 【分析】过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABCACDBCD SSS=+即可求出答案.【详解】如图,过点C 作CH ⊥AB ,连接CD ,∵AC=BC ,CH ⊥AB ,AB=8,∴AH=BH=4,∵AC=5, ∴2222543CH AC AH =-=-=, ∵ABC ACD BCD S S S =+, ∴111222AB CH AC DE BC DF ⋅⋅=⋅⋅+⋅⋅, ∴1118355222DE DF ⨯⨯=⨯+⨯, ∴DE+DF=4.8,故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到ABC ACD BCD S S S =+的思路是解题的关键,依此作辅助线解决问题. 3.D解析:D【解析】【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,12OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解.【详解】 解:∵四边形ABCD 是菱形,∴AC ⊥BD ,11622OA AC ==⨯=3cm , 118422OB BD cm ==⨯= 根据勾股定理得,2222345cm AB OA OB +=+= ,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.4.A解析:A【分析】作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;△DEF 是等腰直角三角形DE=2DF,当DF与BC垂直,即DF最小时,DE取最小值42,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.5.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC 的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD 平分∠ABC,∴∠ABD=12∠ABC=12×60°=30°, ∵CD=1,∠CDB=30°∴BD=2 根据勾股定理可得BC=2222=21=3BD CD --∵∠A=30° ∴AB=23故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.6.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、222325+≠,故错误; B 、2221233+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.7.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,SF=20 cm ,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.8.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.9.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(2,故能构成直角三角形;C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.10.B解析:B【分析】首先根据题意得到BE=DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】解:设ED=x ,则AE=6-x ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB=∠DBC ;由题意得:∠EBD=∠DBC ,∴∠EDB=∠EBD ,∴EB=ED=x ;由勾股定理得:BE 2=AB 2+AE 2,即x 2=9+(6-x )2,解得:x=154, ∴ED=154. 故选:B .【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题11 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3,B 3B 4=16,B 4B 5=32, …,B n ﹣1B n =2n .故答案为:32,2n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.12.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 13.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF = 故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.14.3.【分析】作点B 关于AD 的对称点B′,过点B′作B′N ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,B′N 的长度即为BM+MN 的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可. 【详解】如图,作点B 关于AD 的对称点B′,由垂线段最短,过点B′作B′N ⊥AB 于N 交AD 于M ,B′N 最短,由轴对称性质,BM=B′M ,∴BM+MN=B′M+MN=B′N ,由轴对称的性质,AD 垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴33 即BM+MN 3.3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M、N的位置是解题的关键,作出图形更形象直观.15.7【解析】【分析】通过作辅助线转化BM,MN的值,从而找出其最小值求解.【详解】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD33,∴CM2237 2CD MD+=∴CN=43727 32=.∵BM+MN=CN,∴BM+MN的最小值为7.故答案是:7【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.16.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.17.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 1825 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即25.故答案为5. 点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.19.(0,34). 【分析】 由423y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122OA '=-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,2a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD =22BE DE +=2234+=5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD ≌△ABE ,∴BE =CD ,∠BEA =∠CDA =45°,∴∠BEC =∠BEA +∠AED =45°+45°=90°,即BE ⊥DE ,在Rt △BEC 中,由勾股定理可知:BC 2=BE 2+CE 2.∴BC 2=CD 2+CE 2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.22.(1)2;(2)32q p =;(3)27OM = 【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个, 故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴223MN MO NO p =-=,∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =,∴2MF =,23ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =,在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC =∠EAD =90°,∴∠EAB =∠DAC ,∵AE =AD ,AB =AC ,∴△EAB ≌△DAC (SAS ),∴∠ABE =∠C =∠ABC =45°,EB =CD =9-3=6,∴∠EBD =90°,∴DE 2=BE 2+BD 2=62+32=45,∴DE =35; ②当点D 在CB 的延长线上时,如图3中,连接BE .同理可证△DBE 是直角三角形,EB =CD =3+9=12,DB =3,∴DE 2=EB 2+BD 2=144+9=153,∴DE =317,综上所述,DE 的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 88a a --|c ﹣17|+b 2﹣30b +225,2881||7(15)a a c b --+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=12×8×15=60. 【点睛】 此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状. 26.(1)13,17,10,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 故答案为13,17,10,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒, ∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒ ∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,。
八年级下勾股定理培优试题集锦(含解析)
初二数学勾股定理提高练习与常考难题和培优题压轴题二.填空题(共5小题)11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112= + ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的着作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠A OB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A. B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析二.填空题(共5小题)11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春?嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春?武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春?黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋?永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春?邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春?平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋?新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春?阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋?江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: 3.5 .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为 3 .(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是110 m2.【分析】(1)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;(2)根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解;(3)利用同角的余角相等求出∠BAG=∠AEP,然后利用“角角边”证明△ABG和△EAP全等,同理可证△ACG和△FAQ全等,根据全等三角形对应边相等可得EP=AG=FQ;(4)过R作RH⊥PQ于H,设PH=h,在Rt△PRH和Rt△RQH中,利用勾股定理列式表示出PQ,然后解无理方程求出h,从而求出△PQR的面积,再根据六边形被分成的四个三角形的面积相等,总面积等于各部分的面积之和列式计算即可得解.【解答】解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.【点评】本题考查了勾股定理,构图法求三角形的面积,全等三角形的判定与性质,读懂题目信息,理解构图法的操作方法是解题的关键.21.(2016春?周口期中)(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上 3.5 .思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.【分析】(1)根据矩形的面积公式和三角形的面积公式计算即可;(2)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积;(3)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积.【解答】解:(1)△ABC的面积=2×4﹣×1×2﹣×1×4﹣×1×3=3.5,故答案为:3.5;(2)如图2,△ABC的面积=3a×4a﹣×3a×2a﹣×a×4a﹣×2a×2a=5a2;(3)如图3,△ABC的面积=4m×4n﹣×m×4n﹣×3m×n﹣×4m×3n=6.5mn.【点评】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.22.(2015春?罗田县期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答.【解答】解:如图,由题意知AB=3,CD=14﹣1=13,BD=24.过A作AE⊥CD于E.则CE=13﹣3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.(2014春?镇原县校级期中)(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).【分析】这三道题主要在勾股定理的基础上结合具体图形的面积公式,运用等式的性质即可得到相同的结论.【解答】解:探究1:由等边三角形的性质知:S′=a2,S″=b2,S=c2,则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究2:由等腰直角三角形的性质知:S′=a2,S″=b2,S=c2.则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究3:由圆的面积计算公式知:S′=πa2,S″=πb2,S=πc2.则S′+S″=π(a2+b2),因为a2+b2=c2,所以S′+S″=S.【点评】熟悉各种图形的面积公式,结合勾股定理,运用等式的性质进行变形.24.(2014春?三水区校级期中)如图,在平面坐标系中,点A、点B分别在x 轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.【分析】(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,F为垂足,有CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,列出关于x的方程,求得x=,再在Rt△CEF中,根据勾股定理求得CF=,然后由三角形的面积公式即可求解.【解答】(1)证明:过C点、D点向x轴、y轴作垂线,垂足分别为M、N.∵C(a,b),D(b,﹣a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=,∴△COD是等腰直角三角形,∴∠ODC=45°;(2)解:连接DA.在△OCB与△ODA中,,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)解:作CF⊥OA,F为垂足,由勾股定理得CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,可得52﹣x2=72﹣(3+x)2,解得x=.在Rt△CEF中,得CF==,∴OF=CF=,∴△OCA的面积===.【点评】本题考查了全等三角形、等腰直角三角形的判定与性质,勾股定理及其逆定理,三角形的面积,有一定难度.准确作出辅助线是解题的关键.25.(2015春?定州市期中)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202可解的:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的。
勾股定理培优训练
勾股定理培优训练一.选择题(共19小题)1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=3,BC=4,则CD的长为()(1题)(3题)A.2.4B.2.5C.4.8D.52.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.C.5或D.以上都不对3.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC 为直角边的直角三角形,则CD的长为()A.,2或3B.3或C.2或D.2或34.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a2﹣b2=c2;②a2:b2:c2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.能判断△ABC是直角三角形的有()A.1个B.2个C.3个D.4个5.已知△ABC三边分别为a、b、c,根据下列条件能判断△ABC为直角三角形的有()①∠A=∠B+∠C;②∠A:∠B:∠C=3:4:5;③a:b:c=3:4:5;④a=n2﹣1,b=2n,c=n2+1.A.1个B.2个C.3个D.4个6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()(6题)(7题)A.90°B.60°C.45°D.30°7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.75°8.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4的值是()A.3.65B.2.42C.2.44D.2.659.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1C.n2﹣1D.n2+110.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是()A.B.C.D.11.如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()(11题)(14题)(15题)A.10B.9C.8D.712.下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,613.满足下列条件时,△ABC不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=20°,∠B=70°C.AB:BC:CA=3:4:5D.14.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边形的四条边为边向外作四个正方形,面积依次为S1,S2,S3,S4,下列结论正确的是()A.S3+S4=4(S1+S2)B.S4﹣S1=S3﹣S2C.S1+S4=S2+S3D.S4﹣3S1=S3﹣3S216.如图,小明和小华同时从P处分别向北偏东60°和南偏东30°方向出发,他们的速度分别是3m/s和4m/s,则10s后他们之间的距离为()(16)(17)(18)(19)A.30m B.40m C.50m D.60m17.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=6,BC=3时,则阴影部分的面积为()A.B.C.9πD.918.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.519.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB =3,AD=4,则ED的长为()A.B.3C.1D.二.填空题(共11小题)20.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要米.(20)(21)21.如图,△ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC最小值是.22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在直线BC上找一点P,使得△ABP为以AB为腰的等腰三角形,则PC=.(22)(23)(24)23.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.24.如图,∠B=90°,AB=4cm,BC=3cm,CD=12cm,AD=13cm,则图中此图形的面积是cm2.25.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.(25)(26)(27)26.如图,是一个三级台阶,它的每一级的长、宽,高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.27.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+2S2+2S3+S4=.28.如图,在梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,分别以DA、AB、BC为边向梯形外作正方形,其面积分别是S1、S2、S3,且S2=S1+S3,则线段DC与AB存在的等量关系是.(28)(29)29.如图所示的正方形图案是用4个全等的直角三角形拼成的.已知正方形ABCD的面积为25,正方形EFGH的面积为1,若用x、y分别表示直角三角形的两直角边(x>y),下列三个结论:①x2+y2=25;②x﹣y=1;③xy =12;④x+y=40.其中正确的是(填序号).30.如图,正方形网格中,每一小格的边长为2.P、A、B均为格点.(1)AP=;(2)点B到直线AP的距离是;(3)∠APB=;(4)S△APB =.三.解答题(共30小题)31.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.32.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c﹣a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.33.一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.(1)如果梯子的顶端下滑1m,那么梯子的底端也将下滑1m吗?说明你的方法;(2)如果梯子的顶端下滑2m呢?说说你的理由.34.如图所示,在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求水深是多少?35.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,作DE⊥AC于点E.(1)若AD=CD,求∠C的度数.(2)若AB=6,BC=8.①求AE的长度;②求△ACD的面积.36.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.37.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=5千米,BD=15千米,且CD=15千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万.(1)请你在河流CD上设计选择水厂的位置M,使铺设水管的费用最节省(作图).(2)请你求出铺设水管的长及总费用是多少?38.一架梯子AB长25m,如图斜靠在一面墙上,梯子底端B离墙7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向也滑动了4m吗?如果不是,梯子的底端在水平方向上滑动了多长的距离呢?39.如图,△ABC中,CE、CF分别是∠ACB及外角∠ACD的平分线,且CE交AB于点E,EF交AC于点M,已知EF∥BC.(1)求证:M为EF中点;(2)若EM=3,求CE²+CF²的值.40.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点.求CD 的长.41.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以PQ为腰的等腰三角形?42.若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.(1)a2+b2+c2+200=12a+16b+20c(2)a3﹣a2b+ab2﹣ac2+bc2﹣b3=0.43.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式当a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6、8、9时,△ABC三角形:当△ABC三边长分别为6、8、11时,△ABC三角形.(2)小明同学根据上述探究.猜想:“当a2+b2>c2时.△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=7、b=24时,最长边c在什么范围内取值时,△ABC是锐角三角形、钝角三角形?44.已知△ABC的三边长分别为a、b、c,且a、b、c满足a2+b+|﹣2|=10a+2﹣24,是判断△ABC的形状.45.在△ABC中,AB=15,AC=13,AD是BC上的高,AD=12,求△ABC的周长和面积.46.如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.47.有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?解:由题意,得AC=cm,AD=cm,所以DB=cm,在Rt△ADB中,由勾股定理,得AB=(cm).48.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是多少?49.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC.(1)求证:OD=OE.(2)若AB=3,BC=4,求AD的长.50.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.51.如图,△ABC中,AB=10,BC=9,AC=17,求△ABC的面积.52.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B ﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在AB的垂直平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?53.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.54.如图,在△ABC中,CD⊥AB于点D,BC=15,CD=12,AD=16.(1)求BD的长;(2)求△ABC的面积;(3)判断△ABC的形状.55.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB =10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处?56.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BC=4,BD=2.5.(1)则点D到直线AB的距离为.(2)求线段AC的长.57.(1)如图,作直角边为1的等腰Rt△OA1A2,则其面积S1=;以OA2为一条直角边,1为另一条直角边作Rt △OA2A3,则其面积S2=;以OA2为一条直角边,1为另一条直角边作Rt△OA3A4,则其面积S3=,……则S4=;(2)请用含有n(n是正整数)的等式表示S n,并求+++...+的值.58.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2;(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.59.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B =90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?60.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/秒,设点P运动的时间为t秒.(1)当△PBC是以BC为斜边的直角三角形时,求t的值;(2)当△PBC为等腰三角形时,求t的值.。
完整版)勾股定理培优专项练习
完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。
1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。
解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。
由正弦定理得:EN/ sinx = BN/sin(60°-x)。
=。
EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。
连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。
由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。
2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。
解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。
由正弦定理得:EN/sinx = BN/sin(45°-x)。
=。
EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。
连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。
勾股定理-单元测试题(含答案)
勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。
2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
(填“合格”或“不合格” )3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
D CBA4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。
5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
人教版八年级初二数学第二学期勾股定理单元提优专项训练试题
人教版八年级初二数学第二学期勾股定理单元提优专项训练试题一、选择题1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A .86B .61C .54D .482.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .93.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a aB .23,24a aC .233,24a a D .233,44a a 4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .985.圆柱形杯子的高为18cm ,底面周长为24cm ,已知蚂蚁在外壁A 处(距杯子上沿2cm )发现一滴蜂蜜在杯子内(距杯子下沿4cm ),则蚂蚁从A 处爬到B 处的最短距离为( )A .813B .28C .20D .1226.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .127.如图,有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,D 为BC 边上的一点,现将直角边AC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,则CD 的长为( )A .2cmB .2.5cmC .3cmD .4cm8.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( ) A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =9.已知三组数据:①2,3,4;②3,4,5;③1,25三角形的三边长,能构成直角三角形的是( ) A .②B .①②C .①③D .②③10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25B .111,4,5222C .3,4,5D .114,7,822二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点M、N也随之移动,若限定端点M、N分别在AB、BC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为________________.17.如图,在△ABC中,∠C=90°,∠ABC=45°,D是BC边上的一点,BD=2,将△ACD沿直线AD翻折,点C刚好落在AB边上的点E处.若P是直线AD上的动点,则△PEB的周长的最小值是________.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为____m2.19.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则2________BD=.20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.26.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.27.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手 许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案. 【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S 则1S ,2S ,3S 对应的边长设为1L ,2L ,3L 根据题意得:2111113316224S L L L =⨯== 2223454S L == ∴213L =,223L =∵222132L L L +=∴22232129333L L L =-=∴233332929443S L === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6 S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ 2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ ∴25811L π=⨯,26814L π=⨯ ∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯ ∴2448S 252588L πππ==⨯⨯= ∴43292554S S +=+=故选:C .【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.2.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==,故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.3.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()2AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×3a =3a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.4.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==∴+=x y79故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=2222'++ (cm)A D BD=1216=20故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.6.C解析:C【解析】分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.详解:如图:连接BC,并连接OD交BC于点E:∵DP⊥BP,AC为直径;∴∠DPB=∠PBC=90°.∴PD∥BC,且PD为⊙O的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 7.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x ,则BD=8x -,在△BDE 中,利用勾股定理列方程求解即可.【详解】在Rt △ABC 中,由勾股定理可知:10==,由折叠的性质可知:DC=DE ,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x ,则BD=8-x ,DE=x ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x)2,解得:x=3,∴CD=3.故选:C .【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.8.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.9.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=, 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.5【解析】 试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,13.2【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】 设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8, DE 22228882AE AD ++=即PA +PD 的最小值为2 .故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12 【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 1515【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥ ∴BD=2在Rt △A BC 中, 222282215AD AB BD -=-=∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 16.71-【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.222【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴2,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴2即2,∴△PEB的周长的最小值是222.故答案为2【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.18.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.19.41【解析】作AD ′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +'BD 2=41.故答案是:41.20.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可. 试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF , ∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==∴262312CN FN ===,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.26.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD =-=∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】。
人教版八年级数学下册 第17章《勾股定理》培优试题
第17章《勾股定理》培优试题一.选择题1.一个直角三角形的直角边是24,斜边是25,则斜边上的高为()A.7 B.C.168 D.252.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3 B.4 C.15 D.7.23.如图.在Rt△ARC中,∠ABC=90°,以Rt△ARC的三条边分别向外作等边三角形,其面积分别为S1、S2、S3,那么S1、S2、S3的关系是()A.S2+S3=S1B.S2+S3>S1C.S2+S3<S1D.S22+S32=S124.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对5.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.6.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A .B .C .D .7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( ) A .4B .16C .D .4或8.设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( ) A .1.5B .2C .2.5D .39.下列各组数中,能构成直角三角形的是( ) A .4,5,6B .1,1,C .6,8,11D .5,12,2310.给出下列长度的四组线段:①1,,;②3,4,5;③6,7,8;④a ﹣1,a +1,4a (a >1).其中能构成直角三角形的有 ( ) A .①②③B .②③④C .①②D .①②④11.下列各组数中是勾股数的是( ) A .4,5,6 B .0.3,0.4,0.5C .1,2,3D .5,12,1312.如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯长度至少应是( )A .13mB .17mC .18mD .25m13.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .814.由线段a ,b ,c 组成的三角形不是直角三角形的是( ) A .a =3,b =4,c =5 B .a =12,b =13,c =5C .a =15,b =8,c =17D .a =13,b =14,c =1515.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2 16.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为()A.4 B.2C.7 D.817.在平面直角坐标系中,已知定点A(﹣,3)和动点P(a,a),则PA的最小值为()A.2B.4 C.2D.418.如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5 B.4 C.3 D.2二.填空题19.如图,在Rt△ABC中,∠ACB=90°,AB=1O,BC=6,则AC=,若CD ⊥AB,则CD=.⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,20.如图,OP=1,过P作PP得OP=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP=.201221.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积=16,AE=1;则正方形EFGH的面积=.22.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.23.某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.24.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.三.解答题25.阅读材料并解答问题:我们已经知道,如图①完全平方公式(a+b)2=a2+2ab+b2可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)如图②是由以边长为a和b的正方形和几个全等的长方形所拼成的大长方形,请根据图中意思写出所表示的代数恒等式:;(2)如图③已知四个全等的直角三角形直角边分别为a、b,斜边为c,现将四个直角三角形拼凑成如图的正方形ABCD,且四边形EFGH也为正方形,请利用面积法推恒等式方法,推出直角三角形三边a、b、c的关系.(3)应用(2)中结论:已知直角三角形ABC中,a2﹣b2=28,a﹣b=2,其中直角边为a、b,斜边为c,求三角形斜边c.26.细心观察图形,认真分析各式,然后解答问题:12+1=2,S1=,+1=3,S2=,+1=4,S3=(1)请用含有n(n为正整数)的等式表示上述变化规律.(2)推算出OA10的长.(3)求出S12+S22+S32+…+S1002的值.27.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h、h2.1(1)请你结合图形来证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;28.如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.(1)求证:DE⊥AB;(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;S=c(c+x)你能借助本题提供的图形,证明勾股定理吗?试一试吧.△ABD29.如图,四边形ABCD中,∠C=90°,BD平分∠ABC,AD=3,E为AB上一点,AE =4,ED=5,求CD的长.30.如图,梯子AB斜靠在墙上,梯子的顶端A到地面的距离AC为8m,梯子的底端B 距离墙角C为6m.(1)求梯子AB的长;(2)当梯子的顶端A下滑2m到点A′时,底端B向外滑动到点B′,求BB′的长.参考答案一.选择题1.解:设斜边上的高h,由勾股定理得,直角三角形的另一条直角边==7,则×24×7=×25×h,解得,h=,故选:B.2.解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S△ABC=AC•BC=AB•h,∴h==7.2,故选:D.3.解:设AB=c,AC=b,BC=a,根据勾股定理得:c2=a2+b2,∵S1=c2,S2=a2,S3=b2,∴S1=S2+S3,即S2+S3=S1.故选:A.4.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.5.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.6.解:如图所示:S=×BC×AE=×BD×AC,△ABC∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.7.解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.8.解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.9.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.10.解:∵①12+2=2,故能构成直角三角形;②42+32=52,故能构成直角三角形;③62+72≠82,故不能构成直角三角形;④(a﹣1)2+(a+1)2≠(4a)2,故不能构成直角三角形.∴能构成直角三角形的是①②.故选:C.11.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.12.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.13.解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.14.解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.15.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.16.解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=MN=3,根据勾股定理得:PE==5,在Rt△AMN中,AE为斜边MN上的中线,∴AE=MN=3,则AP的最大值为AE+EP=5+3=8.故选:D.17.解:PA===,∴PA的最小值为=4,故选:B.18.解:∵AB=AC,AD是∠BAC的平分线,∴BD=BC=4,AD⊥BC,由勾股定理得,AD==3,故选:C.二.填空题(共6小题)19.解:∵∠ACB=90°,AB=1O,BC=6,∴AC===8,∵CD⊥AB,∴S△ABC=AB•CD=AC•BC,即×10•CD=×8×6,解得CD=4.8.故答案为:8,4.8.==,20.解:由勾股定理得:OP∵OP=;得OP2=;=,依此类推可得OP=,∴OP故答案为:.21.解:∵四边形EFGH是正方形,∴EH=FE,∠FEH=90°,∵∠AEF+∠AFE=90°,∠AEF+∠DEH=90°,∴∠AFE=∠DEH,∵在△AEF和△DHE中,,∴△AEF≌△DHE,∴AF=DE,∵正方形ABCD的面积为16,∴AB=BC=CD=DE=4,∴AF=DE=AD﹣AE=4﹣1=3,在Rt△AEF中,EF==,故正方形EFGH的面积=×=10.故答案为:10.22.解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).23.解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300∴AC=600米.故答案为600.24.解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.三.解答题(共6小题)25.解:(1)因为长方形面积=(2a+b)(a+2b)=2a2+5ab+2b2,故答案为=2a+b)(a+2b)=2a2+5ab+2b2;(2)因为正方形的面积=c2=4×ab+(b﹣a)2=a2+b2,所以直角三角形的三边关系为:a2+b2=c2.(3)∵a2﹣b2=28,a﹣b=2,∴a+b=14,∴a=8,b=6,∴c2=82+62=100,∵c>0,∴c=10.26.解:(1)结合已知数据,可得:OA n2=n;S n=;(2)∵OA n2=n,∴OA 10=.(3)S+S+S+…+S=+++…===.27.(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC=S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.28.(1)证明:在Rt△ABC和Rt△DCE中,∴Rt△ABC≌Rt△DCE(HL)∴∠BAC=∠EDC(全等三角形的对应角相等),∵∠AEF=∠DEC(对顶角相等),∠EDC+∠DEC=90°(直角三角形两锐角互余),∴∠BAC+∠AEF=∠EDC+∠DEC=90°.∴∠AFE=180°﹣(∠BAC+∠AEF)=90°.∴DE⊥AB.(2)解:由题意知:S=S△BCE+S△ACD+S△ABE=a2+b2+cx,△ABD∵,∴.∴a2+b2=c2.29.解:∵AD=3,AE=4,ED=5,∴AD2+AE2=ED2.∴∠A=90°.∴DA⊥AB.∵∠C=90°.∴DC⊥BC.∵BD平分∠ABC,∴DC=AD.∵AD=3,∴CD=3.30.解:(1)∵∠C=90°,AC=8m,BC=6m,∴AB===10m;(2)∵梯子的顶端A下滑2m,∴CA′=8﹣2=6m,∴CB′===8(m),∴BB′=B′C﹣BC=8﹣6=2(m).。
勾股定理培优试卷(整理)4.5精编版
勾股定理培优试卷一、选择题1、等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B.6 C.5 D.42、如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.8 B.8.8 C.9.8 D.103、如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°4、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.55、如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④(第二题)(第三题)(第四题)(第五题)6、如图,C在线段AB上,AB=3AC,分别以AC、BC为边在线段AB的同侧作两个正三角形△ACD与△BCE,若AC=6,则DE的长度是()A.62B.9 C.63D.367、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm8、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.559、如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知AD:DB=1:3,BC=46,则PE+PF的长是()A.46B.6 C.42D.26(第六题) (第七题) (第八题) (第九题) 10、在平面直角坐标系中,已知点A (-4,0),B (2,0),若点C 在一次函数y=-21x+2的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个B .2个C .3个D .4个11、如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( ) A .10个B .12个C .14个D .16个12、如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CF 、EFD .GH 、AB 、CD13、如图,在△ABC 中,已知∠C=90°,AC=60cm ,AB=100cm ,a ,b ,c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72cm ,则这样的矩形a 、b 、c…的个数是( ) A .6B .7C .8D .914、国庆假期中,小华与同学到休博园去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东拐,仅走了1千米,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )千米. A .20B .14C .11D .1015、如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从A 点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:AA 1⇒A 1D 1⇒D 1C 1⇒C 1C ⇒CB ⇒BA ⇒AA 1⇒A 1D 1…;白甲壳虫爬行的路线是:AB ⇒BB 1⇒B 1C 1⇒C 1D 1⇒D 1A 1⇒A 1A ⇒AB ⇒BB 1…。
勾股定理培优班习题
勾股定理培优班习题题型一:利用勾股定理解决实际问题训练1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?训练2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型二、与勾股定理有关的图形问题训练3.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.题型三、关于翻折问题训练4、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.GB训练5、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.若AB=4,BC=6,求△FAC 的周长和面积.题型四、关于最短性问题训练6、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)题型五、关于勾股定理判定三角形形状训练11、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
训练12:已知△ABC 的三边a 、b 、c ,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?题型六、关于旋转中的勾股定理的运用:训练13、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
第一章:勾股定理培优题
第一章:勾股定理培优题 姓名: 分数:1.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( )A .22d S d ++B.2d S d --C .22d S d ++D .()22d S d ++ 【答案】D 解:设直角三角形的两条直角边分别为x 、y , ∵斜边上的中线为d ,∴斜边长为2d ,由勾股定理得,x 2+y 2=4d 2,∵直角三角形的面积为S ,∴12S xy =,则2xy=4S ,即(x+y )2=4d 2+4S , ∴22x y d S +=+ ∴这个三角形周长为:()22d S d ++ ,故选:D. 2.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( )A .0个B .1个C .2个D .3个【答案】C 解:当a 是直角三角形的斜边时,22345a =+= ;当a 为直角三角形的直角边时,22437a =-=故选:C .3.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )A .2n ﹣2B .2n ﹣1C .2nD .2n+1解:∵△ABC 是边长为1的等腰直角三角形121111222ABC S -∆∴=⨯⨯== , ∴2222AC 112,AD (2)(2)2=+==+= 223212212:2122122AACD ADE S S --∆∴====⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,故答案为A.4. 如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A.62cm B.33cm C.10 cm D.12 cm4解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP=22+=310cm39((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,AP=22+=62 cm66综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是62cm.故选A.5.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12 cm,高是20 cm,那么所需彩带最短的是( )A.13 cm B.4cm C.4cm D.52 cm如图,由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm,∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩带最短是52cm.【答案】D 6. B 7. A 8. A 9. A 10. C6. 在直角三角形ABC中,∠C=90°,AB=5cm,AC=3cm,BC边上有一个动点P(P与B,C不重合),则AP的长可能为()A. 3cm B. 4cm C. 5cm D. 6cm7. 小明准备测量一段河水的深度,他把一根竹竿直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A. 2mB. 2.5mC. 2.25mD. 3m8. 如图,相邻的两边互相垂直,则从点B到点A的最短距离为()A. 13B. 12C. 8D. 5第8题第9题9. 如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A 落在点F处,折痕为MN,则线段CN的长是()A. 3cm B. 4cm C. 5cm D. 6cm10. 在如图所示的正方体中,Q,R,S是PB上的点,一只蚂蚁从A点出发,沿着正方体的侧面爬行,经过PB上一点,爬行到C点,若此蚂蚁所爬行的路线最短,那么P,Q,R,S四个点中,它最可能经过的点是() A. P B. Q C. R D. S11. 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是.12. 若△ABC的三边a,b,c满足(a-c)(a2+b2-c2)=0,则△ABC是.13. 一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南海行,则上午10:00,两小船相距海里.14. 在△ABC中,三个内角∠A,∠B,∠C所对的边分别为a,b,c满足(c-24)2+|a-10|+(b-26)2=0,那么此三角形中最大的角是,它的度数为.15. 如图,已知长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为.第15题第16题16. 如图,有一圆柱,它的高等于12cm,底面半径等于6cm,在圆柱的下底面A点处有一只小蚂蚁,它想吃到上底面B点(距D点14圆处)处的食物,需要爬行的最短距离是?17. 课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为cm2.18. 在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.19如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1、l 2之间的距离为2,l 2、l 3之间的距离为3,则AC 的长是_________;11. 365 12. 等腰三角形或直角三角形 13. 20 14. ∠B 90° 15. 6cm 2 16. 15 17. 2001318. 4 19【答案】217作AD ⊥l 3于D,作CE ⊥l 3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD ≌△BCE,∴BE=AD=3,在Rt △BCE 中,根据勾股定理,得BC=34,在Rt △ABC 中,根据勾股定理,得AC=22342217AB CB +=⨯= 故答案为217 20如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.【答案】65解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS . BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=. 22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC122∴===,DG BG BD 1266∴=-=-=, ∴22AD AG DG 65=+=故答案为:6521如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB .试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =_____过A 作直线a 的垂线,并在此垂线上取点A ′,使得AA ′=4,连接A ′B ,与直线b 交于点N ,过N 作直线a 的垂线,交直线a 于点M ,连接AM ,过点B 作BE ⊥AA ′,交射线AA ′于点E ,如图,∵AA ′⊥a ,MN ⊥a ,∴AA ′∥MN .又∵AA ′=MN =4,∴四边形AA ′NM 是平行四边形,∴AM =A ′N .由于AM +MN +NB 要最小,且MN 固定为4,所以AM +NB 最小.由两点之间线段最短,可知AM+NB的最小值为A′B.所以AM+NB的最小值为8.故选B22公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild 用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外做正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论.拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是.22.【详解】如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=2 (+b)2a,S△ACB=1122AC BC ab⋅=,S△BC′B′=12ab,S△ABB′=12c2,所以22(+b)111=2222aab ab c++,a2+2ab+b2=ab+ab+c2,∴a2+b2=c2;拓展1.过A作AP⊥BC于点P,如图2,则∠BMF=∠APB=90°,∵∠ABF=90°,∴∠BFM+∠MBF=∠MBF+∠ABP,∴∠BFM=∠ABP,在△BMF和△ABP中,90BFM ABPBMF APBBF AB∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BMF≌△ABP(AAS),∴FM=BP,同理,EN=CP,∴FM+EN=BP+CP,即FM+EN=BC,故答案为:FM+EN=BC;拓展2.过点D作PQ⊥m,分别交m于点P,交n于点Q,如图3,则∠APD=∠ADC=∠CQD=90°,∴∠ADP+∠DAP=∠ADP+∠CDQ=90°,∴∠DAP=∠CDQ,在△APD和△DQC中,DAP CDQAPD DQCAD DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△DQC(AAS),∴AP=DQ=2,∵PD=1,∴AD2=22+12=5,∴正方形的面积为 5,故答案为:5.23.类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.23解:(1)如图1,将△APB绕着点A逆时针旋转60°得到△ACP′,∴△ACP′≌△ABP,∴AP′=AP=8、CP′=BP=15、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,∴P P′=AP=8,∠A P′P=60°,∵PP′2+P′C2=82+152=172=PC2,∴∠PP′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°(2)如图2,把△ABE绕着点A逆时针旋转90°得到△ACE′,则AE′=AE,CE′=CE,∠CAE′=∠BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=∠CAF+∠CAE′=∠FAE′=45°,∴∠EAF=∠E′AF,且AE=AE',AF=AF,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠B+∠ACB=90°,∴∠ACB+∠ACE′=90°,∴∠FCE′=90°,∴E′F2=CF2+CE′2,∴EF2=BE2+CF2;(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴22BC-=AOB绕点B顺时针方向旋转60°,AB AC3∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,22=+=AC''BC A B7∴OA+OB+OC=A′O′+OO′+OC=A′C7。
八下勾股定理培优-含答案
第17章 《勾股定理》拔高训练一.选择题1.一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子.A .13cmB .410cmC .12cmD .153cm2. 如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 等于( )A .6B .8C .10D .123.如图,在4×4方格中作以AB 为一边的Rt △ABC ,要求点C 也在格点上,这样的Rt △ABC 能作出( )A .2个B .3个C .4个D .6个第2题 第3题 第5题 第6题4.直角三角形的三边为a ﹣b ,a ,a+b 且a ,b 都为正整数,则三角形其中一边长可能为( )A .61B .71C .81D .915.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,23AM EF ,则正方形ABCD 的面积为( )A .14SB .13SC .12SD .11S6.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .857.如图,在Rt △ABC 中,∠ACB=90°,AB=4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S2,则S1+S2的值等于()A.2πB.3πC.4πD.8π第7题第9题第10题8.直角三角形一直角边长为12,另两边长均为自然数,则其周长为()A.36 B.28 C.56 D.不能确定9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()D.35A.521B.25 C.1055二.填空题10.如图,MN垂直平分线段AB,P是射线MN上的一个动点,连接P A,PB,过点P作CD∥AB,点G在直线CD上,连接GA、GB,已知AB=4,若满足△GAB是等腰三角形的点G有且只有3个,则PM的长为.11.如图,在Rt△ABC中,∠ACB=90,AC=3,B C=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4=.12.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.第11题第12题第14题13.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm.14.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是尺.15.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为.第15题第16题第17题16.如图所示的是一段楼梯,高BC=3 m,斜边AB=5m,现计划在楼上铺地毯,至少需要地毯的长为m.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C 落在边AB上的点C′处,则折痕BD的长为.18.已知一个直角三角形的两边长分别是3和4,则以第三边为边长的正方形面积为.19.如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=13 AB,则图中阴影部分的面积与正方形ABCD的面积之比为.第19题第20题20.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3 cm,AB=8 cm,则图中阴影部分面积为cm2.三.解答题(共20小题)21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=4km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.(结果保留根号)22.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.23.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……172+b2=c217,b,c24.如图,已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,如此类推.(1)求AC、AD、AE的长.(2)写出第n个等腰直角三角形的斜边长AN.25.如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?26.在△ABC中,∠A=150°,AB=20m,AC=30m,求△ABC的面积.27.计算①2+32+6+10+15;②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.28.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a.BC=b,AC=c,请利用四边形BCC′C 的面积证明勾股定理.29.有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将ABC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,求CD的长.30.如图,A、B两个小集镇在河流的同侧,分别到河岸L的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米2万元,请你在河岸L上选择水厂的位置M(作图并标注出来),使铺设水管的费用最节省,并求出总费用是多少?31.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.32.如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:2 1.43 1.7≈≈,)33.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2证明:连结DB ,过点D 作BC 边上的高DF ,则DF=EC=b ﹣a 。
勾股定理经典培优题及答案
勾股定理经典培优题类型之一勾股定理的验证1.小明利用如图17-X -1①所示的图形(三个正方形和一个直角三角形)验证勾股定理验证勾股定理,,他的方法如下:过点D 作直线FG ∥AC ,过点E 作直线GH ∥BC ,直线FG 与直线GH 交于点G ,与直线BC 交于点F ,直线GH 与直线AC 交于点H ,如图②所示.请你回答:(1)△ABC 与△BDF ,△DEG ,△EAH 有什么关系?为什么?(2)用含a ,b 的代数式表示正方形CFGH 的面积;(3)你能否根据图形面积之间的关系找到a ,b ,c 之间的数量关系?(4)你能得到什么结论?图17-X -1 2.勾股定理神秘而美妙勾股定理神秘而美妙,,它的证法多样它的证法多样,,其巧妙各有不同其巧妙各有不同,,其中的“面积法”给了小明灵感其中的“面积法”给了小明灵感,,他惊喜地发现他惊喜地发现,,当四个全等的直角三角形如图17-X -2摆放时摆放时,,可以用“面积法”来证明a 2+b 2=c 2.(请你写出证明过程) 图17-X -2 类型之二勾股定理及其应用3.等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为() A .7 B .6 C .5 D .4 4.我国汉代数学家赵爽为了证明勾股定理我国汉代数学家赵爽为了证明勾股定理,,创制了一幅“弦图”创制了一幅“弦图”,,后人称其为“赵爽弦图”.如图17-X -3是由弦图变化得到的是由弦图变化得到的,,它由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=________. 图17-X -3 图17-X -4 5.图17-X -4①是我国古代著名的“赵爽弦图”的示意图①是我国古代著名的“赵爽弦图”的示意图,,它是由四个全等的直角三角形围成的.若AC =12,BC =10,将四个直角三角形中边长为12的直角边分别向外延长一倍的直角边分别向外延长一倍,,得到图②所示的数学“风车”得到图②所示的数学“风车”,,则这个数学“风车”的外围周长是________.6.知识回顾:在学习《二次根式》时知识回顾:在学习《二次根式》时,,我们知道:2+3≠5; 在学习《勾股定理》时在学习《勾股定理》时,,由于2,3,5满足(2)2+(3)2=(5)2,因此以2,3,5为三边长能构成直角三角形.三角形.探索思考:请通过构造图形来说明:a +b ≠a +b (a >0,b >0).(画出图形并进行解释) 7.在△ABC 中,AB =15,AC =20,D 是直线BC 上的一个动点上的一个动点,,连接AD ,如果线段AD 的长度最短是12,请你求△ABC 的面积.的面积.类型之三 勾股定理的逆定理及其应用8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长分别以每组数据中的三个数为三角形的三边长,,能构成直角三角形的有( ) A .②B .①②.①②C .①③.①③D .②③.②③ 9.如果△ABC 的三边长分别是m 2-1,m 2+1,2m (m >1),那么下列说法中正确的是( ) A .△ABC 是直角三角形是直角三角形,,且斜边长为m 2+1 B .△ABC 是直角三角形是直角三角形,,且斜边长为2m C .△ABC 是直角三角形是直角三角形,,且斜边长为m 2-1 D .△ABC 不是直角三角形不是直角三角形10.若△ABC 的三边长a ,b ,c 满足关系式(a +2b -60)2+|b -18|+c -30=0,则△ABC 是________三角形.类型之四 勾股定理及其逆定理的综合应用图17-X -5 11.如图17-X -5,E 是正方形ABCD 内的一点内的一点,,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =________°. 12.如图17-X -6,在4×3的正方形网格中有从点A 出发的四条线段AB ,AC ,AD ,AE ,它们的另一个端点B ,C ,D ,E 均在格点上(正方形网格的交点).(1)若每个正方形的边长都是1,分别求出AB ,AC ,AD ,AE 的长度(结果可以保留根号);(2)在AB ,AC ,AD ,AE 四条线段中四条线段中,,是否存在三条线段是否存在三条线段,,它们能构成直角三角形?如果存在它们能构成直角三角形?如果存在,,请指出是哪三条线段条线段,,并说明理由.并说明理由.图17-X -6 类型之五 勾股定理在实际生活中的应用图17-X -7 13.如图17-X -7是矗立在高速公路旁水平地面上的交通警示牌是矗立在高速公路旁水平地面上的交通警示牌,,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).14.如图17-X -8,A ,B 两地之间有一座山两地之间有一座山,,汽车原来从A 地到B 地需经过C 地沿折线ACB 行驶行驶,,现开通隧道后隧道后,,汽车直接沿直线AB 行驶.已知AC =10千米千米,,∠A =30°,∠B =45°则隧道开通后则隧道开通后,,汽车从A 地到B 地比原来少走多少千米?(结果保留根号) 图17-X -8 。
北师大版数学八年级上册第一章《勾股定理》单元培优练习题卷(解析版)
《勾股定理》单元培优练习卷一.选择题1.在Rt△ABC中,∠C=90°,BC=12.AC=16,则AB的长为()A.26B.18C.20D.212.若线段a,b,c组成直角三角形,则它们的比可以为()A.2:3:4B.7:24:25C.5:12:14D.4:6:103.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A.5B.3C.1.2D.2.44.如图,在△ABC中,AB⊥AC,AB=5cm,BC=13cm,BD是AC边上的中线,则△BCD的面积是()A.15cm2B.30cm2C.60cm2D.65cm25.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.B.C.a+b D.a﹣b6.在△ABC中,AB=7,AC=8,BC=9,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,△ABC中,∠ACB=135°,CD⊥AB,垂足为D,若AD=6,BD=20,则CD的长为()A.B.C.D.48.两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2+b2=c2D.a2﹣b2=c29.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则该三角形的面积为()A.8B.10C.24D.4810.如图,公园里有一块草坪,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB ⊥BC,这块草坪的面积是()A.24平方米B.36平方米C.48平方米D.72平方米二.填空题11.△ABC中,∠C=90°,a=8,c=10,则b=.12.如图,一棵大树在离地面4米高的B处折断,树顶A落在离树底端C的5米远处,则大树折断前的高度是米.(结果保留根号)13.如图,△A BC中,AC=6cm,AB=8cm,BC=10cm,DE是边AB的垂直平分线,则△ADC 的周长为cm.14.如图所示:分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S、S、12 S表示,若S=25,S=9,则BC的长为.31315.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为.16.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,一条直角边为3,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”的长等于.三.解答题17.如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.(1)求证:△ADC是直角三角形;(2)求BC的长18.小东拿着一根长竹竿进一个宽为5米的矩形城门,他先横着拿但进不去;又竖起来拿,结果竹竿比城门还高1米,当他把竹竿左右斜着拿时,两端刚好顶着城门的对角,问竹竿长多少米?19.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)20.如图,方格中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的周长;(2)请判断三角形ABC是否是直角三角形,并说明理由;(3)△ABC的面积;(4)点C到AB边的距离.21.如图,在四边形ABCD中,AB=AD=,∠A=90°,∠CBD=30°,∠C=45°,求BD 及CD的长.22.为了积极响应国家新农村建设,长沙市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为800米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄总共能听到多长时间的宣传?23.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=30cm,点P 从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当∠PQC=150°时,求t的值;(2)当PQ=CD时,求t的值.参考答案一.选择题1.解:在Rt△ABC中,∠C=90°,BC=12.AC=16,∴AB===20,故选:C.2.解:A、(2x)2+(3x)2=13x2,(4x)2=16x2,(2x)2+(3x)2≠(4x)2,不能组成直角三角形;B、(7x)2+(24x)2=625x2,(25x)2=625x2,(7x)2+(24x)2=(25x)2,能组成直角三角形;C、(5x)2+(12x)2=169x2,(14x)2=196x2,(5x)2+(12x)2≠(14x)2,不能组成直角三角形;D、4+6=10,不能组成三角形;故选:B.3.解:设斜边上的高为h,由勾股定理得,三角形的斜边长=则×3×4=×5×h,解得,h=2.4,故选:D.4.解:由勾股定理得,AC==5,=12,∵BD是AC边上的中线,∴CD=AD=6,∴△BCD的面积=×5×6=15(cm2),故选:A.5.解:设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x=,∴BC=DE=a﹣∴BD2=BC2+CD2=(=,)2+()2=,∴BD=,故选:B.6.解:∵72+82>92,∴这个三角形是锐角三角形,故选:A.7.解:作BH⊥AC交AC的延长线于H,设BH=x,∵∠ACB=135°,∴∠HCB=45°,∴CH=x,由勾股定理得,BC=x∴CD==∵∠ADC=∠AHB,∠A=∠A,∴△ADC∽△AHB,,AH==,∴=,即=,解得,x=4,∴CD=故选:D.=4,8.解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,∴(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:C.9.解:设另一直角边长为x,则斜边长为(x+2),由勾股定理得,x2+62=(x+2)2,解得,x=8,∴该三角形的面积=×6×8=24,故选:C.10.解:则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以∠ACD=90°.这块草坪的面积=+=AB•BC+AC•DC=(3×4+5×12)=36米2.△S Rt A BC△S Rt A CD故选:B.二.填空题11.解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b===6,故答案是:6.12.解:设这棵大树在折断之前的高度为x米,根据题意得,42+52=(x﹣4)2,∴x=4+或x=4﹣<0(舍)∴这棵大树在折断之前的高度为(4+)米,故答案为:(4+).13.解:∵DE是边AB的垂直平分线,BC=10cm,AC=6cm,∴AD=BD,∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=16cm;故答案为:16.14.解:设Rt△ABC的三边分别为a、b、c,∴S=a2=25,S=b2,S=c2=9,113∵△ABC是直角三角形,∴c2+b2=a2,即S+S=S,321∴S=S﹣S=25﹣9=16,213∴BC=4,故答案为:4.15.解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:BC==5,所以阴影部分的面积S=×π×()2+×()2+×3×4﹣×π×()2=6.故答案为:6.16.解:“有趣中线”有三种情况:若“有趣中线”为斜边A B上的中线,直角三角形的斜边的中线等于斜边的一半,不合题意;若直角边BC为3,“有趣中线”为AC边上的中线,有趣中线”的长=3;若“有趣中线”为另一直角边AC上的中线,BC=3,如图所示:设BD=2x,则CD=x,在Rt△CBD中,根据勾股定理得:BD2=BC2+CD2,即(2x)2=32+x2,解得:x=,则△ABC的“有趣中线”的长=2;综上所述,这个三角形“有趣中线”的长等于3或2.三.解答题(共7小题)17.(1)证明:∵AB=13c cm,BD=8cm,∴AD=AB﹣BD=5cm,∴AC=13cm,CD=12cm,∴AD2+CD2=AC2,∴∠ADC=90°,即△ADC是直角三角形;(2)解:在Rt△BDC中,∠BDC=180°﹣90°=90°,BD=8cm,CD=12cm,由勾股定理得:BC===4(cm),即BC的长是4cm.18.解:设竹竿长x米,则城门高(x﹣1)米,根据题意得:x2=(x﹣1)2+52,解得:x=13答:竹竿长13米.19.解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB==15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.20.解:(1)根据勾股定理知,BC==,故△ABC的周长=AB+BC+AC==,AC==,AB=++;(2)△ABC不是直角三角形,理由如下:由(1)可知,BC=,AC=,AB=,AC<BC<AB,∵A C2+BC2=AB2,∴△ABC不是直角三角形;(3)如图,△S ABC=S 正方形BDEF△SBCD△SACE△SABF ﹣﹣﹣=3×3﹣×1×3﹣×1×2﹣×2×3=;(3)设点C到AB的距离是h.h=,由(3)知,三角形ABC的面积是,则AB h=,即×解得,h=,即点C到AB的距离为.21.解:作DE⊥BC于E,在Rt△ABD中,BD===2,在Rt△DEB中,∠CBD=30°,∴DE=BD=1,在Rt△EDC中,∠C=45°,∴EC=DE=1,由勾股定理得,CD===.22.解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为800米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=800米,∴BP=BQ==600米,∴PQ=1200米,∴影响村庄的时间为:1200÷300=4分钟,∴村庄总共能听到4分钟的宣传.23.解:(1)作PE⊥BC于E,由题意得,AP=t,QC=3t,则BE=AP=t,∴QE=30﹣4t,∵∠PQC=150°,∴∠PQE=30°,∴QE=PE,即30﹣4t=8,解得,t=﹣2;(2)∵当PD=CQ时,四边形PQCD是平行四边形,则PQ=CD,∴24﹣t=3t,解得,t=6(s);当四边形PQCD是等腰梯形时,PQ=CD.设运动时间为t秒,则有AP=tcm,CQ=3tcm,∴BQ=30﹣3t,作PM⊥BC于M,DN⊥BC于N,则NC=BC﹣AD=30﹣24=6.∵梯形PQCD为等腰梯形,∴NC=QM=6,∴BM=(30﹣3t)+6=36﹣3t,∴当AP=BM,即t=36﹣3t,解得t=9,∴t=9s时,四边形PQCD为等腰梯形.综上所述t=6s或9s时,PQ=CD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》单元培优练习题一.选择题1.下列命题中,是假命题的是()A.有一个内角等于60°的等腰三角形是等边三角形B.在直角三角形中,斜边上的高等于斜边的一半C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1, C.6,8,11 D.5,12,233.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.4.有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为()A.3 B.C.3或D.以上都不对5.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7D.76.在下列各组数中,是勾股数的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、67.在同一平面上把三边BC=3,AC=4,AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于()A.B.C.D.8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.310.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有()m.A.2 B.4 C.6 D.811.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm12.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二.填空题13.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.14.若△ABC得三边a,b,c满足(a﹣b)(a2+b2﹣c2)=0,则△ABC的形状为.15.已知a,b是互质的正整数,且a+b,3a,a+4b恰为一直角三角形的三条边长,则a+b的值等于16.如图,在Rt△ABC中,∠A=90°,AB=AC=4,点D为AC的中点,点E在边BC上,且ED⊥BD,则△CDE的面积是.17.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数,,.18.将一副三角尺按如图所示方式叠放在一起,若AB=20cm,则阴影部分的面积是cm2.19.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.20.若3,4,a和5,b,13是两组勾股数,则a+b的值是.21.如图,小正方形边长为1,则△ABC中AC边上的高等于.22.如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影部分是一个小正方形EFGH,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH的面积为.三.解答题23.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.24.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.25.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a、b、c(如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积S2、S3与图③中小正方形的面积S1有什么关系?你能得到a、b、c 之间有什么关系?26.观察下表列举猜想3、4、5 32=4+55、12、13 52=12+137、24、25 72=24+25……13、b、c132=b+c请你结合该表格及相关知识,求出b,c的值,并验证13,b,c是否是勾股数?27.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长.参考答案一.选择题1.解:A、等腰三角形底角相等,若底角为60°,则顶角为180°﹣60°﹣60°=60°,若顶角为60°,则底角为=60°,所以有一个角为60°的等腰三角形即为等边三角形,故A选项正确;B、直角三角形中斜边的中线等于斜边的一半,只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C、在直角三角形中,最大的边为斜边,根据勾股定理可知斜边长的平方的等于两直角边长平方的和,故C选项正确;D、过三角形角平分线的交点作各边的垂线,则三角形分成3对小三角形,其中各顶点所在的两个直角三角形全等,即过角平分线作的高线相等,故D选项正确;即B选项中命题为假命题,故选:B.2.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.3.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.4.解:当长为4和5的两边都是直角边时,斜边是:=;当长是5的边是斜边时,第三边是:=3.第三边长是:或3.故选:C.5.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.6.解:A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选:C.7.解:如图所示,连接CC′,根据对称的性质可知CC′⊥AB,且CC′=2CE,∵AC×BC=AB×CE,∴CE=,∴CC′=2×CE=.故选:D.8.解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.9.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为: ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.10.解:由题意得,在Rt△ABC中,AC=8,AB=10,所以BC==6.故选:C.11.解:由题意,可得这只烧杯的直径是:=6(cm).故选:D.12.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.二.填空题(共10小题)13.解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.14.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2.当只有a=b成立时,是等腰三角形.当只有第二个条件成立时:是直角三角形.当两个条件都成立时:是等腰直角三角形.15.解:在直角三角形中,(1)若a+4b为斜边,则(a+4b)2=(a+b)2+9a2∴9a2﹣6ab﹣15b2=0,(a+b)(3a﹣5b)=0∵a+b≠0,且a,b互质,∴a=5,b=3.三条边长分别为8,15,17,a+b=8.(2)若3a为斜边,则9a2=(a+b)2+(a+4b)2,∴7a2﹣10ab﹣17b2=0,∴(a+b)(7a﹣17b)=0.∵a+b≠0,∴7a=17b,a,b互质,∴a=17,b=7.三条边长分别为24,45,51,a+b=24.综上得a+b=8.或a+b=24.16.解:点D为AC的中点故AD=DC=AC=2,S△ABD=S△BDC=S△ABC=12,由勾股定理得BC==4,过D点作DF垂直于BC于F点,DF===,BD2=AD2+AB2=12+48=60,BD=2,由勾股定理得BF===3,由射影定理得BD2=BF•BE,∴BE===CE=BC﹣BE=4﹣=,S△CDE=×CE×DF=××=2.故答案为:2.17.解:符合a2+b2=c2即可,例如5,12,13;8,15,17;9,40,41.(答案不唯一)18.解:∵∠B=30°,∠ACB=90°,AB=20cm,∴AC=10cm.∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=10cm.故S△ACF=×10×10=50(cm2).故答案为50.19.解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.20.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故答案为:17.21.解:过B作BG⊥AC,交AC于点G,在Rt△ACF中,AF=2,CF=1,根据勾股定理得:AC==,∵S△ABC=S正方形AFED﹣S△BCE﹣S△ABD﹣S△ACF=4﹣×1×1﹣2××2×1=,S△ABC=AC•BG,∴×BG=,则BG=.故答案为:22.解:直角三角形直角边的较短边为=3,正方形EFGH的面积=5×5﹣4×3÷2×4=25﹣24=1.故答案为:1.三.解答题(共5小题)23.解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S△ABC=•AC•BC=×5×12=30.24.解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.25.解:分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.26.解:根据图表,由图可得规律:,解得.所以b=84;c=85.∵132+842=7225,852=7225,∴13,84,85是勾股数.27.解(1)由图可得:,整理得:,整理得:a2+b2=c2;(2)当a=2,b=4时,根据勾股定理得:;如图1:则四边形的最大周长为2b+2c=.。