二次函数综合专题复习(含答案)
中考数学复习《二次函数》专题训练-附带有参考答案
中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
2023年九年级中考数学专题训练:二次函数综合(含简单答案)
2023年九年级中考数学专题训练:二次函数综合一、单选题1.已知抛物线()2330y x x c x =++-≤≤与直线2y x =-有且只有一个交点,若c 为整数,则c 的值有( ) A .1个B .2个C .3个D .4个2.方程231x x +=的根可视为函数3y x的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程321x x +=-的实数根x 所在的范围是( ) A .112x -<<-B .1123x -<<-C .1134x -<<-D .104x -<<3.如图,已知二次函数()()5144y x x =-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,Р为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则APPK的最小值为( )A .94B .2C .74D .544.如图.抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集为( )A .x >﹣1B .x <3C .x <﹣3或x >1D .﹣1<x <35.如图,抛物线y =12-x 2+7x ﹣452与x 轴交于点A ,B ,把抛物线在x 轴及共上方的部分记作C 1将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12-x +m 与C 1,C 2共3个不同的交点,则m 的取值范是( )A .52928m << B .12928m << C .54528m << D .14528m <<6.在平面直角坐标系中,对图形F 给出如下定义:若图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,如图中的矩形ABCD 的坐标角度是90°.现将二次函数()213y ax a =≤≤的图象在直线1y =下方的部分沿直线1y =向上:翻折,则所得图形的坐标角度α的取值范围是( )A .3060α︒≤≤︒B .120150α︒≤≤︒C .90120α︒≤≤︒D .6090α︒≤≤︒7.二次函数y =2x 2﹣2x +m (0<m < 12),如果当x =a 时,y <0,那么当x =a ﹣1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m8.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在①M 的内部;①CD 的长为32①若P 与C 重合,则①DPE =15°;①在P 的运动过程中,若AP =PE =①N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A .①①①B .①①①C .①①①D .①①①二、填空题9.如图,已知抛物线24y x x c =-+的顶点为D ,与y 轴交于点C ,过点C 作x 轴的平行线AC 交抛物线于点A ,过点A 作y 轴的平行线AB 交射线OD 于点B ,若OA OB =,则c 的值为_____________.10.已知抛物线()2123y x m x m =-+++以及平面直角坐标系中的点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,则m 的取值范围是________.11.在平面直角坐标系中,抛物线215y x bx c =-+(0b >,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若ABC 是等腰直角三角形,则BC 的长为________.12.如图,2=23y x x --与x 轴交于A ,B 两点(A 在左边)与y 轴交于C 点,P 是线段AC 上的一点,连结BP 交y 轴于点Q ,连结OP ,当OAP △和PQC △的面积之和与OBQ △的面积相等时,点P 的坐标为______.13.如图,在平面直角坐标系中,抛物线214y x mx =-+与x 轴正半轴交于点A ,点B是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为___________.14.若243P m m m ++(,)是一个动点(m 为实数),点Q 是直线4y x =-上的另一个动点,则PQ 长度的最小值为_____.15.已知抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点(6,)D y 在抛物线上,E 是该抛物线对称轴上一动点,当BE 十DE 的值最小时,ACE △的面积为是____16.已知:如图,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),我们规定:当AMB 为直角三角形时,就称AMB 为该抛物线的“优美三角形”.若抛物线26y ax bx =++的“优美三角形”的斜边长为4,求a 的值______.三、解答题17.抛物线23y ax bx =++顶点为点(1,4)D ,与x 轴交于点A 、B ,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点.(1)求a 和b 的值;(2)是否存在点P ,使得以P 、D 、B 为顶点的三角形中有两个内角的和等于45°?若存在,求出点P 的坐标;若不存在,说明理由.18.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MB MC +的值最小时,点M 的坐标是___________;(3)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.19.如图,已知抛物线233384y x x =--与x 轴的交点为点A 、D (点A 在点D 的右侧),与y 轴的交点为点C .(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD MC +的值最小,并求出点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为点B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,已知抛物线223y ax ax =++中,当=1x -时,4y =.(1)求此抛物线的解析式;(2)点E 是抛物线上且位于直线AB 上方的一个动点,不与点A ,B 重合,求ABE 的面积最大时,点E 的坐标.(3)若1t x ≤≤时,y 的取值范围是04y ≤≤,请直接写出t 的取值范围.参考答案:1.D 2.B 3.A 4.C 5.A 6.D 7.C 8.D 9.8310.2m <-或m>2或1m = 11.6 12.2,13⎛⎫-- ⎪⎝⎭13.641415.616.12±17.(1)1a =-,2b = (2)存在,(1,2)或(1,6)-18.(1)248433y x x =--+(2)8(1,)3M -(3)存在,P 点的坐标为(1,0)-或(-或(1,-或13(1,)8-19.(1)()4,0A ,()2,0D -,()0,3C -(2)连接AC 交对称轴于点M ,点M 即为所求,91,4M ⎛⎫- ⎪⎝⎭(3)()2,0-或()6,6.20.(1)223y x x =--+(2)315()24-,(3)31t -≤≤-。
专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)
专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。
2024年中考数学总复习:二次函数(附答案解析)
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
中考数学—二次函数的综合压轴题专题复习附答案
一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。
专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)
专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。
2023年安徽中考数学总复习专题:二次函数的性质综合题(PDF版,有答案)
2023年安徽中考数学总复习专题:二次函数的性质综合题1.已知函数y=(k+2)x k2+3k―2是关于x的二次函数.(1)求k的值;(2)当k为何值时,抛物线有最低点?(3)当k为何值时,函数有最大值?2.在平面直角坐标系中,如果点P的横坐标和纵坐标互为相反数,则称点P为“慧泉”点.例如:点(1,﹣1),(―13,13),(5,―5),…都是“慧泉”点.(1)判断函数y=2x﹣3的图象上是否存在“慧泉”点,若存在,求出其“慧泉”点的坐标;(2)若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).①求a,c的值;②若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,求实数n的取值范围.3.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.4.已知二次函数y=ax2﹣2ax﹣3a(a≠0).(1)求该二次函数的对称轴.(2)求证:无论a取何值,该函数的图象必过某个定点.(3)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,且最高点M的纵坐标为24,求点M和点N的坐标.5.已知二次函数y=ax2+4ax+3a(a为常数).(1)若a>0,当x<m+13时,此二次函数y随着x的增大而减小,求m的取值范围.(2)若二次函数在﹣3≤x≤1时有最大值3,求a的值.参考答案1.解:(1)∵函数y=(k+2)x k2+3k―2是关于x的二次函数,∴k满足k2+3k﹣2=2,且k+2≠0,解得:k1=1,k2=﹣4,∴k的值为1或﹣4;(2)∵抛物线有最低点,∴图象开口向上,即k+2>0,∴k=1;(3)∵函数有最大值,∴图象开口向下,即k+2<0,∴k=﹣4.2.解:(1)函数y=2x﹣3的图象上存在“慧泉”点,根据题意﹣x=2x﹣3,解得x=1,故其“慧泉”点的坐标为(1,﹣1);(2)①∵二次函数y=ax2+3x+c(a≠0)的图象上有“慧泉”点,∴﹣x=ax2+3x+c,即ax2+4x+c=0,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).∴Δ=42―4ac=0 4a+6+c=―2,解得a=﹣1,c=﹣4;②∵a=﹣1,c=﹣4,∴二次函数为y=﹣x2+3x﹣4,∴x=﹣1时,y=﹣1﹣3﹣4=﹣8,∵y=﹣x2+3x﹣4=﹣(x―32)2―74,∴对称轴为直线x=3 2,∴当x=32时,函数有最大值为―74,∵若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―7 4,∴实数n的取值范围是32≤n≤4.3.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=―3―10或m=―3+10(舍去).综上所述,m=﹣2或―3―10.4.(1)解:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴函数的对称轴为直线x=1.(2)证明:∴y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴该函数的图象必过定点(3,0),(﹣1,0);(3)解:∵y=a(x﹣1)2﹣4a,∴抛物线顶点坐标为(1,﹣4a),∵抛物线开口向上,∴a>0,顶点(1,﹣4a)为图象最低点N,∵5﹣1>1﹣(﹣1),∴直线x=5与抛物线交点为最高点M,把x=5代入代入y=ax2﹣2ax﹣3a得y=12a,∴M(5,12a),∵12a=24,∴a=2,∴M(5,24),N(1,﹣8).5.解:(1)∵抛物线得对称轴为直线x=―4a2a=―2,a>0,∴抛物线开口向上,当x≤﹣2时,二次函数y随x的增大而减小,∵x<m+13时,此二次函数y随着x的增大而减小,∴m+13≤―2,即m≤﹣7;(2)由题意得:y=a(x+2)2﹣a,∵二次函数在﹣3≤x≤1时有最大值3①当a>0 时,开口向上,∴当x=1时,y有最大值8a,∴8a=3,∴a=3 8;②当a<0 时,开口向下,∴当x=﹣2时,y有最大值﹣a,∴﹣a=3,∴a=﹣3,综上,a=38或a=﹣3.。
初中数学二次函数综合复习基础题(含答案)
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
中考数学总复习《二次函数》专项测试卷-附参考答案
中考数学总复习《二次函数》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4B.﹣7<y≤﹣3C.﹣7≤y<﹣3D.﹣4<y≤﹣3 2.已知二次函数y=3(x−2)2+ℎ,当自变量x分别取-2,2,5时,对应的值分别为y1,y2和y 3则y1,y2和y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y3<y1D.y3<y1<y23.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数ℎ=3.5t−4.9t2(的单位:秒,h的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71B.0.70C.0.63D.0.364.对于二次函数y=−14(x+2)2−1,下列说法正确的是()A.当x>−2时,y随x的增大而增大B.当x=−2时,y有最大值−1C.图象的顶点坐标为(2,−1)D.图象与x轴有两个交点5.抛物线y=2x2−12x+22的顶点是()A.(3,−4)B.(−3,4)C.(3,4)D.(2,4)6.如图,二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限,且过点(0,1)和(-1,0)下列结论:①ab<0,②b2-4ac>0,③a-b+c<0,④c=1,⑤当x>-1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个7.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④8.关于二次函数y=-(x -2)2+3,以下说法正确的是()A.当x>-2时,y随x增大而减小B.当x>-2时,y随x增大而增大C.当x>2时,y随x增大而减小D.当x>2时,y随x增大而增大9.如图,双曲线y= k x经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是()A.a+b=k B.2a+b=0C.b<k<0D.k<a<010.如图,抛物线y=ax2+bx+c交x轴于(−1,0),(3,0)两点,则下列判断中,不正确的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C .当−1<x <1时D .一元二次方程ax 2+bx +c =0的两个根是−1和311.已知点(x 1,y 1),(x 2,y 2)(x 1<x 2)在y =−x 2+2x +m 的图象上,下列说法错误的是( )A .当m >0时,二次函数y =−x 2+2x +m 与x 轴总有两个交点B .若x 2=2,且y 1>y 2,则0<x 1<2C .若x 1+x 2>2,则y 1>y 2D .当−1≤x ≤2时,y 的取值范围为m −3≤y ≤m12.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m二、填空题(共6题;共6分)13.在二次函数 y =−x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为 m n .(填“<”,“=”或“>”)14.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .(只需写一个)15.二次函数 y =ax 2+bx +c 的图象与 x 轴相交于 (−1, 0) 和 (5, 0) 两点,则该抛物线的对称轴是 .16.函数y= {x 2+2x −3(x <0)x 2−4x −3(x ≥0) 的图象与直线y=﹣x+n 只有两个不同的公共点,则n 的取值为 .17.已知二次函数y =﹣x 2+2mx+1,当﹣2≤x≤1时最大值为4,则m 的值为 . 18.若函数y=(m ﹣2)x m 2−2+3是二次函数,则m=三、综合题(共6题;共70分)19.已知抛物线 y =a(x −4)2+2 经过点 (2,−2) .(1)求a 的值;(2)若点A(m,y1),B(n,y2)(m<n<4)都在该抛物线上,试比较y1与y2的大小.20.宁波地区最近雾霾天气频繁,使得空气净化器得以畅销,某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,在一个月内,当售价是1000元/台时,可售出50台,且售价每降低20元,就可多售出5台.若供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m 的景观灯,把拱桥的截面图放在平面直角坐标系中。
2024年福建中考数学专题复习:二次函数综合题(含答案)
2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。
2023年中考数学专题复习:二次函数综合题训练(含答案)
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.
2023年中考数学专题《二次函数综合问题》必刷真题考点分类专练含答案解析
备战2023年中考数学必刷真题考点分类专练(全国通用)专题13二次函数综合问题一.解答题(共40小题)1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D的坐标;(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.【分析】(1)令y=x2﹣4x=x,求出x的值即可得出点B的坐标,将函数y=x2﹣4x化作顶点式可得出点D的坐标;(2)过点D作DE⊥y轴于点E,易得tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,易证△ODE≌△ODG,△GDF∽△OGH,则DG=DE=2,OG =OE=4,DG:OG=DF:HG=GF:OH,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,又OH=EF,则8﹣4t=2+t,解得t的值可得出点G的坐标,进而可得直线DG的解析式,令y=0即可得出点P的坐标;(3)分别过点M,Q作y轴的平行线,交直线OB于点N,K,则S1=QK(x B﹣x E),S2=MN(x B﹣x E),由点Q的横坐标为m,可表达,再利用二次函数的性质可得出结论.【解析】(1)令y=x2﹣4x=x,解得x=0或x=5,∴B(5,5);∵y=x2﹣4x=(x﹣2)2﹣4,∴顶点D(2,﹣4).(2)如图,过点D作DE⊥y轴于点E,∴DE=2,OE=4,∴tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,∴△ODE≌△ODG(AAS),∴DG=DE=2,OG=OE=4,∵∠OHG=∠F=90°,∠OGH+∠DGF=90°,∠OGH+∠GOH=90°,∴∠DGF=∠GOH,∴△GDF∽△OGH,∴DG:OG=DF:HG=GF:OH=1:2,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,∵∠DEO=∠F=∠OHG=90°,∴四边形OEFH是矩形,∴OH=EF,∴8﹣4t=2+t,解得t=,∴GH=,OH=2+t=,∴G(,﹣).∴直线DG的解析式为y=x﹣,令y=0,解得x=5,∴P(5,0).(3)∵点B(5,5)与点M关于对称轴x=2对称,∴M(﹣1,5).如图,分别过点M,Q作y轴的平行线,交直线OB于点N,K,∴N(﹣1,﹣1),MN=6,∵点Q横坐标为m,∴Q(m,m2﹣4m),K(m,m),∴KQ=m﹣(m2﹣4m)=﹣m2+5m.∵S1=QK(x B﹣x E),S2=MN(x B﹣x E),∴==﹣(m2﹣5m)=﹣(m﹣)2+,∵﹣<0,∴当m=时,的最大值为.【点评】本题属于二次函数综合题,主要考查二次函数的性质,二次函数上的坐标特征,三角形的面积和三角形相似的判定及性质,解题的关键正确表达两个三角形面积的比.2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC 的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).【分析】(1)令y=0,解方程可得结论;(2)分两种情形:①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.构建方程组分别求解即可;(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,推出x A•x C=x B•x E=﹣3﹣b可得n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q推出q=﹣mn﹣3,推出q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,推出OF=b2+b,可得结论.【解析】(1)令y=0,得x2﹣2x﹣3=0,解得x=3或﹣1,∴A(﹣1,0),B(3,0);(2)∵OP=OA=1,∴P(0,1),∴直线AC的解析式为y=x+1.①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.∵B(3,0),BD1∥AC,∴直线BD1的解析式为y=x﹣3,由,解得或,∴D1(0,﹣3),∴D1的横坐标为0.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.直线l的解析式为y=x+5,由,可得x2﹣3x﹣8=0,解得x=或,∴D2,D3的横坐标为,,综上所述,满足条件的点D的横坐标为0,,.(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,∴x A•x C=x B•x E=﹣3﹣b∵x A=﹣1,∴x C=3+b,∴m=3+b,∵x B=3,∴x E=﹣1﹣,∴n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q∴q=﹣mn﹣3,∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,∴OF=b2+b,∴=b+1=(m﹣3)+1=m.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的格线等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;(2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC,S△BOP,计算出S△BOC,根据S△PBC=S四边形PBOC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),∴S△POC=x P==3m,S△BOP=|y P|=+2m+6),∵S△BOC==18,∴S△PBC=S四边形PBOC﹣S△BOC=(S△POC+S△POB)﹣S△BOC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,∴S△PBC===﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【点评】本题考查了二次函数及其图象性质,平行四边形的分类等知识,解决问题的关键是正确分类,画出图形,转化条件.4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【分析】(1)在直线y=﹣x﹣2中,令x=0和y=0可得点A和B的坐标,代入抛物线y =ax2+bx+c(a>0)中可解答;(2)连接BC交直线x=1于点P,利用两点之间线段最短可得出此时△PAB的周长最小,从而可以解答;(3)根据a=1时,可得抛物线的解析式y=x2+x﹣2,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),表示QE的长,配方后可解答.【解析】(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)如图1,当a=时,2×﹣b=1,∴b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2=(x﹣1)2﹣,∴抛物线的对称轴是:x=1,由对称性可得C(4,0),要使△ABP的周长最小,只需AP+BP最小即可,如图1,连接BC交直线x=1于点P,因为点A与点B关于直线x=1对称,由对称性可知:AP+BP=PC+BP=BC,此时△ABP的周长最小,所以△ABP的周长为AB+BC,Rt△AOB中,AB===2,Rt△BOC中,BC===2,∴△ABP周长的最小值为2+2;(3)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣1=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【点评】本题是二次函数综合题,考查了利用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,轴对称﹣最短路线问题等知识,综合性较强,难度适中,利用方程思想,数形结合是解题的关键.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【分析】(1)利用交点式可得二次函数的解析式;(2)①根据两角相等可证明两三角形相似;②根据△OCD∽△A′BD,得=,则=,即的最小值就是的最小值,OC为定值,所以当CD最小为2时,有最小值是;(3)根据面积的关系可得:△OCD∽△A′BD时,相似比为2:1,可得A'B=AB=1,作辅助线,构建直角三角形,根据等角的正切可得A'G和BG的长,最后再证明△A'GB ∽△QOB,可得OQ的长,利用待定系数法可得A'B的解析式,最后联立方程可得结论.【解析】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BD=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,由翻折得:AA'⊥CH,∵∠AHB=∠BDC=90°,∠ABH=∠CBD,∴∠BCD=∠BAH,tan∠BCD=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在RtA'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.【点评】本题是二次函数的综合,考查了待定系数法求解析式,对称的性质,三角形相似的性质和判定,配方法的应用,勾股定理的应用,熟练掌握二次函数的图象及性质,数形结合是解本题的关键.6.(2022•湘潭)已知抛物线y=x2+bx+c.(1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.(Ⅰ)求该抛物线所表示的二次函数表达式;(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB 交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.(Ⅱ)求出AB的解析式,设出点P坐标,表示出M点坐标,从而表示出PH和HM的长,分别列出PH=3HM和PH=时的方程,从而求得m的值,进而求得P点坐标;(2)分为b>0和b<0两种情形.当b<0时,抛物线对称轴在y轴左侧,此时求得抛物线与y轴交点,只需交点在点C的上方,就满足抛物线与线段CE没有交点,进一步求得结果,当b<0时,类似的方法求得这种情形b的范围.【解析】(1)解:(Ⅰ)由题意得,,∴,∴y=x2﹣2x﹣3;(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:∵B(0,﹣3),A(3,0),∴直线AB的解析式为:y=x﹣3,设点P(m,m2﹣2m﹣3),M(m,m﹣3),∴PH=﹣m2+2m+3,HM=3﹣m,当PH=3HM时,﹣m2+2m+3=3(3﹣m),化简得,m2﹣5m+6=0,∴m1=2,m2=3,当m=2时,y=22﹣2×2﹣3=﹣3,∴P(2,﹣3),当m=3时,y=32﹣2×3﹣3=0,此时P(3,0)(舍去),当PH=HM时,﹣m2+2m+3=(3﹣m),化简得,2m2﹣7m+3=0,∴m3=3(舍去),m2=,当m=时,y=()2﹣2×﹣3=﹣,∴P(,﹣),综上所述:P(2,﹣3)或(,﹣);(2)如图1,∵抛物线y=x2+bx+c过点D(﹣3,0),∴(﹣3)2﹣3b+c=0,∴c=3b﹣9,∴y=x2+bx+(3b﹣9),把x=﹣3,y=0代入y=+n得,0=+n,∴n=4,∴OC=4,∵∠COD=90°,OD=3,OC=4,∴CD=5,∵四边形CDFE是菱形,∴CE=CD=5,∴E(5,4),当﹣<0时,即b>0时,当x=0时,y=3b﹣9,∴G(0,3b﹣9),∵该抛物线与线段CE没有交点,∴3b﹣9>4,∴b>,当b<0时,当x=5时,y=25+5b+3b﹣9=8b+16,∴H(5,8b+16),∵抛物线与CE没有交点,∴8b+16<4,∴b<﹣,综上所述:b>或b<﹣.【点评】本题考查了求二次函数的解析式,一次函数解析式,菱形的性质,勾股定理等知识,解决问题的关键一是正确分类,二是数形结合.7.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A 在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】(1)先分别求得点A,点B的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC和△AOB≌△CPD两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P,D′,C三点共线时求得CD′的最小值.【解析】在直线y=2x+2中,当x=2时,y=2,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0),点B的坐标为(0,2),把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,0),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,0),综上,点P的坐标为(1,0)或(2,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,点C三点共线时,CD′′有最小值,由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),∴CD′′的最小值为1.【点评】本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【分析】(1)①由顶点A(2,2)得,设y=a(x﹣2)2+2,再根据抛物线过点(0,1.5),可得a的值,从而解决问题;②由对称轴知点(0,1.5)的对称点为(4,1.5),则下边缘抛物线是由上边缘抛物线向左平移4cm得到的,可得点B的坐标;③根据EF=0.5,求出点F的坐标,利用增减性可得d的最大值为最小值,从而得出答案;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣[(m+3﹣2)2+h+0.5]﹣[﹣(m+2)2+h+0.5]=1,从而得出答案.【解析】(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,设y=a(x﹣2)2+2,又∵抛物线过点(0,1.5),∴1.5=4a+2,∴a=﹣,∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,当y=0时,0=﹣(x﹣2)2+2,解得x1=6,x2=﹣2(舍去),∴喷出水的最大射程OC为6cm;②∵对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4cm得到的,∴点B的坐标为(2,0);③∵EF=0.5,∴点F的纵坐标为0.5,∴0.5=﹣(x﹣2)2+2,解得x=2±2,∵x>0,∴x=2+2,当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5,则x≤2+2,∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+2﹣3=2﹣1,再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB≤d,∴d的最小值为2,综上所述,d的取值范围是2≤d≤2﹣1;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣[(m+3﹣2)2+h+0.5]),则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,解得m=2.5,∴点D的纵坐标为h﹣,∴h﹣=0,∴h的最小值为.【点评】本题是二次函数的实际应用,主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数与方程的关系等知识,读懂题意,建立二次函数模型是解题的关键.9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把点A的坐标代入y=﹣x2﹣4x+c,求出c的值即可;(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,证明△PHE是等腰直角三角形,得,当PH最大时,PE最大,运用待定系数法求直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),求得PH,再根据二次函数的性质求解即可;(3)分三种情况讨论:①当AC为平行四边形的对角线时,②当AM为平行四边形的对角线时,③当AN为平行四边形的对角线时分别求解即可.【解析】(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,∴0=﹣52﹣4×5+c∴c=5,∴点C的坐标为(0,5);(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:∵A(﹣5,0),C(0,5)∴OA=OC,∴△AOC是等腰直角三角形,∴∠CAO=45°,∵PF⊥x轴,∴∠AHF=45°=∠PHE,∴△PHE是等腰直角三角形,∴,∴当PH最大时,PE最大,设直线AC解析式为y=kx+5,将A(﹣5,0)代入得0=5k+5,∴k=1,∴直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),∴,∵a=﹣1<0,∴当时,PH最大为,∴此时PE最大为,即点P到直线AC的距离值最大;(3)存在,理由如下:∵y=﹣x2﹣4x+5=﹣(x+2)2+9,∴抛物线的对称轴为直线x=﹣2,设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),分三种情况:①当AC为平行四边形对角线时,,解得,∴点M的坐标为(﹣3,8);②当AM为平行四边形对角线时,,解得,∴点M的坐标为(3,﹣16);③当AN为平行四边形对角线时,,解得,∴点M的坐标为(﹣7,﹣16);综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).【点评】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P 的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N 关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.【解析】(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2a﹣3a.∴y=ax2﹣2a﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.。
2023年九年级中考数学专题复习:二次函数综合题(角度问题)含答案
2023年九年级中考数学专题复习: 二次函数综合题(角度问题)1.已知抛物线2y x bx c =++经过点()1,0A -和点()0,3C -,与x 轴交于另一点B .(1)求抛物线的解析式;(2)点P 为第四象限内抛物线上的点,连接,,CP AP AC ,如图1,当CP AC ⊥时,求P 点坐标;(3)设点M 为抛物线上的一点,若2MAB ACO ∠=∠时,求M 点坐标.2.如图,已知抛物线213y x bx c =-++交x 轴于()30A -,,()4,0B 两点,交y 轴于点C ,点P 是抛物线上一点,连接AC 、BC .(1)求抛物线的表达式;(2)连接OP ,BP ,若2BOP AOC S S =△△,求点P 的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得∠QBA =75°?若存在,直接写出点Q 的坐3.已知抛物线y=ax2+2x+c过A(﹣1,0),C(0,3),交x轴于另一点B.点P是抛物线上一动点(不与点C重合),直线CP交抛物线对称轴于点N.(1)求抛物线的解析式;(2)连接AN,当∠ANC=45°时,求P点的横坐标;(3)如图2,过点N作NM∠y轴于点M,连接AM,当AM+MN+CN的值最小时,直接写出N点的坐标.4.如图,抛物线y=34x2+bx+c交x轴于A,B两点,交轴于点C,点A,B的坐标分别为(-1,0),(4,0).(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求∠CPB的面积最大时点P的坐标;(3)若M是抛物线上一点,且∠MCB=∠ABC,请直接写出点M的坐标.5.如图,抛物线y 14=x 2+bx +c 与直线y 12=-x +3分别交于x 轴,y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为A ,顶点为D ,连接CD 交x 轴于点E .(1)求该抛物线的解析式;(2)点F ,G 是对称轴上两个动点,且FG =2,点F 在点G 的上方,请求出四边形ACFG 的周长的最小值;(3)连接BD ,若P 在y 轴上,且∠PBC =∠DBA +∠DCB ,请直接写出点P 的坐标.6.如图∠,二次函数2y ax bx c =++(a ≠0)的图象经过点A (1-,0),并且与直线122y x =-相交于坐标轴上的B 、C 两点,动点P 在直线BC 下方的二次函数的图象上. (1)求此二次函数的表达式;(2)如图∠,连接PC ,PB ,设∠PCB 的面积为S ,求S 的最大值; (3)如图∠,过点A ,C 作直线,求证AC ∠BC ;(4)如图∠,抛物线上是否存在点Q ,使得∠ABQ =2∠ABC ?若存在,则求出直线BQ 的解析式;若不存在,请说明理由.7.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点(0,2)C .(1)求抛物线的表达式; (2)求证:CAO BCO ∠=∠;(3)若点P 是抛物线上的一点,且PCB ACB BCO ∠+∠=∠,求直线CP 的表达式.8.如图,已知抛物线(2)(4)y a x x =+-(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线34y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与∠ABC 相似,求a 的值;(3)在(1)的条件下,直线BD 上是否存在点E ,使∠AEC =45°?若存在,请直接写出点E 的横坐标;若不存在,请说明理由.9.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式.(2)如果一个圆经过点O 、点B 、点C 三点,并交于抛物线AC 段于点E ,求∠OEB 的(3)在抛物线的对称轴上是否存在点P ,使∠PCD 为等腰三角形,如果存在,直接写出点P 的坐标,如果不存在,请说明理由.(4)在抛物线的对称轴上是否存在一点P ,使∠APB =∠OCB ?若存在,求出PB 2的值;若不存在,请说明理由.10.在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标;(3)已知E 是x 轴上的点,F 是抛物线上的动点,当B ,C ,E ,F 为顶点的四边形是平行四边形时,求出所有符合条件的E 的坐标.11.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐(3)已知E是x轴上的点,F是抛物线上的动点,当B,C,E,F为顶点的四边形是平行四边形时,求出所有符合条件的E点的坐标,12.如图1,抛物线2=-+与x轴交于A(-2,0)、B(4,0)两点,与y轴交于y ax x c点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD 于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点Q的坐标.13.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,在对称轴上是否存在一点Q,连接PQ,将线段PQ绕点Q顺时针旋转90°,使点P恰好落在抛物线上?若存在,请求出点Q的坐标;若不存在,请14.抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若()1,0A -,()3,0B , ∠求抛物线2y x bx c =-++的解析式;∠Р为抛物线上一点,连接AC 、PC ,若AC PC ⊥,求点P 的坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若290BDA BAD ∠+∠=︒,求点D 的纵坐标.(1)如图1,抛物线21y ax bx =++与x 轴交于点A 和点()3,0B ,对称轴为直线1x =; ∠求抛物线的解析式;∠点P 为抛物线上一动点,PN BC ⊥,垂点为N ,当PCN △与BOC 相似时,直接写出P 点坐标;(2)点D 为抛物线顶点,若抛物线上有且只有一个点Q 的横坐标是纵坐标的2倍,且45DCO ∠=︒,求a 的值.16.如图,点B ,C 分别在x 轴和y 轴的正半轴上,OB ,OC 的长分别为28120x x -+=的两个根()OC OB >,点A 在x 轴的负半轴上,且3OA OC OB ==,连接AC .(1)求过A ,B ,C 三点的抛物线的函数解析式;(2)点P 从点C 出发,以每秒2个单位长度的速度沿CA 运动到点A ,点Q 从点O 出发,以每秒1个单位长度的速度沿OC 运动到点C ,连接PQ ,当点P 到达点A 时,点Q 停止运动,求CPQ S △的最大值;(3)M 是抛物线上一点,是否存在点M ,使得15ACM ∠=︒?若存在,请求出点M 的坐标;若不存在,请说明理由.17.如图,已知二次函数2y x bx c =-++的图象经过点()()1,0,3,0A B -,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为抛物线的顶点,求BCD △的面积;(3)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在,请直接写出点P 的坐标;若不存在,请说明理由.18.已知直线43y x n =-+交x 轴于点A ,交y 轴于点C (0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B (0,-2),点P 为抛物线上一个动点,设P 的横坐标为m (m >0),过点P 作x 轴的垂线PD ,过点B 作BD ∠PD 于点D ,联结PB . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)将△BDP 绕点B 旋转得到△BD P '',且旋转角∠PB P '=∠OAC ,当点P 对应点P '落在y 轴上时,求点P 的坐标.19.如图,顶点为(),P m m (0m >)的二次函数图象与x 轴交于点()2,0A m ,点B 在该图象上,直线OB 交二次函数图象对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、(1)求该二次函数的关系式(用含m 的式子表示).(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ∠连接OP ,当12OP MN =时,请判断NOB 的形状,并说明理由. ∠求证:BNM ONM ∠=∠.20.如图1,已知抛物线21y x =-与x 轴交于A ,B 两点,与y 轴交于点D . (1)求直线BD 的解析式;(2)P 为抛物线上一点,当点Р到直线BD 的距离为P 的坐标; (3)如图2,直线y t =交抛物线与M ,N 两点,C 为抛物线上一点,当90MCN ∠=︒时,请探究点C 到MN 的距离是否为定值.参考答案:1.(1)223y x x =--(2)(73,209-) (3)点M 的坐标为939,416⎛⎫- ⎪⎝⎭或1557,416⎛⎫ ⎪⎝⎭2.(1)211433y x x =-++(2)(﹣5,﹣6)或(6,﹣6)(3)存在,Q 的坐标为(12,(123.(1)2y x 2x 3=-++(2)44(3)(1,32)4.(1)239344y x x =-- (2)92,2P ⎛⎫- ⎪⎝⎭ (3)M 的坐标为()3,3-或531125,749⎛⎫ ⎪⎝⎭5.(1)抛物线的解析式为:21234y x x =-+(2)四边形ACFG 2(3)点P 的坐标为(0,﹣2)或(0,18)6.(1)213222y x x =--;(2)4;(4)存在,41633y x =-和41633y x =-+. 7.(1)215222y x x =-+;(3)直线CP 的解析式为423y x =-+或2y =8.(1):y =14x 2-12x -2;(2)a (3)在直线BD 上不存在点E ,使∠AEC =45°.理由见解析9.(1)y =﹣x 2+2x +3;(2)45°;(3)存在,点P (1,2)、(1,3)、(1,4)、(1,、(1,4;(4)存在,.10.(1)213222y x x =-++;(2)(2,3);(3)()3,2或2⎫-⎪⎪⎝⎭. 11.(1)抛物线得解析式为213222y x x =-++;(2)点D 的坐标为()2,3;(3)E 点的坐标为(2,0)或(52,0)或(52,0)或(-4,0). 12.(1)2142y x x =--,2y x =--;(2)P (0,-4);(3)点Q 的坐标为440(,)39-,20104(,)39. 13.(1)y =x 2-4x +3,顶点(2,-1);(2)(113,169);(3)(2,109)或(2,319) 14.(1)∠2–23y x x =++;∠720(,)39P ;(2)1- 15.(1)∠212133y x x =-++;∠()2,1,1735,416⎛⎫- ⎪⎝⎭,52,3⎛⎫-- ⎪⎝⎭;(2)1916a =或22516a =16.(1)21262y x x =--+;(2(3)存在,M 4⎡-⎢⎣⎦或(4--- 17.(1)2y x 2x 3=-++;(2)3;(3)存在,P 1(2,3),P 2(4,-5) 18.(1)224233y x x =--;(2)72或12;(3)P (258,1132)或(7255,896-) 19.(1)()12y x x m m =--;(2)∠等腰直角三角形20.(1)1y x =-;(2)P ⎝⎭或P ⎝⎭;(3)C 到MN 的距离为定值1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合1.(门头沟18期末26)在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象如图所示.(1)求二次函数的表达式;(2)函数图象上有两点1(,)P x y ,2(,)Q x y ,且满足12x x <,结合函数图象回答问题;①当3y =时,直接写出21x x -的值;②当213x x -2≤≤,求y 的取值范围.26. (本小题满分7分)(1)选择坐标代入正确 ………………………………………………1分 得出表达式243y x x =-+………………………………………………3分(2)找到位置画出示意图 ① 214x x -=………………………………………………4分②由图象易得当y=0时212x x -=由于该函数图象的对称轴为2x =, 1(,)P x y ,2(,)Q x y ,在对称轴左右两侧对称分布,所以两点到对称轴的距离相等 所以,当213x x -=时即PQ =3 ∴MP = MN -PN =31222-=………………………………………………5分 ∴112x =代入243y x x =-+,解得54y =………………………………………6分 综上所述:504y ≤≤………………………………………7分2.(平谷18期末26)已知函数22y x mx =-的顶点为点D .(1)求点D 的坐标(用含m 的代数式表示); (2)求函数22y x mx =-的图象与x 轴的交点坐标;(3)若函数22y x mx =-的图象在直线y=m 的上方,求m 的取值范围.26.解:(1)22y x mx =-()22x m m =-- (1)∴D (m ,2m -). (2)(2)令y =0,得220x mx -=.解得1202x ,x m ==.∴函数的图象与x 轴的交点坐标(0,0),(2m ,0). (4)(3)方法一:∵函数22y x mx =-的图象在直线y=m 的上方,∴顶点D 在直线y=m 的上方. ·················································································· 5 ∴2m ->m . (6)即2m m +<0.由y =2m m -的图象可知,m 的取值范围为:﹣1<m <0. (7)方法二:∵函数22y x mx =-的图象在直线y=m 的上方,∴22x mx ->m . (5)∴当22x mx -=m 时,抛物线和直线有唯一交点.∴()()2=24m m ∆---=2440m m +=.解得120,1m m ==-. ................................................................................... 6 ∴m 的取值范围为:﹣1<m <0. . (7)3.(丰台18期末26)在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式; (2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q26. 解:(1)1,242 3.b bc ⎧=⎪⎨⎪-++=⎩ ……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM = AM. …… 3分∴BC -AC = BM+MC -AC = AM+MC -AC= AC+CM+MC -AC =2 CM =2. ……5分 其他方法相应给分.(3)点Q 的坐标为(12,2-)或(12,2-).……7分4.(昌平18期末26)在平面直角坐标系xOy 中,抛物线y=mx 2-2mx -3 (m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B 顶点为C 点. (1)求点A 和点B 的坐标; (2)若∠ACB =45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点P (x 1,y 1)和Q (x 2,y 2),与直线AB 交于点N (x 3,y 3),若x 3<x 1<x 2,结合函数的图象,直接写出x 1+x 2+x 3的取值范围为 .26.解:(1)∵抛物线y=mx 2-2mx -3 (m ≠0)与y 轴交于点A ,∴点A 的坐标为,3-(0);…………………… 1分∵抛物线y=mx 2-2mx -3 (m ≠0)的对称轴为直线1x =,∴点B 的坐标为,0(1).…………………… 2分(2)∵∠ACB =45°,∴点C 的坐标为,4-(1),…………………… 3分把点C 代入抛物线y=mx 2-2mx -3 得出1m =,∴抛物线的解析式为y=x 2-2x -3. …………………… 4分y(3)123523x x x <++< ……………………6分 5.(朝阳18期末27)已知抛物线l 1与l 2形状相同,开口方向不同,其中抛物线l 1:2782--=ax ax y 交x 轴于A ,B 两点(点A 在点B 的左侧),且AB =6;抛物线l 2与l 1交于点A 和点C (5,n ).(1)求抛物线l 1,l 2的表达式;(2)当x 的取值范围是 时,抛物线l 1与l 2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN ∥y 轴,交x 轴,l 1,l 2分别相交于点P (m ,0),M ,N ,当1≤m ≤7时,求线段MN 的最大值.6.(东城18期末26)在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx+n (m ≠0)与x 轴交于点A, B ,点A 的坐标为(-2,0). (1)写出抛物线的对称轴;(2)直线n m x y -4-21过点B ,且与抛物线的另一个交点为C .①分别求直线和抛物线所对应的函数表达式; ②点P 为抛物线对称轴上的动点,过点P 的两条直线l 1: y=x+a 和l 2 : y=-x+ b 组成图形G .当图形G 与线段BC 有公共点时,直接写出点P 的纵坐标t 的取值范围.7.(海淀18期末26)已知二次函数243y ax ax a =-+.(1)该二次函数图象的对称轴是x = ;(2)若该二次函数的图象开口向下,当14x ≤≤时,y 的最大值是2,求当14x ≤≤时,y 的最小值;(3)若对于该抛物线上的两点11() P x y , ,22() Q x y ,,当1+1t x t ≤≤,25x ≥时,均满足12y y ≥,请结合图象,直接写出的最大值.26.解:(1)2. ………………1分 (2)∵ 该二次函数的图象开口向下,且对称轴为直线2x =, ∴ 当2x =时,y 取到在14x ≤≤上的最大值为2. ∴ 4832a a a -+=.∴ 2a =-,2286y x x =-+-. ………………3分 ∵ 当12x ≤≤时,y 随x 的增大而增大, ∴ 当1x =时,y 取到在12x ≤≤上的最小值0. ∵ 当24x ≤≤时,y 随x 的增大而减小, ∴ 当4x =时,y 取到在24x ≤≤上的最小值6-.∴ 当14x ≤≤时,y 的最小值为6-. ………………4分 (3)4. ………………6分8.(石景山18期末26)在平面直角坐标系xOy 中,抛物线n mx x y ++-=2经过点)0,1(-A 和)3,0(B .(1)求抛物线的表达式;(2)抛物线与x 轴的正半轴交于点C ,连接BC .设抛物线的顶点P 关于直线t y =的对称点为点Q ,若点Q 落在△OBC 的内部,求t 的取值范围.26.(本小题满分7分)解:(1)∵抛物线n mx x y ++-=2过点)01(,-A 和)30(,B . ∴⎩⎨⎧==+--31n n m解得:2=m∴抛物线的表达式为:322++-=x x y …………………………3分 (2)∵抛物线322++-=x x y∴抛物线的顶点)41(,P ,对称轴为直线1=x 令0=y 得:0322=++-x x ,解得:3,121=-=x x∴ 点C 的坐标为)03(,∵直线BC 经过点)30(,B 和C )03(, ∴3+-=x y BC∴直线1=x 与直线BC 的交点为)21(1,M 、与x 轴的交点)01(2,M 如图所示∴2<t <3 ……………………………………………………………7分9.(西城18期末25)已知抛物线G:221=-+-(a为常数).y x ax a(1)当3a=时,用配方法求抛物线G的顶点坐标;(2)若记抛物线G的顶点坐标为(,)P p q.①分别用含a的代数式表示p,q;②请在①的基础上继续用含p的代数式表示q;③由①②可得,顶点P的位置会随着a的取值变化而变化,但点P总落在的图象上.A.一次函数B.反比例函数C.二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G改为抛物线H:22=-+(a为常数),其中N为含a的代数式,从而使这个新抛物线H满足:无y x ax N论a取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:(用含a的代数式表示),它的顶点所在的一次函数图象的表达式=+(k,b为常数,k≠0)中,k= ,b= .y kx b10.(西城18期末26)在平面直角坐标系xOy 中,抛物线M :2 (0)y ax bx c a =++≠经过(1,0)A -,且顶点坐标为(0,1)B .(1)求抛物线M 的函数表达式;(2)设(,0)F t 为x 轴正半轴...上一点,将抛物线M 绕点F 旋转180°得到抛物线1M . ①抛物线1M 的顶点1B 的坐标为 ;②当抛物线1M 与线段AB 有公共点时,结合函数的图象,求t 的取值范围.11.(怀柔18期末26)在平面直角坐标系xOy 中,抛物线与直线:相交于点A (,7).(1)求m 、n 的值;(2)过点A 作AB ∥x 轴交抛物线于点B ,设抛物线与x 轴交于点C 、D (点C 在点D 的左侧),求△BCD 的面积;3242---=m mx mx y n x y +-=22-(3)点E (t ,0)为x 轴上一个动点,过点E 作平行于y 轴的直线与直线和抛物线分别交于点P 、Q .当点P 在点Q 上方时,求线段PQ 的最大值.26.解:(1)m =1………………………………………………………………………………………1分 n =3………………………………………………………………………………………………2分 (2)由(1)知抛物线表达式为y =x 2-4x -5 令y =0得,x 2-4x -5=0.解得x 1=-1,x 2=5,……………………………………………………………………………3分抛物线y =x 2-4x -5与x 轴得两个交点C 、D 的坐标分别为C (-1,0),D (5,0) CD =6.∵A (,7),AB ∥x 轴交抛物线于点B ,根据抛物线的轴对称性,可知B (6,7)………4分 S △BCD =21.……………………………………………………………………………………5分 (3) 据题意,可知P (t ,-2 t +3),Q ( t ,t 2-4 t -5),由x 2-4x -5=-2x +3得直线y =-2x +3与抛物线y = x 2-4x -5的两个交点坐标分别为(-2,7)和(4,-5) ……………………………………………………………………………………………6分 ∵点P 在点Q 上方∴-2<t <5, PQ = -t 2+2 t +8=-( t -2) 2+9 ∵a =-1PQ 的最大值为9.……………………………………………………………………………7分12.(密云18期末26)已知抛物线:221(0)y mx mx m m =-++≠.(1)求抛物线的顶点坐标.(2)若直线1l 经过(2,0)点且与x 轴垂直,直线2l 经过抛物线的顶点与坐标原点,且1l 与2l 的交点P 在抛物线上.求抛物线的表达式.(3)已知点A (0,2),点A 关于x 轴的对称点为点B.抛物线与线段AB 恰有一个公共点,结合函数图象写出m 的取值范围.∴∴2-∴∴∴26. (1)解:将221y mx mx m =-++ 配方得 2(1)1y m x =-+∴ 抛物线的顶点坐标为(1,1). ………………………..3分 (2)由已知,2l 的表达式为y x =,1l 的表达式为2x = ∴交点(2,2)P代入221y mx mx m =-++,解得1m = . ………………………….5分 (3)当抛物线过(0,2)时,解得1m =结合图象可知,当抛物线开口向上且和线段AB 恰有一个公共点,则 01m <≤当抛物线过(0,-2),解得3m =-结合图象可知,当抛物线开口向下且和线段AB 恰有一个公共点,则 30m -≤<综上所述,m 的取值范围是 01m <≤ 或30m -≤< ………………….7分13.(大兴18期末26)已知一次函数1112=-y x ,二次函数224=-+y x mx (其中m >4). (1)求二次函数图象的顶点坐标(用含m 的代数式表示); (2)利用函数图象解决下列问题:①若5=m ,求当10y >且2y ≤0时,自变量x 的取值范围;②如果满足10y >且2y ≤0时自变量x 的取值范围内有且只有一个整数,直接写出m 的取值范围.26.解:(1)∵224y x mx =-+,∴二次函数图象的顶点坐标为2(,4)24m m -+………………………………………………2分 (2)①当5m =时,2254y x x =-+.…………………………………………………………… 4分 如图, 因为10y >且2y ≤0,由图象,得 2<x ≤4. ……………………………………………… 5分 ②133≤m <5 …………………………………………………7分14.(通州18期末23)在平面直角坐标系xOy 中,二次函数()0122>+-=a ax ax y 的对称轴为b x =.点()m A ,2-在直线3+-=x y 上.(1)求m ,b 的值; (2)若点()23,D 在二次函数()0122>+-=a ax ax y 上,求a 的值; (3)当二次函数()0122>+-=a ax ax y 与直线3+-=x y 相交于两点时,设左侧的交点为()11,y x P ,若131-<<-x ,求a 的取值范围.15.(燕山18期末27)在平面直 角坐标系 xOy 中,反比例函数k y x=的图象经过点 A (1,4),B (m ,n ).(1)求反比例函数ky x=的解析式;(2)若二次函数y =(x -1)2的图象经过点 B ,求代数式22314m m n mn--+-的值; (3)若反比例函数ky x=的图象与二次函数 y =a (x -1)2的图象只有一个交点,且该交点在直线y =x 的下方,结合函数图象,求a 的取值范围.27.解:(1)将A(1,4)代入函数y =kx .k=4反比例函数y =k x 的解析式是xy 4= ……………………..…………….1′(2)二次函数y =(x -1)2的图象经过点 B(m ,n), ∴n m =-2)1( 即122-=-n m m又B(m ,n)在反比例函数y =kx 上,∴mn=4,454)1(4)32(143222-=+---=+---mn n m m mn mn n m m ……………………..…………….4′(3)由反比例函数的解析式为y =4x .令y =x ,可得x 2=4,解得x =±2.∴反比例函数y =4x 的图象与直线y =x 交于点(2,2),(-2,-2).如图,当二次函数y =a(x -1)2的图象经过点(2,2)时,可得a =2;当二次函数y =a(x -1)2的图象经过点(-2,-2)时,可得a =-29.∵二次函数y =a(x -1)2图象的顶点为(1,0),∴由图象可知,符合题意的a 的取值范围是0<a<2或a<-29.……………………..…………….7′16.(顺义18期末28)在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-,∴b =-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA =OC ,AP =CP , ∵AP ∥OC ,∴∠1=∠2,又∵∠AOP =∠2,∴∠AOP =∠1, ∴AP =AO , ∵A (-3,4),∴AO =5,∴AP =5, ∴P 1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O 为圆心,OA 长为半径作⊙O ,连接BO ,交⊙O 于点C ∵B (12,4),∴OB =, ∴BC 的最小值为5. ………………………….7分。