新概念物理教程光学习题解答第六章
《光学教程》课后习题解答
对 的第三个次最大位
即:
9、波长为的平行光垂直地射在宽的缝上,若将焦距为的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少?
解:⑴第一最小值的方位角为:
⑵第一最大值的方位角为:
⑶第3最小值的方位角为:
10、钠光通过宽的狭缝后,投射到与缝相距的照相底片上。所得的第一最小值与第二最小值间的距离为,问钠光的波长为多少?若改用X射线()做此实验,问底片上这两个最小值之间的距离是多少?
解:
⑴
⑵级光谱对应的衍射角为:
即在单缝图样中央宽度内能看到条(级)光谱
⑶由多缝干涉最小值位置决定公式:
第3xx 几何光学的基本原理
1、证明反射定律符合费马原理
证明:
设A点坐标为,B点坐标为
入射点C的坐标为
光程ACB为:
令
即:
*2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。由此导出薄透镜的物像公式。
另一个气泡
, 即气泡离球心
13、直径为的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率。
解:由球面折射成像公式:
解得 ,在原处
14、玻璃棒一端成半球形,其曲率半径为。将它水平地浸入折射率为的水中,沿着棒的轴线离球面顶点处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图。
解:
由球面折射成像公式:
15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为。一物点在主轴上距镜处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置。设玻璃的折射率为,水的折射率为。
(整理)新概念光学各章复习答案
复习提纲第一章光和光的传播说明:灰色表示错误。
§1、光和光学判断选择练习题:1.用单色仪获得的每条光谱线只含有唯一一个波长;2.每条光谱线都具有一定的谱线宽度;3.人眼视觉的白光感觉不仅与光谱成分有关,也与视觉生理因素有关;4.汞灯的光谱成分与太阳光相同,因而呈现白光的视觉效果;§2、光的几何传播定律判断选择练习题:1.光入射到两种不同折射率的透明介质界面时一定产生反射和折射现象;2.几何光学三定律只有在空间障碍物以及反射和折射界面的尺寸远大于光的波长时才成立;3.几何光学三定律在任何情况下总成立;§3、惠更斯原理1.光是一种波动,因而无法沿直线方向传播,通过障碍物一定要绕到障碍物的几何阴影区;2.惠更斯原理也可以解释波动过程中的直线传播现象;3.波动的反射和折射无法用惠更斯原理来解释;§4、费马原理1)费马定理的含义,在三个几何光学定理证明中的应用。
判断选择练习题:1.费马原理认为光线总是沿一条光程最短的路径传播;2.费马原理认为光线总是沿一条时间最短的路径传播;3.费马原理认为光线总是沿一条时间为极值的路径传播;4.按照费马原理,光线总是沿一条光程最长的路径传播;5.费马原理要求光线总是沿一条光程为恒定值的路径传播;6.光的折射定律是光在两种不同介质中的传播现象,因而不满足费马原理。
§5、光度学基本概念1)辐射通量与光通量的含义,从辐射通量计算光通量,视见函数的计算。
2)计算一定亮度面光源产生的光通量。
3)发光强度单位坎德拉的定义。
判断选择练习题:1.人眼存在适亮性和适暗性两种视见函数;2.明亮环境和黑暗环境的视见函数是一样的;3.昏暗环境中,视见函数的极大值朝短波(蓝色)方向移动;4.明亮环境中,视见函数的极大值朝长波(绿色)方向移动;5.1W的辐射通量在人眼产生1W的光通量;6.存在辐射通量的物体必定可以引起人眼的视觉;7.在可见光谱范围内,相同的辐射通量,眼睛对每个波长的亮度感觉都一样;8.在可见光谱范围内,相同的辐射通量,眼睛对波长为550nm光辐射的亮度感觉最强;9.理想漫射体的亮度与观察方向无关;10.不同波长、相同辐射通量的光辐射在人眼引起的亮度感觉可能一样;填空计算练习题:计算结果要给出单位和正负1、波长为400nm、500nm、600nm、700nm的复合光照射到人眼中,已知这些波长的视见函数值分别为0.004、0.323、0.631、0.004,若这些波长的辐射通量分别为1W、2W、3W、4W,则这些光在人眼中产生的光通量等于-------------。
物理学教程上册课后答案第六章
第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。
大学物理第六章课后习题答案
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
物理学教程上册课后答案第六章
第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。
北师大版八年级物理第六章《常见的光学仪器》知识点+测试试题和答案
北师大版物理八年级下册第六章知识点+测试题第六章:常见的光学仪器一.基本知识点归纳:1.凸透镜:有两个虚焦点。
1)外观:表面是球面的一部分,中间厚,边缘薄,由透明材料制成。
2)光学特点:对光线具有会聚作用①正确看待凸透镜对光线的会聚作用:光线经透镜折射后,折射光线相对于入射光线原来的传播方向,更靠近主轴。
②凸透镜越厚,它表面的弯曲程度越大,折光能力越强,其焦距越短。
3)成像规律及应用:①U>2f:f<V<2f,成倒立缩小的实像应用:照相机②U=2f:V=2f,成倒立等大的实像应用:——③2f>U>f:V>2f,成倒立放大的实像应用:幻灯机,投影仪④U<f:成正立放大的虚像应用:放大镜规律简化总结:①一倍焦距分虚实,两倍焦距分大小。
②成实像时:物远像近,物近像远,像近像小,像远像大。
③成虚像时:物远像远,物近像近,像近像小,像远像大。
④成实像时,像与物比较:上下,左右均相反;而成虚像时,像与物上下,左右均相同。
这点与平面镜有所区别!2.光学仪器的操作1)照相机的操作:①若要扩大照相范围,就要让像变小,具体操作方法是:增大照相机与被拍照物体的距离以增大物距,同时缩短暗箱长度以减小相距.②照相机镜头上沾有少量灰尘对成像效果影响不大,灰尘由于距离镜头太近,故它不会通过凸透镜成实像呈现在底片上。
但它会遮挡住部分射到镜头上的光,使像的亮度受到一定的影响。
2)幻灯机的操作:①由于物体通过幻灯机的镜头成的是倒立的像,故幻灯片要倒插。
②若觉得屏幕上的图像太小,则应该减小幻灯片到镜头的距离,同时增大镜头到屏幕的距离。
3)放大镜的操作:①要利用放大镜看到物体正立放大的虚像,必须保证物体到放大镜的距离小于一倍焦距。
若物体到放大镜的距离大于一倍焦距,则我们看到的就是倒立的实像了。
②如果要想将物体的像放大得更多一些,则应该稍稍增大物体到放大镜的距离,但要保证这个距离不能超过一倍焦距。
3.眼睛1)原理:U>2f,成倒立缩小的实像(与照相机相同)眼睛的晶状体相当于照相机的镜头,瞳孔相当于照相机的光圈,眼睑相当于照相机的快门,视网膜相当于照相机的底片。
普通物理学教程力学课后答案高等教育出版社第六章-万有引力定律
第六章 万有引力定律习题解答6.1.1设某行星绕中心天体以公转周期T 沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为π2Tt =证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速度:2222/41)2(T R RT R R v a ππ=⋅== 由自由落体公式:π2221/2,T a R t at R === (此题原来答案是:24Tt =,这里的更正与解答仅供参考)6.2.1 土星质量为5.7×1026kg ,太阳质量为2.0×1030kg ,两者的平均距离是1.4×1012m.⑴太阳对土星的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。
解:⑴据万有引力定律,太阳与土星之间的引力f =GMm/r 2=6.51×10-11×2.0×1030×5.7×1026/(1.4×1012)2≈3.8×1022N⑵选择日心恒星参考系,对土星应用牛顿第二定律:f=mv 2/rs m m fr v /107.9107.5/04.1108.3/3261222⨯≈⨯⨯⨯⨯==6.2.3 ⑴一个球形物体以角速度ω转动,如果仅有引力阻碍球的离心分解,此物体的最小密度是多少?由此估算巨蟹座中转数为每秒30转的脉冲星的最小密度。
这脉冲星是我国在1054年就观察到的超新星爆的结果。
⑵如果脉冲星的质量与太阳的质量相当(≈2×1030kg 或3×105M e ,M e 为地球质量),此脉冲星的最大可能半径是多少?⑶若脉冲星的密度与核物质相当,它的半径是多少?核密度约为1.2×1017kg/m 3.解:⑴设此球体半径为R,质量为m.考虑球体赤道上的质元Δm,它所受到的离心惯性力最大 f *=Δm ω2R ,若不被分解,它所受到的引力至少等于离心惯性力,即 Gm Δm/R 2=Δm ω2R ∴ m=ω2R 3/G ,而 m=4πR 3ρ/3,代如上式,可求得,G πωρ432=脉冲星的最小密度3141051.64)230(3/103.1112m kg ⨯≈=-⨯⨯⨯⨯ππρ⑵据密度公式,m =ρV=4πR 3ρ/3 ,∴R 3=3m/(4πρ)km R 231430105.1)103.114.34/(1023⨯=⨯⨯⨯⨯⨯= ⑶km R 16)102.114.34/(102331730=⨯⨯⨯⨯⨯=6.2.4 距银河系中心约25000光年的太阳约以170000000年的周期在一圆周上运动。
大学物理通用教程 习题解答 光学
大学物理通用教程习题解答光学1. 引言光学是物理学中非常重要的一个分支,主要研究光的传播、反射、折射、干涉、衍射等现象。
在大学物理课程中,光学是必修的内容之一。
本文将为大家提供一些习题解答,旨在帮助学习光学的同学更好地理解光学原理和应用。
2. 光的特性Q1: 什么是光的双折射现象?光的双折射现象是指光线在某些材料中传播时会发生折射率的变化,使光线被分裂成两个方向传播的分量。
这种现象通常发生在具有非中心对称晶格结构的材料中,如石英等。
Q2: 请解释光的偏振现象。
光的偏振现象是指光波中的电场矢量在特定方向上振动的现象。
光波中的电场矢量可以沿任意方向振动,如果只能在一个方向上振动,则称为线偏振光;如果在所有方向上振动,则称为非偏振光。
3. 光的传播和反射Q1: 什么是光的全反射现象?光的全反射是指光从光密介质射向光疏介质的界面时,当入射角大于临界角时,光完全被反射回光密介质,不再从界面透射到光疏介质中去。
Q2: 请解释折射定律。
折射定律描述了光从一种介质传播到另一种介质时光线的弯曲现象。
按照折射定律,入射光线、折射光线和法线所在的平面相互垂直,并且入射光线的折射角和折射光线的入射角之间满足一个简单的数学关系。
4. 光的折射和透镜Q1: 什么是凸透镜和凹透镜?凸透镜是指中央较厚、边缘较薄的透镜,可以使平行光线聚焦到一个点上;凹透镜则相反,中央较薄、边缘较厚,会使平行光线发散。
Q2: 请解释透镜的焦距。
透镜的焦距是指平行光线通过透镜后会聚或发散的距离。
对于凸透镜,焦点在透镜的正面,焦距为正值;对于凹透镜,焦点在透镜的反面,焦距为负值。
5. 干涉和衍射Q1: 什么是干涉现象?干涉现象是指当两束或多束光线相遇时,由于光波的叠加和相长干涉,产生了明暗相间的干涉条纹。
干涉班纹的形态和颜色取决于光的频率、波长、入射光线的角度等因素。
Q2: 请解释衍射现象。
衍射现象是指当光通过绕过或通过一个障碍物时,会出现光的弯曲或扩散的现象。
大学物理第6章习题参考答案
第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
北师大版八年级物理下册 第六章 常见的光学仪器 单元练习(有答案)
北师大版八年级物理下册第六章常见的光学仪器一、单选题1.关于显微镜和望远镜下列说法正确的是()A.显微镜物镜成缩小的实像,目镜成放大的虚像B.开普勒望远镜物镜对光线有发散作用,目镜对光线有会聚作用C.伽利略望远镜物镜为凸透镜,目镜为凹透镜D.利用望远镜和显微镜看物体,主要是增大视角2.有关光学元件的说法,正确的是()A.凸透镜对光线具有发散作用B.放大镜的镜片是凹透镜C.照相机镜头相当于凸透镜D.平面镜不能改变光的传播方向3.在探究凸透镜成像规律的实验中,当凸透镜、光屏和烛焰的位置如图所示时,光屏上能成一清晰的像,则()A.所成的像是正立缩小的实像B.所成的像是倒立缩小的实像C.把凸透镜向左移动,调整光屏的位置,得到的像变大D.把凸透镜向右移动,调整光屏的位置,得到的像变大4.离凸透镜30厘米的光屏上得到一个清晰的烛焰像。
则该凸透镜的焦距可能为() A.20厘米B.30厘米C.40厘米D.50厘米5.正午时,太阳光直射在水平地面,取一圆形薄透镜正对阳光,在距透镜15cm的地面上得到一个光斑,其直径是透镜直径的一半,若将透镜向上移动少许,光斑变大。
透镜的焦距是()A.5cm B.10cm C.15cm D.30cm6.在探究凸透镜成像的实验中,光屏上有一个清晰的烛焰像,若用一张硬纸板遮去凸透镜上面的一半镜面,则光屏上像的变化情况()A.屏上的像消失B.像变得模糊不清,需要重新调节光屏的位置C.光屏上只有一半烛焰的像D.光屏上仍有完整的像,只是亮度减弱7.如图,给凸透镜“戴”上近视眼镜,此时光屏上能成一清晰的像,若“取下”近视眼镜,为使光屏上的像清晰,在保持烛焰和透镜位置不变的条件下应将光屏()A.靠近透镜B.远离透镜C.靠近透镜或远离透镜都可以D.保持在原来位置8.某初三毕业班照集体照时,发现有些同学没有进入镜头,为了使全体同学都进入镜头,应采取()A.人不动,照相机离人远一些,镜头往里缩一些B.人不动,照相机离人近一些,镜头往里缩一些C.人不动,照相机离人近一些,镜头往前伸一些D.照相机很镜头不动,人站近一些9.为了防盗,在门上装上一个“猫眼”,使屋内的人能看清屋外的人是一个正立缩小的像,屋外面的人却看不清屋内的人,则“猫眼”应该是()A.凸镜B.凹镜C.凹透镜D.凸透镜10.小芳拿着一个直径比较大,焦距没有手臂长的放大镜,伸直手臂通过放大镜观看远处的物体,她可以看到的物体是像。
新概念光学各章复习答案
新概念光学各章复习答案温习提纲第1章光和光的传播说明:灰色表示毛病。
§1、光和光学判断选择练习题: 1. 用单色仪取得的每条光谱线只含有唯逐一个波长; 2. 每条光谱线都具有1定的谱线宽度; 3. 人眼视觉的白光感觉不但与光谱成份有关,也与视觉生理因素有关; 4. 汞灯的光谱成份与太阳光相同,因此显现白光的视觉效果;§2、光的几何传播定律判断选择练习题: 1. 光入射到两种不同折射率的透明介质界面时1定产生反射和折射现象; 2. 几何光学3定律只有在空间障碍物和反射和折射界面的尺寸远大于光的波长时才成立; 3. 几何光学3定律在任何情况下总成立;§3、惠更斯原理 1. 光是1种波动,因此没法沿直线方向传播,通过障碍物1定要绕到障碍物的几何阴影区; 2. 惠更斯原理也能够解释波动进程中的直线传播现象; 3. 波动的反射和折射没法用惠更斯原理来解释;§4、费马原理 1)费马定理的含义,在3个几何光学定理证明中的利用。
判断选择练习题: 1. 费马原理认为光线总是沿1条光程最短的路径传播; 2. 费马原理认为光线总是沿1条时间最短的路径传播; 3. 费马原理认为光线总是沿1条时间为极值的路径传播; 4. 依照费马原理,光线总是沿1条光程最长的路径传播; 5. 费马原理要求光线总是沿1条光程为恒定值的路径传播; 6. 光的折射定律是光在两种不同介质中的传播现象,因此不满足费马原理。
§5、光度学基本概念 1)辐射通量与光通量的含义,从辐射通量计算光通量,视见函数的计算。
2)计算1定亮度面光源产生的光通量。
3)发光强度单位坎德拉的定义。
判断选择练习题: 1. 人眼存在适亮性和适暗性两种视见函数; 2. 明亮环境和黑暗环境的视见函数是1样的; 3. 昏暗环境中,视见函数的极大值朝短波(蓝色)方向移动; 4. 明亮环境中,视见函数的极大值朝长波(绿色)方向移动; 5. 1W的辐射通量在人眼产生1W的光通量; 6. 存在辐射通量的物体一定可以引发人眼的视觉; 7. 在可见光谱范围内,相同的辐射通量,眼睛对每一个波长的亮度感觉都1样; 8. 在可见光谱范围内,相同的辐射通量,眼睛对波长为550nm光辐射的亮度感觉最强; 9. 理想漫射体的亮度与视察方向无关; 10. 不同波长、相同辐射通量的光辐射在人眼引发的亮度感觉可能1样;填空计算练习题:计算结果要给出单位和正负 1、波长为400nm、500nm、600nm、700nm的复合光照耀到人眼中,已知这些波长的视见函数值分别为0.004、0.323、0.631、0.004,若这些波长的辐射通量分别为1W、2W、3W、4W,则这些光在人眼中产生的光通量等于-------------。
新概念物理教程 力学答案详解(六)
新力学习题答案(六)6—1.一物体沿x 轴作简谐振动,振幅为12.0cm ,周期为2.0s ,在t=0时物体位于6.0cm 处且向正x 方向运动。
求 (1)初位相;(2)t=0.50s 时,物体的位置、速度和加速度;(3)在x=-6.0cm 处且向负x 方向运动时,物体的速度和加速度。
()()()()()()()22222220000000200/06.032cos 12.00.1/306.032sin 12.0)0.1(0.132303sin 03sin 12.00323213cos 3cos 12.006.006.0)3()/(306.06cos 12.035.0cos 12.0)5.0()/(06.06sin 12.035.0sin 12.0)5.0()(306.06cos 12.035.0cos 12.05.050.0)2(3:)1(0sin 0sin 032/112.0/06.0cos 06.0cos 00cos sin ,cos /20.2,12.0s m t a sm t v st t t t t t t m x s m t a s m t v m t x s t A t v A t x t t A a t A v t A x TsT m A πππππππππππππππππππππππππππππππππππππϕϕϕωπϕϕϕϕωωϕωωϕωππω=-==-=-===∴=-∴>⎪⎭⎫ ⎝⎛-⇒<⎪⎭⎫ ⎝⎛--±=-∴-=⎪⎭⎫ ⎝⎛-⇒⎪⎭⎫ ⎝⎛-=--=-=-=⎪⎭⎫ ⎝⎛-⋅⋅⋅-==-=-=⎪⎭⎫ ⎝⎛-⋅⋅⋅-====⎪⎭⎫ ⎝⎛-⋅===-=∴<⇒>-==±=======+-=+-=+===∴==此时::又此时速度小于时有:时:初位相又:时:则速度设振动方程为:秒弧角频率周期解:已知振幅6—2题与6—3题:(略)6—4.一个质量为0.25g 的质点作简谐振动,其表达式为s=6sin(5t-π/2),式中 s 的单位为cm ,t 的单位为s 。
新概念光学各章复习答案
新概念光学各章复习答案复习大纲第一章光和光传播注意:灰色表示错误。
1.光与光学判断并选择练习题:1.单色仪获得的每条谱线只包含一种波长;2.每条谱线都有一定的谱线宽度;3.人类视觉的白光感知不仅与光谱成分有关,还与视觉生理因素有关。
4.汞灯的光谱组成与太阳光相同,呈现白光的视觉效果;(2)光的几何传播定律判断并选择练习题:1.当光入射到折射率不同的两种透明介质的界面上时,会发生反射和折射;2.几何光学的三大定律只有在空间障碍物和反射折射界面的尺寸远大于光的波长时才会出现(a)立法;3.几何光学的三个定律在任何情况下都是成立的。
3、惠更斯原理1.光是一种波动,所以它不能沿着直线传播。
当通过障碍物时,它必须绕到障碍物的几何阴影区域。
2.惠更斯原理也可以解释波动过程中的线性传播现象;3.波的反射和折射不能用惠更斯原理来解释。
(4)费马原理1)费马定理的意义及其在证明三个几何光学定理中的应用。
判断并选择练习题:1.费马原理认为光总是沿着光路最短的路径传播;2.费马原理认为光总是以最短的时间沿着一条路径传播。
3.费马原理认为光总是沿着时间极端的路径传播。
4.根据费马原理,光总是沿着光路最长的路径传播。
5.费马原理要求光总是沿着一条光路不变的路径传播。
6.光的折射定律是光在两种不同介质中的传播现象,因此不符合费马原理。
5.光度学的基本概念1)辐射通量和光通量的含义。
光通量由辐射通量计算,视觉函数计算。
2)计算具有一定亮度的面光源产生的光通量。
3)发光强度单位坎德拉的定义。
判断并选择练习题:11.人眼有两种视觉功能:明亮和黑暗。
2.3.4.5.明亮环境和黑暗环境的视觉功能是一样的。
在昏暗的环境中,视觉功能的最大值向短波(蓝色)移动。
在明亮的环境中,视觉功能的最大值向长波(绿色)移动。
1W的辐射通量在人眼中产生1W的光通量。
6.有辐射通量的物体肯定能引起人类视觉;7.在可见光谱范围内,在相同的辐射通量下,眼睛对每种波长都感觉到相同的亮度;8.在可见光谱范围内,在相同的辐射通量下,眼睛对波长为550纳米的光辐射具有最强的亮度感;9.理想漫射体的亮度与观察方向无关;10.不同波长的光辐射和相同的辐射通量可能在人眼中引起相同的亮度感觉;填空计算练习:计算结果应给出单位和正负1、波长为400纳米、500纳米、600纳米和700纳米的复合光照射到人眼。
第一课新概念第六章
倏逝波——极快地衰减折射波
★穿透深度
dz
1 k
1 2
1 sin2 i1 sin2 ic
2、在z 方向传播,在x 方向衰减的折射波
i
(
k2
r
t
)
E(r, t) A e A e 20
i[(kxi ky j kzk )( xi yj zk )t ]
(6.14) (6.16)
(6.18)
t p E2 p / E1p
Tp
I2 p I1 p
n2 n1
tp
2
(6.19) (6.21)
ts E2 s / E1s
Ts
I2s I1s
n2 n1
ts
2
(6.20) (6.22)
p
W2 p W1 p
cos i2 cos i1
Tp
(6.23)
1、方向规定 ★第一组基矢——光的传播方向
kˆ1 kˆ1 kˆ2
★第二组基矢——与入射面垂直
sˆ1 sˆ1 sˆ2
★第三组基矢——与入射面平行
pˆ1 pˆ1 pˆ 2
入射光、反射光和折射光
2、基矢方向的关系
pˆ1 sˆ1 kˆ1 pˆ 2 sˆ2 kˆ2 pˆ1 sˆ1 kˆ1
r 2 tt 1, r r.
(6.32) (6.33)
1、图a 的振幅反射、折射关系
反射——Ar A 透射——At
2、图b和 c的振幅反射、折射关系
反射——Arr
反射——Atr
Ar 透射——Art At 透射——Att
3、斯托克斯的倒逆关系——图b
高中物理选择性必修第三册课后习题 第6章 波粒二象性 1.量子论初步 2.光电效应
1.量子论初步2.光电效应课后训练巩固提升一、基础巩固1.以下宏观概念中,哪些是“量子化”的( )A.物体的质量B.物体的动量C.导体中的电流D.东北虎的个数,是一份一份的,题中给出的选项中只有东北虎的个数是一份一份的,故只有D为量子化,故A、B、C错误,D 正确。
2.黑体辐射的实验规律如图所示,由图可知下列描述正确的是( )A.随着温度升高,各种波长的辐射强度都有增加B.温度降低,可能部分波长的辐射强度会减小C.随温度升高,辐射强度的极大值向频率较小的方向移动D.随温度降低,辐射强度的极大值向波长较短的方向移动,随着温度的升高,各种波长的辐射强度都有增加,故A正确;由题图可知,随着温度的降低,各种波长的辐射强度都有减小,故B错误;由题图可知,随着温度的升高,辐射强度的极大值向波长较短的方向移动,即向频率较大的方向移动,故C错误;由题图可知,随着温度的降低,辐射强度的极大值向波长较长的方向移动,故D错误。
3.(多选)下列有关黑体辐射和光电效应的说法正确的是( )A.在黑体辐射中,随着温度的升高,各种频率的光辐射强度都有增加B.借助能量子假说,普朗克得出了黑体辐射的强度按波长分布的规律C.在光电效应现象中,光电子的最大初动能与入射光的频率成正比D.用一束绿光照射某金属,能产生光电效应,换成红光照射一定能产生光电效应,随着温度的升高,各种频率的辐射都增加,辐射强度极大值向波长较短的方向移动,故A正确;普朗克在研究黑体辐射问题时提出了能量子假说,即得出了黑体辐射的强度按波长分布的规律,故B正确;在光电效应中,根据爱因斯坦光电效应方程,可知光电子的最大初动能与入射光的频率有关,而不能认为光电子的最大初动能与入射光的频率成正比,故C错误;用一束绿光照射某金属,能产生光电效应,若换成红光来照射该金属,由于红光的频率小于绿光的频率,所以红光的频率有可能小于金属的极限频率,所以换成红光照射不一定能产生光电效应,故D错误。
新概念物理学力学答案.pdf
1-14 t = R = 300 = 10s at 3.00
1-15 v物 = v0 − gt = 49 − 9.8t ,
v测物 = v物 − v = 29.4 − 9.8t
第二章
2-1 PB = Pe2 + Pv2 = 10.65×10−16g ⋅ cm / s. θ = 30o .
2-2
(1)木块的速率 v
a1x a1y
= =
− −
m2 g sin θ cosθ m2 + m1 sin 2 θ
=− (m1
(m1 + m2 )g m2 + m1 sin 2 θ
sin 2 θ
=
+ −
m2 g m2 )tgθ + m2ctgθ
(m1 + m2 )gtgθ (m1 + m2 )tgθ + m2ctgθ
a 2 x
(2) ∆rr
=
r r (1)
−
r r (0)
=
r 4i
+
2
r j ; 大小为
∆rr
=
(3)
vr
=
drr
r = 8ti
+
2
r j,
ar
=
dvr
r = 8i .
dt
dt
42 + 22 = 2 5m,与x轴夹角θ = tg −1 2 = 26.6o 4
1-4 ∆tn = tn − tn−1 = ( n − n − 1)∆t1 = 4 × ( 7 − 6) = 0.785s
vv
=
drr
r = ωR(− sin ωti
r + cosωtj )
《光学教程》姚启钧原著_第六章
Iy Ix p , 退偏振度: 1 p Ix Iy
15
五、散射光的强度
• 散射光的强度
I Z I C cos , I y I 0 , I I 0 (1 cos )
dI l a dx,I a 0dx 4.答:朗伯定律和比尔定律的数学表达式分 I 别为: I ACl , I = I e I=I 0 e a 0 • 和 。 I0
I
0 a
5.答:(1)线度小于光的波长的微粒对入 射光的散射现象通常称为瑞利散射。 (2) 瑞利定律表述为:散射光强度与波长的四 次方成反比,即: • I = f () - 4 。 6.答:因为光的散射。
• 2.分类: •①
• ②按不均匀团块性质
瑞利散射:线度 / 10 线性 米氏散射:线度 线度 自发拉曼散射 拉曼散射 受激拉曼散射 非线性 布里渊散射
廷 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 乳胶液,含有烟雾灰尘 的大气等 的大气等 延德尔系散射:胶体, 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 的大气等 分子散射:由于分子热 运动造成局部涨落引起 运动造成局部涨落引起 的的 分子散射:由于分子热 分子散射:由于分子热 运动造成局部涨落引起 分子散射:由于分子热 运动造成局部涨落引起 的
13
三、瑞利散射
•
1. 瑞利散射: l < 的微粒对入射光的散射现象。 2. 瑞利定律:散射光强度与波长的四次方成反比, 即: I=f () -4 f ()——光源中强度按波长的分布函数 3.应用:红光散射弱、穿透力强(信号旗、信号灯) →红外线(遥感等)