2021年初中数学几何阴影面积的三种解法
求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:44221=⨯⨯。
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴.影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
初中数学之求阴影面积方法总结
初中数学之求阴影面积方法总结一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:二、和差法攻略一直接和差法这类题目也比较简单,属于一目了然的题目。
只需学生用两个或多个常见的几何图形面积进行加减。
攻略二构造和差法从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。
三、割补法割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
攻略一全等法攻略二对称法攻略三平移法攻略四旋转法小结:(一)解决面积问题常用的理论依据1、三角形的中线把三角形分成两个面积相等的部分。
2、同底同高或等底等高的两个三角形面积相等。
3、平行四边形的对角线把其分成两个面积相等的部分。
4、同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5、基本几何图形面积公式:三角形、平行四边形、、菱形、矩形、梯形、圆、扇形。
6、相似三角形面积之比等于相似比的平方7、反比例函数中k的几何含义8、在直角坐标系中函数图像构成的图形面积常常利用图形顶点的坐标构造高去求面积(二)证明面积问题常用的证题思路和方法1、分解法:通常把一个复杂的图形,分解成几个三角形。
2、补全法:通过平移、旋转、翻折变换把分散的图形拼成一个规则的几何基本图形3、作平行线法:通过平行线找出同高(或等高)的三角形。
四种方法求阴影部分面积
四种方法求阴影部分面积首先,我们可以使用几何方法来求解阴影部分的面积。
设阴影部分的形状为矩形,其底边的长度为a,高度为h。
阴影的边界可以用两条直线来表示,设直线1与x轴的交点为A,直线2与x轴的交点为B。
两条直线与x轴的交点之间的距离为b。
则阴影部分的面积可以用以下公式表示:A=(a+b)*h/2第二种方法是通过将阴影部分分割成多个小矩形来求解。
首先,我们将阴影部分分割成n个小矩形,每个小矩形的底边长度为ai,高度为hi。
则阴影部分的面积可以表示为以下公式的和:A = ∑(ai * hi)其中i的范围从1到n。
第三种方法是使用积分来求解。
假设阴影部分的形状可以用函数y=f(x)来表示。
要求阴影部分的面积,我们需要找到函数f(x)的定义域上的积分区间[a,b]。
A = ∫[a, b] f(x) dx最后一种方法是使用统计学方法来求解。
假设我们已经获得了一组阴影部分的随机样本,符合一定的分布规律。
我们可以使用这组样本数据来进行统计分析,得出阴影部分的面积的估计值。
首先,我们可以计算出这组样本数据的平均值和标准差。
然后,使用均值加减一个标准差的方法,来计算阴影部分的上下边界。
根据阴影部分的上下边界和样本数据的分布,我们可以得到阴影部分面积的估计值。
需要注意的是,这种方法求得的阴影部分面积只是一个估计值,可能存在一定的误差。
综上所述,我们可以用几何法、分割法、积分法和统计法来求解阴影部分的面积。
每种方法都有自己的优缺点和适用范围,选择合适的方法取决于具体情况和问题要求。
阴影部分面积的求法
阴影部分面积的求法
在几何学中,阴影是指由一个形状挡住光线而产生的暗影部分。
求阴影部分的面积是一个常见的问题,下面介绍两种方法。
方法一:分割法
这种方法适用于阴影部分的形状较为复杂,无法直接计算的情况。
具体步骤如下:
1. 将阴影部分分割成几个简单的形状,如三角形、矩形等。
2. 计算每个简单形状的面积。
3. 将每个简单形状的面积相加,即可得到阴影部分的总面积。
方法二:几何变换法
这种方法适用于阴影部分是一个已知形状的缩放、平移、旋转等几何变换得到的情况。
具体步骤如下:
1. 对原来的形状进行几何变换,得到阴影部分的形状。
2. 计算阴影部分形状的面积。
注:在进行几何变换时,需要注意保持相似性或等比例关系,否则计算出的面积可能不准确。
综上所述,求阴影部分的面积需要根据具体的情况选择不同的方法进行计算。
- 1 -。
求阴影部分面积的方法
求阴影部分面积的方法在几何学中,求阴影部分的面积是一个常见的问题。
阴影部分的面积可以通过多种方法来计算,本文将介绍几种常用的方法。
一、几何图形分割法。
在几何图形分割法中,我们可以将阴影部分分割成几个简单的几何图形,然后分别计算每个图形的面积,最后将它们相加得到阴影部分的面积。
这种方法适用于较为规则的几何图形,如矩形、三角形等。
二、积分法。
对于较为复杂的曲线或曲面的阴影部分,我们可以利用积分法来求解。
通过建立适当的坐标系和积分限,我们可以将阴影部分的面积表示为一个定积分,通过积分计算得到阴影部分的面积。
三、几何变换法。
在一些特殊情况下,我们可以利用几何变换来求解阴影部分的面积。
例如,通过平移、旋转、镜像等几何变换,将阴影部分变换成一个已知的几何图形,然后计算这个已知几何图形的面积,最后根据几何变换的性质得到阴影部分的面积。
四、数值逼近法。
对于一些无法通过解析方法求解的阴影部分,我们可以利用数值逼近法来求解。
通过将阴影部分分割成若干小区域,然后分别计算每个小区域的面积,最后将它们相加得到阴影部分的面积的近似值。
五、利用计算机软件求解。
在现代科技条件下,我们还可以利用计算机软件来求解阴影部分的面积。
通过建立相应的数学模型,利用计算机软件进行数值计算,可以得到阴影部分的面积的精确值。
六、其他方法。
除了上述几种方法外,还有一些其他特殊的方法可以用来求解阴影部分的面积,如利用相似性、三角函数等性质来进行计算。
综上所述,求解阴影部分的面积涉及到多种方法,我们可以根据具体的情况选择合适的方法来进行计算。
在实际问题中,我们可以根据问题的特点和要求来选择合适的方法,从而求解阴影部分的面积。
希望本文介绍的方法对您有所帮助。
初中数学求阴影图形面积的三种解法
(阴影面积是一个常规的几何图形,例如三角形、正方形等)
二、和差法
(一)直接和差法
(用两个或多个常见的几何图形面积进行加减)
(一)直接和差法
(用两个或多个常见的几何图形面积进行加减)
(二)构造和差法
(通过添加辅助线进行求解)
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。
(一)全等法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。
(二)对称法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。
(三)平移法
(通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件)。
(四)旋转法。
阴影部分面积的计算方法
阴影部分面积的计算方法
计算阴影部分面积的方法取决于阴影部分的形状。
以下是一些常见的计算阴影部分面积的方法:
1. 矩形阴影部分面积:如果阴影部分是矩形,那么它的面积可以通过矩形的长和宽相乘来计算。
2. 三角形阴影部分面积:如果阴影部分是三角形,那么它的面积可以通过三角形的底和高相乘再除以 2 来计算。
3. 圆形阴影部分面积:如果阴影部分是圆形,那么它的面积可以通过圆的半径的平方乘以π(圆周率)来计算。
4. 弓形阴影部分面积:如果阴影部分是弓形,那么它的面积可以通过扇形的面积减去三角形的面积来计算。
扇形的面积可以通过圆的半径的平方乘以π再乘以扇形的角度(以弧度表示)来计算,三角形的面积可以通过底和高相乘再除以 2 来计算。
5. 不规则阴影部分面积:如果阴影部分是不规则形状,那么可以将其分成若干个简单的形状,然后计算每个形状的面积,最后将它们相加。
或者使用一些数学工具,如微积分,来计算阴影部分的面积。
需要注意的是,在计算阴影部分面积时,应该确保所使用的单位是一致的。
此外,对于一些复杂的形状,可能需要使用一些数学工具或计算机软件来计算面积。
阴影部分求面积的几大方法总结
阴影部分求面积的几大方法总结
阴影部分求面积的几大方法总结:
1.直接计算法:适用于规则图形,如矩形、三角形等,直
接计算面积公式即可。
2.相减法:适用于两个有关联的规则图形,通过总面积减
去一个图形的面积得到另一个图形的面积。
3.割补法:通过切割或补充图形,将不规则图形转化为规
则图形,再利用直接计算法求解。
4.代数法:适用于较为复杂的图形,通过建立代数方程或
不等式求解面积。
5.微积分法:适用于不规则图形,利用微积分的知识求面
积。
初中数学阴影面积求解小技巧
初中数学阴影面积求解小技巧
阴影部分面积计算是全国中考的高频考点,常在选择题和填空题中考查。
求阴影部分面积的常用方法有以下三种:
一、公式法(所求面积的图形是规则图形)
二、和差法(所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法
(2)构造和差法
三、等积变换法(直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)(1)全等法
(2)对称法
(3)平移法
(4)旋转法
练习题。
三种方法求阴影部分的面积
三种方法求阴影部分的面积求解阴影部分的面积的三种方法可以是几何方法、数学方法和计算机图形学方法。
下面将详细介绍这三种方法。
一、几何方法:几何方法是通过利用几何知识来求解阴影部分的面积。
这种方法通常适用于简单的几何形状,如圆、矩形等。
方法如下所示:1.首先确定被阴影投射物体的几何形状,如圆形、矩形等。
2.确定光源的位置和投射角度。
3.根据光线的角度和被投射物体的形状,求解出光线与表面的交点。
4.根据交点之间的连线和被投射物体的形状,求解出阴影部分的面积。
二、数学方法:数学方法是通过数学方程来求解阴影部分的面积。
这种方法可以应用于复杂的几何形状,如曲线、不规则形状等。
方法如下所示:1.将被投射物体的形状建模成数学方程。
2.根据光线的角度和被投射物体的形状方程,求解出光线与表面的交点。
3.根据交点之间的连线和被投射物体的形状方程,求解出阴影部分的面积。
三、计算机图形学方法:计算机图形学方法是通过计算机图形学算法来求解阴影部分的面积。
这种方法适用于复杂的三维场景,可以考虑光线的折射、反射等现象。
方法如下所示:1.通过三维建模软件将场景建模成三维模型。
2.根据光源的位置和投射角度,使用光线追踪算法计算光线与场景中物体的交点。
3.根据交点之间的连线和物体的材质属性,计算出阴影部分的面积。
这三种方法可以根据具体情况选择使用。
如果是简单的几何形状,可以使用几何方法来求解阴影部分的面积;如果是复杂的几何形状,可以使用数学方法;如果是复杂的三维场景,可以使用计算机图形学方法。
求阴影面积的巧妙解法
求阴影面积的巧妙解法有很多,以下是一些常见的方法:
1. 平移法:将不规则的阴影部分通过平移、旋转等方式转化为规则图形,然后计算其面积。
2. 割补法:将阴影部分分割成若干个规则图形,然后计算它们的面积之和。
3. 等积变形法:通过等积变形,将阴影部分转化为与之等积的规则图形,然后计算其面积。
4. 容斥原理法:利用容斥原理,将阴影部分的面积转化为若干个规则图形的面积之差或和。
5. 比例法:利用相似三角形的性质,通过比例关系求出阴影部分的面积。
这些方法都需要根据具体的图形特点进行选择和运用,需要灵活运用数学知识和思维能力。
(完整版)求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
中考数学:求阴影部分面积的几种常见方法
阴影局部面积的几种常见方法在初中数学中,求阴影局部的面积问题是一个重要容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规那么图形的面积,具有一定的难度,因此,正确把握求阴影局部面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影局部的面积.分析因为阴影局部是一个规那么的几何图形Rt△CEF,故根据条件可以直接计算阴影局部面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,那么FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,假设⊙O1半径为3cm;⊙O2半径为1cm,求阴影局部面积.分析这是求一个不规那么图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规那么图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影局部面积之和.分析所求的阴影局部面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影局部面积.分析此题的阴影局部是不规那么的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影局部面积.分析阴影局部图形不规那么,不能直接求面积,可以把它分割成几个局部求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影局部面积被分割为S1、S2、S3、S4四局部.那么六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=4cm,求阴影局部面积.分析如果想直接求阴影局部面积,无法求解,因为它不是规那么图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE =2cm,阴影局部面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作OE⊥AB于点E,那么BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限的一个交点,求阴影局部的面积.分析阴影局部分两局部,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1局部分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2〔舍去〕.∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形画四个半圆,求阴影局部的面积.分析此题直接求阴影局部面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影局部面积为.222aaπ-.。
求阴影部分面积的方法
求阴影部分面积的方法
在几何学中,求阴影部分面积是一个常见的问题。
阴影部分面
积的求解方法有很多种,下面我们将介绍一些常见的方法,希望能
对大家有所帮助。
首先,我们来讨论一下求阴影部分面积的方法之一——几何图
形分割法。
这种方法适用于那些比较规则的几何图形,比如矩形、
三角形等。
首先,我们需要将整个图形分割成若干个简单的几何图形,然后分别计算每个部分的面积,最后将它们相加即可得到阴影
部分的面积。
其次,我们可以使用平行线投影法来求解阴影部分的面积。
这
种方法适用于那些立体几何图形的阴影面积求解。
我们可以通过画
出几何图形的平行线投影,然后计算投影部分的面积,最后得到阴
影部分的面积。
另外,我们还可以利用数学模型来求解阴影部分的面积。
比如,对于不规则图形的阴影面积求解,我们可以利用数学公式或者数值
积分的方法来进行计算,得到准确的阴影部分面积。
除此之外,对于一些特殊情况,比如椭圆、双曲线等特殊几何图形的阴影面积求解,我们可以采用参数方程、极坐标等方法来进行计算,得到精确的阴影部分面积。
需要注意的是,在进行阴影部分面积的求解时,我们要对几何图形的特性有所了解,选择合适的方法进行计算,确保得到准确的结果。
综上所述,求解阴影部分面积的方法有很多种,我们可以根据具体的几何图形特点来选择合适的方法进行计算。
希望以上方法能够帮助大家更好地解决阴影部分面积的求解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年初中数学几何阴影面积的三种解
法
一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:
二、和差法
攻略一直接和差法
这类题目也比较简单,属于一目了然的题目。
只需学生用两个或多个常见的几何图形面积进行加减。
攻略二构造和差法
从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。
三、割补法
割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
攻略一全等法
攻略二对称法
攻略三平移法
攻略四旋转法。