第一章.食品酶工程1

合集下载

酶工程课后题答案.doc

酶工程课后题答案.doc

第一章1.简述酶与一般催化剂的共性以及作为生物催化剂的特点共同点:只能催化热力学所允许的的化学反应,缩短达到化学平衡的时间,而不改变平衡点:反应前后酶本身没有质和量的改变:很少量就能发挥较大的催化作用:其作用机理都在于降低了反应的活化能。

酶作为生物催化剂的特点:1.极高的催化率;2.高度专一性;3.酶活的可调节性;酶的不稳定性。

5.酶失活的因素和机理。

酶失活的因素主要包括物理因素,化学因素和生物因素物理因素1热失活:热失活是由于热伸展作用使酶的反应基团和疏水区域暴露,促使蛋白质聚合。

2冷冻和脱水:很多变构酶在温度降低是会产生构象变化。

在冷冻过程中,溶质(酶和盐)随着水分子的结晶而被浓缩,引起酶微环境中的pH和离子强度的剧烈改变,很容易引起蛋白质的酸变性。

3.辐射作用:电离辐射和非电离辐射都会导致多肽链的断裂和酶活性丧失。

4.机械力作用:化学因素1.极端pH:极端pH远离蛋白质的等电点,酶蛋白相同电荷间的静电斥力会导致蛋白肽链伸展,埋藏在酶蛋白内部非电离残基发生电离,启动改变。

交联或破坏氨基酸的化学反应,结果引起不可逆失活。

极端pH也容易导致蛋白质水解。

2.氧化作用:酶分子中所含的带芳香族侧链的氨基酸以及Met, Cys等,与活性氧有极高的反应性,极易受到氧化攻击。

3.聚合作用:加热或高浓度电介质课破坏蛋白质胶体溶液的稳定性,促使蛋白质结构发生改变,分子间聚合并沉淀。

4.表面活性剂和变性剂:表面活性剂主要改变酶分子正常的折叠,暴露酶分子疏水内核的疏水基团,使之变性;变性剂与酶分子结合,改变其稳定性,使之发生变性。

生物因素微生物或蛋白水解酶的作用使酶分子被水解。

6.简述酶活力测定方法的原理直接测定法:有些酶促反应进行一段时间后,酶底物或产物的变量可直接检测。

间接测定法:有些酶促反应的底物或产物不易直接检测,一次必须与特定的化学试剂反应,形成稳定的可检测物。

酶偶联测定法:与间接测定法相类似,只是使用一指示酶,使第一酶的产物在指示酶的作用下转变成可测定的新产物。

《酶工程食品》课件

《酶工程食品》课件

固定化方法:物理 吸附、化学结合、 交联聚合等
固定化载体:天然 高分子、合成高分 子、无机材料等
固定化酶的应用: 食品加工、生物制 药、环境保护等领 域
酶反应器类型:固定床反应器、流化床反应器、搅拌罐反应器等 酶反应器设计:考虑酶的活性、稳定性、反应条件等因素 酶反应器操作:控制温度、pH值、搅拌速度等参数 酶反应器维护:定期清洗、更换酶等操作,保证反应器性能稳定
酶工程食品技术水平:技术水平不 断提高,酶工程食品的种类和品质 也在不断提升
添加标题
添加标题
添加标题
添加标题
酶工程食品应用领域:广泛应用于 食品加工、生物制药、生物能源等 领域
酶工程食品市场需求:消费者对健康、 安全、环保的食品需求日益增长,酶 工程食品的市场需求也在不断增加
市场需求:随着人们对健康饮食的关注,酶工程食品的市场需求将不断增加
技术创新:酶工程食品的生产技术将不断进步,提高产品质量和生产效率
应用领域:酶工程食品的应用领域将不断扩大,如食品加工、生物制药等领域
法规政策:随着法规政策的不断完善,酶工程食品的市场准入门槛将提高,市场竞争将更加激烈
技术进步:酶工程食品的生产 技术不断进步,提高了产品质 量和生产效率
市场需求:随着人们对健康食 品的需求增加,酶工程食品的 市场前景广阔
酶的选择:根据食品的性质和需求选择 合适的酶
酶的添加:在食品生产过程中添加适量 的酶
酶的活性控制:通过温度、pH值等条 件控制酶的活性
酶的稳定性:通过添加稳定剂等方式提 高酶的稳定性
酶的回收:在食品生产过程中回收酶, 降低生产成本
酶的检测:通过检测手段确保酶的活性 和稳定性
PART FOUR
酶的来源:天然或人工合 成

第一章 酶学与酶工程 (1节) 酶工程课件

第一章 酶学与酶工程 (1节) 酶工程课件
60年代,用小分子化合物修饰酶分子侧链基 团,使酶性质发生改变;
70年代,修饰剂的选用、修饰方法上又有了新 的发展。
此外,对抗体酶,人工酶,模拟酶等方面,以及 酶的应用技术研究 ,在近20年均取得了较大 进展,使酶工程不断向广度和深度发展,显示
退出 出广阔而诱人的前景。
三. 酶工程的研究内容 21世纪酶工程的发展主题
退出
(一)新酶的研究与开发
3.人工模拟酶 人工合成的具有类似酶活性的高聚物。 人工模拟酶在结构上必须具有两个特殊部位,
即一个是底物结合位点,另一个是催化位点 4.杂合酶 是指由来自两种或两种以上的酶的不同结构
片段构建成的新酶。 可以利用高度同源的酶之间的杂交,这种杂
交是通过相关酶同源区间残基或结构的交换 来实现。
退出
1878 德国的Kuhne 定义Enzyme 原意为在酵母中 1896 德国的Buchner证明了酵母无细胞提取液的酒精发酵
作用(1907年诺贝尔奖) 1926 美国的Sumner从刀豆中得到脲酶结晶(1946年诺贝
尔奖) 1969 日本固定化氨基酰化酶,第一次将固定化酶成功地应
用于工业生产。——酶工程诞生 1970 美国的Smith 发现限制性内切酶(1979年诺贝尔奖) 1986 美国cech和Altnan发现核酶(1989年诺贝尔奖)
酶的分子修饰可分为化学修饰和选择性遗传 修饰。
退出
(三)酶的高效应用
3.非水相催化 1984年,美国麻省理工学院从事非水系统内
酶反应的研究,取得成果,由此产生一个全 新的分支学科--非水酶学 非水相催化的特点: 大多数有机物在非水系统内溶解度高。 一些在水中不可能进行的反应,有可能在非 水系统内进行。 非水系统内酶的稳定性更好。 退出 在非水系统内酶很容易回收和反复使用。

酶工程第一章绪论

酶工程第一章绪论
酶工程第一章绪论
第一节 酶的基本概念与发展历史
酶的存在及作用的认识: 1833年:发现淀粉酶 19世纪中叶:糖发酵产酒与活酵母有关 1878年:给酶一个统一的名词,叫Enzyme,这个
字来自希腊文,其意思是“在酵母中”。 1897年,德国巴克纳Buchner兄弟发现不含细胞的
酵母提取液也能使糖发酵,说明发酵与细胞的活 动无关,从而说明了发酵是酶作用的化学本质, 为此Buchner获得了1907年诺贝尔化学奖。
体异构专一性。如:蔗糖酶、麦芽糖酶。 立体异构专一性: 当作用的底物含有不对称碳原子时,酶只能作用
于异构体的一种。如:乳酸脱氢酶。 核酸类酶也具有绝对专一性。
酶工程第一章绪论
1、绝对专一性
酶工程第一章绪论
2、相对专一性
相对专一性概念: 一种酶能够催化一类结构相似物质进行某种相同
类型的反应。 (1)基团专一性 要求底物含有某一相同的基团。
命名。 两类酶的命名差别: 蛋白类酶只能催化其他分子进行反应,而核酸类
酶既可以催化酶分子本身也可以催化其他分子进 行反应。
酶工程第一章绪论
第四节 酶的分类与命名 注意:顺序
蛋白类酶的种类:
不要搞错!
氧化还原酶类 Oxidoreductases
转移酶类
Transgerases
水解酶类
Hydrolases
五、抑制剂的影响 可逆抑制剂 不可逆抑制剂
竞争性抑制剂 非竞争性抑制剂 反竞争性抑制剂
六、激活剂的影响 激活剂:金属离子、无机负离子、蛋白酶等。
酶工程第一章绪论
第四节 酶的分类与命名
按照分子中起催化作用的主要组分的不同,酶可 以分为蛋白类酶(P酶)和核酸类酶(R酶)。
命名总原则: 根据酶作用的底物和催化反应的类型进行分类和

酶工程第1章酶活性单位及其测定方法

酶工程第1章酶活性单位及其测定方法

1 分光光度法
(spectrophotometry)
硝酸还原酶将NO3- 还原成NO2-,NO2- 与加
入的显色剂对-氨基苯磺酸和α -萘胺反应生成玫 瑰红色的偶氮化合物,在520nm处比色可测定产物 的生成量。一些脱氢酶以NAD+或NADP+为辅酶, NAD+ 或NADP + 在340nm处光吸收很少,而其还原
1000 0.3 15 μmol/min/mg protein 20
U/mg protein
二、酶活性测定的主要方法
温度、pH、离子强度(I=(1/2)Σ CZ 2 )等因 素对酶活性有很大的影响,测定酶活性时一般采 用最适环境条件。若酶催化反应时需要辅助因子, 应加入最适量的辅助因子。底物浓度应采用零级 反应时的底物浓度,这时反应速度只与酶浓度有 关,而与底物浓度无关。随着反应的进行,产物 浓度越来越高,而底物浓度越来越低,导致反应 速度下降,所以测酶活性时应测反应的初速度, 即反应开始后较短一段时间内的反应速度(反应 了的底物不超过5%)。
物,测产物的放射性强度。此法灵敏度高,但分
离产物较麻烦。若底物或产物中有一种是气体或
沉淀,就易于分离。
5 电化学方法
(electrochemistry)
① pH测定:对于某些酶促反应过程中会产生H+ 或减少H+的反应来说,用1/1000 pH单位精度的pH 计测定反应液的pH变化,或为保持pH不变而加入 酸或碱,记录一段时间内加入的酸碱量。 ② 电位测定:在一些酶促氧化还原反应中,底物 和产物具有不同的氧化还原电位,可用由一恒定微 电流极化的两个铂电极之间的电位差来测定电位变 化。 ③ 电流测定:以恒定电压的两个铂电极测电流 变化。
1 katal=6×107 IU

酶工程第一章

酶工程第一章

酶的活性中心
酶的必需基团(essential
group):
与酶活性有关的基团
酶的活性中心(active
center): 酶分子上由必需基团构成的与酶催 化活性有关的特定区域
酶活性中心示意图
S-S
活性中心外 必需基团
底物
结合基团
催化基团 肽链
活 性 中 心 必 需 基 团
活性中心
一些酶活性中心的氨基酸残基
3、Km值与 Vmax值的测定
(1)双倒数作图法又称林-贝氏作图法(1934) 1 Km 1 + 1
=
V
Vmax
1/V
[S]
Vmax
斜率= Km/ Vmax
1/Vmax
-1/Km
0
1/[S]
(2) Hanes作图法
[s]
v
斜率= 1/Vm
Km/Vm
-Km
0
[s]
(3)Eadie-Hofstee作图法
0.2 Vm 2 0.1
0
1
2
3
4
5
6
7
8
[S]
1、米-曼氏方程式 (Michaelis-Mentenequation)
Vmax [S]
V= Km + [S]
(1)、米-曼氏方程解释: 当[S]Km时,v=(Vmax/Km) [S], 比于[S] 当[S]Km时,v Vmax, 即v 正
活化能: 活化分子具有的高于平 均水平的能量。
加快反应速度的方法:
供给能量,如加温、光照等 降低活化能
过渡态
非催化反应活Leabharlann 能能 量 改 变一般催化剂 反应活化能 酶促反应活化能

酶工程第一章-绪论

酶工程第一章-绪论
分为:化学酶工程与生物酶工程。
1. 化学酶工程(初级酶工程)
2. 酶化学与化学工程技术相结合的产物。 3. 主要研究内容:酶的制备、酶的分离纯化、
酶与细胞的固定化技术、酶分子修饰、酶反应器 和酶的应用。
4. 2. 生物酶工程(高级酶工程)
5. 在化学酶工程基础上发展起来的、酶学与现 代分子生物学技术相结合的产物。
6.
31
生物酶工程主要研究内容
(1) 用基因工程技术大量生产酶(克隆酶) 如:尿激酶原和尿激酶是治疗血栓病的有效药物。用 DNA重组技术将人尿激酶原的结构基因转移到大肠杆菌 中,可使大肠杆菌细胞生产人尿激酶原,从而取代从大 量的人尿中提取尿激酶。 (2)用蛋白质工程技术定点改变酶结构基因(突变酶) 如:酪氨酰-tRNA合成酶,用Ala5(第5位的丙氨酸) 取代Thr51(第51位的丝氨酸),使该酶对底物ATP的 亲和力提高了100倍。 (3)设计新的酶结构基因,生产自然界从未有过的性能 稳定、活性更高的新酶。
切赫T.R.Cech(1947-) 奥尔特曼S.Altman(1939-)
1986年Schultz与Lerner等人研制成功抗体 酶(abzyme),这一研究成果对酶学研究具 有重要的理论意义和广泛的应用前景。
它集生物学、免疫学、化学于一身,采用 单克隆、多克隆、基因工程、蛋白质工 程等高新技术,开创了催化剂研究和生 产的崭新领域。
(2)酶工程的研究简史
1894年,日本首次从米曲霉中提炼出淀粉酶,治疗 消化不良,开创人类有目的地生产和应用酶制剂 的先例。
1908年,德国的罗门等用动物胰脏制得胰蛋白酶, 用于皮革的软化及洗涤。
1917年,法国用枯草杆菌产生的细菌淀粉酶作纺织 工业上的褪浆剂。
1949年,日本采用深层培养法发酵生产α-淀粉酶获 得成功,使酶制剂生产应用进入工业化阶段。

第一章 酶工程

第一章 酶工程

Monod
第一章 酶 工 程
酶的研究简史
近代 —— 酶作用学说的提出
1894年,Emil Fisher —— 锁钥学说
酶分子和底物在结构上需有严格的互补关系 底物须契合到酶活性中心,如钥匙插入锁中
Emil Fisher
第一章 酶 工 程
酶的研究简史
1913 米彻利斯和曼吞建立米氏方程。
1926 萨姆纳得到尿酶结晶,证实酶的蛋白质本质
温度,t(℃)
υ
5. pH的影响
当酶分子处于最适pH值反应介质中时,使酶 促反的催化特点及影响因素
影响酶催化作用的因素
6. 抑制剂(inhibitor)的影响
凡能降低酶催化反应速率的物质都称之为抑制剂 抑制剂与酶的必需基团(包括活性基团及辅基)结合,改变 其结构与性质,引起酶反应速率下降 抑制剂对酶有选择性,不包括酶蛋白的水解及变性失活作用
第一章 酶 工 程
酶工程发展概况
Enzyme Engineering
酶工程开始于人类有意识地去生产酶和酶制剂,并进行
工业应用
1894年,Takamine
Joichi(高峰让吉)
利用米霉菌固体培养法生产Taka淀粉酶(第一个商品酶制剂),并
用作消化剂,开创了酶生产和应用的先例,其方法至今仍被采用
第一章 酶 工 程
酶的研究简史
最早6000年前——古巴比 伦人利用麦芽酿酒
磨粉、去糠、打碎 麦芽萌发、浸润 成酒发酵、装瓶
古埃及时代——酵母发酵面包
古巴比伦人
第一章 酶 工 程
巴斯德和李比希的论战
发酵是细胞中的某些物 质起作用,这些物质只 有在酵母细胞死亡裂解 释放之后才能发挥作用 李比希 发酵与活细胞有关, 发酵是整个细胞而不 是细胞中的某些物质 在起作用

【全】食品酶学工程题库

【全】食品酶学工程题库

第一章绪论第二章 酶的发掘与合成下列关于酶与菌株的说法正确的是?A 天然提取的酶可以满足人类现代生活需求B 霉菌、酵母菌适宜在干燥的地方生长C 富集芽孢杆菌可使用高温处理样品D 通过平板快速筛选即可以获得适合的菌株下列关于酶的发掘方法,不正确的是?A可以使用提取宏基因组的方法从不可培养微生物中寻找酶B基于功能的筛选过程中需要使菌株将酶分泌至胞外C基于序列的筛选难以筛选到序列创新性非常高的酶D从极端环境中往往可以筛到性质比较特殊的酶下列关于质粒图谱的组成说明,正确的是?A质粒中编码阻遏蛋白的序列属于其他系统原件B质粒中只能有一个复制起始位点C质粒上的筛选标记的存在,使含有质粒的宿主菌不能抵抗该种抗生素的抑制D质粒上的多克隆位点中可以含有两个以上同种酶切位点下列关于表达系统的说法,不正确的是?A大肠杆菌系统可以对表达产物进行糖基化修饰B对枯草芽孢杆菌系统中的某些内源蛋白酶进行敲除,可能产生有利于表达的效果C毕赤酵母表达系统可实现高效表达的一个原因,是其可进行高密度发酵培养D大肠杆菌表达系统的菌体发酵培养效果往往优于丝状真菌表达系统下列关于酶生物合成的调节,不正确的是?A原核生物中酶生物合成的调节主要发生在转录水平B操纵基因的作用是与阻遏蛋白相结合C酶生物合成的诱导作用机制中,只有酶催化作用的底物才有诱导作用D酶生物合成的分解代谢阻遏机制中,可以通过控制易用碳源的用量减轻阻遏第三章酶的发酵生产(1)下列关于动植物细胞产酶的调节说法错误的是?A.微生物细胞中酶合成的调节理论不适用于动植物细胞B.动植物细胞的分化会影响酶表达的时间性和空间性C.基因扩增和增强子作用都可以促进酶的生物合成D.抗体酶即有结合抗原的特性,又有酶催化的活性下列关于植物细胞培养产酶的说法哪一项是错误的?A与培养植株相比,植物细胞产酶可以明显缩短酶的生产周期B植物细胞培养产酶的技术要求低于培养植株的技术要求C植物细胞培养产酶过程易于管理,产物质量稳定D植物细胞培养条件要求高,培养周期较微生物长下列关于动物细胞培养产酶的说法错误的是?A动物细胞培养一般用于生产附加值较高的产品B动物细胞培养过程较植物细胞与微生物细胞更为困难C动物细胞培养基使用前需高温灭菌以保证无菌性D动物细胞培养过程中需维持合适的渗透压下列关于产酶微生物的保藏方法错误的是?A液氮超低温保藏法实现了低温、真空、干燥三个条件B菌体速冻保藏法不能用于菌株的长期保存C沙土管保藏法只适用于产生孢子或芽孢的微生物D在各种保藏方法中,斜面冰箱保藏法保藏过程中菌株活性最高下列关于酶生物合成的模式,不正确的是?A延续合成型最有利于酶的合成B同步合成型中酶对应的mRNA比较稳定C中期合成型中酶前期合成受到阻遏D滞后合成型中菌体停止生长后,酶还可以继续生产(2)下列关于酶的发酵培养条件说法错误的是?A碳氮比过低,往往会使体系产酸过多,影响菌体生长B偏中性的条件下有利于细菌的生长,抑制真菌的生长C某些碳源既有提供能量的作用,又有调节代谢的作用D生长因子对细胞生长繁殖非常重要,但很多情况下不需要额外添加下列关于发酵过程中的温度调控,说法错误的是?A菌体比死亡率较比生长速率对温度更为敏感B菌体在延迟期对温度变化非常敏感C将菌体在最适生长温度下培养有助于酶的发酵生产D营养物质供应不足时可以适当降低温度下列关于发酵过程pH 调控的说法正确的是?A菌体分泌的酸性或碱性物质会显著影响体系pHB菌体代谢生理酸性物质会导致体系pH 升高C发酵过程中常常使用缓冲液来维持体系pH 的稳定D菌体氮源消耗过多往往会导致体系pH 降低下列关于发酵过程中的溶氧调控,说法正确的是?A温度越高,氧传递越好B装液量越小,氧传递越好C通气量越大,氧传递越好D菌体浓度越高,氧传递越好下列关于代谢调控的说法,正确的是?A使用组成型突变株可以节省诱导剂的使用B对于诱导型产酶菌株,诱导物的添加量越多越好C组成型突变株可以解除葡萄糖效应D可以使用加入末端产物类似物的方法筛选抗分解代谢阻遏突变株第四章酶的提取与分离纯化(1)(ppt没给答案)下列哪种方法是最常用的大规模破碎细菌的方法?A匀浆法B高压均质法C有机溶剂破碎法D酶促破碎法下列哪种条件可以增强扩散作用?A降低温度B减小扩散面积C降低溶液黏度D增大扩散距离利用不同蛋白质在不同的盐浓度条件下溶解度不同特性而进行沉淀的方法属于?A盐析沉淀法B等电点沉淀法C复合沉淀法D选择性变性沉淀法下列关于离心的说法错误的是?A转子的效率因子与转子的半径和转速都有关系B对于某一离心颗粒,转子的效率因子越小,沉降时间越短C在物料离心选择离心条件时,只需考虑离心的转速和离心时间D对于某一转子,高速短时间和低速长时间可以得到相同的离心效果(2)下列说法正确的是?A粗滤过程一般使用孔径较大的膜B微滤可用于热敏性物质的过滤除菌C超滤的操作压力大于反渗透过滤D透析可应用于大规模生物分离过程下面有关层析的说法正确的是?A前缘洗脱法可以将不同组分有效分离B分配层析中,分配系数越大的组分移动越慢C阳离子交换剂基团解离后带正电D凝胶层析中分子量大的蛋白移动速度更慢下列哪一项不属于层析分离所利用的蛋白的性质?A分子的大小和形状B分子对固定相的吸附力C分子不同的催化能力D分子在不溶体系中分配系数下列关于SDS-PAGE 的说法不正确的是?A SDS 覆盖单体分子后,形成弯曲团状的SDS-亚基复合物B配制凝胶时加入的SDS 和巯基乙醇可以使蛋白解离成亚基单体C SDS-亚基复合物的表面电荷密度基本相同D电泳过程中,SDS-亚基复合物的电泳速度只跟亚基分子量大小有关在超临界萃取中,利用不同温度下溶解度不同实现萃取物质分离的过程为?A等温变压流程B等压变温流程C等温等压吸附流程D变温变压吸附流程第五章酶的性质与催化动力学下列关于影响酶促反应的因素,说法错误的是?A最适温度不是酶的特征常数B酶在不同缓冲液中同一pH 下的酶活力相同C当底物浓度大大超过酶浓度时,反应速度随着酶浓度的增加而增加D酶的激活剂能够提高酶的活力或加速酶促反应速率下列哪项不属于快速平衡学说的假设条件?A酶催化反应先生成酶底复合物,再生成产物B底物浓度远大于酶的浓度,底物浓度以初始浓度计算C不考虑酶底复合物重新解离成酶与底物这个可逆反应的存在D酶底复合物在反应开始后,与酶及底物迅速达到动态平衡下列关于米氏常数Km说法错误的是?A. Km的大小只与酶自身性质有关,酶浓度的改变不会影响其Km值B. Km值在某些情况下可以判断酶对于某一种底物的亲和力C.Km值是酶的特性,改变酶的结构也不会对其产生影响D. Km值是计算酶催化反应速率的一个重要参数下列关于竞争性抑制的说法,错误的是?A竞争性抑制剂与底物争夺酶的结合位点B可以通过提高底物的浓度来降低抑制程度C可以通过提高酶的纯度来降低抑制程度D反应动力学中的最大反应速率不变下列哪种抑制作用中,提高底物浓度对抑制程度无影响?A竞争性抑制B非竞争性抑制C反竞争性抑制D共竞争性抑制第六章酶的修饰与改造下列关于酶的结构的说法,不正确的是?A.酶原合成后,其活性并不展现B.辅酶与酶蛋白结合比较紧密,不能通过透析除去C.酶的大部分疏水链埋藏于分子内部,亲水链暴露于分子表面D.酶的活性部分具有柔性,酶的支架部分具有刚性下列关于金属离子置换修饰和大分子结合修饰的说法,不正确的是?A.金属离子置换修饰通过改变催化活性位点来影响酶的催化特性B.大分子结合修饰中大分子与酶通过共价键进行结合C.通过大分子结合修饰可以延长酶的半衰期D.通过大分子结合修饰可以降低酶在机体内的免疫反应下列关于酶的侧链基团修饰的说法,不正确的是?A.经修饰后不引起酶活力显著变化的基团为酶的非必需基团B.分子内交联修饰可以提高酶对底物的亲和力C.同型双功能试剂和异型双功能试剂都可以用于分子内交联修饰D.亲和修饰剂的结构具有与酶的底物类似的特点下列关于酶的水解修饰和置换修饰的说法,不正确的是?A.酶的肽链被水解后有可能降低酶的抗原性B.胃蛋白酶原的激活过程是典型的肽链有限水解修饰C.酶结构中单一氨基酸的变化不足以引起酶的特性发生改变D.可以通过改变酶的基因编码序列实现酶的氨基酸替换修饰下列关于酶的物理修饰及修饰酶的特性,不正确的是?A.酶的物理修饰可以改变酶的一级结构B.酶的物理修饰可以提高酶的稳定性C.通过酶的修饰可以扩大酶的最适pH 范围D.酶修饰后其米氏常数Km 值通常会变大A.酶的定向进化是指在体外进行酶基因的人工定向突变,从而得到具有优良催化特性的酶的突变体的技术过程B.定向进化中,突变具有随机性,但可以通过特定方向的突变选择,加快酶在某一方向的进化速度C.易错PCR 技术操作较简单,所有的基因都适合使用易错PCR 技术进行定向进化改造D.采用易错PCR 时,突变频率越高,筛选到正突变的可能性越大下列关于DNA 重排和基因家族重排技术的说法正确的是?A.DNA 重排技术的酶基因进化速度较基因家族重排技术更快B.随机引物体外重组技术可以直接使用mRNA 或cDNA 为亲本进行进化C.交错延伸PCR 技术中要以一种DNA 片段为主作为母版进行PCR 扩增D.基因家族重排技术中的母版基因同源性都较低下列关于构建基因文库的说法正确的是?A.构建的文库包含DNA 片段必须尽可能完整地反应基因的结构和功能信息B.构建的文库必须有足够大的容量,保证正突变的比例更高C.构建文库的载体中可以含有重复的限制性酶切位点D.质粒载体的容量可以满足大片段基因的克隆要求下列关于基因重组的说法正确的是?A.平头末端连接的效率高于黏性末端连接的效率B.人工加尾形成的黏性末端可以方便地连接片段与再切下片段C.使用衔接物连接片段时,如果插入片段内部也有该酶位点,则不能切下完整的插入片段D.使用DNA 接头连接法连接片段,接头不会自我连接下列关于突变基因筛选的说法正确的是?A.某些情况下可以调整选择环境进行所需突变基因的定向筛选B.荧光筛选法可以实现酶定向进化过程中正突变基因的高效筛选C.透明圈平板筛选法可应用于各种突变酶的高通量筛选D.噬菌体载体携带的待筛选基因可以直接通过转化进入宿主菌中A.细胞表面展示法是使细胞将蛋白或多肽分泌至外界的一个过程B.噬菌体表面展示蛋白或多肽的筛选方法主要是特异性结合原理C.为提高筛选效率一个细胞可以同时表面展示多个蛋白D.酵母表面展示中被展示的蛋白主要与细胞的外膜蛋白结合下列关于基于酶的定点突变的酶分子理性设计说法正确的是?A.寡核苷酸介导的定位突变过程中合成的双链分子都含有突变基因B.盒式突变过程中通过合成简并寡核苷酸一次可以获得多种突变体C.PCR 介导的定位突变中所使用的引物都含有突变序列D.基于定点突变的酶分子理性设计不必分析清楚酶的构效关系下列关于酶的从头合成说法不正确的是?A.蛋白质中氨基酸的组成和顺序决定了其预期功能活性B.Rosetta设计蛋白质主要基于已有天然片段的拼接C.自然进化的随机性和长期性使人们能够获得满足需求的蛋白质D.我国研发的蛋白从头合成技术可以合成自然界不存在的新型蛋白质结构第七章酶的非水相催化下列关于酶的非水相催化说法正确的是?A.非水相体系可以提高酶的活性B.非水相体系可以改变反应的平衡方向C.可以使极性底物或产物溶解度增加D.酶的底物特异性和选择性不会改变下列关于有机溶剂对有机介质中酶催化的影响正确的是?A.天然酶分子可以溶解在有机溶剂中进行催化反应B.有机溶剂的极性越弱,对酶活力的影响越大C.有机溶剂能改变酶分子必需水层中底物和产物的浓度D.有机溶剂只能影响酶分子的表面结构酶在有机介质中哪项催化活性的改变有利于手性药物的拆分?A.底物专一性B. 立体选择性C.区域选择性D. 化学键选择性下列哪项不属于有机介质中酶催化反应的类型?A.异构化反应B.醇解反应C.水解反应D.氧化还原反应第9章酶的反应器下列关于搅拌罐反应器的说法正确的是?A.分批式反应操作精度要求高于连续式反应器B.连续式与流加式反应器可以缓解或解除底物抑制作用C.所有游离酶与固定化酶都适合用于搅拌罐式反应器D.分批式反应器的生产效率最高下列关于各类反应器的说法正确的是?A.流化床反应器的传质效果好于固定床反应器B.流化床反应器的酶装载量大于固定床反应器C.膜反应器只适用于固定化酶的反应D.喷射式反应器混合效果好、适用于各种酶的催化下列关于酶反应器的选择说法正确的是?A.游离酶可以在流化床反应器中进行反应B.填充床反应器对固定化酶的机械强度没有要求C.与分批反应器相比,使用连续反应器可以得到更高的产物浓度D.在各种反应器中,搅拌罐式反应器的应用范围最广下列关于酶反应器设计的说法正确的是?A.为了尽可能获得高的生产效率,可以不考虑反应器的生产成本B.反应过程生成的产物量即为生产过程可获得的产物量C.酶的用量可以根据反应体系中底物的量进行计算D.为了保证反应效率底物浓度越高越好。

酶工程

酶工程
①添加诱导物:酶的作用底物、酶作用底物的前体、酶的反应产物、酶的底物类似物或底物修饰物等。
②降低阻遏物浓度:设法从培养基中除去其终产物,以消除反馈阻遏;向培养基中加入代谢途径的某个抑制因子,切断代谢途径通路,可限制细胞内末端产物的积累,便可达到缓解其反馈阻遏的目的;
③促进分泌;
④添加产酶促进剂。
2、酶反应器的类型:
①搅拌罐型:分批反应器和连续流搅拌罐反应器;②固定床型;③流化床型;④膜式反应器;⑤鼓泡塔型;⑥连续搅拌罐式超滤型;⑦循环床型;⑧其他酶反应器。喷射式反应器
3、酶反应器的选择:(底物或产物的理化性质)
①酶催化反应产物的相对分子质量较大时,由于产物难于透过超滤膜的膜孔,不能达到反应与分离同时进行的目的,所以一般不用膜反应器;
⑵遗传控制:①改良菌种:使诱导型变为组成型;使阻遏型变成去阻遏型;②基因工程育种。
5、用于产酶细胞需具备哪些条件:
①酶的产量高;②容易培养和管理;③产酶性能稳定;④利于酶产品的分离纯化;⑤安全可靠。
第四章 酶的分离和纯化
1、细胞破碎方法:
①机械法:机械捣碎法、研磨破碎法、匀浆破碎法、改进高压法(X-press法)、超声波破碎法;
①网格型包埋法:
②微囊型包埋法:
③脂质体包埋法:
4、酶的各种固定化方法的比较:
固定化方法 载体结合法 交联法 包埋法
物理吸附法 离子结合法 共价结合法
制备难易 易 易 难 较难 较难
结合程度 弱 中等 强 强 强
酶活回收率 高,但酶易流失 高 低 中等 高
对底物专一性 不变 不变 可变 可变 不变
⑵交联法:利用双功能或多功能试剂在酶分子间,酶分子与惰性蛋白间或酶分子与载体间进行交联反应,以共价键制备固定化酶的方法。优点:操作简便;缺点:交联反应的过程往往比较激烈,许多酶易在固定化过程中失效,酶回收率不高。

酶工程 第一章绪论 第一节酶的基本概念与发展史

酶工程 第一章绪论 第一节酶的基本概念与发展史

第一节 酶的基本概念与发展史
(1)催化代谢反应,建立各种各样代谢途径和代谢体系;
(2)执行具体的生理机能,如乙酰胆碱酯酶能水解乙酰胆 碱,参与神经传导;
(3)协同激素等生理活性物质在体内发挥信号转换、传递 和放大作用,调节生理过程和生命活动,如腺苷酸环化酶对糖 类代谢的调节;
(4)清除有害物质,起着保卫作用,如超氧歧化酶能破坏 超氧负离子,从而防止脂质超氧化。Biblioteka 酶工程第一章 绪论
第一节 酶的基本概念与发展史
一、酶是一种生物催化剂
酶是一种由活细胞产生的具有生物催化功能的生物大分 子。现在,已知的酶都是由生物体合成的,除少数具有催化 能力的RNA外,其化学本质都是蛋白质。它们大部分存在于 细胞体内,少部分分泌到体外。
一切生命活动都是由新陈代谢的正常运转来维持的,新 陈代谢是生命活动的最重要的特征之一。而酶则是促进生物 体内一切代谢活动的物质,没有酶的作用代谢反应就无法进 行,生命也即停止。酶在生物体内发生的作用主要有以下几 种类型:

酶工程 1~10章题目及答案

酶工程 1~10章题目及答案

第一章绪论试题精选一、名词解释1、酶2、酶工程3、核酸类酶4、蛋白类酶5、酶的生产6、酶的改性7、酶的应用8、酶的专一性9、酶的转换数二、填空题1、根据分子中起催化作用的主要组分的不同,酶可以分为_蛋白类酶_和核酸类酶_两大类。

2、核酸类酶分子中起催化作用的主要组分是_核糖核酸,蛋白类酶分子中起催化作用的主要组分是_蛋白质_。

3、进行分子内催化作用的核酸类酶可以分为_自我剪切酶_,_自我剪接酶_。

4、酶活力是_酶量_的量度指标,酶的比活力是_酶纯度_的量度指标,酶的转换数的主要组分是_酶催化效率_的度量指标。

5、非竞争性抑制的特点是最大反应速度Vm_减小_,米氏常数Km__不变_。

三、选择题1、酶工程是(C)的技术过程。

A、利用酶的催化作用将底物转化为产物B、通过发酵生产和分离纯化获得所需酶C、酶的生产与应用D、酶在工业上大规模应用2、核酸类酶是(D)。

A、催化RNA进行水解反应的一类酶B、催化RNA进行剪接反应的一类酶C、由RNA组成的一类酶D、分子中起催化作用的主要组分为RNA的一类酶3、RNA剪切酶是(B)。

A、催化其他RNA分子进行反应的酶B、催化其他RNA分子进行剪切反应的R酶C、催化本身RNA分子进行剪切反应的R酶D、催化本身RNA分子进行剪接反应的R酶4、酶的改性是指通过各种方法(A)的技术过程。

A、改进酶的催化特性B、改变酶的催化特性C、提高酶的催化效率D、提高酶的稳定性5、酶的转换数是指(C)。

A、酶催化底物转化成产物的数量B、每个酶分子催化底物转化为产物的分子数C、每个酶分子每分钟催化底物转化为产物的分子数D、每摩尔酶催化底物转化为产物的摩尔数四、判断题(V)1、相同的酶在不同的pH条件下进行测定时,酶活力不同。

(V)2、竞争性抑制的特点是最大反应速度Vm不变,米氏常数Km 增大。

(X)3、催化两个化合物缩成一个化合物的酶称为合成酶。

(X )4、RNA剪切酶是催化RNA分子进行剪切反应的核酸类酶。

酶工程第一章酶学基础知识PPT课件

酶工程第一章酶学基础知识PPT课件
酶的生物合成是一个复杂的过程,需要多种酶的参 与和调控。这些酶的作用包括提供能量、合成原料 、修饰和加工等,以确保酶的正确合成和功能。
酶的生产方式
01 02
微生物发酵
通过微生物发酵生产酶是一种常见的方法。不同微生物具有不同的代谢 途径和酶系,可以产生不同类型的酶。通过选择适当的微生物和发酵条 件,可以大规模生产酶。
酶的分离纯化
通过各种分离纯化技术手段,从生物材料中 提取和纯化酶。
酶的改造
通过基因工程技术手段对酶进行改造,以提 高酶的催化效率和稳定性。
酶的固定化
将游离酶或细胞固定在特定载体上,实现酶 的重复利用和连续化生产。
酶的生产与应用
通过生物工程技术手段实现酶的工业化生产, 并将其应用于各个领域。
酶工程的应用领域
1980年代
随着分子生物学和生物工程技术的迅速发展,酶 工程领域取得了重大突破,实现了酶的大规模生 产和应用。
02
酶的结构与功能
酶的活性中心
02
01
03
酶的活性中心是酶分子中与底物结合并催化反应的区 域,通常由少数几个氨基酸残基组成。
这些氨基酸残基在空间结构上相互接近,形成一个凹 陷的空腔,能够与底物特异结合。
酶的活性中心具有催化作用,能够降低反应的活化能 ,加速化学反应速率。
酶的专一性
酶的专一性是指酶只能催化一 种或一类化学反应的性质。
酶的专一性分为绝对专一性和 相对专一性,绝对专一性是指 酶只催化一种底物反应,相对 专一性是指酶对底物的结构有 一定选择性。
酶的专一性是由酶的活性中心 决定的,活性中心的空间结构 和化学组成决定了酶对底物的 选择性。
03
拓展酶的应用领域,将酶应用 于生物医药、食品工业、纺织 工业等领域,提高产品质量和 降低环境污染。

食品酶工程讲义PPT

食品酶工程讲义PPT

选择性高,单批处 配基利用率提高,
理量大
容易规模放大
二. 高效液相层析法
高效液相层析法(HPLC)也称高效液相色谱法,其分离原理与经典液相色谱相同, 但是,由于它采用了高效色谱柱、高压泵和高灵敏检测器,因此,它的分离效率、分 析速度和灵敏度大大提高了。高效液相色谱仪由输液系统、进样系统、分离系统、 检测系统和数据处理系统组成。
目录 CONTENTS
1
酶分子的化学修饰
酶分子的化学修饰可以定义为在体外利用修饰剂所具有的各类化学基团的特性,直接 或经一定的活化步骤后与酶分子上的某种氨基酸残基 (一般尽可能选用非酶活必需 基团) 产生化学反应,从而改造酶分子的结构与功能。
2
酶分子的生物改造
生物酶工程学就是采用基因工程和蛋白质工程的方法和技术,研究酶基因的克隆和 表达、酶蛋白的结构与功能的关系以及对酶进行再设计和定向加工,以发展性能更 加优良的酶或者新功能酶的学科
2.比活力提高的倍数:反映了纯化方法的效率。纯化后比活力提高越多, 总活力损失越少,纯化效果就越好
3.方法的重现性:评价酶分离纯化方法的必要条件,操作材料要有较好 的稳定性,操作条件的检验:检测纯化酶的催化活性时,要使 测定条件保持在最适状态。长期保存酶制剂时, 应考虑到痕迹量蛋白水解酶进行降解的可能性。
01
酶纯度的检验:电泳法、色谱 法、化学结构分析法、超离心 沉降分析法、免疫学法、其他
02
03
酶的稳定性与保存:为了提高酶的稳定性, 经常加入下列稳定剂:底物、抑制剂和辅酶;
对巯基酶;金属离子;表面活性剂 ;高分 子化合物;其他
第四章
思考题
1.什么是酶的分离纯化?酶分离纯化的一般原则是什么? 2.细胞破碎的方法主要有哪些?请说明每种破碎方法的基本原理是什么? 3.在酶的提取过程中应注意哪些问题,为什么? 4.酶溶液浓缩的方法主要有哪些? 5.酶分离纯化的方法主要包括哪些?简要说明各方法的分离纯化原理。 6.影响酶结晶的主要因素是什么? 7.酶结晶的方法包括哪几种? 8.如何对酶纯化的方法进行评析? 9.如何检验酶的纯度? 10.酶制剂有几种剂型? 11.影响酶稳定的因素是什么?

Chapter 1 酶与酶工程(整理)

Chapter 1 酶与酶工程(整理)

第一章酶与酶工程第一节酶的底子概念与开展史〔一〕酶与酶工程酶〔enzyme〕:由活细胞发生的具有生物催化功能的生物大分子。

酶工程(enzyme engineering):酶的出产、应用的技术过程。

★酶工程已在工业、农业、医药、食品等方面有广泛应用,并在资源、能源、环保等方面起着举足轻重的作用。

〔二〕酶的开展史1、酶在古代的应用★早在4000年前的周朝,我国人们就不自觉地将酶的催化作用应用于酿酒、制酱工业。

★一种古老的酶技术〔酒曲〕从远古时代被用于豆成品调味料 (豆面酱) 和发酵饮料 (米酒、酒精) 的出产,而且一直沿用到今天。

★蒸过的米参加霉菌混合物就能得到酒曲,这项技术世代相传。

2、酶学研究的历史★最早的酶学尝试:1783年,意大利科学家Spallanzani发现鸟的胃液能分解消化肉类。

斯帕兰扎尼〔Spallanzani〕他用本身饲养的山鹰做了一个十分耐人寻味的尝试。

他将一块生肉塞进一个上面布满许多孔眼的金属小管子里,管子两端盖紧,不使肉掉下来,然后迫使山鹰吞下小管。

过一段时间再设法取出小管。

小管依然完好无损,盖子仍牢牢地固定在小管上,但是管中的肉不见了,只留下一些淡黄色的液体,这使斯巴兰沙尼惊讶不已。

这恐怕要算最早的酶学尝试。

虽然他未说明此物为酶,但后来有人还是把他看作是酶的最早发现者。

★酶水解作用的发现: 1814年,德国物理学家 Kirchhoff研究了酶的水解现象。

基尔霍夫〔Kirchhoff〕发现淀粉经稀酸加热后可水解为葡萄糖,而某些谷物种子在发酵时也能生成复原糖。

假设把种子抽芽时的水提取物加到泡在水里的谷物中,也能发生不异的水解反响,很显然,活的谷物种子的水解能力取决于包含在此中的水溶性物质,这种水溶性物质脱离了生物体后仍能阐扬作用。

★最早的酶制剂:1833年,法国化学家Payen和Persoz得到了diastase。

佩恩〔Payen〕和帕索兹 (Persoz) 他们从麦芽的水抽提物中,用酒精沉淀得到一种可使淀粉水解成可溶性糖的物质,称之为淀粉酶〔diastase['daiəsteis]〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

果胶酯酶用于罐头桃子硬化,腌菜脆化
花青素酶用于处理桃酱、葡萄汁使之脱色,保证成品 质量
• (6) 酶在面粉加工业中的应用
酶可以改良面粉质量,延缓陈变、改善面团性质、改 善面包外皮颜色、漂白面粉等。 例如:
面粉中的蛋白酶可促进面筋软化、增强延伸性
β -淀粉酶强化面粉可防止糕点老化。
酶制剂在其他领域的应用
食品酶工程
学习小窍门
扎扎实实学好每一章节,课后及时复习。 动手:上课记笔记,做作业及思考题。注意:抄一遍 比看10遍心里更踏实。
阅读王镜岩编《生物化学》中的相关章节。绝对有好 处! 善于总结所学知识,前后联系,真正学会!
考核方法及成绩评定:
• 考勤*10%+平时成绩(课程论文或作业)*20%+期 末考试*70%=该课成绩
钢丝小笼盛肉饲鹰的 实验 1783年,意大利科学 家斯帕兰扎尼( L.Spallanzani 1729— 1799)设计
1833年, 法国化学家葱麦芽的水抽提物中分离出
淀粉酶。 1836年,德国科学家施旺(T.Schwann,1810—
1882)从胃液中提取出了消化蛋白质的物质。解
开胃的消化之谜。
酶生物学知识的应用 酶在体内的活性水平反应了生理状况 酶活性水平改变,生物机能也作出相应的调整 应用:1、提高发酵代谢产物的产量 2、药物、农药、毒物和解毒药物的设计
思考题
• 1、何谓酶学、酶工程、食品酶工程? • 2、酶学、酶工程当今的发展趋势是什么? • 3、酶工程在食品及相关领域有哪些应用?
从植物、动物、微生物中提取酶
局限性: 受原材料和分离纯化技术限制难以大规模生产
1949年,用微生物液体深层培养法进行-淀粉 酶的发酵生产,揭开了近代酶工业的序幕。
1960年,法国科学家Jacob和Monod提出的操纵子
学说,阐明了酶生物合成的调节机制,通过酶的
诱导和解除阻遏,可显著提高酶的产量。
凝乳酶(制造干酪)
溶菌酶(作为抗菌剂,提高婴儿乳粉的卫生质量)
• (4) 酶在酿酒工业中的应用
糖化酶(可增加发酵度、缩短发酵时间)
中性蛋白酶(用于啤酒澄清,并可延长保存期)
酸性蛋白、淀粉和果胶酶(用于果酒酿造可消除浑浊)
• (5) 酶在果蔬加工业中的应用
果胶酶可以用于橘子剥皮、脱囊衣
为现代酶学和酶工程的发展奠 定了坚实的理论基础
现代
• 中间产物学说 1902年,亨利提出

1913年米彻利斯推导出米氏方程
• 1926年,萨姆纳从刀豆提取液获得脲酶结晶
U r e a s e c r y s t a ls ( X 728)
S u m n e r, J. B . (19 2 6 ) “ T h e is o la tio n a n d c r y sta lliz a t io n o f th e e n z y m e u r e a se ” J . B io l. C h e m . 6 9 :4 3 5 -4 4 1 .
酶法分析测定蛋白质和核酸的一级结构
第一章 绪 论
1
酶学和酶工程研究的ຫໍສະໝຸດ 史与现状2酶学的基础理论
食品酶工程研究内容与技术方法 酶与生产实践
3
4
1.3 食品酶工程研究内容与技术方法
食品酶工程研究内容
食品工业用酶的生产 酶的提取与分离纯化 酶分子修饰与改造 酶固定化 酶反应器 酶的非水相催化 极端酶、人工模拟酶 酶的应用
酶(Enzyme)
由活细胞产生的、具有高效、专一催化功能的生 物大分子。
21世纪
化学工业
发酵工业 材料
轻工业 食品
生物技术
环境
采矿
能源 生物安全 医药
酶工程( Enzyme Engineering)
从应用目的出发研究酶的生产和应用的一门技术性科学, 是酶学、微生物学的基本原理与化学工程有机结合而产生
固定化技术的发展经历

1916年,Nelson和Griffin发现蔗糖酶吸附到骨炭 上仍具催化活性。
1969年,日本千佃一郎首次在工业规模上用固定 化氨基酰化酶从DL-氨基酸拆分生产L-氨基酸。 1971年,第一届国际酶工程会议在美国召开,会 议的主题是固定化酶。


固定化酶的研究
概念 是指在一定的空间范围内起催化作用,并能反复和连续 使用的酶。
20世纪80年代动物、植物细胞培养技术的迅速发 展,为酶生产提供新的途径。
微生物发酵大量生产酶 • 局限性:
酶稳定性差,对强酸碱敏感, 酶只能使用一次,分离纯化困难 酶和产物混合
如何解决呢??
酶的改性(enzyme improving)
概念:
通过各种方法对酶的催化特性进行改进的技术
主要技术: 酶固定化 酶分子修饰 酶的非水相催化
的边缘科学。
可分为:化学酶工程和生物酶工程
生物技术的重要分支
生 物技术
( 生物工程)
基因工程
细胞工程
酶工程
发酵工程
食品酶工程(Enzyme engineering of food)
是将酶工程的理论与技术应用于食品工业领域,将酶学基 本原理与食品工程相结合,为新型食品及食品原料的发展 提供技术支持。
④酶学的发展也充实了现代化学
酶学和现代物理学
• 利用物理的理论和技术来推动酶学的发展 • 常用到的物理实验技术有: 超高速离心分离法 X光衍射技术 核磁共振波谱法 质谱法 紫外和荧光分光光度计 电子显微镜 ...
酶学与生物学
酶是生物学重要的研究对象 酶的结构与功能、酶与细胞、酶与生命活动、酶与代谢 调节、酶和生长发育、生物进化以及酶与疾病等 酶是生物学有力的研究工具
具有加工tRNA前体的催化功能。而RNase P中的蛋
白组分没有催化功能,只是起稳定构象的作用。
1989年获得诺贝尔化学奖
• 核酶的发现,改变了有关酶的概念,即“ 酶是具有生物催化功能的生物大分子(蛋 白质或RNA)。
• 酶分两大类:(根据起催化作用的组分)
由蛋白质组成——蛋白类酶(P酶)
由核糖核酸组成——核酸类酶(R酶)
1947年获得诺贝尔化学奖
1958年,Daniel E. Koshland 提出诱导契合学说
核酶的发现
• 1982年,Thomas R.Cech 等人发现四膜虫细胞的
26S rRNA前体具有自我剪接功能,将这种具有催 化活性的天然RNA称为核酶—Ribozyme。
• 1983年,Altman 等人发现核糖核酸酶P的RNA组分
以上就是酶学理论发展史
酶工程发展概况
•1894年,日本的高峰让吉用米曲霉制备得到淀粉酶,开创了酶 技术走向商业化的先例。 •1908年,德国的Rohm用动物胰脏制得胰蛋白酶,用于皮革的
软化及洗涤。
•1908年,法国的Boidin制备得到细菌淀粉酶,用于纺织品的褪 浆。 •1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄 清。
德国学者Buchner兄弟于1896年
解决。
Buchner兄弟的试验:用细砂研 磨酵母细胞,压取汁液,汁液 不含活细胞,但仍能使糖发酵 生成酒精和二氧化碳。
证明:发酵与细胞的活动无关
,是酶作用的化学反应。
1907年诺贝尔化学奖
锁钥学说的提出 1894年,由费歇尔(Emil Fisher)提出 酶与底物分子或底物分子 的一部分之间,在结构上 有严格的互补关系,就像 钥匙插入锁中,使底物发 生催化反应
酶分子金属离子置换修饰
...
酶的非水相催化
概念: 酶在非水介质中进行的催化作用 优点: 提高非极性底物或产物的溶解度 进行在水溶液中无法进行的合成反应 减少产物对酶的反馈抑制作用 提高手性化合物不对称反应的对映体选择性
生物酶工程
主要支撑技术:
DNA重排技术
基因芯片技术(高通量筛选技术)
工农业
加工业 改进产品质量 革新工艺 三废处理
消化酶 消炎酶 抗肿瘤酶 遗传缺失疾病患治疗酶 其他治疗酶
医疗
酶分析的应用
• (1)酶活力测定 酶活性发生改变的原因: 组织病变导致膜平衡的破坏 细胞病变引起合成机能异常 疾病导致酶分泌受阻,流入血清中
药物直接影响了酶的活性
酶活力的测定结果
• (2)酶法分析 以酶作为工具来研究酶的底物、辅助因子、甚至酶的抑制 剂的分析方法。
发展趋势: 简便化 “检测试纸” 微量化、连续化和自动化
酶电极
• (3)酶免疫分析 酶标免疫分析:用酶标记抗原(抗体),制成酶标抗原 (抗体),根据抗原抗体专一定量结合,通过测定酶的活 力计算出抗体(抗原)的含量。 优点: 仪器设备简单 、灵敏度高,重复性好,对健康无害
1
酶学和酶工程研究的历史与现状
2
酶学的基础理论
食品酶工程研究内容与技术方法 酶与生产实践
3
4
1.2 酶学与基础理论
酶学与现代化学
酶学与现代物理学 酶学与生物学
酶与现代化学
关系
①化学为酶促反应动力学规律的建立、酶催化机理 的阐明奠定了基础
②结构化学和物理化学揭示了酶的本质
③酶对化学工业和催化理论产生影响
.....
食品酶工程研究的技术方法 酶的分离纯化技术 酶的固定化技术 酶蛋白的化学修饰 侧链修饰 酶的亲和修饰 酶的化学交联 酶分子的定向改造
第一章 绪 论
1
酶学和酶工程研究的历史与现状
2
酶学的基础理论
食品酶工程研究内容与技术方法 酶与生产实践
3
4
1.4 酶与生产实践
酶在食品工业领域中的 应用
(1)酶在淀粉工业中的应用
利用酶法生产果葡糖浆
相关文档
最新文档