通信系统建模与仿真课程设计
通信系统仿真及设计
课题3
三 性能仿真
经过RS编码后, 系统 的误码率较编码前明显下 降, 说明了RS编码的纠错 功能;
图1 (15, 11)RS编码后BER曲线保持比特能量一定
15
通过比较这两类情况可以发现, 在总能量不变的情况下会出现低于一定门限值时, 未经编码的误比特率比编码的误比特率要
课题3 好, 原因是比特信噪比下降造成。比如将一个原始信息位比特编成3个比特(加入2位冗余), 如果保持总的信号能量相等,
2
课题1
— 设计思想 题目要求使用Matlab仿真高斯白噪声信道 下 QPSK的信噪比与误码率的关系。采用 Matlab代码可以模拟二进制比特流产生、 信号集生成、调制、 AWGN信道、相干解 调、滚降滤波等一系列过程, 通 过蒙特卡 洛仿真的方法得出误码率, 同时生成理论曲 线进行对比。
3
课题1
通信建模与仿真课程设计报告
课题1
■ 仿真高斯白噪声信道下QPSK的Eb/N0与误比特率之间的关系,要求: ■ 利用两种工具进行仿真: Matlab、Simulink ■ 成型滤波器采用根升余弦滚降滤波器,滚降系数为0.5,过采样因子
为4, ■ 要求仿真至1e-5误比特率 ■ 与理论值对比,绘出对比曲线
11
课题3
二 实现流程
有RS编码
无RS编码
12Leabharlann 题3二 实现流程13
通信系统建模与仿真教学设计
通信系统建模与仿真教学设计随着通信技术的发展,通信系统的建模与仿真成为了提高学生通信技术水平的重要课程环节。
本文将从课程目标、课程内容、教学方法等方面进行探讨通信系统建模与仿真教学设计。
课程目标通信系统建模与仿真是通信专业的核心课程之一,其主要目标是使学生了解通信系统建模与仿真的相关理论和基本方法,掌握常用的通信系统建模与仿真软件,并能够利用软件建立和仿真通信系统的各个环节,从而增强其学习和实践能力。
课程内容通信系统建模与仿真的教学内容涵盖了通信系统的整个建模与仿真过程,包括:一、系统建模系统建模是通信系统建模与仿真的重要环节,其目的是将通信系统的各个组成部分抽象为数学模型,包括信源、信道、调制解调器、信道编码等。
•信源建模:信源建模是将通信系统中的信息源抽象成数学模型,常见的信源有随机信号、数字信号和模拟信号等,其数学模型包括概率分布、功率谱密度等。
•信道建模:信道建模是通信系统建模的难点,其目的是将信道的噪声、失真等因素抽象成数学模型,建立信道传输特性的数学描述。
•调制解调器建模:调制解调器建模是通信系统建模的关键,其主要作用是实现信息的传输和接收,并将低频信号转换为高频信号,以便于信号在信道中传输。
二、系统仿真系统仿真是通信系统建模与仿真的重要环节,其目的是验证通信系统的设计是否可行,评估系统的性能指标,并优化通信系统的各个环节。
•仿真平台:通信系统仿真的软件工具在实践中非常重要,常见的仿真软件有Matlab、Mentor Graphics、VHDL等。
•仿真结果:仿真结果是评估通信系统性能的关键,包括误码率、信号电平、信道容量等多个性能指标。
教学方法通信系统建模与仿真的教学方法应该以理论与实践相结合为主要原则,从以下三个方面进行探讨:一、理论课教学理论课教学是通信系统建模与仿真教学的基础,应当重点讲解信源、信道、调制解调器等基本原理,详细介绍通信系统建模与仿真的方法和技术,提高学生的理解和掌握程度。
Simulink通信系统建模与仿真教学设计
详解MATLAB/Simulink通信系统建模与仿真教学设计MATLAB/Simulink是一款广泛应用于各个领域的数学工具,其中Simulink可用于建立系统级仿真模型,以便进行电子、机械、流体和控制系统等领域内的实验分析和设计。
在通信领域中,Simulink非常适合建立通信系统的仿真模型,并用于进行传输计算、信道建模、信号处理和多模调制等。
本文将介绍MATLAB/Simulink通信系统模型的建立,及如何将其应用于通信系统教学设计。
通信系统模型建立数字调制数字调制是通信系统中的关键技术之一。
首先,我们需要在Simulink中建立基带信号源,并使用Math Function模块产生载波信号。
Modulation 模块可用于将基带信号和载波信号结合起来。
为了使得调制系统工作稳定和正常,通常在模型中加入Equalization和Resampling模块,以消除接收端接收到的噪声和信号失真。
当系统处理完成后,我们可以使用Scope模块来对模型工作情况进行进一步的分析。
数字解调数字解调需要在接收端建立解调器模型。
接收端模型包括匹配滤波器、采样器、时钟恢复器、色散补偿器和多值/二次干扰恢复器。
在这个模型中,也需要添加Equalization和Resampling模块以消除接收端所受的噪声和信号失真。
在接收端处理完成之后,我们也可以使用Scope模块对模型结果进行进一步分析。
信道建模信道建模是通信系统中另一个关键环节。
在Simulink中建造通信信道仿真模型,需要引入建立通信信道的数学模型,并建立符合通道模型的信道传输系统。
在建立仿真模型中,包括噪声源、多路复用技术、OFDM技术、信号调制和解调技术。
对于每个信道结构,我们都可以建立相应的仿真模型,进行仿真分析。
OFDM信息传输系统OFDM技术利用多个正交子载波来传输信息,以提高通信质量和可靠性,同时提高频带利用率。
OFDM系统建模主要包括加脉冲造型、IFFT、添加循环前缀、调制调制、运动模糊和色散模拟、反向调制、解压缩、去定时和轻度等模块。
通信系统仿真课程设计
通信系统仿真课程设计1. 引言通信系统是现代社会不可或缺的一部分,它在无线通信、互联网、电视、手机、卫星通信等方面都有广泛应用。
为了能够更好地理解和分析通信系统的性能,在通信工程领域中,仿真技术被广泛应用。
本课程设计将介绍通信系统仿真的相关概念、方法和工具,以及如何根据具体问题进行通信系统的仿真。
2. 通信系统仿真的目的和意义通信系统仿真是通过计算机模拟通信系统的运行和性能,以达到理解系统特性、优化设计和解决问题的目的。
它在通信工程领域有着重要的意义和广泛的应用。
通信系统仿真的目的主要有以下几点:•理解系统特性:通过仿真可以深入了解通信系统的各个组成部分,包括信源、信道、调制解调器、信道编码和解码等,从而更好地理解系统的工作原理和性能特点。
•优化设计:通过仿真可以评估不同的系统设计方案,找到最佳的参数配置和算法,从而提高系统的性能,降低成本。
•解决问题:通过仿真可以模拟通信系统在不同情况下的性能表现,从而分析和解决实际问题,比如干扰问题、误码率改善等。
3. 通信系统仿真的基本原理通信系统仿真的基本原理是模拟和计算。
通信系统仿真通常涉及到以下几个方面的模拟和计算:•信源:通过模拟产生各种类型的信号,比如正弦波、随机信号等。
•信道:通过模拟产生不同的信道特性,比如传输损耗、多路径效应、噪声等。
可以通过添加白噪声、多径信道模型等方式来模拟实际信道的特性。
•调制解调器:通过模拟调制解调过程,将数字信号转换为模拟信号或者将模拟信号转换为数字信号。
•信道编码和解码:通过模拟编码和解码过程,对信号进行编码和解码,提高抗干扰性能。
•误码分析:通过模拟接收端信号的误码情况,分析误码率和误差传播等指标。
通信系统仿真的计算过程需要使用编程语言和相关工具,比如MATLAB、Python等,以及通信系统仿真平台,比如NS-3、OPNET等。
4. 通信系统仿真的步骤通信系统仿真通常包括以下几个步骤:1.确定仿真目标:明确仿真的目标,包括仿真对象、仿真精度和仿真场景等。
(完整word版)数字通信系统的设计与仿真
数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。
通信系统仿真课程设计c语言
通信系统仿真课程设计c语言一、教学目标本课程的教学目标是使学生掌握通信系统仿真的基本原理和方法,能够运用C语言进行通信系统的仿真分析。
具体目标如下:1.理解通信系统的基本原理和仿真方法。
2.掌握C语言的基本语法和编程技巧。
3.熟悉通信系统仿真实验的流程和技巧。
4.能够运用C语言编写简单的通信系统仿真程序。
5.能够分析仿真结果,对通信系统进行性能评估。
6.能够独立完成通信系统仿真实验,并撰写实验报告。
情感态度价值观目标:1.培养学生的创新意识和团队合作精神。
2.增强学生对通信技术的兴趣和热情。
3.培养学生的科学思维和解决问题的能力。
二、教学内容本课程的教学内容主要包括以下几个部分:1.通信系统的基本原理:介绍通信系统的基本概念、信号处理方法、调制解调技术等。
2.通信系统仿真方法:讲解通信系统仿真的基本方法,包括系统模型建立、仿真算法选择等。
3.C语言编程基础:介绍C语言的基本语法、数据类型、运算符、控制结构等。
4.通信系统仿真实验:进行一系列的通信系统仿真实验,让学生动手实践,掌握仿真技巧。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解通信系统的基本原理和仿真方法,让学生理解理论知识。
2.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。
3.案例分析法:分析典型的通信系统仿真案例,让学生掌握仿真技巧。
4.实验法:进行通信系统仿真实验,让学生动手实践,提高操作能力。
四、教学资源本课程的教学资源包括以下几个方面:1.教材:选用合适的教材,为学生提供系统的理论知识学习。
2.参考书:提供相关的参考书籍,丰富学生的知识视野。
3.多媒体资料:制作课件、实验视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:提供计算机、通信设备等实验设备,保障学生能够进行实际操作。
五、教学评估本课程的教学评估主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答情况等,以考察学生的学习态度和积极性。
Simulink通信系统建模与仿真实例分析教学设计 (2)
Matlab/Simulink通信系统建模与仿真实例分析教学设计一、教学目标本课程旨在通过【Matlab/Simulink通信系统建模与仿真实例分析】的教学,使学生掌握如下知识和能力:1.了解数字通信系统基本概念及其发展过程;2.掌握数字通信系统的建模方法和仿真技术;3.能够通过实例分析,掌握数字通信系统的性能分析方法;4.能够设计数字通信系统并进行仿真。
二、教学内容1. 数字通信系统概述•数字通信系统基本概念•数字通信系统的应用领域及其发展历程2. 数字通信系统建模方法•数字信号的基本特性•采样、量化和编码的基本原理•数字调制技术•误差控制编码技术3. 数字通信系统的仿真技术•Simulink仿真环境的基本概念和使用方法•通信系统仿真模型设计方法4. 数字通信系统的性能分析方法•常见数字通信系统的性能参数及其定义•数字通信系统的误码率分析方法5. 数字通信系统设计与仿真实例分析•基于Matlab/Simulink的通信系统建模和仿真实例分析三、教学方法本课程采用主题讲授和案例分析相结合的教学模式。
主要教学方法包括:1.讲授:教师通过课堂讲解授予基本概念、原理和技术,并采取案例分析的方法,使学生逐步领悟和掌握学习内容。
2.实验:采用Matlab/Simulink仿真软件进行数字通信系统建模和仿真实验。
3.课堂讨论:设计选题和应用实践案例的课堂讨论。
四、教学评估本课程的教学评估主要通过期末考试、实验报告和作业完成情况来进行。
1. 期末考试期末考试采用闭卷考试形式,主要测试学生对数码通信系统理论的掌握情况,考核内容覆盖课程中所讲述的主要内容。
2. 实验报告实验报告要求学生通过Matlab/Simulink仿真软件对数字通信系统进行建模和仿真,并撰写学习笔记和所完成实验的结果分析。
3. 作业完成情况教师将根据课堂讨论和布置的作业对学生的学习情况进行评估。
五、教学资源教师将为本课程提供以下教学资源:1.选取优秀的课程设计案例,供学生进行仿真和分析;2.为学生提供Matlab/Simulink仿真软件的操作指导和优秀的资源链接。
通信系统建模与仿真课程设计
通信系统建模与仿真课程设计1. 课程设计概述本课程设计旨在通过实际操作,让学生掌握通信系统建模与仿真方法,并能够利用计算机软件进行仿真。
本课程设计主要分为三个部分,分别为理论学习、仿真实验和实验报告撰写。
在理论学习部分,学生将学习通信系统建模的理论知识;在仿真实验部分,学生将通过计算机仿真软件进行实际操作,并仿真分析通信系统性能;在实验报告撰写部分,学生将撰写本次实验的报告,总结实验结果并给出改进方案。
2. 理论学习2.1 通信系统建模基础通信系统建模是通信系统设计的重要部分,其主要目的是建立一个数学模型,描述通信系统的各个组成部分间的关系。
通信系统建模可以大致分为系统的传输模型和噪声模型两部分。
系统的传输模型主要描述信道传输特性,如频率响应、时域响应等;噪声模型则描述了环境、电路和信号本身所引起的噪声影响。
2.2 通信系统仿真方法通信系统仿真是通过计算机对通信系统进行模拟,分析系统性能和验证系统的可行性。
通信系统仿真可以大致分为系统仿真和信号仿真两部分。
系统仿真主要是对通信系统整体进行仿真,分析系统的性能指标,如误码率、信噪比等。
信号仿真则是针对某个信号的特定特性进行仿真,如频谱、时域波形等。
3. 仿真实验3.1 实验内容本次仿真实验的主要内容是使用MATLAB软件对QPSK调制通信系统进行建模和仿真。
实验步骤如下:1.建立信道模型:使用MATLAB建立通信系统中各个模块的数学模型,包括信源、信道、调制器、解调器等模块。
2.信号发送:生成QPSK调制下的随机数据信号,通过调制器进行调制并发送。
3.信号接收:接收信号并通过解调器进行解调。
4.误码率分析:分析误码率、信噪比等性能指标,调整系统参数使其达到最优性能。
3.2 实验要求1.使用MATLAB软件完成实验。
2.通过改变系统参数,分析系统各项性能指标。
3.完成实验报告,并附上实验结果分析和总结。
4. 实验报告实验报告应该包括以下内容:1.实验目的:交代本次实验的目的。
通信系统建模与仿真
一、实验内容本实验使用SIMULINK进行简单通信系统搭建,比较不同的信道模型和不同的调制方式对信息传递的影响。
二、实验方案通信系统负责将包含信息的消息从发送端有效地传递到接收端。
本文搭建系统的结构图如1-1,图1-1 简单通信系统框图2.1调制方式性能比较本文主要在AWGN信道前提下比较BPSK和QPSK两种调制方式,SIMULINK系统搭建如下,图1-2 基于BPSK调制方式的通信系统图1-3 基于QPSK调制方式的通信系统2.2 不同信道性能比较本文主要在2-FSK的前提下,比较分析两种常见通信信道(AGWN channel,Rayleigh channel)的性能。
其SIMULINK搭建如下,图1-4基于AGWN通信信道的通信系统图1-5基于Rayleigh、AWGN通信信道的通信系统三、参数选择3.1 比较调制方式性能参数设置在图1-2,图1-3两个系统中,本文采用了相同的信源模块、相同的信道模块,不同的调制模块,已达到比较的目的。
信源采用Random Integer Generator模块,参数设置如下:图1-6 信源模块参数设置信道模块采用AWGN Channel模块,参数设置如下:图1-7 AWGN信道参数设置BPSK调制模块与解调模块参数设置如下:图1-8 BPSK调制模块参数设置图1-9 BPSK解调模块参数设置在本文中采用了一个很重要的误码率分析工具bertool,其参数设置如下:3.2 比较信道特性参数设置本节基于2-FSK调试方式下,比较了只有高斯白噪声特性信道和具有两种高斯白噪声、瑞利特性信道误码率情况。
下面将列举几个重要模块的参数设置:图1-10 信源模块参数设置图1-11 2-FSK调制模块参数设置图1-11 2-FSK解调模块参数设置图1-12 瑞利信道参数设置以上参数设置完成之后,我们将在第四部分中,利用Bertool工具得出两种特性的信道对误码率的影响。
四、仿真结果及分析4.1 调制比较仿真结果与分析通过上述参数的设置,我们可以得出一个比较图,如下:图1-13 两种调制方式下,误码率随信噪比的变化从bertool 工具所绘制出的图中,我们可以得出结论:在相同的信源模块以信道模块下,BPSK 调制方式的情况要优于QPSK 。
通信系统建模与仿真课程设计
通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级题目基于SIMULINK的基带传输系统的仿真姓名学号指导教师2014年6月27日1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
2基带系统的理论分析1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。
系统工作过程及各部分作用如下。
定时信号图 1 :数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
基带传输系统的信道通常采用电缆、架空明线等。
信道既传送信号,同时又因存在噪声和频率特性不理想而对数字信号造成损害,使得接收端得到的波形与发送的波形具有较大差异。
接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。
其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。
抽样判决器首先对接收滤波器输出的信号在规定的时刻(由定时脉冲控制)进行抽样,获得抽样信号,然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。
2.基带系统设计中的码间干扰和噪声干扰以及解决方案由图1所示,其中发送滤波器的传递函数为,冲击响应为;接收滤波器的传递函数为,冲击响应为。
从到的传输过程中,各个脉冲信号经过信道与接收滤波器后可能发生不期望的变形,从而影响接收,这中间既有码间串扰又有噪声的影响。
经过接收滤波器后的输出信号为令,并令数字基带传输系统总的冲击响应为总的频响函数为于是记抽样定时为,得到抽样值,。
MATLAB课件·第4章 通信系统的建模与仿真
B 这种典型的情况,带通采样定理所规定的采
样频率近似等于下界 2 B 。 对整个通信系统进行仿真开发时,选择对系统合适的采样频率是要做的一个基本决 定。除考虑上述信号带宽外,有许多因素影响所需的系统采样频率。具有反馈的系统、非 线性系统、多径信道等会导致更高的采样频率要求。对于无反馈的线性系统,必需的采样 频率可由可接受的混叠误差决定的,而这又有赖于发送滤波器成形脉冲的功率谱密度。成 形脉冲是假定时域有限的,因此不可能是带宽有限的,因而会产生在实际中不可能消除混 叠误差。为仿真选择合适的采样频率的一个策略就是在混叠误差和仿真时间之间达成一个 可以接受的折衷。目标是选择一个采样频率,使得混叠误差相对于仿真所考察的系统性能 的降低是可以忽略的。 有些要仿真的系统(如扩频通信系统)包含两个或多个不同信号带宽的子系统。扩频 通信系统同时包括窄带信号和宽带信号。如果使用单一的采样频率,那么这个采样频率必 须与宽带波形相适应,而用宽带信号所需的采样率对窄带信号进行采样,将导致仿真的时 间过大和效率降低。一般最有效的方法是对每个过程用它的奈奎斯特速率采样,对整个系 统而言采用多速率采样。系统中出现两个不同带宽时,可采用两个采样率:在窄带到宽带 的分界处提高采样频率(上采样),而在宽带到窄带的分界处降低采样频率(下采样)。 采样频率的提高是通过对在原始样点之间内插新的样点来完成;采样频率的降低是通过从 原样点每多个样点抽取一个来实现。 采样点的值在计算机中是用有限长的码字来量化,所以在仿真中都会出现量化误差。 计算机处理表示数字的方式可以分为定点和浮点两类。当用定点数表示时,字长每增加一 个比特,量化的信噪比增加 6dB 。在通用计算机上采用浮点数表示进行仿真操作时,由量 化导致的量化误差通常可以忽略不计。然而,这种噪声永远不会为零,在噪声累积的情况 过多时可能会严重地降低仿真结果的精度。 3. 信道编码器和译码器 信道编码器对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力。信 道编码的处理技术有差错控制码、交织编码器等。差错控制码有线性差错控制码(汉明 码、线性循环码等)、Reed-Solomon 码、卷积码、Turbo 码、LDPC 码等。信道译码器完 成信道编码的译码。交织编码技术可离散化并纠正信号衰落引起的突发性差错,改善信道
matlab通信系统仿真课程设计
matlab通信系统仿真课程设计
MATLAB通信系统仿真课程设计是一个涉及到通信系统原理和MATLAB编程的设计项目。
在这个课程设计中,学生需要通过理论学习和实践操作,掌握通信系统的基本原理和MATLAB的使用技巧,最终完成一个通信系统的仿真模型。
以下是一个可能的课程设计流程和内容:
1. 引言和背景知识:介绍通信系统的基本原理和相关的数学知识,包括信号传输、调制解调、信道编码等概念。
2. MATLAB基础知识:介绍MATLAB的基本语法和常用函数,包括矩阵操作、图形绘制、信号处理等。
3. 信号传输模型:学生需要根据通信系统的基本原理,设计一个简单的信号传输模型。
这个模型可以包括信号的生成、调制、传输和解调等过程。
4. 信道模型:学生需要根据通信系统的信道特性,设计一个适当的信道模型。
这个模型可以包括信道的噪声、衰落等特性。
5. 信号检测和解码:学生需要设计一个信号检测和解码的算法,以实现对传输信号的恢复和解码。
6. 性能评估和优化:学生可以通过改变信道模型、调制方式、编码方式等参数,来评估系统的性能,并根据评估结果进行优化。
7. 结果分析和报告撰写:学生需要分析仿真结果并撰写一个综合性的报告,包括系统设计和实验结果等内容。
在这个课程设计中,学生需要结合理论学习和实践操作,掌握通信系统的基本原理和MATLAB的使用技巧。
通过完成这个设计项目,学生可以加深对通信系统的理解,并提升MATLAB编程和仿真分析的能力。
通信系统建模与仿真实验报告
实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(s csnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x ’(t)时序图。
通信系统仿真课程设计
通信系统仿真课程设计一、课程设计概述通信系统仿真课程设计是通信工程专业的重要课程之一,旨在通过实践操作,让学生掌握通信系统仿真的基本原理、方法和技能。
本课程设计涉及到多个学科领域,如数字信号处理、模拟电路设计、通信原理等。
二、课程设计目标1.了解通信系统仿真的基本原理和方法;2.掌握Matlab软件的使用;3.熟悉数字信号处理和模拟电路设计;4.能够运用所学知识,完成一个简单的通信系统仿真实验。
三、课程设计内容1.数字信号处理(1)采样定理(2)离散傅里叶变换(3)数字滤波器设计2.模拟电路设计(1)放大器电路(2)滤波器电路(3)混频器电路3.通信原理(1)调制与解调技术(2)误码率分析(3)传输链路建立与维护4.Matlab软件使用(1)Matlab基础语法(2)Matlab图像绘制(3)Matlab数据处理与分析四、课程设计步骤1.确定仿真系统的需求和设计目标;2.搜集相关资料,了解仿真系统的基本原理和方法;3.进行仿真系统的设计和实现,包括数字信号处理、模拟电路设计、通信原理等方面;4.对仿真结果进行分析和评估,得出结论;5.撰写课程设计报告。
五、课程设计案例以一个简单的调制解调系统为例,介绍通信系统仿真课程设计的具体步骤。
1.需求分析设计一个基于QPSK调制解调技术的通信系统,要求实现以下功能:(1)产生随机比特序列并进行QPSK调制;(2)添加高斯白噪声并计算误码率;(3)对接收信号进行QPSK解调,并恢复原始比特序列。
2.搜集资料了解QPSK调制解调技术的基本原理和方法,学习Matlab软件的使用方法。
3.系统设计(1)产生随机比特序列并进行QPSK调制利用Matlab软件生成随机比特序列,并将其转换为QPSK符号。
通过画图工具绘制星座图,观察符号分布情况。
(2)添加高斯白噪声并计算误码率在发送信号中添加高斯白噪声,模拟信道的干扰。
通过误码率分析工具计算误码率。
(3)对接收信号进行QPSK解调,并恢复原始比特序列利用Matlab软件对接收信号进行QPSK解调,得到恢复后的比特序列。
通信系统建模与仿真课程设计--基于SIMULINK的基带传输系统的仿真
通信系统建模与仿真课程设计--基于SIMULINK的基带传输系统的仿真通信系统建模与仿真课程设计2011 级通信工程专业******** 班级题目基于SIMULINK的基带传输系统的仿真姓名*** 学号*******指导教师胡娟2014年月日1.任务书试建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps 。
(1) 设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
(2) 要求观察接收信号眼图,说明眼图意义与影响因素,改变影响眼图的参数,观察是否有变化。
(3) 设计定时提取系统,说明定时提取的原理,观察定时提取脉冲的波形,说明其正确性。
2. 基带系统的理论分析根据Simulink 提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所示的模型:图3. 2数字调制系统仿真框图基带信号 调制器 信 道 解调器 基带信号噪声源图3.4 2-ASK 信号接收系统组成框图根据3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调整个的仿真系统的调制与解调过程为:首先将信号源的输出信号与载波通过相乘器进行相乘,在接收端通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。
在MATLAB下Simulink仿真平台构建了ASK调制与解调仿真电路图如图3-1所示:将信号源的码数率设为1B/S,即频率为1 Hz。
在调制解调系统中,载波信号的频率一般要大于信号源的频率。
信号源频率为1 Hz,所以将载波频率设置为6 Hz,由于在载波参数设置里,频率的单位是rad/sec,所以即为12*pi。
低通滤波器的频带边缘频率与信号源的频率相同,前面设置信号源频率为1 Hz,所以对话框中“Passband edge frequency (rads/sec):”应填“2*pi”。
MatlabSimulink通信系统建模与仿真课程设计
MatlabSimulink通信系统建模与仿真课程设计MatlabSimulink通信系统建模与仿真课程设计电子信息课程设计题目:Matlab/Simulink通信系统建模与仿真班级:2008级电子(X)班学号:姓名:电子信息课程设计Matlab/Simulink通信系统建模与仿真一、设计目的:学习Matlab/Simulink的功能及基本用法,对给定系统进行建模与仿真。
二、基本知识:Simulink是用来对动态系统进行建模、仿真和分析的软件包,依托于MATLAB丰富的仿真资源,可应用于任何使用数学方式进行描述的动态系统,其最大优点是易学、易用,只需用鼠标拖动模块框图就能迅速建立起系统的框图模型。
三、设计内容:1、基本练习:(1)启动*****K:先启动MATLAB,在命令窗口中键入:simulink,回车;或点击窗口上的*****K图标按钮。
图(1)建立simulink (2)点击File\new\Model或白纸图标,打开一个创建新模型的窗口。
(3)移动模块到新建的窗口,并按需要排布。
(4)连接模块:将光标指向起始模块的输出口,光标变为“+”,然后拖动鼠标到目标模块的输入口;或者,先单击起始模块,按下Ctrl键再单击目标模块。
(5)在连线中插入模块:只需将模块拖动到连线上。
(6)连线的分支与改变:用鼠标单击要分支的连线,光标变为“+”,然后拖动到目标模块;单击并拖动连线可改变连线的路径。
(7)信号的组合:用Mux模块可将多个标量信号组合成一个失量信号,送到另一模块(如示波器Scope)。
(8)生成标签信号:双击需要加入标签的信号线,会出现标签编辑框,键入标签文本即可。
或点击Edit\Signal Properties。
传递:选择信号线并双击,在标签编辑框中键入,并在该尖括号内键入信号标签即可。
四、建立模型1. 建立仿真模型(1)在simulink library browser 中查找元器件,并放置在创建的新模型的窗口中,连接元器件,得到如下的仿真模型。
通信系统建模与仿真课程设计
通信系统建模与仿真课程设计1任务书试建立一个2DPSK频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行2DPSK调制后再送入加性高斯白噪声(AWGN)信道传输,在接收端对其进行2DPSK解调以恢复原信号,观察还原是否成功,改变AWGN信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。
另外,对发送信号和接收信号的功率谱进行估计。
2 二进制差分相移键控(2DPSK )的理论分析二进制差分相移键控常简称为二相相对调相,记为2DPSK 。
它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息。
所谓相对载波相位是只本码元初相与前一码元初相之差。
调制 :2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
例如,假设相位值用相位偏移△φ表示(△φ定义为本码元初相与前一码元初相只差),并设△φ=π→数字信息1,△φ=0→数字信息0,则数字信息序列与2DPSK 信号的码元相位关系可举例表示如如下:数字信息: 0 0 1 1 1 0 0 1 0 12DPSK 信号相位: 0 0 0 π 0 π π π 0 0 π或 π π π 0 π 0 0 0 π π 0差分码可取传号差分码或空号差分码。
其中,传号差分码的编码规则为:b a b n n n 1-⊕=式中:⊗为模二加:b n 1-为 b n 的前一码元,最初的 b n 1-可任意设定差分编码是(码反变换),即把绝对码变换为相对吗;其逆过程成为差分译码(码反变换),即b b a n n n 1-⊕=2PSK 及DPSK 信号的波形如图所示。
2DPSK的产生基本类似于2PSK,只是调制信号需要经过码型变换,将绝对码变为相对码,2DPSK有模拟调制法和键控法,如图:模拟调制法键控法2DPSK信号可以采用相干解调法(极性比较法)和差分相干解调法(相位比较法)。
其解调原理是:先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。
通信系统建模与仿真
《电子信息系统仿真》课程设计级电子信息工程专业 _________ 班级题目FM调制解调系统设计与仿真姓名 ___________________ 学号______________指导教师胡娟_________________________二0—年月日内容摘要频率调制(FM)通常应用通信系统中。
FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。
FM调制解调系统设计是对模拟通信系统主要原理和技术进行研究,理解FM系统调制解调的基本过程和相关知识,利用MATLABS成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,非相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。
在课程设计中,系统开发平台为Windows XP使用工具软件为7.0。
在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。
通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。
了解FM调制解调系统的优点和缺点,对以后实际需要有很好的理论基础。
关键词FM解调;调制;MKTLAB仿真;抗噪性一、M ATLAB 软件简介MATLAB 是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran) 的编辑模式,代表了当今国际科学计算软件的先进水平。
matlab通信系统仿真设计课程设计
matlab通信系统仿真设计课程设计一、教学目标本课程的教学目标是使学生掌握Matlab在通信系统仿真设计方面的基本理论和实践技能,培养学生运用Matlab进行通信系统仿真的能力。
1.理解通信系统的基本原理和主要技术。
2.掌握Matlab的基本语法和操作。
3.熟悉通信系统仿真的基本方法和流程。
4.能够运用Matlab进行简单的通信系统仿真。
5.能够分析仿真结果,对通信系统进行性能评估。
6.能够根据实际问题,设计并实现通信系统仿真模型。
情感态度价值观目标:1.培养学生的创新意识和团队协作精神。
2.增强学生对通信技术领域的兴趣和好奇心。
3.培养学生关注社会热点,运用所学知识解决实际问题的责任感。
二、教学内容本课程的教学内容主要包括Matlab基本语法与操作、通信系统基本原理、通信系统仿真方法和实践。
1.Matlab基本语法与操作:Matlab简介、基本语法、数据类型、运算符、函数、编程技巧等。
2.通信系统基本原理:模拟通信系统、数字通信系统、信号与系统、信息论基础等。
3.通信系统仿真方法:系统建模、仿真原理、仿真工具等。
4.通信系统仿真实践:模拟通信系统仿真、数字通信系统仿真、信道编码与解码仿真等。
三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法,注重理论与实践相结合,激发学生的学习兴趣和主动性。
1.讲授法:通过讲解基本原理、概念和实例,使学生掌握通信系统和Matlab的基本知识。
2.案例分析法:分析实际通信系统案例,引导学生运用Matlab进行仿真分析。
3.实验法:学生进行实验,亲手操作Matlab进行通信系统仿真,提高学生的实践能力。
四、教学资源本课程的教学资源包括教材、多媒体资料、实验设备等。
1.教材:选用国内外优秀教材,如《Matlab通信系统仿真与应用》等。
2.多媒体资料:制作课件、教学视频等,辅助学生理解复杂概念和原理。
3.实验设备:计算机、Matlab软件、通信实验箱等,供学生进行实验和实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级题目基于SIMULINK的基带传输系统的仿真姓名学号指导教师胡娟2014年6月27日1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
2基带系统的理论分析1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。
系统工作过程及各部分作用如下。
g T(t)n定时信号图 1 :数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
基带传输系统的信道通常采用电缆、架空明线等。
信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。
接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。
其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。
抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。
2.基带系统设计中的码间干扰和噪声干扰以及解决方案由图 1所示,其中发送滤波器的传递函数为G T (f ),冲击响应为g T (t );接收滤波器的传递函数为G R (f ),冲击响应为g R (t )。
从{a n }到{a ̂n }的传输过程中,各个脉冲信号经过信道与接收滤波器 后可能发生不期望的变形,从而影响接收,这中间既有码间串扰又有噪声的影响。
经过接收滤波器后的输出信号为y (t )={[∑a k ∞k=−∞δ(t −kT s )]∗g T (t )∗c (t )+n (t )}∗g R (t )令y n (t )=n (t )∗g R (t ),并令数字基带传输系统总的冲击响应为 h (t )=g T (t )∗c (t )∗g R (t ) 总的频响函数为 H (f )=G T (f )C (f )G R (f ) 于是y (t )=∑a k ∞k=−∞δ(t −kT s )∗h (t )+y n (t )=∑a k h (t −kT s )+y n ∞k=−∞(t )记抽样定时为t =nT s +t 0,得到抽样值,r n =y (nT s +t 0)。
t 0是相对固定的时延,不妨将其忽略。
于是r n =y (nT s )=∑a k h (nT s −kT s )+y n ∞k=−∞(nT s )=a n h (0)+∑a n−m h (mT S )∞m=−∞m≠0+y n (nT s )式中,令m =n −k 。
式中的第一项对应所期望接收的a n 符号,;第二项是其他符号对当前符号a n 的干扰,称为码间串扰或码间干扰(ISI );第三项为噪声影响。
由于随机性的码间串扰和噪声的存在,使抽样判决电路在判决时可能判对,也可能判错。
显然,只有当码间干扰和随机干扰很小时,才能保证上述判决的正确;当干扰及噪声严重时,则判错的可能性就很大。
1)码间干扰及解决方案码间干扰:由于基带信号受信道传输时延的影响,信号波形将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。
解决方案:① 要求基带系统的传输函数H(f)满足奈奎斯特第一准则:∑H(f−k T s )−∞k=−∞=常数若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。
②基带系统的系统函数H(ω)应具有升余弦滚降特性。
如图2所示。
这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。
2)噪声干扰及解决方案噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。
解决方案:①在接收端进行抽样判决;②匹配滤波,使得系统输出性噪比最大。
3基带系统设计方案○1信源的选择:常见的基带信号波形有:单极性波形、双极性波形、单极性归零波形和双极性归零波形。
双极性波形可用正负电平的脉冲分别表示二进制码“1”和“0”,故当“1”和“O”等概率出现时无直流分量,有利于在信道中传输,且在接收端恢复信号的判决电平为零,抗干扰能力较强。
本次课程设计所采用的曼彻斯特码就是一种典型的双极性不归零码。
在simulink的环境下产生该信号需将“Bernoulli Binary Generator”模块和“Pulse Generator”模块各自产生的信号经过一个“Relay”模块判决后再经过一个相乘器“Product”模块。
○2发送滤波器和接收滤波器的选择:基带系统设计的核心问题是滤波器的选取,根据对信源的分析,为了使系统冲激响应h(t)拖尾收敛速度加快,减小抽样时刻偏差造成的码间干扰问题,要求发送滤波器应具有升余弦滚降特性,同时为了得到最大输出信噪比,在此选择平方根升余弦滤波器作为发送(接收)滤波器,滚降系数为0.5,接收滤波器与发送滤波器相匹配。
以得到最佳的通信性能(即误码率最小)○3信道的选择:信道是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,且含有加性噪声。
因此本次系统仿真采用高斯白噪声信道。
○4抽样判决器的选择:抽样判决器是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。
根据曼彻斯特码的码性特点,故在接收中的判决门限为0。
即采用由“Pulse Generator”脉冲模块“Relay”判决模块“Product”相乘器模块“Triggered Subsystem”保持模块构成的抽样判决器。
4SIMULINK下基带系统的设计1信源的建模及相关参数设置曼彻斯特码基带信号源需用到的simulink模块有“Bernoulli Binary Generator”、“Pulse Generator”、“Relay”、“Product”。
考虑到设计要求,“Bernoulli Binary Generator”参数设置为“Sample time”为“1/1000”,其余参数为默认值;“Pulse Generator”参数设置为“Sample time”为“1e-4”,“Period”为“10”“Pulse Width”为“5”,其余参数为默认值。
“Relay”判决门限为0.5,大于0.5输出1,小于0.5则输出-1,其余参数为默认。
“Product”所有参数均为为默认值。
其模型搭建方式如下图所示伯努利二进制信源模块及参数的设置:Bernoulli模块参数图 2由伯努利信源产生曼彻斯特码建模及参数设置:Pulse模块参数 Relay模块参数图 3发送滤波器、信道、接收匹配滤波器的建模及参数设置:发送滤波器参数 AWGN参数匹配接收滤波器参数图4抽样与判决器的建模及参数设置:Pulse恢复定时模块参数 Relay判决模块参数图 5基带传输系统的总模型:图6 基带传输系统的总模型5仿真结果分析1、曼彻斯特编码前与编码后波形图72、发送数据波形与接收数据波形图8从以上两图可以看出,曼彻斯特的编码完全正确,发送数据波形与接收数据波形完全吻合,由于误码率很低且示波器的显示范围有限,在图8中看不到传输错误的码元。
通过接收端与发送端时域波形对比,可以看出设计的抽样判决器的抽样判决门限比较合理,可以顺利的完成对基带信号的抽样判决,与理论分析相一致。
3、经过滤波器、信道的各点时域波形图9上图第一个波形为发送滤波器输出端时域波形,产生了规律的比较适合信道传输的波形,比较光滑。
中间的波形为信道输出端的时域波形,由于信噪比不是太高,对发送滤波器输出的信号影响不明显。
最下端的波形为接收滤波器输出时域波形。
可以见的,噪声被基本滤除,接收滤波器输出波形比较平滑。
4、曼彻斯特码元与解码后的波形比较图10通过这两个波形比较,可以看出数据经过发送滤波器、AWGN信道、接收滤波器、采样、判决恢复后,基本完全与原波形一致。
5、接收眼图波形与分析图11(1)从上图中可以看出,眼图的线迹比较细,比较清晰,并且“眼睛”很大,说明误码率比较低,码间串扰与噪声对系统传输可靠性影响不大。
(2)从上图中可以看出最佳时刻是0.2,0.7,1.2,1.7左右等时刻“眼睛”最大即抽样最佳时刻。
(3)因为眼图眼边的斜率比较大,所以看出定时误差灵敏度比较敏感。
(4)“眼睛”张开的宽度为可抽样的时间范围。
(5)抽样时刻,上下两个阴影区的间隔距离之半为噪声容限,若噪声瞬时值超过它就可能发生错判。
6、发送信号与接收信号功率谱估计与分析发送信号功率谱接收信号功率谱图12从两图比较中可以看出,接收信号的功率谱与发送信号的功率谱基本完全一样,说明整个基带传输系统模型的设计是合理的,能满足要求,具有较好的抗码间串扰的能力。
7、误码率统计与分析图 13图 14通过误码率统计“Display”模块可知该系统的误码率为0.0095,且误码率会随着仿真时间的增长逐步降低。
由图 14发送数据波形与接收数据波形比较,可以看到中间有一处出现了错误:原码为“0”,接收到的却是“1”。
原因可能有以下几个方面:○1、误码有可能是由于噪声造成的。
由于噪声的存在,可能会使原有基带信号的正负电平出现逆转,由于抽样判决门限为0,造成判决出错出现误码。
○2、有可能是码间干扰的原因。
虽然理论分析可以完全消除码间干扰,但是由于平方根升余弦滤波器等部件不可能是完全理想的,所以在仿真及实际工程中码间干扰是不会完全消除的。
○3、由于采用相乘器等模块构造解码器,其解码过程也有可能会出错。
6遇到的问题及解决的方法刚开始拿到这个题目时,觉得很简单,因为通信建模书上有相似的例题,所以只是把两个例题的模块组合到一起,然后修改下要求的参数。
但仿真后眼图很乱,而且发送数据和恢复数据波形相比有一定的延时。
经过思考影响眼图的因素,最终发现原因在加性高斯信道上,信噪比高,眼图就好,信噪比低,眼图就很乱。
由于发送滤波器和接受滤波器的滤波延时均设计为10传输码元间隙,所以在传输中共延时20个时隙,所以接受数据比发送数据延时了20个码元。
7结束语课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。