高中数学复习教案:正弦定理、余弦定理应用举例

合集下载

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计正弦定理和余弦定理的实际运用举例教学设计简介本教学设计旨在教授正弦定理和余弦定理的实际运用方法。

通过实例演示和练题的形式,帮助学生理解和掌握这两个几何定理的应用场景。

教学目标- 理解正弦定理和余弦定理的概念和原理- 掌握正弦定理和余弦定理在实际问题中的应用方法- 进一步发展解决几何问题的能力教学内容正弦定理- 介绍正弦定理的概念和公式(a/sinA = b/sinB = c/sinC)- 解释正弦定理的几何意义和运用场景- 演示实际问题中如何利用正弦定理求解未知变量余弦定理- 介绍余弦定理的概念和公式(c² = a² + b² - 2abcosC)- 解释余弦定理的几何意义和运用场景- 演示实际问题中如何利用余弦定理求解未知变量实际运用举例- 提供几个实际问题的案例,涉及三角形的边长和角度- 分步引导学生运用正弦定理和余弦定理解决这些问题- 给予学生充足的练机会,以加深对定理应用的理解和熟练度教学步骤1. 引入:复三角形的基本概念和知识点2. 正弦定理:- 介绍正弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用正弦定理求解未知变量- 学生模仿演示并完成相关练题3. 余弦定理:- 介绍余弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用余弦定理求解未知变量- 学生模仿演示并完成相关练题4. 实际运用举例:- 提供几个实际问题的案例,涉及三角形的边长和角度- 分组或个人完成案例分析和解决过程- 学生通过小组或个人报告展示解决思路和结果5. 总结与讨论:- 综合讨论学生的解决思路和方法的优劣- 引导学生总结出正弦定理和余弦定理在解决实际问题中的重要性和应用价值教学评估1. 参与度评估:观察学生在课堂中的积极参与程度和问题解答能力2. 练成绩评估:通过练题的完成情况和准确度,进行学生对正弦定理和余弦定理的理解和应用评估3. 案例分析评估:评估学生在实际问题解决中的思考能力和解决方法的合理性参考资源1. 《高中数学教材》2. 互动教学软件和课件3. 个人和小组练习题。

正弦定理应用教案

正弦定理应用教案

正弦定理应用教案【篇一:正弦定理、余弦定理应用举例教案】第7讲正弦定理、余弦定理应用举例【考查要点】利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【基础梳理】1.用正弦定理和余弦定理解三角形的常见题型。

如测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如b点的方(4)坡度:坡面与水平面所成的二面角的度数.3、解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.4、解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【例题分析】一、基础理解a..3 m c. m 2解:如图.答案b例4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船a.5海里 b.3海里 c.10海里 d.海里5里),于是这艘船的速度是=10(海里/时).答案 c 0.5二、测量距离问题例1、如图所示,为了测量河对岸a,b两点间的距离,在这岸[分析] 在△bcd中,求出bc,在△abc中,求出ab.例2、如图,a,b,c,d都在同一个与水平面垂直的平面内,b、d为两岛上的试探究图中b、d间距离与另外哪两点间距离相等,然后求b,d的距离.故cb是△cad底边ad的中垂线,所以bd=ba.2+同理,bd(km).故b、d km. 2020三、测量高度问题[分析] 过点c作ce∥db,延长ba交ce于点e,在△aec中解得x=10(33) m.故山高cd为10(33) m.总结:(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.,cdcdxab解:在△abc中,ab=5,ac=9,∠bca=sin∠acb9同理,在△abd中,ab=5,sin∠bad 10abbd∠adb=, sin∠bdasin∠bad22解得bd故bd的长为22总结:要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.点,ad=10,ac=14,dc=6,求ab的长.解:在△adc中,ad=10,ac=14,dc=6,【篇二:《正弦定理》教学设计】《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教a版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。

高中数学:正弦定理、余弦定理及应用教案苏教版必修

高中数学:正弦定理、余弦定理及应用教案苏教版必修

教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。

教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。

教学难点:1. 正弦定理、余弦定理在实际问题中的应用。

教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。

教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。

二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。

三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。

四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。

1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。

教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

4.6正弦定理和余弦定理1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.『试一试』1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.『解析』设BD =1,则AB =AD =32,BC =2.在△ABD 中,解得sin A =223,在△ABC 中,由正弦定理AB sin C =BC sin A ,得sin C =66.『答案』662.(2013·扬州三模)如果满足∠ABC =60°,AB =8,AC =k 的△ABC 有两个,那么实数k 的取值范围是________.『解析』由条件得8sin 60°<k <8,从而k 的取值范围是(43,8). 『答案』(43,8)1.把握三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.选用正弦定理或余弦定理的原则如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.『练一练』1.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.『答案』432.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.『解析』由3sin A =5sin B 可得3a =5b ,又b +c =2a ,所以可令a =5t (t >0),则b =3t ,c =7t ,可得cos C =a 2+b 2-c 22ab=5t2+3t 2-7t 22×5t ×3t=-12,故C =2π3.『答案』2π3考点一利用正弦、余弦定理解三角形『典例』 (2013·徐州摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a cos C -b cos C =c cos B -c cos A ,且C =120°.(1)求角A ; (2)若a =2,求c .『解析』 (1)由正弦定理及a cos C -b cos C =c cos B -c cos A 得sin A cos C -sin B cos C =sin C cos B -sin C cos A .所以sin(A +C )=sin(B +C ).因为A ,B ,C 是三角形的内角,所以A +C =B +C ,所以A =B . 又因为C =120°,所以A =30°.(2)由(1)知a =b =2,所以c 2=a 2+b 2-2ab cos C =4+4-2×2×2cos 120°=12,所以c =2 3.『备课札记』 『类题通法』1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.『针对训练』(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若cos ⎝⎛⎭⎫A +π6 =sin A ,求A 的值; (2)若cos A =14,4b =c ,求sin B 的值.『解析』(1)因为cos ⎝⎛⎭⎫A +π6=sin A , 即cos A cos π6-sin A sin π6=sin A ,所以32cos A =32sin A . 显然cos A ≠0,否则由cos A =0得sin A =0,与sin 2 A +cos 2 A =1矛盾,所以tan A =33. 因为0<A <π,所以A =π6.(2)因为cos A =14,4b =c ,根据余弦定理得a 2=b 2+c 2-2bc cos A =15b 2,所以a =15b .因为cos A =14,所以sin A =1-cos 2 A =154.由正弦定理得15b sin A =b sin B ,所以sin B =14. 考点二利用正弦、余弦定理判定三角形的形状『典例』 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 『解析』 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°. 由sin B +sin C =3, 得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°. ∴A =B =C =60°, ∴△ABC 为正三角形.『备课札记』在本例条件下,若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 『解析』由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc , ∴b 2+c 2=2bc .∴(b -c )2=0.即b =c ,又A =60°, ∴△ABC 是等边三角形. 『类题通法』判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒:在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.『针对训练』(2014·镇江期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足b cos C +12c =a .(1)求角B ;(2)若a ,b ,c 成等比数列,判断△ABC 的形状.『解析』(1)法一:由正弦定理得sin B cos C +12sin C =sin A .而sin A =sin(B +C )=sin B cos C +cos B sin C . 故cos B sin C =12sin C .在△ABC 中,sin C ≠0,故cos B =12.因为0<B <π,所以B =π3.法二:由余弦定理得b ·a 2+b 2-c 22ab +12c =a .化简得a 2+b 2-c 2+ac =2a 2,即b 2-c 2+ac =a 2, 所以cos B =a 2+c 2-b 22ac =12.因为0<B <π,所以B =π3.(2)由题知b 2=ac .由(1)知b 2=a 2+c 2-ac ,所以a 2+c 2-2ac =0,即a =c , 所以a =b =c ,所以△ABC 是等边三角形.考点三与三角形面积有关的问题『典例』 (2013·苏州暑假调查)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =60°且cos(B +C )=-1114.(1)求cos C 的值;(2)若a =5,求△ABC 的面积.『解析』 (1)在△ABC 中,由cos(B +C )=-1114.得sin(B +C )=1-cos 2B +C =1-⎝⎛⎭⎫-11142=5314.又B =60°,所以cos C =cos 『(B +C )-B 』=cos(B +C )cos B +sin(B +C )sin B =-1114×12+5314×32=17.(2)因为cos C =17,C 为△ABC 的内角,sin(B +C )=5314,所以sin C =1-cos 2C = 1-⎝⎛⎭⎫172=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =c sin C 得55314=c 437, 所以c =8.又a =5,sin B =32, 所以△ABC 的面积为S =12ac sin B =12 ×5×8×32=10 3. 『备课札记』 『类题通法』三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 『针对训练』(2013·南通一调)在△ABC 中,A ,B ,C 所对的边分别是a ,b ,c ,且b cos B 是a cos C ,c cos A 的等差中项.(1)求B 的大小;(2)若a +c =10,b =2,求△ABC 的面积. 『解析』(1)由题意得a cos C +c cos A =2b cos B .由正弦定理得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=2sin B cos B . 因为A +C =π-B,0<B <π,所以sin(A +C )=sin B ≠0,所以cos B =12,所以B =π3.(2)由B =π3得a 2+c 2-b 22ac =12,即a +c2-2ac -b 22ac=12, 所以ac =2.所以S △ABC =12ac sin B =32.『课堂练通考点』1.在△ABC 中,a =1,c =2,B =60°,则b =________. 『解析』由余弦定理得b =12+22-2×1×2cos 60°= 3. 『答案』32.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________. 『解析』在△ABC 中,由A =45°,C =105°得B =30°.由正弦定理AC sin B =BC sin A 得AC 12=222,所以AC =1.『答案』13.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________. 『解析』由正弦定理a sin A =b sin B =csin C, 得sin A ∶sin B ∶sin C =a ∶b ∶c ,令a =2,b =3,c =4, 再利用余弦定理得cos C =-14.『答案』-144.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.『解析』由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c =2. 当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.『答案』25.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B .(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求a 2+b 2的取值范围. 『解析』(1)因为tan C =sin A +sin Bcos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B. 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B , 即sin C cos A -cos C sin A =cos C sin B -sin C cos B , 所以sin(C -A )=sin(B -C ).所以C -A =B -C 或C -A =π-(B -C )(不成立), 即2C =A +B ,所以C =π3.(2)由C =π3,设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.因为a =2R sin A =sin A ,b =2R sin B =sin B , 所以a 2+b 2=sin 2A +sin 2 B =1-cos 2A 2+1-cos 2B2=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α =1+12cos 2α.由-π3<α<π3知-2π3<2α<2π3,-12<cos 2α≤1,故34<a 2+b 2≤32.。

人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理、正弦定理应用举例)

人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理、正弦定理应用举例)
时与水平线的夹角
在同一铅垂平面内,视线在水平线下方 俯角
时与水平线的夹角
图示
栏目 导引
第六章 平面向量及其应用
名称
定义
图示
南偏西
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
从指定方向线到目标方向线的水平
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
BC =
AC·sisnin∠∠BBAC=60sisnin4350°°=30 2(m).
答案:30 2
栏目 导引
第六章 平面向量及其应用
课件
课件
在△ABC 中,由余弦定理,得
AB2=3+
6+ 2
22-2×

6+ 2
2×cos 75°=5,
所以 AB= 5 km.
栏目 导引
第六章 平面向量及其应用
2.如图,若小河两岸平行,为了知道河对岸两棵树 C,D(CD
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
与河岸平行)之间的距离,选取岸边两点 A,B(AB 与河岸平行), 手抄报:课件/shouchaobao/

高考数学复习知识点讲解教案第27讲 余弦定理、正弦定理

高考数学复习知识点讲解教案第27讲 余弦定理、正弦定理
[解析] 对于A,若,则由正弦定理得 ,即,则,所以 一定是等边三角形,故A正确;对于B,若,则由正弦定理得 ,即,则或 ,即或 ,所以是等腰三角形或直角三角形,故B错误;对于C,若 ,则由正弦定理得,所以 ,即,所以一定是等腰三角形,故C正确;对于D,在 中,因为,且,所以,所以角 为钝角,所以一定是钝角三角形,故D正确.故选 .
(2) 若,求 的周长的取值范围.
[思路点拨]根据正弦定理,结合三角恒等变换将三角形的周长转化为正弦型三角函数,利用正弦型三角函数的性质求 周长的取值范围即可.
解: 由正弦定理得,则 ,,又 ,,所以,又 为锐角三角形,所以,,则 ,所以 ,因为,所以,则 ,所以,即的周长的取值范围为
[总结反思]破解此类问题的关键:一是观察已知三角恒等式,判断是边往角化还是角往边化,从而利用正弦定理或余弦定理进行转化;二是把所求的取值范围或最值问题转化为三角函数问题,利用三角函数的单调性进行求解,或利用基本不等式、三角函数的有界性进行求解.
[思路点拨]先由余弦定理求出,然后由正弦定理求解 即可.
[பைடு நூலகம்结反思]
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程(组),通过解方程(组)求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.
微点2 多三角形背景解三角形
例4 [2023·新课标Ⅱ卷] 记的内角,,的对边分别为,, ,已知面积为,为的中点,且 .
(1) 若,求 ;
[思路点拨]思路一:利用三角形的面积公式求出,再利用余弦定理求得 ,进而可得,从而求得的值;思路二:利用三角形的面积公式求出 ,作出 边上的高,利用直角三角形的性质求解即可.

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。

平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。

本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。

引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

正弦定理、余弦定理应用举例教案

正弦定理、余弦定理应用举例教案

正弦定理、余弦定理应用举例1.用正弦定理和余弦定理,面积公式2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏南60°,东北方向等. 【例题分析】 一、基础理解1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90° D.α+β=180°2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°3.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里D .103海里 二、测量距离问题例1、如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522 m例2、 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.三、测量高度问题例3、如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.例4、如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.四、航海问题例、如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?练习1.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.2. 已知一小山的高度100m,CD =从山顶看A 点的俯角为030,看B 点的俯角为045,A,B,D 三点在一条直线上,则AB= 米3. 如图,在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求:(1)AB 的长 (2)四边形ABCD 的面积3.如图,一艘船上午9:30在A 处得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距82n mile .求船的航速4.如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.ABCD E5.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东β的方向即沿直线CB前往B处救援,求cosβ.6.某人在塔AB 的正东C处,沿着南偏西60的方向前进40米到达D处,望见塔在东北方向,若沿途测得塔的最大仰角为30,求塔高.7.如图,点A表示一小灵通信号发射的位置(塔高不计),l为一条东北走向的公路,技术人员为测试该发射塔信号的覆盖范围,自A点正西方向的B处骑自行车沿公路出发,约经过6分钟,发现小灵通开始有信号,已知:AB=24km,车速10km/h,能否根据以上信息,测算出该塔信号的覆盖半径以及小灵通持续显示信号的时间?A北。

正弦定理和余弦定理:复习教案

正弦定理和余弦定理:复习教案

铭智教育一对一个性化教案学生姓名教师姓名授课日期授课时段课题正弦定理和余弦定理重难点1.正弦定理和余弦定理2.正弦定理和余弦定理的灵活应用教学步骤及教学内1.正弦定理:asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c =sin_A∶sin_B∶sin_C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.余弦定理可以变形:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角教育要对民族的未来负责教育要对民族的未来负责容图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R , 而由A =60°,a =3,得a +b +c sin A +sin B +sin C=2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.教育要对民族的未来负责3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c=________. 答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.教育要对民族的未来负责5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22答案 C解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可. (2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 π6教育要对民族的未来负责解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵0<B <π,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.教育要对民族的未来负责探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.教育要对民族的未来负责又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b ,教育要对民族的未来负责即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.代数化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.审题视角 (1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以 下两种不同方式切入:一、根据余弦定理,进行角化边;二、根据正弦定理,进行边化 角.规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,[6分] ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),教育要对民族的未来负责∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0.[10分] 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.(2)本题也可分析式子的结构特征,从式子看具有明显的对称性,可判断图形为等腰或直角三角形. (3)易错分析:①方法一中由sin 2A =sin 2B 直接得到A =B ,其实学生忽略了2A 与2B 互补的情况,由于计算问题出错而结论错误.方法二中由c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)不少同学直接得到c 2=a 2+b 2,其实是学生忽略了a 2-b 2=0的情况,由于化简不当致误.②结论表述不规范.正确结论是△ABC 为等腰三角形或直角三角形,而不少学生回答为:等腰直角三角形.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力. 解题策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答解 (1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[4分](2)方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[8分] 所以sin A sin C =1-cos 2B =34.[12分]教育要对民族的未来负责方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[8分]所以A =C =B =60°,故sin A sin C =34.[12分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3 C. 3 D.32答案 B教育要对民族的未来负责解析 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( )A .-12B.12C .-1D .1答案 D解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 因为a =2b cos C ,所以由余弦定理得a =2b ·a 2+b 2-c 22ab ,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题(每小题5分,共15分)教育要对民族的未来负责5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x+20=0,解得x =4或x =5. 三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6,教务处签字:日期:年月日课后评价一、学生对于本次课的评价○特别满意○满意○一般○差二、教师评定1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差作业布置.s.5.u.根据余弦定理得a2=b2+c2-2bc cos A=(b+c)2-2bc-2bc cos A=36-10-10×35=20,∴a=2 5.教育要对民族的未来负责教师留言教师签字:家长意见家长签字:日期:年月日教育要对民族的未来负责。

《余弦定理、正弦定理应用举例》教案、导学案、课后作业

《余弦定理、正弦定理应用举例》教案、导学案、课后作业

《6.4.3 余弦定理、正弦定理》教案第3课时余弦定理、正弦定理应用举例【教材分析】三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.【教学目标与核心素养】课程目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.数学学科素养1.数学抽象:方位角、方向角等概念;2.逻辑推理:分清已知条件与所求,逐步求解问题的答案;3.数学运算:解三角形;4.数学建模:数形结合,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.【教学重点和难点】重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;难点:根据题意建立数学模型,画出示意图.【教学过程】一、情景导入在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,但是没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

那么运用正弦定理、余弦定理能否解决这些问题?又怎么解决?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本48-51页,思考并完成以下问题1、方向角和方位角各是什么样的角?2、怎样测量物体的高度?3、怎样测量物体所在的角度?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、实际测量中的有关名称、术语四、典例分析、举一反三题型一测量高度问题例1 济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A 点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2 m ,到达B 点,测得泉标顶部仰角为80°.你能帮李明同学求出泉标的高度吗?(精确到1 m)【答案】泉城广场上泉标的高约为38 m.【解析】如图所示,点C ,D 分别为泉标的底部和顶端.依题意,∠BAD =60°,∠CBD =80°,AB =15.2 m ,则∠ABD =100°,故∠ADB =180°-(60°+100°)=20°.在△ABD 中,根据正弦定理,BD sin 60°=AB sin ∠ADB . ∴BD =AB ·sin 60°sin 20°=15.2·sin 60°sin 20°≈38.5(m). 在Rt △BCD 中,CD =BD sin 80°=38.5·sin 80°≈38(m),即泉城广场上泉标的高约为38 m.解题技巧(测量高度技巧)(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.跟踪训练一1、乙两楼相距200 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是多少?【答案】甲楼高为200 3 m ,乙楼高为40033m. 【解析】如图所示,AD 为乙楼高,BC 为甲楼高.在△ABC 中,BC =200×tan 60°=2003,AC =200÷sin 30°=400,由题意可知∠ACD =∠DAC =30°,∴△ACD 为等腰三角形.由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos 120°,4002=AD 2+AD 2-2AD 2×⎝ ⎛⎭⎪⎫-12=3AD 2,AD 2=40023,AD =40033.故甲楼高为200 3 m ,乙楼高为40033 m. 题型二 测量角度问题例2 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30n mile/h ,则该救援船到达D 点需要多长时间?【答案】 救援船到达D 点需要的时间为1 h. 【解析】由题意,知AB =5(3+3)n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得BD sin ∠DAB =AB sin ∠ADB, 即BD =AB sin ∠DAB sin ∠ADB===10 3 n mile.又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile , 3)sin 45sin1055(33)sin 4545cos 60cos 45sin 60++∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC = 300+1 200-2×103×203×12=30 n mile , 则救援船到达D 点需要的时间为3030=1 h. 解题技巧: (测量角度技巧)测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.跟踪训练二1、在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【答案】缉私船沿北偏东60°方向能最快追上走私船.【解析】 设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =ACBC ·sin∠BAC =26·32=22, ∴∠ABC =45°,∴BC 与正北方向成90°角.∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin∠CBD CD =10t sin 120°103t=12,∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题型三 测量距离问题例3 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a 则可求出A ,B 两点间的距离.若测得CA=400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长.【答案】A ,B 两点间的距离为2007 m.【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000.∴AB =2007 (m).即A ,B 两点间的距离为2007 m.例4 如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.【答案】20 6 .【解析】∠ABC =180°-75°-45°=60°,所以由正弦定理得,AB sin C =AC sin B , ∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m). 即A ,B 两点间的距离为20 6 m.解题技巧(测量距离技巧)当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C,使得A,B与C之间的距离可直接测量,测出AC=b,BC=a以及∠ACB=γ,利用余弦定理得:AB=a2+b2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B同侧的点C,测出BC=a以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD中求出BC,在△ADC 中求出AC,最后在△ABC中,由余弦定理求出AB.跟踪训练三1.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【答案】A,B两点间的距离为64km.【解析】∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32.在△BCD中,∠DBC=45°,由正弦定理,得BC =DC sin ∠DBC ·sin∠BDC =32sin 45°·sin 30°=64. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本51页练习,52页习题6.4中剩余题.【教学反思】对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.学生在这里的数量关系比较模糊,需要强化,三角形相关知识点需要简单回顾。

高三数学教案: 正弦定理和余弦定理

高三数学教案: 正弦定理和余弦定理

讲义一 正弦定理和余弦定理以及其应用一、知识与技能:掌握正弦定理和余弦定理,并能加以灵活运用。

二、知识引入与讲解:Ⅰ、正弦定理的探索和证明及其基本应用:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC ==2R例1.(1)、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ (=2) (2)、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)Ⅱ、余弦定理的发现和证明过程及其基本应用:例2.(1)、在∆ABC 中,已知=ac 060=B ,求b 及A (=b 060.=A ) (2)、在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

例3.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

分析:由余弦定理可知 222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆)解:222753>+Q ,即222a b c >+, ∴ABC 是钝角三角形∆。

练习: (1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)例4在∆ABC 中,060A =,1b =,面积为32,求sin sin sin a b c A B C++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理sin sin ab A B =sin cC ==sin sin sin a b c A B C++++ 解:由1sin 2S bc A ==2c =,则2222cos a b c bc A =+-=3,即a 从而sin sin sin a b c A B C ++++2sin a A== 例题5、某人在M 汽车站的北偏西20︒的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。

6-4-3-3余弦定理,正弦定理应用举例 (教学案)-高一下学期数学人教A版(2019)必修第二册

6-4-3-3余弦定理,正弦定理应用举例 (教学案)-高一下学期数学人教A版(2019)必修第二册

6.4 平面向量的应用6.4.3.3余弦定理、正弦定理应用举例教学目标:1.熟练掌握正弦定理、余弦定理;2.能够运用正、余弦定理等知识和方法求解距离、高度、角度问题。

教学重点:熟练运用正、余弦定理。

教学难点:能够运用正、余弦定理等知识和方法求解实际问题。

教学过程:一、导入新课,板书课题之前以经学习过余弦定理、正弦定理,有哪位同学来回答一下分别是什么?(提问),那么接下来我们来学习一下这两个定理在实际生活中是如何运用的。

【板书:6.4.4余弦定理、正弦定理应用举例】二、出示目标,明确任务1.熟练掌握正弦定理、余弦定理;2.能够运用正、余弦定理等知识和方法求解距离、高度、角度问题。

三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书(4min)阅读课本P48-51练习以上内容,回答以下问题:1.找出你阅读内容中的知识点。

2.找出你阅读内容中的重点。

3.找出你阅读内容中的困惑点。

四、自学指导,紧扣教材1.自学指导(8min)按照五步法认真阅读例9、10、11,思考并完成如下问题:(1)例9是关于什么的问题?取一点C能否解决问题?为什么?如何解决?(2)在例9测量方案下,还有其他计算A,B两点间距离的方法吗?(3)什么是基线?基线与测量精度有什么关系?什么是方位角?(4)例10关于什么的问题?解题关键是什么?什么是仰角?什么是俯角?(5)例11是关于什么的问题?解题的重要环节是什么?(6)计算 两点间的距离是正弦定理和余弦定理的重要应用之一。

五、自学展示,精讲点拨1.口头回答自学指导问题(答案见PPT )2.书面检测:练习题1、2、3精讲点拨:1.准确把握实际测量中的有关名词和术语,例如方向角和方位角的区别;2.将空间问题转化为平面问题;3.题目中给出的条件往往隐含着相应测量问题在某种特定情境和条件限制下的一个测量方案;4.例9中在测量过程中,我们把根据测量的需要而确定的线段叫做基线。

六、课堂小结,构建知识树七、整理知识、背诵记忆注意几点:1.准确把握实际测量中的有关名词和术语,例如方向角和方位角的区别2.将空间问题转化为平面问题3.恰当构造三角形4.注意求解建筑物的高度时不要忘记测量仪的高度。

高中数学教案:余弦定理与正弦定理的应用

高中数学教案:余弦定理与正弦定理的应用

高中数学教案:余弦定理与正弦定理的应用一、引言数学是一门重要的科学学科,它在人们的日常生活中有着广泛的应用。

在高中数学教学中,余弦定理和正弦定理是数学的重要内容之一。

它们不仅是解决三角形相关问题的基础,还可以在实际生活中的测量和计算中发挥重要的作用。

本文将详细介绍余弦定理和正弦定理的定义、推导及其在实际应用中的具体运用。

二、余弦定理的应用1. 什么是余弦定理余弦定理是解决三角形的边和角问题的基本工具。

它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。

余弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。

则有以下等式成立:c^2 = a^2 + b^2 - 2ab*cosC2. 余弦定理的推导为了更好地理解余弦定理的推导过程,我们来看一个具体的例子:已知三角形ABC,∠ABC为90°,∠CAB为30°,AB=5,BC=8。

我们需要求解边AC的长度。

根据余弦定理,我们可以得到以下等式:AC^2 = AB^2 + BC^2 - 2*AB*BC*cos∠ABC代入已知条件,可得:AC^2 = 5^2 + 8^2 - 2*5*8*cos90化简得到:AC^2 = 25 + 64 - 0AC^2 = 89因此,边AC的长度为√89。

3. 余弦定理的应用案例余弦定理在实际生活中有着广泛的应用。

例如,通过测量两个已知长度的边与它们之间的夹角,可以使用余弦定理来计算第三条边的长度。

此外,当我们需要确定两个物体之间的距离时,也可以使用余弦定理来进行计算。

三、正弦定理的应用1. 什么是正弦定理正弦定理也是解决三角形的边和角问题的重要工具。

它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。

正弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。

则有以下等式成立:a/sinA = b/sinB = c/sinC2. 正弦定理的推导我们来展示正弦定理的推导过程,以便更好地理解它的应用。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案章节一:正弦定理的应用1.1 导入:通过复习正弦定理的定义和公式,引导学生理解正弦定理在几何中的应用。

1.2 实例讲解:以一个等腰三角形为例,利用正弦定理求解三角形的角度和边长。

1.3 练习:给出几个应用正弦定理的例题,让学生独立解答。

章节二:余弦定理的应用2.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在几何中的应用。

2.2 实例讲解:以一个直角三角形为例,利用余弦定理求解三角形的角度和边长。

2.3 练习:给出几个应用余弦定理的例题,让学生独立解答。

章节三:正弦定理和余弦定理的综合应用3.1 导入:介绍正弦定理和余弦定理的综合应用,引导学生理解两者之间的关系。

3.2 实例讲解:以一个复杂的三角形为例,利用正弦定理和余弦定理相互验证,求解三角形的角度和边长。

3.3 练习:给出几个综合应用正弦定理和余弦定理的例题,让学生独立解答。

章节四:正弦定理和余弦定理在实际问题中的应用4.1 导入:引导学生思考正弦定理和余弦定理在实际问题中的应用,如测量学和工程学。

4.2 实例讲解:以一个实际问题为例,如测量一个未知角度的三角形,利用正弦定理和余弦定理求解。

4.3 练习:给出几个实际问题应用正弦定理和余弦定理的例题,让学生独立解答。

章节五:总结与拓展5.1 总结:回顾本节课学习的正弦定理和余弦定理的应用,让学生总结关键点和注意事项。

5.2 拓展:引导学生思考正弦定理和余弦定理在其他领域的应用,如物理学和天文学。

5.3 练习:给出一个拓展性问题,让学生独立解答,激发学生的思考和创造力。

正余弦定理的应用举例教案章节六:正弦定理在三角形判定中的应用6.1 导入:引导学生思考正弦定理在三角形判定中的应用,如判断三角形的类型。

6.2 实例讲解:以一个给定角度的三角形为例,利用正弦定理判断三角形的类型。

6.3 练习:给出几个利用正弦定理判断三角形类型的例题,让学生独立解答。

章节七:余弦定理在三角形判定中的应用7.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在三角形判定中的应用。

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。

它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案一、教学目标1. 理解正余弦定理的概念及公式。

2. 学会运用正余弦定理解决实际问题。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:a^2 = b^2 + c^2 2bccosA三、教学重点与难点1. 教学重点:正余弦定理的公式及应用。

2. 教学难点:如何运用正余弦定理解决复杂问题。

四、教学方法1. 采用讲解、示例、练习、讨论相结合的方法。

2. 通过图形演示,使学生更直观地理解正余弦定理。

3. 引导学生运用正余弦定理解决实际问题,提高学生的应用能力。

五、教学过程1. 导入:通过复习三角形的基本概念,引导学生进入正余弦定理的学习。

2. 讲解:详细讲解正弦定理和余弦定理的公式及含义。

3. 示例:给出三角形ABC的边长和角度,运用正余弦定理求解未知量。

4. 练习:让学生独立完成一些简单的正余弦定理应用题。

5. 讨论:分组讨论一些复杂的问题,引导学生相互合作,共同解决问题。

6. 总结:对本节课的内容进行归纳总结,强调正余弦定理在实际问题中的应用。

7. 作业:布置一些有关正余弦定理的应用题,让学生巩固所学知识。

六、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。

针对学生的薄弱环节,加强个别辅导,帮助学生克服困难,提高解决问题的能力。

七、课后拓展1. 研究正余弦定理在实际问题中的广泛应用。

2. 了解正余弦定理在其他领域的应用,如物理学、工程学等。

3. 探索正余弦定理的证明方法,加深对定理的理解。

八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对正余弦定理的掌握程度。

3. 课后拓展:了解学生在课后对正余弦定理的学习和研究情况,鼓励学生进行深入学习。

九、教学资源1. 教材:正余弦定理的相关内容。

高中数学备课教案三角函数的正弦定理与余弦定理

高中数学备课教案三角函数的正弦定理与余弦定理

高中数学备课教案三角函数的正弦定理与余弦定理高中数学备课教案三角函数的正弦定理与余弦定理导言:三角函数是高中数学中非常重要的内容之一,其中正弦定理与余弦定理是解决三角形问题时经常使用的工具,本教案旨在帮助学生掌握正弦定理与余弦定理的概念、应用方法以及解题技巧,提高解决实际问题的能力。

一、正弦定理正弦定理是三角形解题常用的定理,它能够帮助我们在已知两边和非夹角的情况下求解第三边或角的值。

1.1 概念在△ABC中,a、b和c分别表示三角形的三边长度,A、B和C表示对应边的夹角,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC1.2 应用方法根据正弦定理,我们可以利用已知条件求解未知量。

下面通过一个具体的例子来说明应用方法:例题:已知△ABC,AB = 8cm,AC = 10cm,∠B = 60°,求BC的长度。

解:根据正弦定理,可以得到:8/sin60° = BC/sinB通过简单的计算,可以得出BC ≈ 6.93cm。

因此,BC的长度约为6.93cm。

二、余弦定理余弦定理在三角形解题中也扮演着重要的角色,它可以帮助我们在已知三边长度的情况下求解非夹角的值。

2.1 概念在△ABC中,a、b和c分别表示三角形的三边长度,A、B和C表示对应边的夹角,则余弦定理可以表示为:c² = a² + b² - 2ab*cosC2.2 应用方法通过余弦定理,我们可以解决各种使用三边长度求解夹角或边长的问题。

以下是一个例子:例题:已知△ABC,AB = 5cm,AC = 7cm,BC = 6cm,求∠A的大小。

解:根据余弦定理,可以得到:5² = 6² + 7² - 2*6*7*cosA通过简单的计算,可以得出cosA ≈ 0.866。

然后利用cosA的值查表或使用计算器,可以得到∠A ≈ 30°。

因此,∠A的大小约为30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节正弦定理、余弦定理应用举例[考纲传真]能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角相对于某正方向的水平角,如北偏东α,即由正北方向顺时针旋转α到达目标方向,南偏西α,即由正南方向顺时针旋转α到达目标方向,其他方向角类似例:(1)北偏东α:(2)南偏西α:1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2. ()(3)方位角的大小范围是[0,2π),方向角的大小范围一般是⎣⎢⎡⎭⎪⎫0,π2.()(4)若点P在点Q的北偏东44°,则点Q在点P的东偏北46°. ()[答案](1)×(2)×(3)√(4)×2.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B成60°视角,从B望C 和A成75°视角,则BC等于()A.10 3 n mile B.1063n mileC.5 2 n mile D.5 6 n mile D[如图,在△ABC中,AB=10,∠A=60°,∠B=75°,∠C=45°,∴BCsin 60°=10sin 45°,∴BC=5 6.]3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的() A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°B[如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°.]4.如图所示,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔的高度是()A.100 2 m B.400 mC.200 3 m D.500 mD[设塔高为x m,则由已知可得BC=x m,BD=3x m,由余弦定理可得BD2=BC2+CD2-2BC·CD cos ∠BCD,即3x2=x2+5002+500x,解得x=500(m).]5.如图所示,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为()A.50 3 m B.25 3 mC.25 2 m D.50 2 mD[因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知ACsin B=ABsin C,即50sin 30°=ABsin 45°,解得AB=50 2 m.]测量距离问题1.如图所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos37°≈0.80,3≈1.73)60[如图所示,过A作AD⊥CB且交CB 的延长线于D .在Rt △ADC 中,由AD =46 m,∠ACB =30°得AC =92 m. 在△ABC 中,∠BAC =67°-30°=37°, ∠ABC =180°-67°=113°,AC =92 m, 由正弦定理AC sin ∠ABC =BC sin ∠BAC ,得92sin 113°=BC sin 37°,即92sin 67°=BCsin 37°,解得BC =92sin 37°sin 67°≈60(m).]2.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.103 [如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m).]3.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.32 [在△ABS 中,∠BAS =30°,∠ASB =75°-30°=45°, 由正弦定理得AB sin ∠ASB =BS sin ∠BAS,则AB =82sin 45°sin 30°=16,故此船的船速是160.5=32 n mile/h.]4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________km.64[∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32(km).在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.][规律方法]求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题【例1】(2019·黄山模拟)如图所示,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=______m.1006[由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×3 3=1006(m).][规律方法]求解高度问题的3个注意点(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.如图,从某电视塔CO的正东方向的A处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B 处测得塔顶的仰角为45°,AB间的距离为35米,则这个电视塔的高度为________米.521[如图,可知∠CAO=60°,∠AOB=150°,∠OBC=45°,AB=35米.设OC =x 米,则OA =33x 米,OB =x 米. 在△ABO 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB ·cos ∠AOB , 即352=x 23+x 2-233x 2·cos 150°,整理得x =521,所以此电视塔的高度是521米.]测量角度问题【例2】 某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离A 为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇立即以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.[解] 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t ,在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos 120°, 可得(103t )2=102+(10t )2-2×10×10t cos 120°. 整理得2t 2-t -1=0,解得t =1或t =-12(舍去),∴舰艇需1小时靠近渔船,此时AB =103,BC =10.在△ABC 中,由正弦定理得BC sin ∠CAB =AB sin 120°,∴sin ∠CAB =BC ·sin 120°AB =10×32103=12. ∴∠CAB =30°.所以舰艇航向为北偏东75°.[规律方法] 解决测量角度问题的注意事项 (1)应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用.遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cos θ的值.[解]在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos 120°=2 800⇒BC=207.由正弦定理,得ABsin∠ACB=BCsin∠BAC⇒sin∠ACB=ABBC·sin∠BAC=217.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=27 7.由θ=∠ACB+30°,得cos θ=cos(∠ACB+30°)=cos∠ACB cos 30°-sin∠ACB sin 30°=21 14.。

相关文档
最新文档