高三数学一轮复习正余弦定理及应用教案

合集下载

高三数学总复习 正弦定理和余弦定理教案

高三数学总复习   正弦定理和余弦定理教案

高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。

高三第一轮复习正余弦定理教案

高三第一轮复习正余弦定理教案

高三新数学第一轮复习教案---------正、余弦定理及应用一.课标要求:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

二.命题走向对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。

今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。

题型一般为选择题、填空题,也可能是中、难度的解答题。

三.要点精讲1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。

2.斜三角形中各元素间的关系:如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

sin()A B +=sin C ;cos()A B +=cos C -(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) (R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

形式一:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

高考数学一轮复习 专题23 正弦定理和余弦定理的应用教学案 文

高考数学一轮复习 专题23 正弦定理和余弦定理的应用教学案 文

专题23 正弦定理和余弦定理的应用1.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.1.实际问题中的常用角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的正切值.高频考点一考查测量距离例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE =β,∠CEF=θ,∠CFE=φ,∠AEC=γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.【方法技巧】求距离问题时要注意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【变式探究】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.【解析】如图,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°.所以AC=CD= 3.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°,由正弦定理知BC =3sin 75°sin 60°=6+22. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB = 5 km , 所以A ,B 两目标之间的距离为 5 km. 高频考点二 考查高度问题例2、如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)( ) A .2.7 m B .17.3 m C .37.3 m D .373 m【答案】C【方法技巧】求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【变式探究】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.【答案】10 6高频考点三考查角度问题例3、某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B靠拢,我海军舰艇立即以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解如图所示,设所需时间为t小时,则AB=103t,CB=10t,在△ABC中,根据余弦定理,则有AB2=AC2+BC2-2AC·BC·cos 120°,可得(103t)2=102+(10t)2-2×10×10t cos 120°.所以舰艇航向为北偏东75°.【方法技巧】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时注意平面图形的几何性质的应用.【变式探究】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛周围n km范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.【解析】由题可知,在△ABM中,根据正弦定理得BMsin-α=mα-β,解得BM=m cos αα-β,要使该船没有触礁危险需满足BM sin (90°-β)=m cos αcos βα-β>n,所以当α与β的关系满足m cos αcos β>n sin(α-β)时,该船没有触礁危险.【答案】m cos αcos β>n sin(α-β)高频考点四考查函数思想在解三角形中的应用例4、如图所示,一辆汽车从O点出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O点的距离为5公里、距离公路线的垂直距离为3公里的M点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?故骑摩托车的人至少以30公里/小时的速度行驶才能实现他的愿望,此时他驾驶摩托车行驶了154公里. 【方法技巧】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,能力要求较高,要求考生要有一定的分析问题解决问题的能力.解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,注意函数中以1t为整体构造二次函数,求最值.【变式探究】如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树________米时,看A ,B 的视角最大.【解析】过C 作CF ⊥AB 于点F ,设∠ACB =α,∠BCF =β,由已知得AB =212-112=5(米),BF =112-32=4(米),AF =212-32=9(米).则tan(α+β)=AF FC =9FC ,tan β=BF FC =4FC,∴tan α=[(α+β)-β]=α+β-tan β1+α+ββ=9FC -4FC 1+36FC2=5FC +36FC≤52FC ·36FC=512.当且仅当FC =36FC,即FC =6时,tan α取得最大值,此时α取得最大值.【答案】61.【2016年高考四川理数】(本小题满分12分) 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4. 【解析】所以=45. 由(Ⅰ),sin Asin B=sin Acos B+cos Asin B ,所以45sin B=45cos B+35sin B , 故tan B=sin cos BB=4.2.【2016高考浙江理数】(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B.(I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【答案】(I )证明见解析;(II )2π或4π. 【解析】又B ,()0,πC ∈,所以π2C B =±. 当π2B C +=时,π2A =; 当π2C B -=时,π4A =.综上,π2A =或π4A =.3.【2016高考山东理数】(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】(Ⅱ)由(Ⅰ)知2a bc +=, 所以 2222222cos 22a b a b a b cC abab++-+-==()311842b a a b =+-≥(),当且仅当a b =时,等号成立. 故 cos C 的最小值为12. 【2015高考上海,理14】在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= .【答案】1615-【解析】由题意得:1sin sin 242A A AB AC A AB AC ==⋅⋅=+⇒⋅=112,43222AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅,因为DEAF 四点共圆,因此D DF E⋅=16cos()(15DE DF A π⋅⋅-==-【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,若a =1sin 2B =,6C =π,则b = . 【答案】.【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A B C ππ=--=,又a =由正弦定理得sin sin a bA B =sin sin 36b π=解得1b =,故应填入.【2015高考湖北,理12】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2所以函数)(x f 有2个零点.【2015高考湖北,理13】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m.【答案】6100【2015高考重庆,理13】在ABC 中,B =120o ,AB ,A 的角平分线AD ,则AC =_______.【解析】由正弦定理得sin sin AB ADADB B=∠,即sin sin120ADB =∠︒,解得sin 2ADB ∠=,45ADB ∠=︒,从而15BAD DAC ∠=︒=∠,所以1801203030C =︒-︒-︒=︒,2cos30AC AB =︒=【2015高考福建,理12】若锐角ABC ∆的面积为,且5,8AB AC == ,则BC 等于________. 【答案】7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==sin 2A =,(0,)2A π∈,所以3A π=.由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =.【2015高考新课标2,理17】(本题满分12分)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,2DC =,求BD 和AC 的长. 【答案】(Ⅰ)12;(Ⅱ).【2015高考浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值. 【答案】(1)2;(2)3b =. 【解析】(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin C =cos C =又∵sin sin()sin()4B AC C π=+=+,∴sin 10B =,由正弦定理得3c =,又∵4A π=,1sin 32bc A =,∴bc =,故3b =.【2015高考安徽,理16】在ABC ∆中,3,6,4A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长.【解析】如图,在ABD ∆中,由正弦定理得sin 6sin 3sin(2)2sin cos cos AB B B AD B B B Bπ⋅====-【2015高考陕西,理17】(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,.向量(),3m a b =与()cos ,sin n =A B 平行. (I )求A ;(II )若a =2b =求C ∆AB 的面积.【答案】(I )3π;(II .【解析】(I )因为//m n ,所以sin cos 0a B A -=,由正弦定理,得sinAsinB A 0-=又sin 0B ≠,从而tan A , 由于0A π<<,所以3A π=从而sin 7B =, 又由a b >,知A B >,所以cos 7B =. 故()sinC sin A B sin sin cos cos sin 33314B B πππ⎛⎫=+=B +=+= ⎪⎝⎭ 所以C ∆AB的面积为1bcsinA 2=(2014·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B=3sin C ,则cos A 的值为________. 【答案】-14【解析】∵2sin B =3sin C ,∴2b =3c .又∵b -c =a 4,∴a =2c ,b =32c ,∴cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c ×c =-14.(2014·新课标全国卷Ⅱ)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1]【解析】在△OMN 中,OM =1+x 20≥1=ON ,所以设∠ONM =α,则45°≤α<135°.根据正弦定理得1+x 20sin α=1sin 45°,所以1+x 20=2sin α∈[1,2],所以0≤x 20≤1,即-1≤x 0≤1,故符合条件的x 0的取值范围为[-1,1].(2014·广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .已知b cos C +c cos B =2b ,则a b=________. 【答案】2(2014·安徽卷)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎪⎫A +π4的值.【解析】 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B ,由余弦定理得cos B =a 2+c 2-b 22ac=sin A 2sin B ,所以由正弦定理可得a =2b ·a 2+c 2-b 22ac . 因为b =3,c =1,所以a 2=12,即a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0<A <π,所以sin A =1-cos 2A =1-19=2 23. 故sin ⎝⎛⎭⎪⎫A +π4=sin A cos π4+cos A sin π4=2 23×22+⎝ ⎛⎭⎪⎫-13×22=4-26.(2014·北京卷)如图1­2,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC=17. (1)求sin∠BAD ; (2)求BD ,AC 的长.图1­2AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49,所以AC =7.(2014·福建卷)在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.【答案】23【解析】由BC sin A =ACsin B,得sin B =4sin 60°23=1,∴B =90°,C =180°-(A +B )=30°,则S △ABC =12·AC ·BC sin C =12×4×23sin 30°=23,即△ABC 的面积等于2 3.(2014·湖南卷)如图1­5所示,在平面四边形ABCD 中,AD =1,CD =2,AC =7.图1­5(1)求cos∠CAD 的值; (2)若cos∠BAD =-714,sin∠CBA =216,求BC 的长.于是sin α=sin (∠BAD -∠CAD )=sin∠BAD cos∠CAD -cos∠BAD sin∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32. 在△ABC 中,由正弦定理,得BCsin α=ACsin ∠CBA.故BC =AC ·sin αsin∠CBA=7×32216=3.(2014·江西卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.9 32 C.3 32D .3 3【答案】C 【解析】由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC=12ab sin C =3 32. (2014·辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝ ⎛⎭⎪⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.(2014·全国卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tanA =13,求B .【解析】由题设和正弦定理得 3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1, 所以B =135°.(2014·新课标全国卷Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 【答案】 3(2014·新课标全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 【答案】B【解析】根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =1+2-2×1×2×22=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22= 5. (2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【答案】16【解析】因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16.(2014·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B .∴cos B 的最小值为12.(2014·四川卷)如图1­3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1­3【答案】60【解析】过A 点向地面作垂线,记垂足为D ,则在Rt△ADB 中,∠ABD =67°,AD =46 m ,∴AB =ADsin 67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50 m , 由正弦定理得,BC =AB sin 37°sin 30°=60 (m),故河流的宽度BC 约为60 m.(2014·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.【解析】(1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B ,即32sin 2A -12cos 2A=32sin 2B -12cos 2B ,sin ⎝ ⎛⎭⎪⎫2A -π6=sin ⎝⎛⎭⎪⎫2B -π6.由a ≠b ,得A ≠B ,又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3 310.所以,△ABC 的面积为S =12ac sin B =8 3+1825.(2014·重庆卷)已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc (b +c )>8 B .ab (a +b )>16 2 C .6≤abc ≤12 D.12≤abc ≤24 【答案】A由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sin A sin B sin C ≤2,所以1≤R 24≤2,即2≤R ≤22,所以bc (b +c )>abc =8R 3sinA sinB sinC =R 3≥8.1.在相距2 km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离为( ) A. 6 kmB. 2 kmC. 3 kmD.2 km解析 如图,在△ABC 中,由已知可得∠ACB =45°,∴ACsin 60°=2sin 45°,∴AC =22×32=6(km).答案 A2.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A.102海里 B.103海里 C.203海里D.202海里答案 A3.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与B的距离为( )A.a kmB. 3 a kmC.2a kmD.2a km答案 B4.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6min ,则客船在静水中的速度为( )A.8 km/hB.6 2 km/hC.234 km/hD.10 km/h解析 设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.选B. 答案 B5.如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A.5 6B.15 3C.5 2D.15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=30sin 135°,所以BC =15 2.在Rt△ABC 中,AB =BC tan ∠ACB =152×3=15 6. 答案 D6.如图所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B 处,海轮按北偏西60°的方向航行了30分钟后到达C 处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分.答案637.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 解析 如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 答案 10 38.在200 m 高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m. 解析 如图,由已知可得∠BAC =30°,∠CAD =30°,∴∠BCA =60°,∠ACD =30°,∠ADC =120°.又AB =200 m ,∴AC =40033(m).答案40039.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解 (1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α. 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =122+202-2×12×20×cos 120°=784. 解得BC =28.所以渔船甲的速度为BC2=14海里/时.(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得ABsin α=BCsin 120°,即sin α=AB sin 120°BC=12×3228=3314. 10.在△ABC 中,A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B .由正弦定理,得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B=10.11.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于________m.解析 如图,∠ACD =30°,∠ABD =75°,AD =60 m ,在Rt△ACD 中,CD =ADtan∠ACD=60tan 30°=603(m),在Rt△ABD 中,BD =ADtan∠ABD =60tan 75°=602+3=60(2-3)(m),∴BC =CD -BD =603-60(2-3)=120(3-1)(m). 答案 120(3-1)12.如图,在海岸A 处,发现北偏东45°方向距A 为(3-1)海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).∴∠ABC =45°,易知CB 方向与正北方向垂直, 从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得 sin∠BCD =BD sin∠CBD CD =10t ·sin 120°103t=12, ∴∠BCD =30°,∠BDC =30°, ∴BD =BC =6(海里), 则有10t =6,t =610≈0.245小时=14.7分钟. 故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.。

高三数学人教版A版数学(理)高考一轮复习教案正弦定理和余弦定理的应用1

高三数学人教版A版数学(理)高考一轮复习教案正弦定理和余弦定理的应用1

第八节 正弦定理和余弦定理的应用解三角形及其应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.知识点 实际应用中的常用术语 术语名称 术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫作仰角,目标视线在水平视线下方的叫作俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫作方位角.方位角的范围是(0°,360°)正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度例:(1)北偏东m °: (2)南偏西n °:坡角 坡面与水平面的夹角设坡角为α,坡度为i ,则i =hl=tan_α坡度 坡面的垂直高度h 和水平宽度l 的比易误提醒 易混淆方位角与方向角概念:方位角是指北方向与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.[自测练习]1.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:如图所示,∠ACB =90°, 又AC =BC ,∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案:B2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 33.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距82n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32考点一 测量距离问题|(2014·济南调研)如图所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?[解] 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°, 在△DAB 中,由正弦定理, 得DB sin ∠DAB =ABsin ∠ADB,∴DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=53(3+1)3+12 =103(海里),又∠DBC =∠DBA +∠ABC =60°,BC =203(海里). 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×12=900.∴CD =30(海里).则需要的时间t =3030=1(小时).求距离问题的两个注意点(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.1.如图,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值. 解:(1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.考点二 测量高度问题|如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________________m.[解析] 在Rt △ABC 中,AC =100 2 m , 在△MAC 中,由正弦定理得MA sin 60°=ACsin 45°, 解得MA =100 3 m ,在Rt △MNA 中,MN =MA ·sin 60°=150 m. 即山高MN 为150 m.[答案]150求解高度问题应注意(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.2.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=-20(舍去)或x=40.故电视塔的高度为40 m.答案:D考点三测量角度问题|在海岸A处,发现北偏东45°方向、距离A处(3-1)海里的B处有一艘走私船;在A处北偏西75°方向、距离A处2海里的C处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多少时间?[解]如图,设缉私船t小时后在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,AB=3-1,AC=2,∠BAC=120°.利用余弦定理可得BC= 6.由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22, ∴∠ABC =45°,因此BC 与正北方向垂直. 于是∠CBD =120°.在△BCD 中,由正弦定理,得sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t =12,得∠BCD =30°, 又CD sin 120°=BC sin 30°,即103t 3=6,得t =610.所以当缉私船沿东偏北30°的方向能最快追上走私船,最少要花610小时. 解决测量角度问题的三个注意点(1)明确方位角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.3.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.解:在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 12.函数思想在解三角形中的应用【典例】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.[思路点拨] (1)利用三角形中的余弦定理,将航行距离表示为时间t 的函数,将原题转化为函数最值问题.(2)注意t 的取值范围.[规范解答] (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇. 则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[思想点评] (1)三角形中的最值问题,可利用正、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.(2)求最值时要注意自变量的范围,要考虑问题的实际意义.A 组 考点能力演练1.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:本题考查正弦定理.依题意与正弦定理得AC sin B =AB sin C ,AB =AC ·sin Csin B=50×sin 45°sin (180°-45°-105°)=50 2 m ,故选A.答案:A 2.在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平平面上.为测量该塔的高度,测量人员在公路上选择了A ,B 两个观测点,在A 处测得该塔底部C 在西偏北α的方向上;在B 处测得该塔底部C 在西偏北β的方向上,并测得塔顶D 的仰角为γ.已知AB =a,0<γ<β<α<π2,则此塔的高CD 为( )A.a sin (α-β)sin αtan γB.a sin αsin (α-β)tan γC.a sin (α-β)sin βsin αtan γD.a sin αsin βsin (α-β)tan γ 解析:本题考查正弦定理.依题意得,在△ABC 中,∠CAB =π-α,∠ACB =α-β,由正弦定理得AB sin (α-β)=BC sin (π-α),BC =a sin αsin (α-β);在△BCD 中,∠CBD =γ,CD =BC tan γ=a sin αsin (α-β)tan γ,故选B.答案:B3.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m解析:∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan 60°-60tan 15°=120(3-1)(m),故选C.答案:C4.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km /hD .10 km/h 解析:设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.选B.答案:B5.(2015·南昌模拟)如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,sin θ的值为( )A.217 B.22C.32D.5714解析:连接BC .在△ABC 中,AC =10,AB =20,∠BAC =120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107,再由正弦定理,得BC sin ∠BAC =AB sin θ,∴sin θ=217. 答案:A6.(2016·潍坊调研)为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析:在△BCD 中,由正弦定理,得BC sin ∠BDC =CD sin ∠DBC ,解得BC =102米,∴在Rt △ABC中,塔AB 的高是106米.答案:10 67.如图,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为________海里/小时.解析:本题考查解三角形知识在实际问题中的应用.利用余弦定理求解.在△ABC 中,AB =202,AC =10,∠BAC =45°-θ,又cos(45°-θ)=22×45+22×35=7210,由余弦定理可得BC 2=(202)2+102-2×202×10×7210=340,所以BC =285.又行驶时间是12小时,所以该货船的速度为28512=485海里/小时.答案:4858.如图,为了测量河对岸A 、B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A 、B ;找到一个点D ,从点D 可以观察到点A 、C ;找到一个点E ,从点E 可以观察到点B 、C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB =48.19°,∠BCE =75°,∠E =60°,则A 、B 两点之间的距离为________.⎝⎛⎭⎫其中cos 48.19°取近似值23解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2.在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ×BC cos ∠ACB =10,所以AB =10. 答案:109.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音在空气中的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC ,即(x -40)2=10 000+x 2-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =1403(米).故该仪器的垂直弹射高度CH 为1403米.10.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下方法:在岸边设置两个观察点A ,B ,且AB 长为80米,当航模在C 处时,测得∠ABC =105°和∠BAC =30°,经过20秒后,航模直线航行到D 处,测得∠BAD =90°和∠ABD =45°.请你根据以上条件求出航模的速度.(答案保留根号)解:在△ABD 中,∵∠BAD =90°,∠ABD =45°,∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.在△ABC 中,BC sin 30°=AB sin 45°, ∴BC =AB sin 30°sin 45°=80×1222=40 2. 在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60°=(802)2+(402)2-2×802×402×12=9 600. ∴DC =406,航模的速度v =40620=26米/秒. B 组 高考题型专练1.(2015·高考福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________. 解析:因为sin ∠BAC =223,且AD ⊥AC , 所以sin ⎝⎛⎭⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理得, BD =AB 2+AD 2-2AB ·AD cos ∠BAD =(32)2+32-2×32×3×223= 3. 答案: 32.(2014·高考重庆卷)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB =AB sin ∠B AD =2×323=22.由题意知0°<∠ADB <60°,所以∠ADB =45°,则∠BAD =180°-∠B -∠ADB =15°,所以∠BAC =2∠BAD =30°,所以∠C =180°-∠BAC -∠B =30°,所以BC =AB =2,于是由余弦定理,得AC =AB 2+BC 2-2AB ×BC cos 120° =(2)2+(2)2-22×2×⎝⎛⎭⎫-12= 6. 答案: 63.(2015·高考湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________________m.解析:依题意,∠BAC =30°,∠ABC =105°.在△ABC 中,由∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°,因为AB =600 m .由正弦定理可得600sin 45°=BC sin 30°,即BC =300 2 m .在Rt △BCD 中,因为∠CBD =30°,BC =300 2 m ,所以tan 30°=CD BC =CD 3002,所以CD =100 6 m.答案:100 64.(2015·高考四川卷)如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos A sin A; (2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D 2的值. 解:(1)证明:tan A 2=sinA 2cos A 2=2sin 2A 22sin A 2cos A 2=1-cos A sin A . (2)由A +C =180°,得C =180°-A ,D =180°-B .由(1),有tan A 2+tan B 2+tan C 2+tan D 2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B . 连接BD (图略).在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C , 所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A .则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422(6×5+3×4)=37. 于是sin A =1-cos 2A = 1-⎝⎛⎭⎫372=2107. 连接AC .同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422(6×3+5×4)=119, 于是sin B =1-cos 2B =1-⎝⎛⎭⎫1192=61019. 所以tan A 2+tan B 2+tan C 2+tan D 2=2sin A +2sin B =2×7210+2×19610=4103.。

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

4.6正弦定理和余弦定理1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.『试一试』1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.『解析』设BD =1,则AB =AD =32,BC =2.在△ABD 中,解得sin A =223,在△ABC 中,由正弦定理AB sin C =BC sin A ,得sin C =66.『答案』662.(2013·扬州三模)如果满足∠ABC =60°,AB =8,AC =k 的△ABC 有两个,那么实数k 的取值范围是________.『解析』由条件得8sin 60°<k <8,从而k 的取值范围是(43,8). 『答案』(43,8)1.把握三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.选用正弦定理或余弦定理的原则如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.『练一练』1.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.『答案』432.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.『解析』由3sin A =5sin B 可得3a =5b ,又b +c =2a ,所以可令a =5t (t >0),则b =3t ,c =7t ,可得cos C =a 2+b 2-c 22ab=5t2+3t 2-7t 22×5t ×3t=-12,故C =2π3.『答案』2π3考点一利用正弦、余弦定理解三角形『典例』 (2013·徐州摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a cos C -b cos C =c cos B -c cos A ,且C =120°.(1)求角A ; (2)若a =2,求c .『解析』 (1)由正弦定理及a cos C -b cos C =c cos B -c cos A 得sin A cos C -sin B cos C =sin C cos B -sin C cos A .所以sin(A +C )=sin(B +C ).因为A ,B ,C 是三角形的内角,所以A +C =B +C ,所以A =B . 又因为C =120°,所以A =30°.(2)由(1)知a =b =2,所以c 2=a 2+b 2-2ab cos C =4+4-2×2×2cos 120°=12,所以c =2 3.『备课札记』 『类题通法』1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.『针对训练』(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若cos ⎝⎛⎭⎫A +π6 =sin A ,求A 的值; (2)若cos A =14,4b =c ,求sin B 的值.『解析』(1)因为cos ⎝⎛⎭⎫A +π6=sin A , 即cos A cos π6-sin A sin π6=sin A ,所以32cos A =32sin A . 显然cos A ≠0,否则由cos A =0得sin A =0,与sin 2 A +cos 2 A =1矛盾,所以tan A =33. 因为0<A <π,所以A =π6.(2)因为cos A =14,4b =c ,根据余弦定理得a 2=b 2+c 2-2bc cos A =15b 2,所以a =15b .因为cos A =14,所以sin A =1-cos 2 A =154.由正弦定理得15b sin A =b sin B ,所以sin B =14. 考点二利用正弦、余弦定理判定三角形的形状『典例』 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 『解析』 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°. 由sin B +sin C =3, 得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°. ∴A =B =C =60°, ∴△ABC 为正三角形.『备课札记』在本例条件下,若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 『解析』由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc , ∴b 2+c 2=2bc .∴(b -c )2=0.即b =c ,又A =60°, ∴△ABC 是等边三角形. 『类题通法』判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒:在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.『针对训练』(2014·镇江期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足b cos C +12c =a .(1)求角B ;(2)若a ,b ,c 成等比数列,判断△ABC 的形状.『解析』(1)法一:由正弦定理得sin B cos C +12sin C =sin A .而sin A =sin(B +C )=sin B cos C +cos B sin C . 故cos B sin C =12sin C .在△ABC 中,sin C ≠0,故cos B =12.因为0<B <π,所以B =π3.法二:由余弦定理得b ·a 2+b 2-c 22ab +12c =a .化简得a 2+b 2-c 2+ac =2a 2,即b 2-c 2+ac =a 2, 所以cos B =a 2+c 2-b 22ac =12.因为0<B <π,所以B =π3.(2)由题知b 2=ac .由(1)知b 2=a 2+c 2-ac ,所以a 2+c 2-2ac =0,即a =c , 所以a =b =c ,所以△ABC 是等边三角形.考点三与三角形面积有关的问题『典例』 (2013·苏州暑假调查)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =60°且cos(B +C )=-1114.(1)求cos C 的值;(2)若a =5,求△ABC 的面积.『解析』 (1)在△ABC 中,由cos(B +C )=-1114.得sin(B +C )=1-cos 2B +C =1-⎝⎛⎭⎫-11142=5314.又B =60°,所以cos C =cos 『(B +C )-B 』=cos(B +C )cos B +sin(B +C )sin B =-1114×12+5314×32=17.(2)因为cos C =17,C 为△ABC 的内角,sin(B +C )=5314,所以sin C =1-cos 2C = 1-⎝⎛⎭⎫172=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =c sin C 得55314=c 437, 所以c =8.又a =5,sin B =32, 所以△ABC 的面积为S =12ac sin B =12 ×5×8×32=10 3. 『备课札记』 『类题通法』三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 『针对训练』(2013·南通一调)在△ABC 中,A ,B ,C 所对的边分别是a ,b ,c ,且b cos B 是a cos C ,c cos A 的等差中项.(1)求B 的大小;(2)若a +c =10,b =2,求△ABC 的面积. 『解析』(1)由题意得a cos C +c cos A =2b cos B .由正弦定理得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=2sin B cos B . 因为A +C =π-B,0<B <π,所以sin(A +C )=sin B ≠0,所以cos B =12,所以B =π3.(2)由B =π3得a 2+c 2-b 22ac =12,即a +c2-2ac -b 22ac=12, 所以ac =2.所以S △ABC =12ac sin B =32.『课堂练通考点』1.在△ABC 中,a =1,c =2,B =60°,则b =________. 『解析』由余弦定理得b =12+22-2×1×2cos 60°= 3. 『答案』32.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________. 『解析』在△ABC 中,由A =45°,C =105°得B =30°.由正弦定理AC sin B =BC sin A 得AC 12=222,所以AC =1.『答案』13.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________. 『解析』由正弦定理a sin A =b sin B =csin C, 得sin A ∶sin B ∶sin C =a ∶b ∶c ,令a =2,b =3,c =4, 再利用余弦定理得cos C =-14.『答案』-144.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.『解析』由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c =2. 当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.『答案』25.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B .(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求a 2+b 2的取值范围. 『解析』(1)因为tan C =sin A +sin Bcos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B. 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B , 即sin C cos A -cos C sin A =cos C sin B -sin C cos B , 所以sin(C -A )=sin(B -C ).所以C -A =B -C 或C -A =π-(B -C )(不成立), 即2C =A +B ,所以C =π3.(2)由C =π3,设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.因为a =2R sin A =sin A ,b =2R sin B =sin B , 所以a 2+b 2=sin 2A +sin 2 B =1-cos 2A 2+1-cos 2B2=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α =1+12cos 2α.由-π3<α<π3知-2π3<2α<2π3,-12<cos 2α≤1,故34<a 2+b 2≤32.。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高考数学一轮复习教学案正弦定理和余弦定理的应用

高考数学一轮复习教学案正弦定理和余弦定理的应用

第八节正弦定理和余弦定理的应用[知识能否忆起]1.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).2.解三角形应用题的一般步骤(1)审题,理解问题的实际背景,明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)选择正弦定理或余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.[小题能否全取]1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( ) A .α>β B .α=β C .α+β=90°D .α+β=180°答案:B2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示, ∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由正弦定理得AB =AC ·sin ∠ACB sin B =50×2212=502(m).4.(·上海高考)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米.解析:如图所示,由题意知∠C =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6. 答案: 65.(·泰州模拟)一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行________海里.解析:如图,由题意知在△ABC 中,∠ACB =75°-60°=15°,B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8海里.答案:8解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.测量距离问题典题导入[例1] 郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). [自主解答] (1)在△ABC 中,由余弦定理得 cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D .解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°.故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得AB sin ∠ACB =BC sin ∠CAB ,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入[例2] (·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度.[自主解答] (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BC sin ∠BAC =ABsin ∠ACB ,所以BC =l sin αsin (β-α).(2)由(1)知BC =l sin αsin (β-α)=24×sin 15°sin 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40米.测量角度问题典题导入[例3] (·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[自主解答] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20.根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500. 在△CAD 中,由余弦定理得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,∴∠CAD =45°.答案:45°1.在同一平面内中,在A 处测得的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.19解析:选D ∵∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.2.一个大型喷水池的有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.3.(·天津高考) 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 4.(·厦门模拟)在不等边三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.5.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 2 海里D .20 3 海里解析:选A 如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°, ∴∠BCA =45°.又AB =40×12=20(海里),∴由正弦定理可得20sin 45°=BCsin 30°.∴BC =20×1222=102(海里).6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003 m ,∴BC =AB sin 45°·sin 30°=50 00032m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km.7.(·南通调研)“温馨花园”为了美化小区,给居民提供更好的生活环境,在小区内的一块三角形空地上(如图,单位:m)种植草皮,已知这种草皮的价格是120元/m 2,则购买这种草皮需要________元.解析:三角形空地的面积S =12×123×25×sin 120°=225,故共需225×120=27 000元.答案:27 0008.(·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:329.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN = 900+300-2×30×103×32=300=103(m).答案:10 310.如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°, ∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B=10sin 60°sin 45°=10×3222=5 6. 11.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =140 3.答:该仪器的垂直弹射高度CH 为1403米.12.(·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D 在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该准备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,所以∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD, 所以AD =CD ×sin ∠ACD sin ∠CAD=6×2232=2 6. 在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,所以∠CBD =135°.因为CD sin ∠CBD =BD sin ∠BCD, 所以BD =CD ×sin ∠BCD sin ∠CBD=6×1222=3 2. 又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,所以△ABD 是直角三角形.所以AB =AD 2+BD 2=(26)2+(32)2=42.所以电线长度至少为l =1.2×AB =6425(单位:km) 答:施工单位至少应该准备长度为6425km 的电线.1.某城市的电视发射塔CD 建在市郊的小山上,小山的高BC 为35 m ,在地面上有一点A ,测得A ,C 间的距离为91 m ,从A 观测电视发射塔CD 的视角(∠CAD )为45°,则这座电视发射塔的高度CD 为________米.解析:AB =912-352=84,tan ∠CAB =BC AB =3584=512.由CD +3584=tan(45°+∠CAB )=1+5121-512=177,得CD =169. 答案:1692.10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发现一个生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x =________.解析:∵由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°,∴x sin 45°=10sin 60°.∴x =1063m. 答案:1063m 3.(·泉州模拟)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向与CA ―→成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R )的值域.解:(1)连接BC ,由余弦定理得BC 2=202+102-2×20×10cos 120°=700.∴BC =107,即所求距离为107海里. (2)∵sin θ20=sin 120°107, ∴sin θ= 37. ∵θ是锐角,∴cos θ=47. f (x )=sin 2θsin x +34cos 2θcos x =37sin x +37cos x =237sin ⎝⎛⎭⎫x +π6, ∴f (x )的值域为⎣⎡⎦⎤-237,237.1.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102, ∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∴∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=30 2(海里/时). 2.如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?解:(1)在△OCD 中,由正弦定理,得CD sin ∠COD =OD sin ∠DCO =CO sin ∠CDO=23, 所以CD =23sin ⎝⎛⎭⎫2π3-θ=cos θ+13sin θ,OD =23sin θ, 因为OD <OB ,即23sin θ<1, 所以sin θ<32,所以0<θ<π3, 所以CD =cos θ+33sin θ,θ的取值范围为⎝⎛⎭⎫0,π3. (2)设观光道路长度为L (θ),则L (θ)=BD +CD +弧CA 的长=1-23sin θ+cos θ+13sin θ+θ =cos θ-13sin θ+θ+1,θ∈⎝⎛⎭⎫0,π3, L ′(θ)=-sin θ-33cos θ+1, 由L ′(θ)=0,得sin ⎝⎛⎭⎫θ+π6=32, 又θ∈⎝⎛⎭⎫0,π3,所以θ=π6,列表: θ⎝⎛⎭⎫0,π6 π6 ⎝⎛⎭⎫π6,π3 L ′(θ)+ 0 - L (θ)增函数 极大值 减函数所以当θ=π6时,L (θ)达到最大值,即当θ=π6时,观光道路最长.。

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用
(1)在△ABC中,一定有a+b+c=sin A+sin B+sin C.( × )
(2)在△ABC中,若sin 2A=sin 2B,则必有A=B.( × )
(3)在△ABC中,若a2+b2<c2,则△ABC是钝角三角形.(

)
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,面积为
3.(2023 全国乙,文 4)记△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 acos Bbcos A=c,且
π
C= ,则
5
B=(
π
A.
10
π
B.
5

C.
10

D.
5
答案 C
)
解析由acos B-bcos A=c及正弦定理,得sin Acos B-sin Bcos A=sin C,
(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;
(2)若式子中含有a,b,c的齐次式,优先考虑正弦定理“边化角”;
(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;
(4)含有面积公式的问题,要考虑结合余弦定理求解;
(5)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.
又因为sin A=sin(B+C)=sin Bcos C+cos Bsin C,
sin B=sin(A+C)=sin Acos C+cos Asin C,
所以sin Bcos C+cos Bsin C-sin Acos C-cos Asin C=sin Ccos B-sin Ccos A,整
理得sin Bcos C-sin Acos C=0,因此(sin B-sin A)cos C=0,所以sin B=sin A或

2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理

2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理

§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sinC =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c=sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b2,2ab cos C=a2+b2-c2,22bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cos C )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。

高三数学一轮复习:正、余弦定理及其应用(一)(教案)

高三数学一轮复习:正、余弦定理及其应用(一)(教案)

第四课时 正、余弦定理及其应用(一)(教案)【复习目标】1.掌握正弦定理、余弦定理及三角形面积公式;2.能用正、余弦定理进行边角关系的转换,熟练进行边角计算; 3.会求三角形的未知元素,能解决有关三角形的求值、化简和证明问题.【知识梳理】1. 三角形内角和定理①利用π=++C B A ,有)s i n (s i n C B A +=,)cos(cos C B A +-=,tan tan()A B C =-+等;②利用2222π=++C B A ,有2cos 2sin C B A +=等; 2.正弦定理2()sin sin sin sin sin a b c a b c R R ABC A B C sinA B C++====∆++是的外接圆的半径 ::sin :sin :sin a b c A B C =利用正弦定理解决:①已知两角和其中一边;②已知两边和其中一边的对角. (先求另一边的对角,要注意两解,一解或无解情况) 3.余弦定理2222222cos cos 2b c a b c bc A A bc a+=+-=⇔-2222222cos cos 2a c b a c ac B B acb+=+-=⇔-2222222cos cos 2a b c a b ab C C abc=+-=⇔+-.利用余弦定理解决:①已知三边;②已知两边及两边的夹角. 4.常用三角形的面积公式111sin sin sin 222S ab C bc A ca B∆===221sin sin sin 2sin sin sin 22sin()4a B C abcS ab C R A B C B C R====+=2a b c s ++=)5.判断三角形的形状判断三角形的形状时,一般把等式中的边化为角或角化为边,然后再完成恒等变换.注意:齐次等式或齐次式比值中的正弦等价转化. 如:2sin sin 2sin a b c A B C +=⇔+=,CBA c b a sin sin sin +=+. 6.解斜三角形问题:按已知条件得不同,可以分为以下四个类型: ① 已知两角一边;② 已知两边夹角; 解唯一 ③ 已知三边;④ 已知两边一对角; 解不唯一,要讨论;如已知:边,a b ,角A(1)A 为锐角A b a sin < A b a sin = A b a b sin >> b a > 无解 一解 二解 一解 (2)A 为钝角b a ≤ b a > 无解 一解 7.对于解斜三角形的实际应用问题,要理解题意,分清已知与所求,根据题意画出示意图,抽象或构造出三角形,明确先用哪个公式或定理,先求哪些量,确定解三角形的方法.在演算过程中,要算法简练、算式工整、计算正确,还要注意近似计算的要求.对于实际应用问题中的有关名词、术语,要理解清楚,如坡角、俯角、仰角、视角、方向角、方位角等. 【基础练习】 1.在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是(B )A .直角三角形B .等边三角形A b CA b C Ab C C A b aA Cb CA baC .钝角三角形D .等腰直角三角形 2.△ABC 中,::4:1:1A B C =,则::a b c 为(D )A .3∶1∶1B .2∶1∶1C1∶1 D1∶13.若,,A B C 是△ABC 的三个内角,且A B C <<(C ≠2π),则下列结论中正确的是(A )A .sin sin A C < B .cot cot A C < C .tan tan A C < D .cos cos A C < 4.不等边△ABC 中,,,a b c 分别对角,,A B C ,且最大边a 满足条件222a b c <+,则A ∠的取值区间是(C )A .,2ππ⎛⎫⎪⎝⎭B .,63ππ⎛⎫⎪⎝⎭ C .,32ππ⎛⎫ ⎪⎝⎭ D .,42ππ⎛⎫ ⎪⎝⎭5.满足条件4,45a b A ===︒的三角形ABC 的个数是(B )A .一个B .两个C .无数个D .不存在6.在△ABC 中,222a cb ab -+=,则C ∠=(A )A .60︒B .45︒或135︒C .120︒D .30︒7.在△ABC 中,已知5cos 13A =,3sin 5B =,则cosC 的值为(A ) A.1665 B.5665 C.1665或5665 D.1665- 8.在△ABC 中,A B >是sin sin A B >的(C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.在△ABC中,AC =,45A ∠=,75C ∠=,则BC10.在ABC ∆中,若︒=120A ,5,7AB BC ==,则AB C ∆的面积S =3415. 【典型例题】【例1】解答下列各题: (1)在ABC ∆中,若30A =︒, 2a b ==,求角B ; (2)在ABC ∆中,已知:2,15a b C === ,求角B .解:(1)由正弦定理,得sin sin a bA B=, 即sinsin b A B a =,得 sin B ==∵a b <,∴30B A >=︒,B 为锐角或钝角.即45B =︒或135︒;(2)由余弦定理,得2222cos 4822cos15c a b ab C =+-=+-⨯⨯︒,因为cos151)︒==,所以21248c =-=-所以c ==所以222cos 2b c a A bc +-===,所以30A =︒,135B =︒. 【例2】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且31cos =A . (1)求A CB 2cos 2sin2++的值; (2)若3=a ,求bc 的最大值.解:(1)A C B 2cos 2sin2++=)1cos 2()]cos(1[212-++-A C B=)1cos 2()cos 1(212-++A A =)192()311(21-++= 91-;(2)∵31cos 2222==-+A bc a c b ∴2222232a bc a cb bc -≥-+=,又∵3=a ,∴49≤bc ,当且仅当23==c b 时bc 取最大值是49. 【例3】在ABC ∆中,已知AB 边的长4c =,AC 边的长7b =,且BC 边的中线长72AD =,求解这一三角形.解:设x DC BD ==,∵ADB ADC π∠=-∠, ∴cos cos ADB ADC ∠=-∠,由余弦定理,得x x x x ⋅⨯-+-=⋅⨯-+2727)27(2724)27(222222, 解得29=x ,∴9a =,∴72472947cos 222-=⨯⨯-+=A ,∴72arccos -=πA ,又32492749cos 222=⨯⨯-+=B ,∴32arccos =B ,同理可得 2119arccos =C .【例4】已知,,a b c ABC ∆是的三边,S ABC ∆是面积,求使不等式2224c a b ab pS --+≥恒成立的实数p 取值范围.解:∵2222cos ,c a b ab C =+-∴142cos sin,84cos sin2ab ab C p ab C C p C -≥⋅-≥84cos,(0,),sinCp CC π-≤∈又84cossinCC-的最小值为,(,p∴∈-∞说明:由不等式的结构特征,联想到余弦定理与三角形面积公式,把关于p 的不等式转化为只含参数角C的不等式,本题恒成立的问题就变为求84cossinCC-在(0,)Cπ∈时的最小值问题.【备用例题】1.已知ABC∆的三条边长分别为cba、、;(1)若cba、、依次成等差数列,求B∠的取值范围;(2)若cba、、依次成等比数列,证明ABC∆中至少有两个内角不超过60 .思考:两题的结论可以互换吗?答:可以解:(1)依题意,cab+=2,2122123221)(4324)(2cos22222222=-≥-+=+-+=-+=acacacacaccaaccacaacbcaB而π<<B0,Bcos单调递减,∴B的取值范围是]30(π,;(2)已知acb=2,由正弦定理,得2222221cos2222a cb ac ac ac acBac ac ac+-+--==≥=,∴060≤B,又由acb=2知ca、中必有一数不大于b,不妨设bc≤,则060≤≤BC,证毕.2.已知cba、、是ABC∆中∠A、∠B、∠C的对边,S是ABC∆的面积.若4,5,a b S===c的长度.解:∵1sin2S ab C=,∴sin2C=,于是60C∠= 或120C∠= ;又∵2222cosc a b ab C=+-,当60C∠= 时,222c a b ab=+-,c当120C∠= 时,222c a b ab=++,c=∴c的长度为21或61.【巩固练习】1.在ABC ∆中,设命题,sin sin sin :AcC b B a p ==命题q :ABC ∆是等边三角形,那么命题p 是命题q 的(C ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 2.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是(B )A .15x <<Bx <<C.1x <<D5x <<3.已知ABC ∆中,1,30a b B ==︒,则ABC ∆或. 4.在ABC ∆中,4:3:2sin :sin :sin =C B A ,则ABC ∠=1611arccos (用反三角函数值表示).5.在ABC ∆中,已知():():()4:5:6b c c a a b +++=,给出下列结论: ①由已知条件这一三角形被唯一确定; ②ABC ∆一定是一个钝角三角形;③sin :sin :sin 7:5:3A B C =;④若8=+c b ,则ABC ∆的面积是2315.其中正确结论的序号是_______②③____________ .6.在ABC ∆中,已知:2,15a b C === ,求:角,B A 和边c .答案:30,135A B c === .7.已知在ABC ∆中, , 4,c a b C π=>=tan tan 6A B ⋅=,试求,a b 以及此三角形的面积. 解:∵tan tan tan()(1tan tan )A B A B A B +=+-tan (1tan tan )tan(16)54C A B π=--=--=又∵tan tan 6A B ⋅=,且a b >,则ta n t a n A B >,∴tan 3,tan 2A B ==.而0, 022A B ππ<<<<,∴sin , sin 105A B ==利用正弦定理,可得sin sin c A a C ===sinsin5c BbC===1124∴sin225525.ABCS ab C∆==⨯⨯⨯=8.在ABC∆中,已知4442222a b c c a b++=+(),求角C.提示:4442222222222222()2,a b c c a b a b c a b a b c++=++-=∴+-=(),得答案:0045135或9.如图,水平飞行的飞机的航线和山顶在同一铅直平面内,已知飞机高度为海拔8000米,速度为600千米/时,飞行员在A处先看到山顶M的俯角︒=50α,经10秒后在B处看到山顶M的俯角︒=70β,求山顶M 的海拔高度.(精确到1米)答案:4492米10.三角形两边分别为3,1,第三边上的中线长为1,则三角形的外接圆半径为__1__.11.ABC∆中,若22tan sin tan sinA B B A⋅=⋅,则ABC∆一定是等腰三角形或直角三角形.12.若ABC∆的三条边为,,a b c满足()()3a b c a b c ab++⋅+-=,则C=60︒.13.设ABC∆的内角,,A B C的对边长分别为,,a b c,3cos()cos2A C B-+=,2b ac=,求B.解:由3cos()cos2A C B-+=及()B A Cπ=-+得3cos()cos()2A C A C---=,3cos cos sin sin(cos cos sin sin)2A C A C A C A C+--=,3sin sin4A C=.又由2b ac=及正弦定理得2sin sin sinB A C=,故23sin4B=,sin B=或sin B=(舍去),于是3B π=或23B π=. 又由2b ac =知b a b c ≤≤或,所以3B π=.14.ABC ∆中,角,,A B C 对边的边长分别是,,a b c ,且(c o s c o s )a B C b c+=+.(1)求证:2A π=;(2)若ABC ∆外接圆半径为1,求ABC ∆周长的取值范围.解:(1)证明:∵(cos cos )a B C b c +=+ ∴由余弦定理得22222222a c a b acabbca abc +-+-⋅+⋅=+,∴整理得222()()0a b b c c +--=. ∵0b c +>,∴222a b c =+.故2A π=.(2)∵ABC ∆外接圆半径为1,2A π=,∴2a =.∴2(sin cos ))4b c B B B π+=+=+.∵02B π<<,∴3444B πππ<+<,∴2b c <+≤∴42a b c <++≤+故ABC ∆周长的取值范围是(4,2+.15.在ABC ∆中,设,,BC a CA b AB c ===, 若22299190a b c +-=,则B AC co t co t co t += 95解:B A C cot cot cot +=C C B A 2sin cos sin sin =2c ab •2222a b c ab+-=95。

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。

它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案一、教学目标1. 理解正余弦定理的概念及公式。

2. 学会运用正余弦定理解决实际问题。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:a^2 = b^2 + c^2 2bccosA三、教学重点与难点1. 教学重点:正余弦定理的公式及应用。

2. 教学难点:如何运用正余弦定理解决复杂问题。

四、教学方法1. 采用讲解、示例、练习、讨论相结合的方法。

2. 通过图形演示,使学生更直观地理解正余弦定理。

3. 引导学生运用正余弦定理解决实际问题,提高学生的应用能力。

五、教学过程1. 导入:通过复习三角形的基本概念,引导学生进入正余弦定理的学习。

2. 讲解:详细讲解正弦定理和余弦定理的公式及含义。

3. 示例:给出三角形ABC的边长和角度,运用正余弦定理求解未知量。

4. 练习:让学生独立完成一些简单的正余弦定理应用题。

5. 讨论:分组讨论一些复杂的问题,引导学生相互合作,共同解决问题。

6. 总结:对本节课的内容进行归纳总结,强调正余弦定理在实际问题中的应用。

7. 作业:布置一些有关正余弦定理的应用题,让学生巩固所学知识。

六、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。

针对学生的薄弱环节,加强个别辅导,帮助学生克服困难,提高解决问题的能力。

七、课后拓展1. 研究正余弦定理在实际问题中的广泛应用。

2. 了解正余弦定理在其他领域的应用,如物理学、工程学等。

3. 探索正余弦定理的证明方法,加深对定理的理解。

八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对正余弦定理的掌握程度。

3. 课后拓展:了解学生在课后对正余弦定理的学习和研究情况,鼓励学生进行深入学习。

九、教学资源1. 教材:正余弦定理的相关内容。

(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计

(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计

(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计《正弦定理和余弦定理》复习课教学设计设计意图:学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。

激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。

⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。

⑶重视提出问题、解决问题策略的指导。

⑸注意避免过于繁琐的形式化训练。

从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。

二、实施教学过程评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,(1)若△ABC的面积为,c=2,A=600,求边a,b的值;(2)若a=ccoB,且b=cinA,试判断△ABC的形状。

(五)变式训练、归纳整理【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若bcoC=(2a-c)coB(1)求角B(2)设,求a+c的值。

教案7

教案7

高三数学一轮复习教案(7)(文)(正弦定理、余弦定理)备课人:史记祥审核人:陈水青教学目标1、掌握正弦定理和余弦定理及变形形式;能根据条件, 灵活选用正弦定理、余弦定理解决三角形中的有关问题。

2、能综合运用正弦定理、余弦定理判断三角形的形状,证明三角形中边角关系的恒等式,能运用解斜三角形的有关知识,解决简单的实际问题。

知识梳理一、正、余弦定理1.正弦定理:________=________=________=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=______________;(2)a=________,b=__________,c=________;(3)sin A=________,sin B=__________,sin C=______等形式,以解决不同的三角形问题.2.余弦定理:a2=____________,b2=________________,c2=__________.余弦定理可以变形为:cos A=________,cos B=______________,cos C=______________.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.二、解三角形时,三角形解的个数的判断基础自测1.在△ABC 中,已知a= 2 ,b=2,∠B=450,则∠A 等于2.在△ABC 中,若A =60°,a =3,则a +b +c sin A +sin B +sin C =________.3.在△ABC 中,若b =1,c =3,C =2π3,则a =________.4.若三角形三边之比为3: 5: 7,则这个三角形的最大内角为5.在△ABC 中,内角A ,B ,C 所对的边分别为a, b, c ,且(a+b+c)(b+c-a)=3bc ,则角 A=6.在△ABC 中,若sinA-2sinBcosC=0,则△ABC 是 三角形7.在△ABC 中,若∠A=600,AB=2,△ABC 的面积为32,则BC 边的长为8.在△ABC 中,a =15,b =10,A =60°,则cos B =________.9.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b的值为________.10.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为________.高三数学一轮复习教案(7)(文)(正弦定理、余弦定理)备课人:史记祥审核人:陈水青知识点1利用正弦定理求解三角形例1 (1)在△ABC中,已知a=3, c=3 3 ,∠A=300,求∠C及b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、余弦定理及应用三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。

2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。

r 为三角形内切圆半径,p 为周长之半。

(3)在△ABC 中,熟记并会证明:∠A,∠B,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A,∠B,∠C 成等差数列且a ,b ,c 成等比数列。

二.典例分析(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sinA =3a cosB .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B ,所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B,∴sin A =a sin Bb =3·si nπ33=12.∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sinB +sin B cos 2A = 2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB = 2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sinB +(2c +b )sinC .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.(1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法: (1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A2,cos 2A ,∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c =3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入(2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sinC -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). (1)在△ABC 中,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D . 解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°. 故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得ABsin ∠ACB =BCsin ∠CAB,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入(2012·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度. (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BCsin ∠BAC =ABsin ∠ACB,所以BC =l sin αsin β-α.(2)由(1)知BC =l sin αsin β-α=24×sin 15°sin 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BCsin ∠BDC =CDsin ∠CBD, 所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(2012·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得,BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40米.测量角度问题典题导入(2012·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2. 故AC =28,BC =20. 根据正弦定理得BCsin α=ACsin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(2012·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500.。

相关文档
最新文档