河流纳污能力计算一维模型
基于一维模型计算水域纳污能力
基于一维模型计算水域纳污能力作者:杨宗宾来源:《科学与财富》2020年第19期摘要:复州河复州城农业用水区位于大连市复州河下游,属于小型河流,污染物在河段横断面上均匀混合。
采用河流一维模型,选取特征污染物COD,NH3-N作为分析评价因子,计算水功能区纳污能力。
关键词:一维模型,水域;纳污能力;复州河复州河复州城农业用水区(以下简称计算区)位于大连市复州河下游,河段常年平均流量小于15m3/s,属于小型河流。
按照《水域纳污能力计算规程》,水域纳污能力计算方法主要有模型计算法和污染负荷计算法等[1-2]。
采用河流一维模型,污染物在河段横断面上均匀混合。
选取特征污染物COD,NH3-N作为分析评价因子,计算纳污能力。
1;; 基本资料复州河流域面积1638km2,计算区上游是东风水库,区内自上而下主要有九道河、太阳河、珍珠河、岚崮河4条一级支流,下游入渤海。
以4条支流汇入后为节点划分为5个河段:东风水库出口到九道河汇入口、九道河汇入口到太阳河汇入口、太阳河汇入口到珍珠河汇入口、珍珠河汇入口到岚崮河汇入口、岚崮河汇入口到入海口段,河段长度依次为1.5km、6.1km、18.0km、14.5km、7.3km。
各节点断面以上流域面积依次为817.40km2、924.46km2、1144.75km2、1532.65km2。
复州河下游关家屯水文站控制流域面积1071km2,资料年限50年以上,资料系列包含了丰、平、枯年份,具有较好的代表性,多年平均径流深为217mm。
[3]2;; 设计水文条件计算区属于有水利工程控制的河段,可采用河道内生态基流作为设计水文条件。
生态基流计算采用Tennant法,将多年平均流量的百分数作为短期生存本息地的最小瞬时流量。
[4]由于大连地处北方,属缺水城市,而多年平均天然径流量的10%是保持河流生态系统健康的最小流量,故将多年平均天然径流量的10%作为生态基流。
根据水文同步性,将关家屯水文站以上控制流域面积与计算区间流域控制面积进行对比,进而同倍比放大得到区间径流量。
河流纳污能力计算
3、混合区的确定
(a) 图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的, 使污染物得以进行初始混合与稀释后达到水域功能区水质 标准的区域称为混合区。
如果功能区没有常规性监测断面,可以选择功能区的下断面 或者重要的取水点作为控制节点。
对于高功能水域、重要水域以及距离较长的水域,根据需要, 一个功能区内应设置多个断面来控制功能区的水质,作为水 环境容量计算的约束条件。
在控制断面的选取时应注意的几个问题
(1)控制断面不能设在排污混合区内:一般的水功能区都 允许有排污口存在,排污口下游必然存在一段由排放浓度过 渡到功能区标准的排污混合区。因此,控制断面要避开混合 区或过渡区,以反映水体的客观情况。
有较大的支流汇入或河道发生分流,导致河段流量等参数发 生突变;
有较大的入河排放口汇入; 有重要的饮用水源吸水口; 计算单元长度不超过10km; 一个水功能区划分为多个计算单元时,各个计算单元的水质
目标均采用本功能区水质目标。
4、计算单元和控制节点(断面)
控制断面是指能反映水环境功能区水质,或反映污染源对水 域水质的影响,或反映功能区执行标准变化的代表性断面。
广东省水利厅
广州佛山跨市水污染综合整治方案
中山大学
鉴江水质保护规划
中山大学
练江流域水质保护规划
广东省环境监测中心站
广东省地表水环境容量核定 技术报告
华南环境科学研 河流
究所
库湖
kc 0.08~0.45
0.1 0.15 0.1~0.4 0.08~0.1 0.07~0.6 0.18 0.2 0.2 0.3~0.55 0.1~0.2 0.05~0.1
河流水环境容量一维计算模型分析
河流水环境容量一维计算模型分析在一定水文设计条件和水质目标前提下,根据一维河流水质模型理论,探讨不同控制断面和排污口位置下的河流水环境容量的计算方法。
在计算水环境容量时,对于长度较短的河段,排污口均匀概化和中点概化差异不大;对于长度较长的河段,排污口均匀概化比中点概化更接近实际情况。
段首法最为严格,适于经济发达地区、水源地或旨在改善水质的区域;段尾法次之;功能区末端控制法要求达到的环境目标值更低。
标签:水环境容量;排污口概化;段首控制法;段尾控制法水环境容量是指某一水环境单元在特定的环境目标下所能容纳污染物的量,也就是环境单元依靠自身特性使本身功能不至于破坏的前提下能够允许容纳的污染物的量[1]。
其大小与水环境功能目标、水体特征、污染物特性及排污方式相关。
通常以单位时间(如:一年)内水体所能承受的污染物排放总量表示。
水环境容量也可称为水域的纳污能力。
1 计算流程在计算水环境容量时一般按以下流程:(1)调查收集水环境功能区的基本资料并分析整理;(2)调查分析水环境功能区的水质状况;(3)调查分析沿河排污口的位置分布、排污负荷等具体情况;(4)调查水环境功能区水文参数;(5)确定水体的水质目标;(6)选用适当的计算模型,计算水域的环境容量;(7)分析、验证计算结果的合理性。
2 计算模型根据所采用的水质数学模型维数的不同,水环境容量计算模型可分为零维模型、一维模型和二维模型。
其中零维模型主要适用于污染物均匀混合的小型河流及河网流域;一维模型主要适用于河道宽深比不大,在较短时间内污染物质能在横断面上均匀混合的中小型河流;二维模型主要适用于河道宽度较大,河流横向距离显著大于垂向距离,在横断面上污染物分布不均匀的河流,或者宽度虽然不大,但是存在如鱼类的洄游通道等特殊功能需求的河流。
以下将重点讨论河流非持久性污染物的一维水环境容量计算模型。
一维稳态水质模型:式中C1为排污口废水浓度,mg/L;q为废水量,m3/s;C0为上游河水浓度,mg/L;Q0为流量,m3/s;K为水质降解系数,1/d;x为距排污口的距离,m;u 为流速,m/s。
采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析
采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析张文志(广东省水文局惠州分局,广东 惠州 516001)摘 要:分析采用一维水质模型计算河流纳污能力过程中,污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数对计算结果的影响;讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。
关键词:纳污能力;一维水质模型;设计条件;参数;影响分析中图分类号:T V149.2 文献标识码:B 文章编号:100129235(2008)0120019202收稿日期:2007202205作者简介:张文志,男,湖北大悟人,主要从事水环境监测、水资源分析及评价工作。
纳污能力,是指水体在一定的规划设计条件下的最大允许纳污量。
纳污能力随规划设计目标的变化而变化,反映了特定水体水质保护目标与污染物排放量之间的动态输入响应关系。
其大小与水体特征、水质目标及污染物特性等有关,在实际计算中受污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数的影响。
东江干流岭下至虾村河段位于东江干流惠州市境内,全长36k m,水质目标为Ⅱ类。
本文以该段河段氨氮纳污能力计算为例,分析采用一维水质模型计算纳污能力过程中设计条件和参数对计算结果的影响,并讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。
1 一维水质模型概述对于宽深比不大的河流,污染物在较短的时间内,基本上能在断面内均匀混合,污染物浓度在断面上横向变化不大,可用一维水质模型模拟污染物沿河流纵向的迁移问题来计算纳污能力。
在稳态或准稳态的情况下,一维水质数学模型为:C (x )=C 0exp-kx u(1)式中 C 0———基准断面污染物的本底浓度,mg/L ;k ———污染物综合衰减系数,d-1(计算时换算为s-1);u ———断面设计流速,m /s ;x ———计算断面至基准断面的距离,m ;C (x )———计算断面污染物的浓度,mg/L 。
河流纳污能力计算
河流纳污能力计算河流是地球上丰富的水资源之一,它不仅为生物提供了生活所需的水源,还是陆地生态系统的重要组成部分。
然而,由于工业化和城市化的发展,河流受到了严重的污染。
为了研究河流的污染水平,我们需要计算河流的纳污能力。
河流的纳污能力是指在一定时间内,河流可以容纳并稀释的污染物的数量。
纳污能力取决于河流的特性、水量、污染物种类等因素。
下面我们将介绍两种常用的计算方法:影响系数法和水质模型法。
影响系数法是一种常用的估算河流纳污能力的方法。
它主要通过考虑一些参数来计算河流的纳污能力。
这些参数包括流速、流量、水深、溶解氧含量、有机物含量等。
通过对这些参数的测量和分析,我们可以得到河流的污染物限制浓度。
然后,我们可以将河流的纳污能力计算为:纳污能力=污染物限制浓度×流量水质模型法是一种更复杂但更准确的计算河流纳污能力的方法。
它建立了一个描述河流水质变化的模型。
该模型基于污染物质量守恒定律,并考虑了河流的运动、扩散、降解等因素。
水质模型可以根据输入的初始条件和污染物排放情况,模拟河流污染物的传输和转化过程。
通过模拟和计算,我们可以得到污染物在河流中的浓度分布。
然后,我们可以计算河流的纳污能力为:纳污能力=河流长度×污染物浓度×断面积其中,河流长度是指污染物在河流中的传输路径长度,污染物浓度是河流中污染物的平均浓度,断面积是河流横截面的面积。
然而,需要注意的是,河流的纳污能力并非无限大。
当污染物排放量超过河流的纳污能力时,就会导致河流的污染水平上升。
这会对河流的生态环境和生物多样性产生严重影响。
因此,在进行工业和城市建设时,我们需要合理规划和控制污染物的排放量,以保护河流的生态系统。
总结起来,河流的纳污能力是一个重要的指标,用于估算河流可以容纳并稀释的污染物的数量。
通过影响系数法和水质模型法等方法,我们可以计算河流的纳污能力。
然而,为了保护河流的生态环境,我们需要合理控制污染物的排放量,以保持河流的水质和生物多样性。
河流纳污能力计算
节点指河流上排污口、取水口、干支流汇合口等造成河道流量、水质发生突变的点,水量与污染物在节点前后满足物质平衡规律。 河段指河流被节点分成的若干段,每个河段内污染物的自净规律符合一阶反应定律。
一维水质模型由河段和节点两部分组成:
河流一维水质模型
图 河流一维模型概化示意图
概化后的排污口位置为: x=(Q1C1x1+Q2C2x2+····+QnCnxn)/(Q1C1+Q2C2+····+QnCn)
(2)距离较远并且排污量比较小的分散排污口,可概化为非点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
上界
下界
上界
下界
1 2 3
x
3、混合区的确定
1、河流简化与模型选取
水质数学模型有零维模型、一维模型、二维模型等。 对每个水功能区,应根据其空间形态、水文、水质特征选择合适的水环境容量计算模型。
二、主要技术问题
1、河流简化与模型选取
二、主要技术问题
断面宽深比大于等于20时,简化为矩形河段; 小河可以简化为矩形平直河流; 大中河流中,当河段弯曲系数小于等于1.3时,可简化为顺直河段,否则视为弯曲河流; 河道特征和水力条件有显著变化的河段,应在显著变化处分段。
图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
(a)
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的,使污染物得以进行初始混合与稀释后达到水域功能区水质标准的区域称为混合区。 混合区是污染物自排放口至功能区控制断面达标的过渡区,是允许超标的区域。 混合区越小,意味着控制越严格,混合区消失,意味着不许排放或意味着排放口排出的水质与功能区的水质相等。
河流模拟课程设计方案—水库一维泥沙淤积计算
水库一维泥沙淤积计算课程设计武汉大学水利水电学院2013-3-15目录一、目的与要求 (1)二、基本原理 (1)1、基本方程 (1)2、方程离散 (1)3、公式补充 (2)三、计算步骤 (3)四、计算框图 (4)五、计算结果 (5)1、历年输沙量特征值 (5)2、各年淤积总量 (5)3、各年水位库容关系 (6)4、水面线的变化 (7)5、深泓变化 (8)6、坝前断面变化 (9)六、结果分析 (12)1、剖面形态分析 (12)2、库容损失合理性分析 (12)七、计算程序 (13)一、 目的与要求通过课程设计,初步掌握一维数学模型建立数学模型的基本过程和计算方法,具备一定的解决实际问题的能力。
以水流、泥沙方程为基础,构建恒定流条件下的河道一维水沙数学模型,并编制出完整的计算程序,并以某个水库为实例,进行水库泥沙淤积计算。
水流条件:恒定非均匀流。
泥沙条件:包括悬移质,推移质的均匀沙模型,推移质计算模式为饱和输沙,悬移质计算模式为不饱和输沙,水流泥沙方程采用非耦合解。
二、 基本原理1、 基本方程水流连续方程:0=∂∂+∂∂xQt A ①水流运动方程()f i i gA x h gA AQ x t Q -=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂02②或 034222=+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂RA n Q g x z gA A Q x t Q ③泥沙连续方程()())(*S S QS xSA t --=∂∂+∂∂αω ④ 河床变形方程)(*00S S xG t y b--=∂∂+∂∂αωρ ⑤ 推移质平衡输沙方程G=G * ⑥水流挟沙力公式采用张瑞瑾公式,推移质输沙率公式采用Mayer-_Peter 公式,MAYER-PETER 公式中的能坡J 按均匀流曼宁公式近似计算(每个断面不同)。
2、 方程离散方程 ①在恒定流情况下有0=∂∂xQ,离散为:Q=const 方程 ③变形为034222=+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂R A n Q x z A Qx gA Q 或 023422222=+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂R A n Q x z gA Q x 上式离散为0)1((213434221212121222121=ψ-+ψ∆+-+⎪⎪⎭⎫ ⎝⎛-++++++jj j j j j j j j j j j R A Q R A Q xn z z A Q A Q g 方程(4)去掉时间项得到)(*S S qx S --=∂∂αω 该方程的解析解为:()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∆--∆-+⎪⎪⎭⎫⎝⎛∆--+=+++q x x q q x S S S S S S j jjjj j αωαωαωexp 1exp 1***1*1 由方程(4-5)可得()()00'0=∂∂+∂∂+∂∂ty B x QS x BG b ρ 对2 号断面以下,上式可以离散为:()()()()0)1(1010'0=⎪⎪⎭⎫⎝⎛∆ψ+ψ-+∆-+∆-++ty B y B xQS QS xBG BG j j j j b b ρ对于进口断面,推移质不考虑,悬移质采用单点离散 方程(5)可离散为: '01*10)(ραωtS S y ∆-=∆3、 公式补充mgR u k S ⎪⎪⎭⎫ ⎝⎛=ω3*K 取 0.124,m 取1.05,干密度'0ρ取1.3 恢复饱和系数 25.0=α均匀沙粒径为d=0.041mm (悬移质),d=2 mm (推移质)1、输入河床地形糙率等数据求得断面面积与水位的关系(A ~Z ),进而求得断面平均流速 A Q u =,水力学半径 χAR =2、读入一个时段的水沙数据 (特别注意,不要一次性将数据全部读入) 读入第一时段(Q,S )值3、计算水面线,同时得到各断面的水力要素求得各个断面的河宽、断面面积、水深、平均流速等值 计算前要注意在坝前输入水位,各断面均应对流量赋值 4、计算悬移质水流挟沙力mgR u k S ⎪⎪⎭⎫ ⎝⎛=ω3*K 取 0.124,m 取1.05。
河流纳污能力计算方法比较
图 2 均 匀 排 放 河 段 排 污 1概 化 示 意 图 : 3
在 河段 内选 择一 微小 河段 d 其 位置 距 河段 段 ,
放方式则可以通过规划得 到合理设置。 目前 , 在河 流纳 污能 力计 算 中对 于 污染 物 排 放 方 式 如 何 选 取 、 水质 目标如何合理分配 , 以及管理者如何设定控制
首距 离 为 , 此 微 段 污 染 物输 运 至 :L处 的剩 则
余质量为 d 上游各微段质量降解到 =L断面处 m,
的总 质量 迭加 设 为 m, 则
d : e p 一K m (
m :
) d
() 3
jm [ e(K ]( = 1 x一 ) 4 L d 一p )
・
5 ・
型河 段 , 可采 用河 流一 维水 质模 型计 算纳 污 能力 , 其
计 算 公式 为 :
= Pep ox
= I Qep K ( x ( )一/ Qep 一K ) 9 x( ) () 0 2
( ) 一
( 1 )
式 中 : 为污染 物纳 污能 力 ,/ ; 为下游 断 面水 质 g sp
)
() 5
1一 e p 一 K ) x(
s wa e o te o iin ,s lc in fc n rlc o ss cin n d alc t n fd lto a a i e g u ltp st s ee t s o o to rs —e t s,a o ai s o i in c p ct o o o l o u y.Th o g a e su y o ru h a c t d f s
一维水量水质模型
⼀维⽔量⽔质模型第七章⼀维⾮恒定河流和河⽹⽔量⽔质模型对于中⼩型河流,通常其宽度及⽔深相对于长度数量较⼩,扩散质(污染物质、热量)很容易在垂向及横向上达到均匀混合,即扩散质浓度在断⾯上基本达到均匀状态。
这种情况下,我们只需要知道扩散质在断⾯内的平均分配状况,就可以把握整个河道的扩散质空间分布特征,这是我们可以采⽤⼀维圣维南⽅程描述河流⽔动⼒特征或⽔量特征(⽔位、流量、槽蓄量等);⽤⼀维纵向分散⽅程描述扩散质在时间及河流纵向上的变化状况。
特别地,对于稳态⽔流,可以采⽤常规⽔动⼒学⽅法推算⽔位、断⾯平均流速的沿程变化;采⽤分段解析解法计算扩散质浓度沿纵向的变化特征。
但是,在⾮稳态情况下(⽔流随时间变化或扩散质源强随时间变化)解析解法将⽆能为⼒(⽔流⾮恒定)或⼗分繁琐(⽔流稳态、源强⾮恒定),这时通常采⽤数值解法求解河道⽔量、⽔质的时间、空间分布。
在模拟⽅法上,⽆论是单⼀河道还是由众多单⼀河道构成的河⽹,若采⽤空间⼀维⼿段求解,描述⽔流、⽔质空间分布规律的控制⽅程是相同的,只不过在具体求解⽅法上有所差异⽽已。
7.1 单⼀河道的控制⽅程 7.1.1 ⽔量控制⽅程采⽤⼀维圣维南⽅程组描述⽔流的运动,基本控制⽅程为:(1)023/422=+-++RQ u n g x A u x Z gA x Q u t Q (2)式中t 为时间坐标,x 为空间坐标,Q 为断⾯流量,Z 为断⾯平均⽔位,u 为断⾯平均流速,n 为河段的糙率,A 为过流断⾯⾯积,B W 为⽔⾯宽度(包括主流宽度及仅起调蓄作⽤的附加宽度),R 为⽔⼒半径,q 为旁侧⼊流流量(单位河长上旁侧⼊流场)。
此⽅程组属于⼆元⼀阶双曲型拟线性⽅程组,对于⾮恒定问题,现阶段尚⽆法直接求出其解析解,通常⽤有限差分法或其它数学离散⽅法求其数值解。
在⽔流稳态、棱柱形河道条件下,上述控制⽅程组退化为⽔⼒学的谢才公式,可采⽤相应的⽅法求解⽔流特征。
7.1.2 扩散质输运控制⽅程描述河道扩散物质运动及浓度变化规律的控制⽅程为:带源的⼀维对流分散(弥散)⽅程,形式如下:S S hAKAC x c AE x x QC t AC r x ++-???? ??=+??)()( (3) 式中,C 为污染物质的断⾯平均浓度,Q 为流量,为纵向分散系数,S 为单位时间内、单位河长上的污染物质排放量,K 为污染物降解系数,S r 为河床底泥释放污染物的速率。
不同方法计算胶南市河流纳污能力结果的比较
胶南市位于山东半岛西南部,北纬 35°35' ~ 36° 08'、东经 119°30' ~ 120°11',属低山丘陵区,境内山 峦起伏,地势西、北偏高,南、东临海处偏低,自西北 向东南倾斜。境内长 2. 5km 以上的河流( 含大河支 流) 有 125 条,其中较大的河流 10 条、独立入海的小 河流 26 条,均属典型的北方季节性山区河流,丰水 期( 7 ~ 8 月) 径流量占多年平均年径流量的 78% , 枯水期( 10 ~ 5 月) 的径流量仅占多年平均年径流量 的 13% 。由于河流源短流急,水资源开发利用难度 较大,为 缓 解 水 资 源 紧 缺 状 况,水 利 部 门 提 出 了 “拦、蓄、挖、引、节、增 ”的 治 水 方 针,不 断 提 高 水 资 源开发利用率。除建有水库外,还在 10 条主要河道 上建有拦河闸坝 18 处,在风河、巨洋河、错水河等较 大河流上建有 3 级以上梯级拦河闸,局部河段闸首 闸尾几近相接,使得河道丧失了自然水力特性而具 备水库和河道双重特性。为更加科学、合理地制定 水资源保护规划以实现水资源的高效利用和有效保 护,本文采用常规的河道纳污能力计算数学模型和 根据河道不同水力特性采用的河道纳污能力计算数 学模型,分别计算了已功能区划的 15 条河流中 11 条河流 13 个水功能区的纳污能力,并对计算结果进 行了比较分析。
大村桥 ~ 吉利河入口 吉利河入口 ~ 白马河大桥
白马河大桥 ~ 耿家岚
吉利河 吉利河饮用水源区
吉利河水库出口 ~ 吉湄村橡胶坝 吉湄村橡胶坝 ~ 白马河
源头 ~ 薛家庄拦河闸
巨洋河饮用水源区
薛家庄拦河闸 ~ 王台镇橡胶坝
巨洋河
王台镇橡胶坝 ~ 逄猛王
巨洋河农业用水区
河流纳污能力计算一维模型主要参数的取值分析
河流纳污能力计算一维模型主要参数的取值分析彭振华;尤爱菊;徐海波【摘要】According to the calculation criteria of watershed environmental capacity,a one dimensional model is recommended for most of medium or small rivers. The estimation of two important coefifcients in themodel,which are river flow velocity and pollutant comprehensive degeneration coefifcient,are basically unreliable due to the insufifcient data. Based on the ifeld observation and the calculation of the river environmental capacity of Yongkang city,the method to determine these two important coefifcients in the model and the range of these two coefifcients will be discussed and analyzed in this study in order to construct a one dimensional model representing the river environmental capacity of Yongkang city.%根据水域纳污能力计算规程,中小型河流纳污能力的计算推荐采用河流一维水质模型。
由于基础观测资料普遍不足,模型的河流流速、污染物综合衰减系数2个重要参数的取值往往缺少可靠依据。
河流湖库水环境容量计算方法
水环境容量计算方法总结目录水环境容量计算方法总结 (1)目录 (1)一、一维模型 (1)二、二维模型 (4)三、感潮河段零维模型 (6)四、湖库模型 (6)一、一维模型1、适用范围:全国水环境容量核定技术指南1)宽浅河段;2)污染物在较短的时间内基本能混合均匀;3)污染物浓度在断面横向方向变化不大,横向和垂向的污染物浓度梯度可以忽略;4)一般情况下适用于河宽小于200m的河流,但注意利用不均匀系数对其容量进行修正。
2、一维衰减公式:排污口、支流排入断面完全混合模型:EP E E P P Q Q Q C Q C C ++= 式中:C 为断面混合后的水质浓度值;C P 为排污口排出的污水的水质浓度值;Q P 为排污口废水排放量;C E 为河水的水质浓度值;Q E 为河水流量。
3、算例:假设该河段水环境功能区目标为III 类,假设该河段上边界COD 来水控制目标为20mg/L ,90%最枯月保证率流量为20m³/s ,该河段平均流速为0.2m/s ,COD降解系数约0.1/d,概化排污口流量为1m³/s,COD浓度90mg/L,支流流量5m³/s,COD浓度为25mg/L。
C 目=Q∗C∗exp(−k∗X186400u)+q∗c+WQ+qexp(−kX286400u)通过上游来水衰减,区间内中间混合后衰减等于水质目标,可以反推出区间内水环境容量,注意公式中的单位,通过上述公式算出的W单位为g/s。
Q:m³/s、C:mg/L、u:m/s、K:1/d、x:m。
(1)上边界→节点1(混合前浓度):C2=C1*exp( kx/u)=20*exp( 0.1*20000/86400/0.2)=18.875mg/L(2)概化排污口汇入混合:C3=(c1*q1+C2*Q1)/(q1+ Q1)=(90*1+18.875*20)/(20+1)=22.262mg/L(3)节点1→节点2:C4= C3*exp( kx/u)=22.262*exp( 0.1*5000/86400/0.2)=21.627mg/L(超标)(4)节点2→节点3(混合前浓度):C5= C4*exp( kx/u)=21.627*exp( 0.1*20000/86400/0.2)=19.264mg/L(5)支流汇入混合:C6=(c2*q2+C5*Q2)/(q2+ Q2)=(25*5+19.264*21)/(5+21)=20.367mg/L(6)节点3→节点4:C7= C6*exp( kx/u)=20.367*exp( 0.1*5000/86400/0.2)=19.786mg/L(7)节点4→控制断面:C8= C7*exp( kx/u)=19.786*exp( 0.1*8000/86400/0.2)=18.891mg/L可见,该河段在现状排污情况下水质能达到地表水III类,但河段允许排放量根据实际情况分配不均匀,上游计算断面1存在超标情况,下游容量仍有富裕,在因此需进一步通过试算的方法,削减概化排污口排污量,此外可根据实际情况对下游支流水质目标进行适当调整,将容量进行合理分配。
河流纳污能力计算 一维模型
河流纳污能力计算对宽深比不大的河流, 污染物质在较短的时间内, 基本上能在断面内均匀混合。
污染物浓度在断面上横向变化不大, 可用一维水质模型模拟污染物沿河流纵向的迁移问题。
污染源集中概化点的位置确定在污染源比较集中的地方,一般情况下, 污染源比较分散, 可认为这个点在河段的1 /2处。
值得注意的是,对于有较大支流汇入的河段,计算更为复杂,要考虑到汇入支流的水质水量情况, 计算公式要调整。
污染源中断面概化得纳污能力计算公式:W=(Cs/exp(-kL/u)一C0exp(-kL/2u))*Q式中:W一纳污能力,g/s;Cs一规划河段水质标准,mg/L;C。
一河段上游来水水质,mg/L;Q一功能区段设计流量,m3/s;u一河段平均设计流速,km/d;k一污染物衰减系数,d-1;L一功能区段长,km。
利用水质模型进行纳污能力计算时,将污染物在水环境中的物理降解、化学降解和生物降解概化为综合衰减系数。
考虑到综合衰减系数对纳污能力计算结果影响很大。
可采用以下方法进行CODcr和HN3一综合衰减系数的测定。
选取河道顺直、水流稳定、中间无支流汇入、无排污口的河段,分别在河段上游A(点)和下游B(点)布设采样点,监测污染物浓度值,并同时测验水文参数以确定断面平均流速。
综合衰减系数(K)按下式计算:K=u/Δx*lnC A/C B式中,u为断面平均流速,m/s;Δx为上下断面之间距离,m;C A为上断面污染物浓度,mg/L;C B为下断面污染物浓度,mg/L。
根据上述各设计条件和参数对纳污能力计算的影响分析,在实际计算中应注意选择合适的设计条件和参数。
a) 污染源概化选择。
在实际计算中, 采用哪一种概化要根据其实际的排污口的位置分布和污染负荷分布做出合适的选择,对于污染源分布比较均匀的河段可采用均匀概化或集中点为中点的集中点概化;对于污染源比较集中的河段可采用集中点概化,集中点要根据集中排放的位置来确定。
b) 设计流量和流速的确定。
无排污资料感潮河段纳污能力一维模型推导研究--以鸭绿江河口为例
无排污资料感潮河段纳污能力一维模型推导研究--以鸭绿江河口为例吴慧秀【摘要】水功能区纳污能力计算是功能区达标的技术保障措施。
感潮河段受潮汐影响,河段排污口监测的污水量一般比真实值偏大,数据失真。
纳污能力计算一维模型需考虑横向扩散、降解系数、已知的排污资料等输入项,为克服实测排污资料的失真问题及无资料地区,实际工作中需要不以排污资料为输入项的计算模型。
根据现有一维河口模型,以水功能区达标标准浓度为控制指标,推导出不含排污资料的纳污能力计算模型。
以鸭绿江感潮河段为例,进行新旧模型对比分析,一致的计算结果证明模型合理,具有推广价值。
%To calculate the assimilative capacity of a functional zone is a technical insurance measure for jud-ging whether it reach the standard .Influenced by the tide , the sewage quantity of the drain outlet in tidal reach is generally more than the true value .To calculate the assimilative capacity by one -dimensional model , input items such as transverse diffusion , degradation coefficient and known pollution discharge data are needed .Practically, a non-pollution discharge data calculation model is needed to calculate the assimilative capacity of area with distort -ed measured data and area without related data .In this study , according to the one-dimensional model and the up-to-standard concentration of water functional area , a non-pollution discharge data input model of assimilative capacity was derived .By taking the tidal reach in Yalu River estuary as an example , the new and old modes arecompared .The consistent results show that the new model is reasonable and can be popularized .【期刊名称】《辽东学院学报(自然科学版)》【年(卷),期】2016(023)002【总页数】4页(P108-110,125)【关键词】水功能区纳污能力;感潮河段;一维模型;无资料地区;鸭绿江【作者】吴慧秀【作者单位】辽宁省丹东水文局,辽宁丹东 118001【正文语种】中文【中图分类】X522水资源最严格管理“三条红线”制度的实施,导致水功能区达标率逐渐成为地方政府约束性指标。
基于一维水质模型的淮北市区纳污能力计算
基于一维水质模型的淮北市区纳污能力计算柏菊;王振龙【摘要】通过对淮北市水功能区基本情况的分析,利用一维水质模型的概化,分析了模型参数的确定方法,建立了河流纳污能力模型,定量计算出水功能区纳污能力.【期刊名称】《安徽水利水电职业技术学院学报》【年(卷),期】2011(011)001【总页数】3页(P10-12)【关键词】纳污能力;淮北市;水功能区;一维水质模型【作者】柏菊;王振龙【作者单位】安徽省水利水资源重点实验室,安徽,蚌埠,233000;安徽省水利水资源重点实验室,安徽,蚌埠,233000【正文语种】中文【中图分类】TV21淮北市地表水系较发育,区内河流属淮河洪泽湖水系,自北向南依次分布有闸河、龙岱河、萧濉新河、王引河、南沱河、浍河、澥河等自然和人工河流,主干河道总长378km,两岸配套大沟140多条。
区内均为季节性河流,一般偏旱~干旱年份及枯水季节常常干枯见底,偏丰~丰水年分及汛期洪水泛滥,洪涝旱灾较为严重。
根据淮北市地表水的特点和现状,结合有关规划,在遵循地表水功能区划分的原则与技术导则的基础上,将淮北市的地表水体划分为24个水功能区单元,其中属开发利用区类的20个(其中工业用水区9个,农业用水区6个,景观用水区4个,过渡区1个),缓冲区3个,保护区1个。
1 纳污能力分析计算1.1 模型的选择淮北市的地表水域有河道、大沟、水库和采煤沉陷区3种,其中水库和采煤沉陷区规划年作备用水源地使用,并且本身自净能力很小,目前只有周边少许面源污染进入,无点源排放,规划年不增设点源排放口,不计算其纳污能力。
淮北市有100多条大沟,有些大沟汇流面积较大且常年有水,对污染物有一定的降解能力,本次纳污能力计算考虑河道的开发利用区和主要大沟的纳污能力。
由于淮北市河道多为单一顺直小型河道,水流扩散条件相对简单,故污染物扩散过程模拟一维对流推移自净平衡方程。
污染物一般是沿岸多处排放的,本次计算过程中将计算河段内的多个排污口概化成一个集中的排污口,且位于河段中点处,相当于一个集中点源,则纳污能力可用下式表示:其中,Q为河段流量,m3/s;W为控制断面河段纳污能力,t/a;Cs为控制断面水质标准,mg/L;C0为上断面入流水质标准,mg/L;u为河段污染带内平均流速,m/s;L为河段长度,km;K为衰减系数,1/d。
关于一维模型水环境容量计算方法参数详细介绍
关于一维模型水环境容量计算方法参数详细介绍一维模型0s 31.54*(*exp(-*/86400/))*()i j W C K x u C Q Q =-+式中:W ——排污口允许排放量,t/a ;C 0——初始浓度值,mg/L ;C s ——水质目标浓度,mg/L ;Q i ——河道节点后流量,m3/s ;Q j ——第i 节点处废水入河量,m3/s ;u ——第i 个河段的设计流速,m/s ;x ——计算点到节点的距离,m 。
目录1设计流量的选择 ...................................... 1 2设计流速 ............................................ 3 3湖库设计库容和感潮河段设计槽蓄量 .................... 5 4初始浓度值C 0的确定 .................................. 6 5水质目标C s 值的确定 .................................. 6 6 综合衰减系数的确定 . (6)1 设计流量的选择总体上,各水功能区所在的河段均选择最近10年最枯月平均流量(水量)或90%保证率最枯月平均流量(水量)作为设计流量(水量)。
原则上,优先采用近10年最枯月平均流量。
对于近年来已撤销的水文站,将采用90%保证率最枯月流量为设计流量。
有常规水文控制站的河段直接采用水文部门提供的有关数据,没有水文控制站的河段通过水文学方法产生。
(1)直接有流量控制站的控制单元对于这类控制单元,直接引用由广东省水文局提供的各水文站的90%保证率最枯月或近十年最枯月流量资料。
(2)邻近有流量控制站,且降雨量和自然条件相差不大当某计算单元的上游或下游附近有水文控制站时,将邻近计算单元(参证计算单元)的设计流量,乘以集雨面积比,换算到本计算单元,换算公式为:Q Q A A s j cz s j cz =⋅ (5-1a)式中,Q sj 为本计算单元的流量,Q cz 为参证计算单元的流量,Asj 为本单元的集雨面积,A cz 为参证单元的集雨面积。
SL 348-2006 水域纳污能力计算规程
S L 中华人民共和国水利行业标准 SL 348—2006水域纳污能力计算规程 Code of practice for computation on allowable permittedassimilative capacity of water bodies2006—10—23发布 2006—12—01实施 中华人民共和国水利部 发布前 言根据水利部水利水电技术标准制修订计划安排,按照《水利技术标准编写技术规定》(SL 1-2002),制定《水域纳污能力计算规程》。
《水域纳污能力计算规程》共7章22节111条和1个附录,主要技术内容有:——总则和术语——适用范围和基本程序;——设计水文条件及计算方法;——数学模型计算法的计算条件、模型、参数和方法;——污染负荷计算法的计算条件和方法;——合理性分析与检验。
本标准批准部门:中华人民共和国水利部本标准主持机构:水利部水资源管理司本标准解释单位:水利部水资源管理司本标准主编单位:长江流域水资源保护局本标准出版、发行单位:中国水利水电出版社本标准主要起草人:洪一平 程晓冰 袁弘任 石秋池穆宏强 刘 平 敖良桂 吴国平本标准审查会议技术负责人:朱党生本标准体例格式审查人:金 玲目 次1 总则 (1)2 术语 (2)3 基本程序 (4)4 河流纳污能力数学模型计算法 (6)4.1 一般规定 (6)4.2 基本资料调查收集 (6)4.3 污染物的确定 (7)4.4 设计水文条件 (8)4.5 河流零维模型 (8)4.6 河流一维模型 (8)4.7 河流二维模型 (9)4.8 河口一维模型 (9)5 湖(库)纳污能力数学模型计算法 (10)5.1 一般规定 (10)5.2 基本资料调查收集 (11)5.3 污染物的确定 (12)5.4 设计水文条件 (12)5.5 湖(库)均匀混合模型 (12)5.6 湖(库)非均匀混合模型 (12)5.7 湖(库)富营养化模型 (13)5.8 湖(库)分层模型 (13)6 水域纳污能力污染负荷计算法 (14)6.1 一般规定 (14)6.2 基本资料调查收集 (14)6.3 污染物的确定 (15)6.4 实测法 (15)6.5 调查统计法 (15)6.6 估算法 (16)7 合理性分析与检验 (18)附录 数学模型及参数 (20)条文说明 (34)1 总 则1.0.1 为规范全国水域纳污能力计算技术要求、基本程序和方法,制定本规程。
基于一维水动力水质模型的纳污能力分段核定研究——以江门市江海区礼乐河为例
基于一维水动力水质模型的纳污能力分段核定研究——以江门市江海区礼乐河为例张家鸣;刘继艳【摘要】为了解区域河流的水环境承载能力,江门市江海区礼乐河建立了一维水动力水质模型,以COD和氨氮为控制指标,通过布置控制断面及排污口概化,采用模型试错方法分段核定了江海区礼乐河的纳污能力,并对水质目标协调性、核定成果应用等有关问题进行了探讨.结果表明,在协调好上下游河道水质管理目标的前提下,江海区礼乐河具有一定的纳污能力,该结果可在一定程度上指导江海区水污染整治工作的开展.【期刊名称】《人民珠江》【年(卷),期】2017(038)007【总页数】4页(P85-88)【关键词】纳污能力;分段核定;一维水动力水质模型;礼乐河【作者】张家鸣;刘继艳【作者单位】江门市科禹水利规划设计咨询有限公司,广东江门529050;江门市科禹水利规划设计咨询有限公司,广东江门529050【正文语种】中文【中图分类】X131.2GB/T 25173—2010《水域纳污能力计算规程》对水域纳污能力的定义如下:“在设计水文条件下,满足计算水域的水质目标要求时,该水域所能容纳的某种污染物的最大数量”。
目前,水质模型在长江、松花江、珠江等流域的水域纳污能力计算上得到广泛应用[1-3]。
国内关于水质模型的研究包括计算方法的研究、排污口概化方式的影响分析、模型参数取值的影响分析等方面[4-6]。
随着社会对水环境质量的日益重视,江门市在水资源保护领域做了一定的工作,目前已经有一些研究报告对市内的一些河流的纳污能力进行分析[7-8],但基本上都是针对整段河流来核定,概化方式比较简单,未能做到分段核定,核定的成果没能反映出纳污能力在河流的上、中、下游的不同河段的分布特征,对实际工作的指导作用有限。
通过分段核定河流纳污能力,可以给出更加细化的成果,可使区域的水资源保护工作更加具有针对性。
本文采用模型方法对江门市江海区礼乐河两类主要的污染物COD和氨氮的纳污能力进行分段核定,并对有关问题进行探讨。
关于现行水域纳污能力计算规程中河流计算模型的探讨
第44卷㊀第2期2018年4月环境保护科学EnvironmentalProtectionScienceVol.44㊀No.2Apr.2018ꎬ32~36收稿日期:2017-09-05基金项目:国家自然科学基金(51479064ꎻ51379060ꎻ51379058)资助作者简介:刘晓东(1972-)ꎬ男ꎬ博士㊁副教授ꎮ研究方向:环境与生态水力学㊁环境模拟等ꎮE-mail:xdliu@hhu edu cn环境综合整治关于现行水域纳污能力计算规程中河流计算模型的探讨刘晓东1ꎬ杨㊀婷1ꎬ石佳佳1ꎬ刘㊀朗2ꎬ吴㊀偲1ꎬ姜翠萍1(1 河海大学环境学院㊀浅水湖泊综合治理与资源开发教育部重点实验室ꎬ江苏㊀南京㊀210098ꎻ2 句容市水利农机局ꎬ江苏㊀句容㊀212400)㊀㊀摘㊀要:水域纳污能力确定是实施水功能区限制纳污的基本工作ꎬ现行的«水域纳污能力计算规程(GB/T25173-2010)»在实际应用中存在一定争议ꎮ文章在综述水域纳污能力计算方法的基础上ꎬ探讨了现行水域纳污能力计算规程中河流计算模型中的若干问题ꎬ推导了改进后的计算模型ꎬ提出相应的修改建议ꎬ为水域纳污能力计算和未来计算规程的修订提供参考ꎮ关键词:水域纳污能力ꎻ河流ꎻ水质模型㊀㊀中图分类号:X26ꎻX522㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀DOI:10.16803/j.cnki.issn.1004-6216.2018.02.006DiscussionoftheCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesintheCurrentCalculationProceduresLiuXiaodong1ꎬYangTing1ꎬShiJiajia1ꎬLiuLang2ꎬWuSi1ꎬJiangCuiping1(1 KeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakesꎬMinistryofEducationꎬSchoolofEnvironmentꎬHohaiUniversityꎬNanjing210098ꎬChinaꎻ2 WaterConservancyandAgricultureBureauofJurongCityꎬJurong212400ꎬChina)㊀㊀Abstract:WaterpollutioncapacityisdeterminedtobethebasicworkforimplementationofpollutionlimitationinwaterfunctionalareasꎬandthereisagreatcontroversyinthepracticalapplicationofthecurrentCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodies(25173-2010GB/T).InthispaperꎬonthebasisofasurveyofwaterpollutantcapacitycalculationmethodꎬsomeproblemsinthecalculationmodeloftheexistingCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesarediscussedꎬandtheimprovedcalculationmodelisdeducedꎬwithcorrespondingsuggestionsputforwardsꎬprovidingreferenceforcalculationofwaterpollutioncapacityandrevisionoffuturecalculationprocedures.㊀㊀Keywords:WaterPollutionCapacityꎻRiverꎻWaterQualityModelCLCnumber:X26ꎻX522㊀㊀随着当代社会经济的快速发展和人们生活水平的进一步提高ꎬ使得公众对水环境的关注日益增加ꎬ对水资源的保护意识也逐渐增强ꎮ与此同时ꎬ大量污(废)水排入水体ꎬ使我国河流㊁湖泊等水域的水环境质量越来越差ꎬ也加剧了水资源短缺的情况ꎬ而水域纳污能力作为相关部门对水资源管理和配置的依据ꎬ也日益受到更多的关注ꎮ2011年中央1号文件要求实施最严格水资源管理制度ꎬ提出了 三条红线 的管理目标ꎬ水功能区限制纳污便是其中之一ꎮ而限制纳污则必须要计算出相应的水域纳污能力ꎬ故对纳污能力计算准确性的要求也逐渐提高[1]ꎮ而且由于水域纳污能力是建立在一定时期人们对水环境保护管理目标要求的水环境质量标准之上的ꎬ所以纳污能力具有社会和自然双重属性ꎬ更能反映当前的社会需求ꎬ更具实用性ꎬ所以对水域纳污能力计算的研究意义重大ꎮ纳污能力 一词最早源于1998年的全国水㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨33㊀资源保护规划ꎬ2002年«中华人民共和国水法»首次在法律上明确了水域纳污能力的概念ꎬ并与水域限制排污总量一起构成我国水资源保护行业的重要基础ꎮ 纳污能力 根据个人的理解ꎬ定义也各不相同ꎬ«水域纳污能力计算规程(GB/T25173-2010)»(以下简称为«计算规程»)中ꎬ将 纳污能力 定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ 纳污能力 概念的提出ꎬ为相关行业管理水资源提供了有效依据ꎮ1㊀水域纳污能力主要计算方法1 1㊀污染负荷计算法水域纳污能力的计算方法主要有两大类:污染负荷计算法和数学模型计算法ꎮ污染负荷计算法是根据现状污染物入河量确定水域纳污能力的方法ꎮ按照污染物入河量计算依据的不同又可以分为实测法㊁调查统计法和估算法ꎮ实测法是通过调查收集或实测入河排污口水量和污染物浓度计算污染物入河量ꎬ确定水域纳污能力ꎮ调查统计法是通过调查收集影响水功能区水质的陆域污染源及其排放量和入河系数计算污染物入河量ꎬ确定水域纳污能力ꎮ估算法是根据调查收集影响水功能区水质的陆域内的人口㊁工业产值㊁第三产业产值等和污染物排放系数计算污染物排放量ꎬ再根据入河系数估算污染物入河量ꎬ确定水域纳污能力ꎮ由于污染负荷计算法依据现状入河量确定水域纳污能力ꎬ其计算前提是在现状排污条件下功能区水质是满足计算水域的水质目标要求的ꎬ因此污染负荷计算方法只适用于水质现状较好㊁水质目标原则上维持现状水质的保护区和保留区以及现状水质较好㊁用水矛盾不突出的缓冲区ꎮ对于水质较差的保护区和保留区或者用水矛盾突出缓冲区ꎬ仍需采用数学模型法计算其纳污能力ꎬ并提出限制排污总量及其削减量意见ꎮ开发利用区的纳污能力根据各二级功能区的设计水文条件和水质目标等参数ꎬ选择数学模型法进行计算ꎮ1 2㊀数学模型计算法数学模型计算法是根据水域特性㊁水质状况㊁设计水文条件和水功能区水质目标值ꎬ应用数学模型计算纳污能力的方法ꎮ根据所采用数学模型的不同可以分为零维模型㊁一维模型㊁二维模型ꎬ文章根据对 满足计算水域的水质目标要求 理解的不同ꎬ可以分为总体达标法㊁断面控制法㊁混合区范围控制法㊁«计算规程»中的计算方法等ꎬ见图1ꎮ图1㊀水域纳污能力计算方法分类体系㊀㊀总体达标法是基于满足水域总体平均水质达标的前提下计算水域纳污能力的方法ꎮ该方法假设计算水域水质完全混合ꎬ数学模型大多采用零维水质模型ꎬ计算过程不考虑排污口位置分布ꎬ计算结果可以保证水域体积平均水质能够满足水功能区水质目标要求ꎮ如ꎬ梁音等[2]利用总体达标法计算了苏南运河水环境容量ꎮ控制断面达标法是基于满足控制断面达标的前提下计算水域纳污能力的方法ꎮ该方法认为功能区控制断面的水质达标ꎬ即为 满足计算水域的水质目标要求 ꎮ由于考虑了污染物空间不均匀性和控制断面位置差异ꎬ数学模型多采用一维水质模型或二维水质模型ꎮ在二维情况下即为控制点达标法ꎮ计算过程与概化排污口和控制断面的位置有关ꎬ根据断面的位置不同可分为段首控制法㊁段中控制法和段尾控制法3种[3-4]ꎮ计算结果可以保证控制断面水质能够满足水功能区水质目标要求ꎬ但不能保证水质总体达标ꎬ排污口下游至控制断面之间的水域存在超标现象ꎮ控制断面达标法由于与当前水功能区管理的目标较为一致ꎬ在水资源管理实践中得到了广泛的应用ꎮ如路雨等[4]ꎬ在一维河流水质模型下ꎬ探讨不同排污口位置㊁不同控制断面设定㊁不同稀释容量分配情景下的河流纳污能力计算方法ꎬ并以温州市飞云江河段为例ꎬ分析不同计算方法对河流纳污能力34㊀环境保护科学第44卷㊀计算结果的影响ꎻFangXiaoboetal[5]以75%和90%的基流量为设计流量ꎬ利用传统一维水质模型和QUAL2K模型分析钱塘江的纳污能力ꎻ孙昊元等[6]采用控制断面达标法计算了内秦淮河中段的纳污能力ꎻ吴慧秀[7]为克服实测排污资料的失真问题及无资料地区等问题ꎬ根据现有一维模型ꎬ推导出不含排污资料的纳污能力计算模型ꎮ混合区范围控制法是基于混合区范围控制的计算水域纳污能力的方法ꎮ该方法认为污染物排入河流后形成的混合区在一定范围内ꎬ即为 满足计算水域的水质目标要求 ꎮ数学模型多采用一维水质模型或二维水质模型ꎬ计算结果与排污口位置和混合区范围控制准则有关ꎮ对于一维水域ꎬ通常通过混合区长度来控制ꎬ对于二维水域ꎬ可以通过混合区长度㊁宽度或面积来控制ꎮ该方法主要应用于宽浅型水域ꎬ如向军[8]采用二维水质模型ꎬ选择化学需氧量㊁氨氮作为污染指标ꎬ对柳州市柳江进行纳污能力计算ꎻ马欢[9]使用一维和二维水质模型对松花江哈尔滨段水环境容量进行计算ꎻ王胜艳等[10]根据长江秦州段水动力特征和实际情况建立二维非稳态水量 水质数值模型ꎬ并计算该江段纳污能力ꎻWangFei-er[11]等在水质分析模拟程序的帮助下ꎬ制定污染物总量控制方案ꎬ并计算了西城河的纳污能力ꎮ现行的«计算规程»为我国水功能区限制纳污管理发挥了重要的指导作用ꎬ但在实际应用中也存在一定争议[1]ꎮ«计算规程»中的纳污能力计算方法是基于污染物稀释扩散原理来计算水域纳污能力ꎬ其基本计算公式如下:M=Q(Cs-Cx)式中:M为水域纳污能力ꎬg/sꎻQ为初始断面的入流流量ꎬm3/sꎻCs为水功能区水质目标ꎬmg/LꎻCx为计算水域代表断面(点)的水质浓度ꎬmg/Lꎮ该方法使河流㊁湖泊等水体纳污能力的计算简单㊁便捷ꎬ在水环境保护和水资源管理工作中得到广泛应用ꎮ如罗慧萍等[12]ꎬ针对河网区和湖库区分别采用一维㊁二维模型ꎬ计算了江苏省太湖流域水功能区纳污能力ꎮ但该方法在实际应用中存在较大争议ꎬ主要表现在:①计算公式来源于污染物均匀混合稀释假定ꎬ许多水体不满足这一假定ꎻ②计算公式在零维模型时没有考虑污染物的自净能力ꎬ而污染物自净能力是纳污能力的重要组成部分ꎻ③该方法没有与纳污能力的概念联系起来ꎬ物理意义不明确ꎬ计算结果难以保证 满足计算水域的水质目标要求 ꎮ2㊀关于«计算规程»中河流计算模型若干问题的探讨2 1㊀关于 水域纳污能力 的概念«计算规程»中给出的水域纳污能力的定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ其中 最大数量 是指计算时段内该区域所能容纳的某种污染物的最大数量还是单位时间内所能容纳的最大数量ꎬ其表意不明ꎬ可能会造成不必要的误解ꎬ故建议修改为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大数量 或者 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大负荷 ꎮ明确的指出该定义中的 最大数量 是在单位时间内的数量ꎬ使该定义更加明确ꎮ2 2㊀关于河流零维模型的讨论零维是一种理想状态ꎬ把所研究的水体如一条河或一个湖库看成一个完整的体系ꎬ当污染物进入这个体系后ꎬ立即完全均匀的分散到这个体系中ꎬ污染物的浓度不会随空间的变化而变化ꎮ适用于污染物均匀混合的小型河段ꎮ2 2 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A 1)计算:c=(Qc0+QPcP)/(Q+QP)(A.1)式中:c为污染物浓度ꎬmg/Lꎻc0为初始断面的污染物浓度值ꎬmg/LꎻcP为排入该河段的废污水污染物浓度ꎬmg/LꎻQP为现有废污水的排放流量ꎬm3/sꎻQ为初始断面的入流流量ꎬm3/sꎮ相应的水域纳污能力按式(A.2)计算:M=(cs-c0)(Q+Qp)(A.2)㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨35㊀式中:M为水域纳污能力ꎬg/sꎻcs为水质目标浓度值ꎬmg/Lꎮ2 2 2㊀修改建议㊀«计算规程»式(A.1)只考虑了水量稀释ꎬ没有考虑水体的自净能力ꎮ根据物质守恒定律ꎬ污染物转化只考虑综合降解ꎬ零维模型的基本方程为:Qc0+m=(Q+Qp)c+KVC式中:K为污染物综合衰减系数ꎬs-1ꎻV为该计算河段的体积ꎬm3ꎻm为污染物入河速率ꎬg/sꎮ从而推导出:c=(Qc0+m)/(Q+QP+KV)=(Qc0+QPcP)/(Q+QP+KV)(B.1)令c=cSꎬ相应的水域纳污能力修正式为:M=Q(cs-c0)+Qp(cs-cp)+KVCs=Q(cs-c0)+Qpcs+KVCs-m(B.2)相对于公式(A.2)ꎬ该公式考虑了污染物自净和功能区现有的污染物入河量对纳污能力的影响ꎮ2 3㊀关于河流一维模型的讨论2 3 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A.3)计算:cx=c0exp(-Kxu)(A.3)式中:cx为流经x距离后的污染物浓度ꎬmg/Lꎻx为沿河段的纵向距离ꎬmꎻu为河道断面平均流速ꎬm/sꎮ相应水域纳污能力按式(A.4)计算:M=(cs-cx)(Q+Qp)(A.4)入河排污口位于计算河段的中部时(即x=L/2时ꎬL为计算河段的长度)ꎬ水功能区下断面的污染物浓度及其相应的水域纳污能力按式(A.5)和(A.6)计算:cx=L=c0exp(-KLu)+mQexp(-KLu)(A.5)M=(cs-cx=L)(Q+Qp)(A.6)2 3 2㊀修改建议㊀由于式(A.3)中的c0是指排污口完全混合断面的浓度ꎬ与«计算规程»中功能区初始断面浓度不是同一个概念ꎬ建议采用另一符号表示ꎬ如cᶄ0ꎮ式(A.3)可以修改为:cx=cᶄ0exp(-Kxu)(B.3)式中:cᶄ0为排污口完全混合断面浓度ꎬmg/Lꎻx为沿河段距排污口的纵向距离ꎬmꎮ式(A.4)存在问题前面已经分析过ꎮ公式(A.5)存在错误ꎬ建议修改为式(B.4):cx=L=QQ+Qpc0exp(-KLu)+mQ+Qpexp(-KL2u)(B.4)若忽略Qpꎬ公式简化为:cx=L=c0exp(-KLu)+mQexp(-KL2u)(B.5)按照功能区末断面达标的要求ꎬ推导出水域纳污能力按式(B.6)计算:M=(cs-QQ+Qpc0exp(-KLu))exp(KL2u) (Q+Qp)-m(B.6)若忽略Qpꎬ公式简化为:M=(cs-c0exp(-KLu))exp(KL2u)Q-m(B.7)2 4㊀关于河流二维模型的讨论2 4 1㊀«计算规程»中纳污能力计算方法㊀对于顺直河段ꎬ忽略横向流速及纵向离散作用ꎬ且污染物岸边排放且不随时间变化时ꎬ二维对流扩散方程为式(A.7):u∂C∂x=∂∂y(Ey∂C∂y)-KC(A.7)式中:Ey为污染物的横向扩散系数ꎬm3/sꎻy为计算点到岸边的横向距离ꎬmꎮ忽略污水流量的影响ꎬ式(A.7)的解析解按式(A.8)计算:c(xꎬy)=c0+mhπEyxuexp-vy24Eyxæèçöø÷æèçöø÷exp-Kxvæèçöø÷(A.8)式中:c(xꎬy)为计算点污染物垂线平均浓度ꎬmg/Lꎻh为水深ꎬmꎮ以岸边污染物浓度作为下游控制断面的控制浓度时ꎬ即y=0ꎬ岸边污染物浓度按式(A.9)计算:36㊀环境保护科学第44卷㊀c(xꎬ0)=(c0+m/hπEyxv)exp(-Kx/v)(A.9)相应的水域纳污能力按式(A.10)或式(A.11)计算:M=(cs-c(xꎬy))Q(A.10)当y=0时ꎬM=(cs-c(xꎬ0))Q(A.11)2 4 2㊀修改建议㊀式(A.8)和式(A.9)中的v和式(A.7)中的u是同一物理量ꎬ均为计算河道的纵向平均流速ꎬ故应统一用u来表示ꎮc0用cᶄ0代替ꎬ表示排污口处断面浓度ꎮ式(A.8)㊁(A.9)建议修改为式(B.8)和(B.9)ꎮc(xꎬy)=cᶄ0+mhπEyxuexp-uy24Eyxæèçöø÷æèçöø÷exp-Kxuæèçöø÷(B.8)c(xꎬ0)=cᶄ0+mhπEyxuæèçöø÷exp-Kxuæèçöø÷(B.9)同样依据功能区末断面达标推导水域纳污能力计算公式ꎬ将入河排污口概化为计算河段的中部(即x=L/2)时ꎬ水域纳污能力计算公式为:M=(csexp(KL2u)-c0exp(-KL2u))ˑhπEyLu/2-m(B.10)3㊀算例某水域功能区河段长10kmꎬ水面宽400mꎬ水深1mꎬ河流设计流量为20m3/sꎬ功能区划为«地表水质量标准»(GB3838-88)中的Ⅲ类水ꎬ相应的COD水质标准为8mg/Lꎬ上游为饮用水功能区ꎬ相应的COD水质标准为6mg/Lꎬ下游为农业用水区ꎬCOD的自净系数为0 1d-1ꎬ功能区污水流量为0 1m3/sꎬ污染物浓度为100mg/Lꎮ排污口概化在河段中部ꎬ分别用«计算规程»中的计算模型和文中提出修改后的计算模型其纳污能力ꎮ横向扩散系数根据经验公式估算为0 7m2/sꎬ两类方法在3种不同的模型下所得的纳污能力见表1ꎮ表1㊀纳污能力计算值计算模型水域纳污能力/g s-1«计算规程»中的计算模型修改后的模型零维100 2127 8一维117 6123 1二维120 4186 5㊀㊀由表1可知ꎬ采用文中修改后的方法计算得到的纳污能力略大于用«计算规程»中方法计算得的结果ꎬ这是由于前者充分考虑了自净能力ꎬ而后者没有考虑或未充分考虑水体的自净能力ꎮ4㊀结论针对«计算规程»中的河流计算模型存在的未充分考虑污染物自净能力㊁物理意义不明确的问题ꎬ采用总体达标法和控制断面达标法推导了改进的河流纳污能力计算模型ꎬ提出了相应的修改建议ꎮ算例计算结果表明ꎬ改进后的计算模型由于充分考虑了水体自净能力ꎬ计算结果略大于依据«计算规程»的计算结果ꎮ相对于原模型ꎬ计算结果更科学㊁物理意义更明确ꎬ为水域纳污能力计算规程的进一步修订提供参考ꎮ参考文献[1]赵㊀鑫ꎬ黄㊀茁ꎬ李青云.我国现行水域纳污能力计算方法的思考[J].中国水利ꎬ2012(1):29-32.[2]梁㊀英ꎬ唐㊀扬ꎬ吴娅明ꎬ等.基于MIKE11的苏南运河镇江至无锡段水环境容量计算与污染物削减模型研究[J].污染防治技术ꎬ2016ꎬ29(3):5-9.[3]周孝德ꎬ郭瑾珑ꎬ程㊀文ꎬ等.水环境容量计算方法研究[J].西安理工大学学报ꎬ1999ꎬ15(3):1-6.[4]路㊀雨ꎬ苏保林.河流纳污能力计算方法比较[J].水资源保护ꎬ2011ꎬ27(4):5-9.[5]FangXiaoboꎬZhangJianyingꎬMeiChengxiaoꎬetal.Theassimilativeca ̄pacityofQiantangRiverwatershedꎬChina[J].WaterandEnvironmentJournalꎬ2014ꎬ28(2):192-202.[6]孙昊元ꎬ李昊宸ꎬ缪国斌.南京市内秦淮河中段水环境容量的计算与研究[J].江苏水利ꎬ2012(9):34-36.[7]吴慧秀.无排污资料感潮河段纳污能力一维模型推导研究[J].辽东学院学报(自然科学版)ꎬ2016ꎬ23(2):108-110.[8]向㊀军.柳州市柳江纳污能力计算[J].人民珠江ꎬ2006(4):51-53.[9]马㊀欢.松花江哈尔滨段水环境容量研究[D].哈尔滨:哈尔滨工业大学ꎬ2006.[10]王胜艳ꎬ王为攀ꎬ黄㊀勇.长江泰州段水域纳污能力研究分析[J].水资源开发与管理ꎬ2017ꎬ2(9):29-32.[11]WangFeierꎬLiYananꎬYangJiaꎬetal.ApplicationofWASPmodelandGinicoefficientintotalmasscontrolofwaterpollutants:acasestudyinXichengCanalꎬChina[J].DesalinationandWaterTreat ̄mentꎬ2016ꎬ57(7):2903-2916.[12]罗慧萍ꎬ逄㊀勇ꎬ徐心彤.江苏省太湖流域水功能区纳污能力及限制排污总量研究[J].环境工程学报ꎬ2015ꎬ9(4):1559-1564.。