移动通信原理第6次课-第6章BPSK数字调制

合集下载

BPSK的调制与解调ppt课件

BPSK的调制与解调ppt课件

π/4 -0.707
38 00100110
3π/8 -0.924
11 00001010
π/2 -1.000
1
00000001
5π/8 -0.924
11 00001010
3π/4 -0.707
38 00100110
7π/8 -0.383
79 01001111
π
0.0004
BPSK的Simulink仿真结果
没加噪声的仿真结果:
5
BPSK的Simulink仿真结果
调制信号经过加性高斯白噪声信道之后解调的仿真结果 SNR=0dB时,解调正确:
6
BPSK的Simulink仿真结果
调制信号经过加性高斯白噪声信道之后解调的仿真结果 SNR=-3dB时,解调出现了错码:
7
一种基于BPSK的调制的方框图
2
对数字信号“10111001000111110000”进行BPSK 调制之后,输出的波形如下图所示。
3
2. BPSK(Binary Phase Shift Keying)解调
BPSK解调原理框图 根据BPSK的调制特点,我们只需要用一个周期相 等的正弦信号和调制信号相乘,再经过一个低通滤波 器,就可以在一个周期中得到2个正向的半波信号(对 应数据“0”)或2个负向的半波信号(对应数据 “1”),然后用逻辑电路进行解调。
由于接受到的信号,中间电平可能是上下浮动的,上面
的绝对判断方法在信噪比较低时可能有误判现象,则可以通过 相对比较法来判断,即B1>B2时判“0”, B2>B1时判“1”,即 A[0]-A[12 ]+A[1]-A[13] +A[2]-A[14]……+A[11]-A[23]得到C值,根 据C大于零,输出是“0”,反之,输出为“1”。

BPSK数字调制

BPSK数字调制

相移键控的基本原理 • 载波信号的函数式为: Sk(t)=cos(wc+φk)
这里, 振幅取归一化值1;wc是载波频率,为常数;φk是受 数字信号控制的相位,它有有限的M个不同取值,每个相位携 带的信息量I = log 2 M (bit)。 • 例如,当M=2,φk的每一相位携带1bit信息:0或1;当M=4, φk的每一相位携带2bit信息:00、01、10或11;当M=8,φk 的每一相位携带3bit信息:000、001、010、011、100、101、 110或111。 • 在发送端,数字调制器输出的载波信号相位将随输入不同的 数字信号而改变。对于一个数字信号,Sk(t)的相位φk将取一 个特定的值与之对应。

• BPSK信号的功率谱密度如下图所示。 • 设数字信号的bit周期是Tb, 数字信号速 率为1/Tb(bps)。 • 如图,BPSK信号的带宽为: 2fb= 2/Tb (Hz) 。 • 频带利用率为:(1/Tb)/ 2fb=0.5 (bps/Hz)。
2) 差分二相移相键控 • DBPSK可以有效避免BPSK的相位模糊,克服 接收数据反相问题。 DBPSK调制原理 • 先将基带数字信号转换成差分码,方法是出现 基带数字信号1,差分码脉冲前沿跳变;出现 基带数字信号0,差分码脉冲前沿不跳变。然 后利用差分码对载波进行BPSK调制。原理图 和波形图如下:
DBPSK解调原理 • DBPSK解调不需要用与发端同步的载波,这 种解调方法称为非相干解调。前一个码元周期 内的载波经过延时一个码元周期后与当前接收 的码元周期内的载波进行模二加(逻辑乘)。如 果它们的相位相反,结果为逻辑1;如果它们 的相位相同,结果为逻辑0。 • DBPSK信号的带宽与BPSK的相同为, 2fb= 2/Tb (Hz) 。

移动通信原理第6次课-第6章BPSK数字调制

移动通信原理第6次课-第6章BPSK数字调制
• 典型的扩频通信系统方框图如下。 • 我们在前面已经学习了信源编码、扩频加扰部分, 下面继续学习数字调制。 • 扩频信号是数字信号,是不能直接上无线信道传输 的。必须将数字信号调制到正弦或余弦模拟信号上 才能上无线信道传输。
第6章 数字调制技术
6.1 关于数字调制的概念
• 下图表明了一个两电位数字信号序列经过短短几十米 双绞线传输后的衰减情况。
6.1.2 数字调制基本原理 • 通常余弦波信号表示为: • s(t) = a(t)cos[w(t)+j(t)] • 其中,t是时间; a(t)是幅度;w(t)是角 频率; j(t)是相位。 • 数字调制就是用基带数字信号0和1去控 制余弦信号的幅度、角频率和/或相位的 变化。随着余弦波在无线信道里传输,基 带数字信号也传输了出去。因此,这种余 弦波被称为载波;它被基带数字信号调制 后成为调制信号。
• 由于一般信道都是通频带有限的带通信道, 脉冲信号中的高频成分将受到严重衰减, 信号前沿由陡峭变得平缓,幅度也受到衰 减,数字信号将严重变形 。这些不良变化 将导致接收机在对数字信号识别时出错。 • 上述在短距离上直接传输数字信号的方法 叫做基带传输。 • 如果需要在长距离的有线信道和无线信道 上传输数字信号必须采用频带传输技术, 即由高频载波信号来载荷数字信号,这就 是数字调制。
• 分别调制载波幅度、频率和相位的2ASK(振幅 键控)、2FSK(频移键控)和2PSK(相移键控) 调 制波形如下:
6.1.3 数字调制的分类
• 数字调制的分类如下表: 不恒定 ASK(幅度键控) 包络 QAM(正交幅度键控) MQAM(星座调制) 数 字 FSK BFSK(二进制频移键控) 调 (频移键控) MFSK(多进制频移键控) 制
数字信号控制的相位,它有有限的M个不同取值,每个相位携 带的信息量I = log 2 M (bit)。 • 例如,当M=2,φk的每一相位携带1bit信息:0或1;当M=4, φk的每一相位携带2bit信息:00、01、10或11;当M=8,φk 的每一相位携带3bit信息:000、001、010、011、100、101、 110或111。 • 在发送端,数字调制器输出的载波信号相位将随输入不同的 数字信号而改变。对于一个数字信号,Sk(t)的相位φk将取一 个特定的值与之对应。

bpsk调制原理

bpsk调制原理

bpsk调制原理bpsk调制原理与模拟通信系统相比,数字调制和解调同样是通过某种方式,将基带信号的频谱由一个频率位置搬移到另一个频率位置上去。

不同的是,数字调制的基带信号不是模拟信号而是数字信号。

在大多数情况下,数字调制是利用数字信号的离散值去键控载波。

对载波的幅度、频率或相位进行键控,便可获得ASK、FSK、PSK等。

这三种数字调制方式在抗干扰噪声能力和信号频谱利用率等方面,以相干PSK的性能最好,目前已在中、高速传输数据时得到广泛应用。

2PSK系统的调制部分框图如下图所示2PSK/BPSK调制部分框图1、M序列发生器实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M序列发生器产生一个伪随机序列来充当数字基带信号源。

按照本原多项式f(x)=X5+X3+1组成的五级线性移位寄存器,就可得到31位码长的M序列。

码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相应变化;也可以是异步的,因为实际的系统都是异步的,码元速率约为1Mbt/s。

2、相对移相和绝对移相移相键控分为绝对移相和相对移相两种。

以未调载波的相位作为基准的相位调制叫作绝对移相。

以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差1800。

绝对移相的波形如下图所示。

绝对移相的波形示意图在同步解调的PSK系统中,由于收端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现“0”、“1”倒置,发送为“1”码,解调后得到“0”码;发送为“0”码,解调后得到“1”码。

这是我们所不希望的,为了克服这种现象,人们提出了相对移相方式。

相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。

例如,当某一码元取“1”时,它的载波相位与前一码元的载波同相;码元取“0”时,它的载波相位与前一码元的载波反相。

6 移动通信原理 第六章 移动通信数字调制解调技术

6 移动通信原理 第六章 移动通信数字调制解调技术

第6章移动通信数字调制解调技术6.1 概述一.调制的概念将待传送的基带信号加到高频载波上进行传输的过程。

其简单模型可以表示为:载波二.调制的作用1.提高传输性能。

低频信号如话音,直接传输时损耗比较大,不事宜长距离传输,通过调制能有效的解决传输问题。

2.容易辐射。

对于一些无线通信往往要求天线的尺寸和发射信号的波长在同一数量级,天线的长度为1/4波长,如果将基带信号直接通过天线发射,那么天线的长度将是几十至几百公里的数量级,这是不现实的。

3.实现多路复用。

调制技术反映到频域上就是频带的搬移,通过调制将基带信号搬移到合适的位置,那么在一个较宽的信道中就可以同时传输多路信号,习惯上称为FDM。

4.提高系统的性能。

例如抗干扰能力,不同的调制方式具有不同的抗噪声能力,FM对信噪比的改善就比较大。

三.调制的分类调制是基带信号加到载波上的过程,而基带信号m(t)可以是模拟信号也可以是数字信号,而载波c(t)可以是连续波(通常称为正弦波),也可以是脉冲波形。

当c(t)为正弦波时,m(t)可以改变其幅度、频率或相位中的某一个或两个参数。

这样组合起来就会形成多种调制方式。

现归纳如下:四.蜂窝移动通信系统中的调制技术五.移动通信对数字调制技术的要求 1.数字调制的性能指标数字调制的性能指标通常通过功率有效性ηp (Power Efficiency )和带宽有效性ηB (Spectral Efficiency)来反映。

(1) 功率有效性功率有效性ηp 是反映调制技术在低功率电平情况下保证系统误码性能的能力, 可表述成每比特的信号能量与噪声功率谱密度之比:bp E N η=(2)带宽有效性带宽有效性ηB 是反映调制技术在一定的频带内数字有效性的能力, 可表述成在给定带宽条件下每赫兹的数据通过率:((/))B R b s Hz Bη=在数字系统设计中,经常需要在带功率有效性和宽有效性之间折中。

2.移动信道的基本特征(1) 带宽有限。

通信原理课程课件-数字调制系统

通信原理课程课件-数字调制系统
❖ 2PSK和2DPSK信号应具有相同形式的表达式,不同的是2PSK的调制信 号是绝对码数字基带信号,2DPSK的调制信号是原数字基带信号的差分 码。
❖ 2. 二进制相移键控信号的带宽 ❖ 调制信号为双极性NRZ数字序列时,二进制相移键控信号实际上是一种
DSB-SC信号,带宽与ASK相同。
第 6 章 数字调制系统
第 6 章 数字调制系统
PSK
(t)
A c os0 t A c os (0 t
)
"1" "0"
{an}
极性变换
BPF
φ2DPSK(t)
Acosω0t
AAccooss00tt
"1" "0"
an g(t nTS ) cos0t
n
{an}
差分编码
(a)
极性变换 (b)
BPF Acosω0t
第 6 章 数字调制系统
❖ 6.1 概述 ❖ 数字基带信号不能直接通过带通信道传输,需将数字基带信号变换成数字
频带信号。用数字基带信号去控制高频载波的幅度、频率或相位,称为数 字调制。从已调高频载波上将数字基带信号恢复出来,称为数字解调。 ❖ 数字调制方式:幅度调制,称为幅度键控,记为ASK;频率调制,称为频 移键控,记为FSK;相位调制,称为相移键控,记为PSK。 ❖ 多进制的基带数字信号有多种状态,一位多进制符号将代表若干位二进制 符号。在相同传码率条件下,多进制数字系统的信息速率高于二进制系统。 二进制系统,随着传码率的提高,信道带宽增加。采用多进制可降低码元 速率,减小传输带宽。同时,加大码元宽度,可增加码元能量,有利于提 高系统的可靠性。 ❖ 多进制数字调制方式:多进制幅移键控 (MASK)、多进制频移键控 (MFSK)和多进制相移键控(MPSK)。

移动通信原理BPSK数字调制要点

移动通信原理BPSK数字调制要点

6.1.1 数字调制相关概念
• 数字调制是将数字基带信号与正弦(或余弦)载波信号相乘 调制成为中心频率很高的频带信号。其基本原理是用数字 基带信号0和1去控制载波的一个参量。若控制载波的幅度, 称为振幅键控ASK;若控制载波的频率,称为频移键控 FSK;若控制载波的相位,称为相移键控PSK,若同时控 制载波的幅度和相位两个参量,称为幅度相位调制,又称 为正交幅度调制QAM。
• 典型的扩频通信系统方框图如下。
• 我们在前面已经学习了信源编码、扩频加扰部分, 下面继续学习数字调制。
• 扩频信号是数字信号,是不能直接上无线信道传输 的。必须将数字信号调制到正弦或余弦模拟信号上 才能上无线信道传输。
第6章 数字调制技术
6.1 关于数字调制的概念
• 下图表明了一个两电位数字信号序列经过短短几十米 双绞线传输后的衰减情况。
另外在实际相移键控调制方式中,为了降低已调信号的峰平比, 又引入了偏移QPSK(OQPSK)、π/4-DQPSK、正交复四相移键 控CQPSK,以及混合相移键控HPSK等等。
• 在二进制调制之中,为了彻底消除由于相位跃变带来的峰平比 增加和频带扩展,又引入了有记忆的非线性连续相位调制CPM, 最小频移键控MSK,GMSK(高斯型MSK)以及平滑调频TFM等。
不恒定 ASK(幅度键控) 包络 QAM(正交幅度键控)

MQAM(星座调制)
字 调 制
FSK (频移键控)
BFSK(二进制频移键控) MFSK(多进制频移键控)
BPSK(二相相移键控)
恒定 包络
PSK (相移键控)
DPSK(差分二相相移键控) QPSK(正交(四相)相移键
OQPSK(偏 移QPSK)p/4QPSK Nhomakorabea控)

bpsk调制 升余弦 相关解调

bpsk调制 升余弦 相关解调

BPSK调制、升余弦和相关解调是数字通信中常见的调制和解调技术。

本文将从理论和实际应用的角度介绍这三个主题,以帮助读者更好地理解和应用这些技术。

一、BPSK调制1. BPSK调制是一种基带调制技术,全称为二进制相移键控调制(Binary Phase Shift Keying)。

它通过改变载波信号的相位来传输数字信息。

具体来说,当数字为0时,载波信号的相位不变;当数字为1时,载波信号的相位反转180度。

这样就可以在相位上进行二进制编码。

2. BPSK调制的优点是简单直观,适用于频谱效率要求不高的情况。

在实际应用中,BPSK调制常用于低速数据传输、卫星通信和短波通信等场景。

3. 在无线传感网中,由于节点之间的距离较近、数据传输速率较低,可以采用BPSK调制来实现简单可靠的通信。

二、升余弦滚降滤波器1. 在数字通信中,为了尽可能减小传输信号的带宽,减小信道间的干扰,常常采用升余弦滚降滤波器(R本人sed Cosine Filter)来进行信号的滤波和调制。

2. 升余弦滚降滤波器的频率响应在频率为0附近有较好的抑制作用,可以有效地控制信号的带宽。

其滚降特性也能够减小信号在频率间隔内的干扰,提高信号的抗干扰能力。

3. 实际应用中,升余弦滚降滤波器常用于QPSK、16QAM等多种调制方式,尤其适用于要求频谱效率高、抗干扰能力强的场景。

三、相关解调1. 相关解调是指在接收端利用发送端已知的信号来解调接收到的信号。

通过计算接收信号和已知信号的相关性,可以还原发送信号。

2. 相关解调在数字通信中有着广泛的应用,特别是在多路径传输、信道干扰较大的高速数据传输场景中效果明显。

相对于其他解调方法,相关解调在抗噪声和多径干扰方面有明显的优势。

3. GPS定位系统中采用的CDMA技术就采用了相关解调的原理,来实现对传输信号的解调和定位。

BPSK调制、升余弦滚降滤波器和相关解调是数字通信领域中重要的技术手段,它们在不同的场景中发挥着重要的作用。

《移动通信--BPSK调制与解调》报告

《移动通信--BPSK调制与解调》报告

《移动通信--BPSK调制与解调》报告《移动通信BPSK 调制与解调》报告在当今的信息时代,移动通信技术的发展日新月异,为人们的生活和工作带来了极大的便利。

其中,BPSK(Binary Phase Shift Keying,二进制相移键控)调制与解调技术作为一种重要的数字通信技术,在移动通信中发挥着关键作用。

一、BPSK 调制的基本原理BPSK 是一种最简单的相移键控方式。

在 BPSK 中,通常用二进制数字“0”和“1”来控制载波的相位。

当数字信号为“0”时,载波的相位为0 度;当数字信号为“1”时,载波的相位为 180 度。

从数学角度来看,假设发送的二进制数字序列为{an},其中 an 取值为 0 或 1,载波信号为Acos(2πfct),那么 BPSK 调制后的信号可以表示为:s(t) =Acos(2πfct +πan)通过这种方式,将数字信息加载到载波信号的相位上,实现了信号的调制。

二、BPSK 调制的实现方式在实际应用中,BPSK 调制可以通过多种方式实现。

一种常见的方法是使用乘法器。

将数字信号与一个正弦载波相乘,得到调制后的信号。

另一种实现方式是基于数字电路,通过逻辑门和计数器等组件来生成 BPSK 调制信号。

这种方式在数字通信系统中应用广泛,具有稳定性高、易于集成等优点。

三、BPSK 解调的基本原理解调是从接收到的已调信号中恢复出原始数字信号的过程。

BPSK的解调通常采用相干解调的方法。

相干解调需要在接收端产生一个与发送端载波同频同相的本地载波。

接收到的 BPSK 信号与本地载波相乘,然后通过低通滤波器滤除高频分量,再进行抽样判决,恢复出原始的数字信号。

四、BPSK 解调的实现过程首先,接收到的信号与本地载波相乘,得到:r(t) = s(t) × cos(2πfct +φ)其中,φ 为本地载波与发送端载波的相位差。

经过乘法运算后,得到:r(t) = 05A1 +cos(2πfct +πan +φ 2πfct)= 05A1 +cos(πan +φ)通过低通滤波器后,滤除高频分量,得到:r'(t) = 05A1 +cos(πan +φ)最后,对 r'(t) 进行抽样判决。

通信原理第六章 数字调制系统

通信原理第六章 数字调制系统
2 PSK s c s c
1,
概率为 P
n
s
n
n
- 1, 概率为1 P
模拟调制法
键控法
1 2 2 2 P2PSK ( f ) f s P(1 P) G( f f c ) G( f f c ) f s (1 2 P) G(0) ( f f c ) ( f f c ) 4
a cos ct ni (t ) “1” yi (t ) - a cos ct ni (t ) “0”
0
f1 ( x)
a nc (t ) “1” x(t ) a nc (t ) “0”
( x a) 2 exp 2 2 n 2 n 1
包络检波器
(a)非相干解调(包络检波法)
1 r4 Pe e 2
a cos ct ni (t ) “1” a cos ct n(t ) “1” yi (t ) y(t ) “0” “0” ni (t ) n(t )
2 2 [a nc (t )] ns (t ) “1” V (t ) nc2 (t ) ns2 (t ) “0”
2 2


P2 PSK ( f )
Ts 2 2 Sa ( f f c )Ts Sa 2 ( f f c )Ts 4


B2PSK 2 f s
载波恢复过程中存在着的相位模糊,即恢复的本地载波与所需的相干载波可能同 相,也可能反相,这种相位关系的不确定性将会造成判决器输出数字信号全部出 错,这种现象称为2PSK 方式的“倒π”现象。
r 4 4 16
则有包络检波法解调时系统的误码率为:

通信原理第六章基本的数字调制系统精品PPT课件

通信原理第六章基本的数字调制系统精品PPT课件

2fc
2 T
f0
f
6.2.3 误码率
讨论在加性高斯白噪声信道中2ASK信号的误码率。
s(t)A(t)cos(0t) 带通
高斯白噪声 滤波
中心频率为 f 0 , 带宽为 2 f c 。
s(t)
解调器
窄带高斯噪声
n ( t) n c ( t)c o s (0 t) n s ( t)s in (0 t)
1. 调制方法
• 模拟调幅法—乘法电路 • 键控法
A ( t ) 相乘器
s(t)
cos(0t )
s(t)
cos(0t )
A (t)
2. 解调方法
• 包络检波法 • 相干解调法
s ( t ) 带通
滤波
s ( t ) 带通
滤波
全波 整流
低通 滤波
包络检波器
相乘 电路
低通 滤波
抽样 A ( t )
判决
定时脉冲
第6章 基本的数字调制系统
6.1 概述 6.2 二进制振幅键控(2ASK) 6.3 二进制频移键控(2FSK) 6.4 二进制相移键控(2PSK) 6.5 二进制差分相移键控(2DPSK) 6.6 二进制数字键控传输系统性能比较 6.7 多进制数字键控
6.1 概述
数字调制:
调制信号 m ( t是) 数字信号 有限种状态
x(t)nAc(t)nc(t)
,发“1”时 ,发“0”时
在抽样时刻
t

1
x(t1)nAc(t1n)c(t1)
,发“ 1”时 ,发“0”时
为高斯型随机变量
发送“0”码时x ,( t 1 ) 的概率密度p0(x) 21nexp x2/2n 2

[课件]第六章数字调制系统(1)数字调制原理PPT

[课件]第六章数字调制系统(1)数字调制原理PPT

12
《通信原理》九江学院
OOK信号功率谱图形
Ps(f)
-2fs
-fs
0 PE(f)
fs
2fs
f
-fC-fs -fC
-fC+fs
0
fC-fs
fC
fc+fs
f
特点:理论上谱宽→∞,但有效带宽 B≈2RB ≈2fs
13
《通信原理》九江学院
2、2FSK
14
《通信原理》九江学院
(1)2FSK信号表达式
S 2 FSK (t ) = s(t ) cos(1t n ) s(t ) cos( 2t n )
S(t)为单极性波形
S ( t ) [ a g ( t nT ) ] cos t [ a g ( t nT ) ] co t 2 F SK n s 1 n s 2
n n



a
1
n
2 f 2 , a n 为 a n 的反码 0, P 0, 1 P , an 1, 1 P 1, P
2 2
故上式可简化为
2 2 P f f P ( 1 P ) G ( f ) f ( 1 P ) G ( 0 ) ( f ) s s s

将其代入
1 P ( f ) P ( f f ) P ( f f ) 2A SK s c s c 4
11
《通信原理》九江学院

n
s(t)为单极性不归零波形
s ( t ) cos t cos t c c
s ( t) cos t cos t c c
0
OOK(通断键控)

通信原理课程设计BPSK调制与解调

通信原理课程设计BPSK调制与解调

通信原理课程设计BPSK调制与解调本次课程设计以基于MATLAB的BPSK调制仿真及性能分析为题⽬,其中BPSK(Binary Phase Shift Keying),即⼆进制相移键控,是⼀种数字带通调制⽅法。

此次课设中着重介绍了算法的实现,并采⽤MATLAB程序仿真测试了BPSK过程中双极性不归零的产⽣、载波的形成、BPSK的模拟调制、信号通过AWGN信道、带通滤波器的设计、低通滤波器的设计、抽样判决、载波的恢复、⽽且建⽴蒙特卡洛仿真模型统计系统误码率,并与理论误码率曲线进⾏⽐较。

调制过程中采⽤模拟调制⽅法得到调制信号,并进⾏了信号的频谱分析;调制信号通过信道时加⼊了⾼斯⽩噪声;在设计带通、低通滤波器时采⽤了Butterworth滤波器;并经过蒙特卡洛仿真模型对误码率进⾏了分析。

关键词:BPSK;调制;滤波器;蒙特卡洛分析⼀、前⾔ (1)⼆、设计意义及任务 (2)2.1 ⽬的与意义 (2)2.2任务及要求 (2)三、设计⽅案与原理 (3)3.1系统总体设计 (3)3.1.1通信系统模型 (3)3.2原理介绍 (4)3.2.1 调制的概念 (4)3.2.2 调制的种类 (4)3.2.3 调制的作⽤ (4)3.2.4 调制⽅式 (4)3.3 BPSK调制基本原理 (5)3.3.1 BPSK调制原理 (5)3.3.2 BPSK数字解调原理 (7)3.4 蒙特卡洛(Monte Carlo)仿真的简介 (8)四、仿真结果及分析 (10)4.1 各部分仿真结果 (10)4.1.1 BPSK信号调制的实现 (10)4.1.2加噪及经带通滤波后的信号 (13)4.1.3与恢复载波相乘后的信号 (14)4.1.4抽样判决及消除延迟 (14)4.1.5计算误码率 (16)4.2仿真结果分析 (18)设计总结 (19)参考⽂献 (20)致谢 (21)⼀、前⾔在信息时代的现在,信息的传输及通信起着⽀撑作⽤。

⽽对于信息的传输,数字通信已经成为重要的⼿段,数字信号的调制就显得尤为重要。

《移动通信--BPSK调制与解调》报告

《移动通信--BPSK调制与解调》报告

移动通信--BPSK调制与解调1. 引言移动通信是现代通信技术的重要组成部分,其中调制和解调技术是信号的传输和接收过程中的关键环节。

本报告将重点讨论二进制相移键控(Binary Phase Shift Keying,BPSK)调制和解调技术。

2. BPSK调制原理BPSK调制是一种基于相位的调制技术,它将输入的二进制数据流转换为相位差为180度的正弦信号。

具体来说,逻辑1和逻辑0分别对应不同相位的正弦信号,经过BPSK调制后的信号可以被传输至接收端进行解调。

BPSK调制可以用如下的数学表示:$$s(t) = A \\cdot \\cos(2\\pi f_c t + \\pi m)$$其中,$A$表示幅度,$f_c$表示载波频率,$t$表示时间,$m$表示输入信号。

对于BPSK调制,$m$的值只能为逻辑1或逻辑0。

3. BPSK解调原理BPSK解调是将接收到的BPSK调制信号恢复为原始的二进制数据流的过程。

解调过程基于相位差的改变来判断接收到的信号是逻辑1还是逻辑0。

BPSK解调可以用如下的数学表示:$$\\hat{m} = \\begin{cases}1, & \\text{if} \\ \\Delta\\phi > 0 \\\\0, & \\text{if} \\ \\Delta\\phi < 0\\end{cases}$$其中,$\\hat{m}$表示解调后的输出,$\\Delta\\phi$表示接收到的相位差。

如果相位差大于0,则认为接收到的是逻辑1;如果相位差小于0,则认为接收到的是逻辑0。

4. BPSK调制与解调的实现BPSK调制与解调可以通过软件仿真或硬件电路来实现。

在软件仿真方面,可以利用MATLAB等工具进行实现。

通过BPSK调制信号和加入噪声模拟信道,然后进行BPSK解调,可以得到解调后的输出。

在硬件电路方面,可以利用电子元器件进行设计和实现。

通过使用相位锁定环路电路和时钟恢复电路等技术来实现BPSK解调。

通信原理第6章数字调制系统精品PPT课件

通信原理第6章数字调制系统精品PPT课件
移频键控是数字信号改变载波的频率。 载波频率随0和1有两种取值,分别为f1和f2。
1. 2FSK的时域表达式:
s 2F (t) S Ka n g t ns T co 1 t s a n g t ns T co 2 ts
n
n
0 , 概 率 为 P a n 1 , 概 率 为 1 P
第六章 数字信号的调制传输
2007年12月
1
引言
1.数字信号的分类和传输方式
数字信号
数字调制信号
数字基带信号
传输方式
数字信号的基带传输
数字信号的调制传输
以哪种传输方式为主?
由信道类型确定
低通型信道--数字信号的基带传输
2007年12月
带通型信道--数字信号的调制传输
2
2.数字调制
数字调制目的与本质
载波:连续的正(余)弦信号 调制信号:数字基带信号
数字调制完成基带信号功率谱的搬移
数字调制的过程
模拟调制的过程,载波参数连续变化 数字调制的过程,载波参数离散变化
调制,modulation 键控,shift keying
2007年12月
3
3.模拟调制和数字调制方式对照
模拟调制 幅度调制(AM) 频率调制(FM) 相位调制(PM)
ang(tnsT )cocst
可见,2ASK为双边带调幅信号。n
2007年12月
6
2. 功率谱密度
设调制信号功率谱为 PB(,)则2ASK信号功率谱为:
P AS ()K 1 4P B (c)P B (c)
图 OOK信号的功率谱
(a)基带信号功率谱; (b) 已调信号功率谱
2007年12月
7
分析

bpsk调制原理

bpsk调制原理

bpsk调制原理2011-08-18 08:18:59 来源:互联网bpsk调制原理与模拟通信系统相比,数字调制和解调同样是通过某种方式,将基带信号的频谱由一个频率位置搬移到另一个频率位置上去。

不同的是,数字调制的基带信号不是模拟信号而是数字信号。

在大多数情况下,数字调制是利用数字信号的离散值去键控载波。

对载波的幅度、频率或相位进行键控,便可获得ASK、FSK、PSK等。

这三种数字调制方式在抗干扰噪声能力和信号频谱利用率等方面,以相干PSK的性能最好,目前已在中、高速传输数据时得到广泛应用。

2PSK系统的调制部分框图如下图所示2PSK/BPSK调制部分框图1、M序列发生器实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M序列发生器产生一个伪随机序列来充当数字基带信号源。

按照本原多项式f(x)=X5+X3+1组成的五级线性移位寄存器,就可得到31位码长的M序列。

码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相应变化;也可以是异步的,因为实际的系统都是异步的,码元速率约为1Mbt/s。

2、相对移相和绝对移相移相键控分为绝对移相和相对移相两种。

以未调载波的相位作为基准的相位调制叫作绝对移相。

以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差1800。

绝对移相的波形如下图所示。

绝对移相的波形示意图在同步解调的PSK系统中,由于收端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现“0”、“1”倒置,发送为“1”码,解调后得到“0”码;发送为“0”码,解调后得到“1”码。

这是我们所不希望的,为了克服这种现象,人们提出了相对移相方式。

相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。

BPSK调制原理资料

BPSK调制原理资料

原理:2DPSK 方式是用前后相邻码元的载波相对相位变化来表示数字信息。

假设前 后相邻码元的载波相位差为■::,可定义一种数字信息与厶;之间的关系为则一组二进制数字信息与其对应的 2DPSK 言号的载波相位关系如下表所示二进制数字信息: 1 1 0 1 0 0 1 102DPSK 信号相位:0 二 0 0 < :< 0 二二或[I 0 \0 00 二 0数字信息与之间的关系也可以定义为.‘0,表示数字信息“1 严,表示数字信息“0”2DPSK 信号调制过程波形如图1所示。

10 0 1 0 1 1 0绝对码可以看出,2DPSK 信号的实现方法可以采用:首先对二进制数字基带信号进行 差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。

2DPSK 信号调制器原理图如 图2所示。

COSCO c t0°e 2DPSK (t)1Ji180°移相1r,0,表示数字信息 (5,表示数字信息“0 1110 0 10 0图2 2DPSK信号调制器原理图其中码变换即差分编码器如图3所示。

在差分编码器中:{a n}为二进制绝对码序列,{d n}为差分编码序列。

D触发器用于将序列延迟一个码元间隔,在SystemView/中此延迟环节一般可不采用D触发器,而是采用操作库中的延迟图符块”a n图3差分编码器二进制差分相位键控(2DPSK )的解调1实验目的:(1)了解2DPSK系统解调的电路组成、工作原理和特点;(2)掌握2DPSK系统解调过程信号波形的特点;(3)熟悉系统中信号功率谱的特点。

2、实验内容:以2DPSK作为系统输入信号,码速率Rb= 10kbit/s。

(1)采用相干解调法实现2DPSK的解调,分别观察系统各点波形。

(2)获取主要信号的功率谱密度。

3、实验原理:相干解调法:2DPSK信号可以采用相干解调方式(极性比较法),对2DPSK信号进行相干解调, 恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字其中码反变换器即差分译码器组成如图b) 14所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• BPSK信号的功率谱密度如下图所示。 • 设数字信号的bit周期是Tb, 数字信号速 率为1/Tb(bps)。 • 如图,BPSK信号的带宽为: 2fb= 2/Tb (Hz) 。 • 频带利用率为:(1/Tb)/ 2fb=0.5 (bps/Hz)。
2) 差分二相移相键控 • DBPSK可以有效避免BPSK的相位模糊,克服 接收数据反相问题。 DBPSK调制原理 • 先将基带数字信号转换成差分码,方法是出现 基带数字信号1,差分码脉冲前沿跳变;出现 基带数字信号0,差分码脉冲前沿不跳变。然 后利用差分码对载波进行BPSK调制。原理图 和波形图如下:
• 分别调制载波幅度、频率和相位的2ASK(振幅 键控)、2FSK(频移键控)和2PSK(相移键控) 调 制波形如下:
6.1.3 数字调制的分类
• 数字调制的分类如下表: 不恒定 ASK(幅度键控) 包络 QAM(正交幅度键控) MQAM(星座调制) 数 字 FSK BFSK(二进制频移键控) 调 (频移键控) MFSK(多进制频移键控) 制
6.1.4 基本数字调制方法性能分析 • 数字调制信号在AWGN信道上传输的过程中会受到 干扰、噪声和波形畸变的影响,而产生误码。如果 接收端采用理想的相干解调并消除码间干扰,那么, 平均误比特率Pe与归一化信噪比Eb/N0之间的关系为:
2 ASK : 2 FSK : 2 PSK : Pe Pe Pe Eb 1 erfc 4N 2 0 Eb 1 erfc 2N 2 0 Eb Q 2N 0 Eb Q N 0
6.1.1 数字调制相关概念
• 数字调制是将数字基带信号与正弦(或余弦)载波信号相乘 调制成为中心频率很高的频带信号。其基本原理是用数字 基带信号0和1去控制载波的一个参量。若控制载波的幅度, 称为振幅键控ASK;若控制载波的频率,称为频移键控 FSK;若控制载波的相位,称为相移键控PSK,若同时控 制载波的幅度和相位两个参量,称为幅度相位调制,又称 为正交幅度调制QAM。 • 由一位二进制0和1对载波进行的数字调制,有时候叫做二 进制调制;由多位0和1组成的二进制序列对载波进行的数 字调制,也可叫做多进制调制,例如:MASK、MFSK、 MPSK和MQAM调制。 • 在实际的相移键控方式中,为了克服在接收端产生的相位 模糊度,往往将绝对相移改为相对相移DPSK以及DQPSK。
第6次课书面作业
1.画出数字信号序列01001101的 BPSK和DBPSK 信号波形。 2. DBPSK相对BPSK有什么优点?
3、相移键控PSK • 开始是2PSK,在此基础上发展产生了DPSK、 QPSK( Quadrature Phase Shift Keying)、OQPSK (Offset QPSK)、π/4-QPSK。这些数字调制方式广泛 应用在3G移动通信系统中。 4、有记忆非线性连续相位调制 • 在二进制调制中,为了彻底消除相位跃变带来的峰平 比增加和频带扩展,引入了有记忆的非线性连续相位 调制(Continuous Phase Modulation, CPM)、最小 频移键控(Minimum Shift Keying,MSK)、 GMSK(高斯滤波MSK)、及平滑调频(Timed Frequency Modulation )。 GMSK应用于GSM数字 移动通信系统中。
• 归一化双极性数字信号序列Xk是由基带数字信 号0和1转换而来, 基带数字信号0和1分别转 换成归一化双极性数字信号1和-1。将Xk与载 波信号cos wc同时输入乘法器,得到BPSK调 制波形Sk(t): Sk(t)=Xkcos wc=±1cos wc。 • 当基带数字信号为0时, Xk=+1, Sk(t)= +1cos wc=cos(wc +0) 。
数字信号控制的相位,它有有限的M个不同取值,每个相位携 带的信息量I = log 2 M (bit)。 • 例如,当M=2,φk的每一相位携带1bit信息:0或1;当M=4, φk的每一相位携带2bit信息:00、01、10或11;当M=8,φk 的每一相位携带3bit信息:000、001、010、011、100、101、 110或111。 • 在发送端,数字调制器输出的载波信号相位将随输入不同的 数字信号而改变。对于一个数字信号,Sk(t)的相位φk将取一 个特定的值与之对应。
• 接收的调相信号Sk(t) = ±cos wc 与本地 的载波信号cos wc在乘法器里相乘后得 到S’k(t),按照倍角原理得:
S’k(t)=±cos2 wc
=±(1/2) [1+cos(2wc) ] • 由于S(t)有π和0两个相位,本地余弦信号 只有一个相位,所以相乘后将交替出现常 数项±1/2。用带通滤波器滤除2wc 后, 剩下的±1/2常数项分别表示数字信号1和 0。
Eb 2 Eb 1 Q erfc N N 2 0 0
• 其中, Eb是每秒比特的功率;N0是单边噪声功率谱 密度;Q(x)函数为:
Q( x)
x
1 2 exp( x / 2)dx 2p
• 三种调制方式的误比特率如图所示。对三种 调制方式进行比较可以得出结论,2PSK抗干 扰能力最佳,在移动通信中,均以其为基础。
• 上述调制中最基本的调制为2ASK、2FSK、BPSK, 后面将重点分析它们。 6.1.2 数字调制的作用 1.频谱搬移 • 数字调制的基本作用就是用数字信号调制适合在无线 信道上传输的射频载波,使其频谱向高端搬移。 • 例如,首先用基带数字信号调制一个70MHz中频载波, 然后再将调制后的中频信号频谱搬移至相应的发射频 段。
• 当基带数字信号为1时, Xk=-1, Sk(t) =-1cos wc =cos(wc Ư的调制下 取两个不同的值π和0。
• BPSK调制信号波形如图所示。
• BPSK是绝对调相,解调器的本地载波 cos wc 必须与发端载波同步,这就是相干 解调。解调器原理如图所示。
6.1.2 数字调制基本原理 • 通常余弦波信号表示为: • s(t) = a(t)cos[w(t)+j(t)] • 其中,t是时间; a(t)是幅度;w(t)是角 频率; j(t)是相位。 • 数字调制就是用基带数字信号0和1去控 制余弦信号的幅度、角频率和/或相位的 变化。随着余弦波在无线信道里传输,基 带数字信号也传输了出去。因此,这种余 弦波被称为载波;它被基带数字信号调制 后成为调制信号。
2)抗干扰 • 调制信号频谱的主瓣窄,具有快速滚降特性, 既不易受到其他信号的干扰,对其他信号的干 扰也小。 3)提高有效性 • 当采用多进制调制时,单位频带内的数据传输 速率(bps/Hz)提高,提高了频带利用率,也 就是提高了通信系统的有效性。 • 对于具体的数字调制技术来说,除了应当具有 上述的三种基本作用而外,还应当在工程上容 易实现,峰平比性能优良。
恒定 包络
BPSK(二相相移键控) PSK DPSK(差分二相相移键控) (相移键控) QPSK(正交(四相)相移键控) MPSK(多进制相移键控)
CPM (连续相位调制)
OQPSK(偏 移QPSK) p/4QPSK DQPSK(差 分QPSK)
MSK(最小频移键控) GMSK(高斯滤波MSK) TFM(平滑调频)
• 典型的扩频通信系统方框图如下。 • 我们在前面已经学习了信源编码、扩频加扰部分, 下面继续学习数字调制。 • 扩频信号是数字信号,是不能直接上无线信道传输 的。必须将数字信号调制到正弦或余弦模拟信号上 才能上无线信道传输。
第6章 数字调制技术
6.1 关于数字调制的概念
• 下图表明了一个两电位数字信号序列经过短短几十米 双绞线传输后的衰减情况。
1、振幅键控ASK • 2ASK向多进制发展,产生了正交振幅调制(QAM, Quadrature Amplitude Modulation)、多进制 正交振幅调制(MQAM, Mutiple QAM)。 • 由于多径传播衰落对载波幅度的影响,在1G和2G移动 通信系统中均未采用。在3G移动通信系统中采用了 MQAM,例如16QAM和64QAM。 2、频移键控FSK • 1G移动通信系统的业务和信令都采用2FSK调制方式, 由于相邻码元相位不连续,频率跳变引起较大的旁瓣功 率,频谱效率低,只能应用于低速传输系统。 • 在2FSK发展的基础上,产生了多进制频移键控 (MFSK)。例如,高斯最小频移键控(GMSK, Gauss –Minimum Shift Keying)有效地克服了2FSK 的缺点,应用在GSM和GPRS移动通信系统中。
另外在实际相移键控调制方式中,为了降低已调信号的峰平比, 又引入了偏移QPSK(OQPSK)、π/4-DQPSK、正交复四相移键 控CQPSK,以及混合相移键控HPSK等等。
• 在二进制调制之中,为了彻底消除由于相位跃变带来的峰平比 增加和频带扩展,又引入了有记忆的非线性连续相位调制CPM, 最小频移键控MSK,GMSK(高斯型MSK)以及平滑调频TFM等。 • 上述各类调制中仅有后一类,即CPM,MSK,GMSK和TFM属 于有记忆的非线性调制,其余各类调制均属于无记忆的线性调 制。
1、二相相移键控 • 当数字信号为0和1时,M=2就可以了,采用二 相相移键控。二相相移键控有两种形式,一种 是绝对二相相移键控(Binary PSK,BPSK), 另一种是差分二相相移键控(Differential BPSK,DBPSK) 1)绝对二相相移键控(BPSK) • 绝对二相相移键控也称为二相相移键控,其调 制信号是,Sk(t)=cos(wc+φk)。调制器原理如 图所示。
• 由于一般信道都是通频带有限的带通信道, 脉冲信号中的高频成分将受到严重衰减, 信号前沿由陡峭变得平缓,幅度也受到衰 减,数字信号将严重变形 。这些不良变化 将导致接收机在对数字信号识别时出错。 • 上述在短距离上直接传输数字信号的方法 叫做基带传输。 • 如果需要在长距离的有线信道和无线信道 上传输数字信号必须采用频带传输技术, 即由高频载波信号来载荷数字信号,这就 是数字调制。
相关文档
最新文档