材料力学总复习1-9

合集下载

材料力学习题册_参考答案(1-9章)

材料力学习题册_参考答案(1-9章)

第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。

A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。

A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。

A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。

A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。

A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。

2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。

4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

( × )2.外力就是构件所承受的载荷。

(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学总复习

材料力学总复习
总复习
一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2

材料力学考试复习资料

材料力学考试复习资料

材料力学1. 材料与构件的许用应力值有关。

2. 切应力互等定理是由单元体静力平衡关系导出的。

3.弯曲梁的变形情况通过梁上的外载荷来衡量。

4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。

5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。

7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。

杆件上的最大正应力为127.3MPa。

8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。

直线公式σcr=461-2.568λ。

其临界压力为478kN。

9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。

10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。

11. 材料力学中求内力的普遍方法是截面法。

12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。

13. 图形对于其对称轴静矩和惯性矩均不为零。

14. 梁横截面上可能同时存在切应力和正应力。

15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。

16. 存在均布载荷的梁段上弯矩图为抛物线。

17. 矩形的对角线的交点属于形心点。

18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。

为保证此轴的扭转刚度,应增加轴的直径。

19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。

20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。

21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。

22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。

23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。

材料力学总复习

材料力学总复习

步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度

1
2
应变能

W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在

2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max

材料力学期末考试总复习

材料力学期末考试总复习

F c r =
p
E I ( m l ) 2
2
压杆的稳定性条件
l = ml
i i = I A
s
c r
s =
F £ j A
[s ]
第十三章 能量法 变形能
Ve =
外力功(线弹性)
ò
l
2 F N ( x ) dx + 2 E A (x )
ò
l
T 2 (x ) dx + 2 G I p ( x )
图解法 内力图 应力圆
实验法 机械性质 电测
单元体应力 组合变形应力
五、基本公式
应力= 内力 截面几何量
内力×杆长 变形= 截面刚度
F s = N A FN l D L = EA
T t = r I p Tl j = GI p
M s = y I z
Ml q = EI z
A C D B
3、图示悬臂梁弯曲时,靠近固定端的一段与大半径刚性圆柱 面贴合,从此以后,随着F力增大,梁内的最大弯矩 (C) 。 (A)线性增大; (B)非线性增大; (C)保持不变; (D)开始减小。
F
4、T形截面铸铁梁,设各个截面的弯矩均为正值, 则将其截面按图 (A) 所示的方式布置,梁的强度最 高。
直线等加速
K d a = 1 + g
匀速旋转
s
d
落体冲击
2 h Kd = 1 + 1 + D st
水平冲击
K d = v 2 g D st
=
g w 2 D 2
g
轴向拉伸与压缩
1 (C)
2、已知材料的比例极限s P =200MPa,弹性模量E=200Gpa, 屈服极限 s s =240 MPa,强度极限s =400 MPa,则下列

材料力学复习总结知识点

材料力学复习总结知识点

功能原理 卡氏定理 虚 功 原 理
导出
F F M M T T N N d x d x d x i EA F EI F GI F i i p i l l l
ห้องสมุดไป่ตู้单 位 载 荷 法
莫尔积分
(线弹性)
图乘法 其他
M
C xc
ω
(等刚度直杆)
M
非线弹性
MC
1 Δ F d Δl M d T d N
2 2 M T , r 3 W 2 2 M 0 . 75 T r 4 W
2
四、压杆稳定
1. 欧拉公式:
2. 压杆的柔度: 细长杆
2 EI Fcr 2 ( l)
(适用范围:细长杆)
况) 长度因数(反应约束情 l i 截面形状、大小 i l 杆长
正负号规定: FQ (+) M (+ )
一、基本变形(2)
基本变形 拉(压)
外力 应力
FN A
扭转
弯曲
圆轴

T IP
τ


My IZ
FQ S Z IZb
*
拉 (+ )
(平面假设) d4
IP 32
d Wt 16
3
平面假设
σ τ
3 2 bh bh 矩形: IZ , W Z 12 6
强度计算11强度理论依据材料性质外力结构条件确定应力状态计算相当应力主应力表达一般应力表达内力表达主应力表达一般应力表达内力表达如r31133223r4?????tm22??w3r??22内容强度校核内容核强度校核669例例886计载荷设计9915计计计截面设计例例995533形式简单形式组合变形形式简单形式形组合变形99557711构构21构组合结构66题移动载荷问题661121反问题9918194

材料力学复习总结知识点

材料力学复习总结知识点

A、30 B、 35 C、 40 D、 70
基工本字变 形形截面方拉:校(形压核) 主销应力将扭。转两块等弯曲厚度的板连接在一起,上面的板中同时
根据弯矩图判断可能的危险截面为:A和D左截面,可能的危险点为:A截面的上边缘点和D左截面的下边缘点产生最大的拉应力,D左
存在拉应力σ、剪应力τ、挤压应力σ ,比较其数值大小 截已面知的 轴上的边许缘用点剪产应生力最为大[τ]的=压60应MP力a,. 剪变模量为G=80GPa,许用转角为[θ]=20/mb。s
m ax [ ]
二、应力状态
1. 平面应力状态: 解析法(公式)
2. 三向应力状态:
ma x1, ma x1 23
3. 广义胡克定律:
1
1 E
[ 1
( 2
3 )]
2
1 E
[ 2
( 3
1 )]
3
1 E
[ 3
( 1
2 )]
4. 强度理论:建立复杂应力状态下的强度条件
r [] 其中
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr
2 EI ( l)2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
可得( ) 基本变形 拉(压)
扭转
弯曲
基本变形 拉(压) 扭转
弯曲
材料力学的两项基本任务:
BC杆为正方形截面,边长a=70mm,C端也是球铰。

(完整版)材料力学复习重点汇总

(完整版)材料力学复习重点汇总
4.小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸小一个数量级以上的屈服,这就称为小范围屈服。【P71】
6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

材料力学总复习

材料力学总复习
总复习
第一部分 基本变形部分 第二部分 复杂变形部分 第三部分 压杆稳定 第四部分 能量方法
第一部分
基本变形部分
§1-4 杆件变形的基本形式
内容 种类
外力特点
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
取分离体如图3, a 逆时针为正;
a 绕研究对象顺时针转为正;
由分离体平衡得:
a
a
x
图3
a a
0 0
c os2a sinacosa
或:
a a
0
2
0
2
(1cos2a sin2a
)
(合力) P
n
剪切面:
n
P (合力)
构件将发生相互的错动面,如 n– n 。
Q n
剪切面 剪切面上的内力:
变形特点
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
杆在轴向拉压时,横截面上的内力称为轴力。
轴力用 N 表示,方向与轴线重合
引起伸长变形的轴力为正——拉力(背离截面); 引起压缩变形的轴力为负——压力(指向截面)。
N
N

材料力学总复习

材料力学总复习

材料力学总复习第一章绪论一、教学目标和教学内容1.教学目标明确材料力学的任务,理解变形体的的基本假设,掌握杆件变形的基本形式。

2.教学内容○1材料力学的特点○2材料力学的任务○3材料力学的研究对象○4变形体的基本假设○5材料力学的基本变形形式二、重点难点构件的强度、刚度、稳定性的概念;杆件变形的基本形式、变形体的基本假设。

三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时1.5学时五、讲课提纲1、材料力学的任务材料力学是研究构件强度、刚度和稳定性计算的学科。

工程中各种机械和结构都是由许多构件和零件组成的。

为了保证机械和结构能安全正常地工作,必须要求全部构件和零件在外力作用时具有一定的承载能力,承载能力表现为1.1强度强度是指构件抵抗破坏的能力。

构件在外力作用下不被破坏,表明构件具有足够的强度。

1.2刚度刚度是指构件抵抗变形的能力。

构件在外力作用下发生的变形不超过某一规定值,表明构件具有足够的刚度。

1.3稳定性稳定性是指构件承受在外力作用下,保持原有平衡状态的能力,构件在外力作用下,能保持原有的平衡形态,表明构件具有足够的稳定性。

材料力学的任务:以最经济为代价,保证构件具有足够的承载能力。

通过研究构件的强度、刚度、稳定性,为构件选择合适的材料、确定合理的截面形状和尺寸提供计算理论。

2、材料力学的研究对象2.1研究对象的几何特征构件有各种几何形状,材料力学的主要研究对象是杆件,其几何特征是横向尺寸远小于纵向尺寸,如机器中的轴、连接件中的销钉、房屋中的柱、梁等均可视为杆件,材料力学主要研究等直杆。

2.2研究对象的材料特征构件都是由一些固体材料制成,如钢、铁、木材、混凝土等,它们在外力作用下会产生变形,称变形固体。

其性质是十分复杂的,为了研究的方便,抓住主要性质,忽略次要性质材料力学中对变形固体作如下假设:♦均匀连续性假设: 假设变形固体内连续不断地充满着均匀的物质,且体内各点处的力学性质相同。

材料力学 复习资料及答案

材料力学 复习资料及答案

材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。

(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。

(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。

(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。

(N )5. 胡克定律适用于弹性变形范围内。

(Y )6. 材料的延伸率与试件的尺寸有关。

(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。

(Y )8. 受扭圆轴的最大切应力出现在横截面上。

(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。

(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。

(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。

. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。

(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。

(N )14.最大弯矩必然发生在剪力为零的横截面上。

(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。

(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。

(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。

(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。

(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。

(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。

(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。

(N )22.纯剪切单元体属于单向应力状态。

(N )23.脆性材料的破坏形式一定是脆性断裂。

(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。

《材料力学》1~9章复习大纲复习资料

《材料力学》1~9章复习大纲复习资料
材料力学1~9章复习大纲
第一章 材料力学的基本概念 第二章 杆件的内力与内力图 第三章 轴向拉压杆件的强度与变形计算 第四章 材料在拉伸和压缩时的力学性 第五章 扭转杆件的强度与刚度计算 第六章 应力状态分析及强度理论 第七章 截面的几何性质 第八章 平面弯曲杆件的应力与强度计算 第九章 平面弯曲杆件的变形与刚度计算
1
第一章 材料力学的基本概念
❖ 掌握材料的力学性能:强度,刚度和稳定性的基本概念 ❖ 材料变形固体的的三大假设:连续性假设,均匀性假设,各向同性假设 ❖ 杆件的内力与截面法
内力主要是内力主矢和内力主矩 截面法是显示内力和确定内力的方法,步骤: 1截开构件:沿欲求的内力截面处将构建截成两部分,任取一部分为研究对 象 2显示内力:用内力代替舍去部分对留下部分的作用 3确定内力:建立静力平衡方程并求解,确定内力 掌握应力和应变的概念及其正负号的划分
对组合截面
yc
Ai yci Ai
zc
Ai zci Ai
❖ 平面图形的极惯性矩和惯性矩
极惯性矩
IP Iy Iz
惯性矩
记住常见的几个截面的惯性矩,矩形
I y y2dA
Iz bh3 12
圆形
Iz z2dA
Iz D4 64
空心圆
Iz D4 1 4 64
❖ 惯性矩和惯性积的平行移轴公式
` x y 2
x
2
y
2
2 x
`` x y 2
x
2
y
2
x2
``` 0
0
arctan
2 x x
y
❖ 三向应力状态的应力圆
最大应力 ❖ 广义胡克定律
1 2 2max
1 1 2 3 E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 纯弯曲正应发生最大正应力
max
M max Iz
ymax
max
M WZ
max
弯曲正应力强度条件
第五章 弯曲应力
4、惯性矩与极惯性矩
惯性矩:图形面积对某轴的二次矩
Iz
y2 d A,
A
Iy
z2 d A
A
极惯性矩: 平面图形对某点的二次矩:
Ip
dx
d2 M (x) d x2 q(x) 0
Fs图为平行于x轴的直线段。 Fs>0时,M图上扬
Fs<0时,M图下倾
Fs=0时,M图水平
(2) q const
d2 M (x) d x2
d
Fs (x) dx
q(x)
const
Fs图为直线,M为抛物线。
q>0时,Fs图上扬
M图
q<0时,Fs图下倾
M图
(3) q f (x), 若 Q图为抛物线, M为三次曲线.
第四章 弯曲内力
(4) Fs (x) 0
d M (x) d x Fs (x) 0
该截面上弯矩有极值(极大值或极小值)。
(5) 在集中力作用处
Fs图有突变, M图的斜率也发生突变,也就是出现尖角。
(6) 在集中力偶作用处 M图有突变, Fs图无特殊变化。
下表是常见载荷的Fs图和M图
载荷
Fs图
d Fs (x) q(x) dx
M图
d M (x) d x Fs (x)
载荷
Fs图
d Fs (x) q(x) dx
M图
d
M (x) dx
Fs
(x)
F
M
q
q
水平线
+
q0
二次
+
F 无变化 一次
+
M
二次
一次
+
二次
q0
二次
+
q0
二次
+
q0
二次
+
三次
三次
三次
三次
第五章 弯曲应力
第一章 绪 论
应力——分布内力在截面内一点的密集程度
p
lim
A0
pm
lim
A0
P A
线位移-构件内各点原来位置到新位置之间的距离。
角位移-原有截面(直线)在变形后所旋转的角度。
lim M N MN lim u
MN0 MN
s0 s
g =a +b
(直角改变量 )
胡克定律
轴向拉压 E 纯剪切 Gg
1.轴向拉伸或压缩 3.扭转
2.剪切 4.弯曲
第二章 拉伸和压缩
一、基本概念及基本量
轴力:FN —— 截面法、轴力图 应力: FN
A
变形: l FNl
EA
应变: (轴向应变) (横向应变)
E
二、材料的力学性能 (材料的机械性质)
低碳钢拉伸与压缩试验:
4个阶段; 5个指标: p ,s , b , ,
2dA
A
Ip Iy Iz
极惯性矩与惯性矩间的关系 y
a 矩形截面的形心主惯性矩
Iz
bh3 12
Iy
hb3 12
h
dy
y

Wz
Iz ymax
bh2 6
Wy
Iy xmax
b2h 6
O
z
b 圆形截面的形心主惯性矩
b
z
Iy
Iz
Ip 2
d4
64
Wz
d 3
32
d
O
y
第五章 弯曲应力
同理,对于空心圆截面:
2、剪力与弯矩
a. 剪力的正负
使梁微段发生顺时针转动的剪力Fs 为正,反之为负。
Fs Fs
(+)
Fs Fs
(-)
b. 弯矩的正负
M
M
使梁微段发生上凹下凸变形的
弯矩 M 为正,反之为负。
(+) M (-) M
第四章 弯曲内力
3、 剪力、弯矩与载荷集度间的微分关系
(1) q(x) 0 d Fs (x) q(x) 0,
b 两个假设 (1)平面假设 (2)纵向纤维互不挤压假设,即单向拉压。
第五章 弯曲应力
c 两个概念
(1)中性层:梁中纤维即不伸长也不缩短的那层。
(2)中性轴:中性层与横截面的交线。
d 三个方面 由变形几何关系得到
y
由物理关系得到 E E y
由静力学关系得到 1 M
EI z
My
Iz
铸铁拉伸与压缩试验:
几种现象;
三、拉压强度条件及其应用
FN
A
的确定:试验
s
ns
或 b
nb
第二章 拉伸和压缩
强度计算的三类问题:
强度校核: FN
A
许用载荷计算: FN A
截面设计:
A
FN
四、杆件的变形与超静定问题求解
静不定问题的求解步骤:
建立静力平衡方程 建立变形协调方程 建立物理方程(胡克定律)
梁强度计算的三类问题:
max
M WZ
m a x
(a)强度校核; (b)梁的截面设计; (c)梁的许用载荷计算;
第五章 弯曲应力
7、弯曲切应力强度条件
max
F S Smax z max Izb
对于下列情况需用梁的剪 切强度校核计算:
Tmax Wp
7 圆轴扭转变形与刚度条件
a 圆轴扭转时的变形:
Tl
GIp
Tili
GI pi
b 圆轴扭转的刚度条件:
max
Tmax GIp
第四章 弯曲内力
1、平面弯曲的概念
若梁上的外载荷都作用在纵向对称平面内,则梁弯曲变形后的轴 线为纵向对称平面内的平面曲线。
—— 这种弯曲称为平面弯曲或对称弯曲。
D
Iy
Iz
D 4
64
(1a 4 )
Wz
D3
32
(1a 4
)
其中a d
D
d
5 对称弯曲切应力
FSS
z
Izb
矩形截面梁:
梁弯曲时横截面任一 点切应力计算公式
max
F S Smax z max Izb
max
3FS 2A
工字形截面梁:
max
FS bh
圆形截面梁:
max
4 FS
3 R2
6、弯曲正应力强度条件
Ip 32
Wp
D3
16
第三章 扭转
b. 空心圆截面
Ip
D4
32
(1a 4 )
c. 薄壁圆截面
Ip 2 R03
6 圆轴扭转破坏与强度条件
Wp
D3
16
(1a 4 )
Wp 2 R02
脆性材料扭转破坏: 沿 450 螺旋曲面被拉断
塑性材料扭转破坏: 沿横截面被剪断
圆轴扭转的强度条件为:
max
1 对称弯曲: 外载荷作用于梁的纵向对称面内, 因此其变形也对 称于纵向对称面, 这种梁的变形形式称为对称弯曲。
梁的横截面上既有弯矩又有剪力的弯曲称为横力弯曲 梁的横截面上只有弯矩没有剪力的弯曲称为纯弯曲
2 纯弯曲时梁的横截面上的正应力
a 三种现象 (1)变形后,横截面仍保持为平面。但横截面间发生转动。 (2)同一层(高度)的纤维变形相同,即曲率相同。 (3)矩形横截面变为上宽下窄的近似倒梯形。
—— 得到补充方程
将平衡方程与补充方程联立求解
五、剪切与挤压的实用计算
第三章 扭转
1、传动轴的外力偶矩计算
m 9549 P n
m 7024 P n
2、扭矩与扭矩图 3、薄壁圆筒的扭转应力
T 2 r2t
4、圆轴扭转横截面上的应力
T
Ip
max
T Wp
5 极惯性矩与抗扭截面系数
a. 实心圆截面
D4
相关文档
最新文档