关于英语实验报告.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于英语实验报告
关于英语实验报告
Determination of heavy metals in soil byatomic absorption spectrometry(AAS)
Name: XuFei Group: The 3rd group
Date: Sep. 20th 20xx
Part 1 The introduction
1.1The purposes
(1)Learn how to operate the atomic absorption spectrometry;
(2)Learn how to do the pretreatment of soil samples;
(3)Get familiar with the application of atomic absorption spectrometry.
1.2The principles
Atomic Absorption Spectrometry (AAS) is a technique for measuring quantities of chemical elements present in environmental samples by measuring the absorbed radiation by the chemical element of interest. This is done by reading the spectra produced when thesample is excited by radiation. The atoms absorb ultraviolet or visible light and make transitions to higher energy levels .
Atomic absorption methods measure the amount of energy in the form of photons of light that are absorbed by the sample. A detector
measures the wavelengths of light transmitted by the sample, and compares them to the wavelengths which originally passed through the sample. A signal processor then integrates the changes in wavelength absorbed, which appear in the readout as peaks of energy absorption at discrete wavelengths. The energy required for an electron to leave an atom is known as ionization energy and is specific to each chemical element. When an electron moves from one energy level to another within the atom, a photon is emitted with energy E. Atoms of an element emit a characteristic spectral line. Every atom has its own distinct pattern of wavelengths at which it will absorb energy, due to the unique configuration of electrons in its outer shell. This enables the qualitative analysis of a sample.
The concentration is calculated based on the Beer-Lambert law. Absorbance is directly proportional to the concentration of the analyte absorbed for the existing set of conditions. The concentration is usually determined from a calibration curve, obtained using standards of known concentration. Calibration Curve Method: Prepare standard solutions of at least three different concentrations, measure the absorbance of these standard solutions, and prepare a calibration curve from the values obtained. Then measure the absorbance of the test solution adjusted in
concentration to a measurable range, and determine the concentration of the element from the calibration curve.
Part 2 The materials and apparatus
Atomic absorption spectrometry; Cu hollow cathode lamp; AC voltage stabilizer; oil-free gas compressor; acetylene cylinder; oscillator; sample boat; Erlenmeyer flask with stopper (100 ml); beaker; graduate cylinder; pipette.
Part 3 The procedure
3.1 operating procedure for AAS
(1) inspect major components to ensure operating normal.
(2) Install required hollow cathode lamp. Select “T” before turning to the power and hollow cathode lamp. Then select appropriate la mp current and preheat for 30min.
(3) Make sure electrical meter to point to zero and then turn on high-voltage power.
(4) Select appropriate slit width.
(5) Rotate monochromator and select required wavelength. If the power meter is too high or low, adjust negative high voltage until the meter reads full scale.
(6) Adjust light point and wavelength so that the meter represents the maximum value.
(7) Turn on air compressor and acetylene gas and ignite flame.