平行四边形存在性问题

合集下载

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

平行四边形存在性问题【知识储备】①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: 类型一 几何背景下的平行四边形存在性问题【典题练习】1.(2023•河北二模)如图,在四边形ABCD 中,∠A =∠B =90°,AD =8cm ,BC =6cm ,点P 从点D 出发,以1cm /s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当t =3s 时,四边形ABMP 为矩形B .当t =4s 时,四边形CDPM 为平行四边形C .当CD =PM 时,t =3sD .当CD =PM 时,t =3s 或5s【分析】根据题意,表示出DP ,BM ,AP 和CM 的长,当四边形ABMP 为矩形时,根据AP =BM ,列方程求解即可;当四边形CDPM 为平行四边形,根据DP =CM ,列方程求解即可;当CD =PM 时,分两种情况:①四边形CDPM 是平行四边形,②四边形CDPM 是等腰梯形,分别列方程求解即可.【解答】解:根据题意,可得DP =t cm ,BM =t cm ,∵AD =8cm ,BC =6cm ,∴AP =(8﹣t )cm ,CM =(6﹣t )cm ,当四边形ABMP 为矩形时,AP =BM ,即8﹣t =t ,解得t =4,故A 选项不符合题意;当四边形CDPM 为平行四边形,DP =CM ,)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若即t=6﹣t,解得t=3,故B选项不符合题意;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,此时CM=PD,即6﹣t=t,解得t=3,②四边形CDPM是等腰梯形,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:则∠MGP=∠CHD=90°,∵PM=CD,GM=HC,∴△MGP≌△CHD(HL),∴GP=HD,∵AG=AP+GP=8﹣t+,又∵BM=t,∴8﹣t+=t,解得t=5,综上,当CD=PM时,t=3s或5s,故C选项不符合题意,D选项符合题意,故选:D.2.(2023春•盱眙县期末)如图,在▱ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动.点Q在BC边上以每秒4cm的速度从点C出发,在CB之间往返运动.两个点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒.当5<t<10时,运动时间t为何值时,以P、D、Q、B为顶点的四边形是平行四边形()A.B.8C.4或D.或8【分析】根据P的速度为每秒1cm,可得AP=t cm,从而得到PD=(10﹣t)cm,由四边形ABCD为平行四边形可得出PD∥BQ,结合平行四边形的判定定理可得出当PD=BQ时以P、D、Q、B四点组成的四边形为平行四边形,当5<t<10时,分两种情况考虑,在每种情况中由PD=BQ即可列出关于t的一元一次方程,解之即可得出结论.【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则PD=BQ.当5<t≤时,AP=t cm,PD=(10﹣t)cm,CQ=(4t﹣20)cm,BQ=(30﹣4t)cm,∴10﹣t=30﹣4t,解得:t=;当<t≤10时,AP=t cm,PD=(10﹣t)cm,BQ=(4t﹣30)cm,∴10﹣t=4t﹣30,解得:t=8综上所述:当运动时间为秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选:D.3.(2022春•曹县期中)如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F 运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q 也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或5【分析】由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD =AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.4.(2023春•大竹县校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t=时,四边形AECF是平行四边形.【分析】先根据平行四边形的性质求出OB的长,从而得到OE的长,再由平行四边形的性质得到OE=OF进而得到关于t的方程,解方程即可.【解答】解:由题意得OE=OB﹣BE=OB﹣t,OF=2t,∵四边形ABCD是平行四边形,BD=12cm,∴OB=OD=6cm,∴OE=6﹣t,∵四边形AECF是平行四边形,∴OE=OF,∴6﹣t=2t,∴t=2,∴当t=2时,四边形AECF是平行四边形,故答案为:2.5.(2023秋•红山区校级月考)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度向点C运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点P运动到点C时,点Q随之停止运动,设运动的时间t(秒).(1)求DQ、PC的代数表达式;(2)当t为何值时,四边形PQDC是平行四边形;(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【分析】(1)根据题意,写出代数表达式即可;(2)根据平行四边形的性质知DQ=CP,分当P从B运动到C时,当P从C运动到B时,两种情况进行求解即可;(3)分PQ=QD、PQ=PD、QD=PD三种情况讨论求出t值即可.【解答】解:(1)根据题意,DQ=(16﹣t)cm,PC=(21﹣2t)cm;(2)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t,∴16﹣t=21﹣2t,解得:t=5,∴当t=5秒时,四边形PQDC是平行四边形;(3)当PQ=PD时,作PH⊥AD于H,则HQ=HD,∵cm,AH=BP,∴,∴.当PQ=QD时,QH=AH﹣AQ=BP﹣AQ=2t﹣t=t cm,QD=(16﹣t)cm,∵QD2=PQ2=t2+122,∴(16﹣t)2=122+t2,解得.当QD=PD时,DH=AD﹣AH=AD﹣BP=16﹣2t,∵QD2=PD2=PH2+HD2=122+16﹣2t)2,∴(16﹣t)2=122+(16﹣2t)2,即3t2﹣32t+144=0,∵Δ=(﹣32)2﹣4×3×144=﹣704<0,∴方程无实根,综上可知,当秒或秒时,△PQD是等腰三角形.6.(2023春•和平区校级月考)已知▱ABCD中,一动点P在AD边上,以每秒1cm的速度从点A向点D 运动.(1)如图1,运动过程中,若BP平分∠ABC,且满足AB=BP,求∠ABC的度数.(2)如图2,在(1)的条件下,连结CP并延长,与AB的延长线交于点F,连结DF,若CD=2cm,直接写出:△DPF的面积为cm2.(3)如图3,另一动点Q在BC边上,以每秒4cm的速度从点C出发,在BC间往返运动,两个点同时出发,当点P停止运动时Q点也停止,设运动时间为t(t>0),若AD=12cm,则t=秒时,以P、D、Q、B为顶点的四边形是平行四边形.【分析】(1)可证AB=AP,从而可证AB=BP=AP,即可求解;(2)设边CD上的高为h1,边BC上的高为h2,,可得S△DPF=S△P AB,即可求解;(3)当PD=BQ时,四边形PDBQ是平行四边形,进行分类讨论:①当12﹣t=12﹣4t时,②当12﹣t =24﹣4t时,③当12﹣t=4t﹣12时,④当12﹣t=4t﹣24时,⑤当12﹣t=36﹣4t时,⑥当12﹣t=4t﹣36时,即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠APB=∠CBP,∵BP平分∠ABC,∴∠ABP=∠CBP,∴∠ABP=∠APB,∴AB=AP,∵AB=BP,∴AB=BP=AP,∴△ABP是等边三角形,∴∠ABP=60°,∴∠ABC=120°.(2)如图,设边CD上的高为h1,边BC上的高为h2,,∵四边形ABCD是平行四边形,∴S△CDF=•CD=S▱ABCD,S△PBC=h2•BC=S▱ABCD,∴S△PBC=S△CDF=S▱ABCD,∴S△PCD+S△DPF=S▱ABCD,∴S△P AB+S△PCD=S▱ABCD,∴S△PCD+S△DPF=S△P AB+S△PCD,∴S△DPF=S△P AB,∵△ABP是等边三角形,∴S△DPF=S△P AB==3,故答案为:;(3)∵PD∥BQ,∴当PD=BQ时,四边形PDBQ是平行四边形,∵(s),∴0≤t<12,①当12﹣t=12﹣4t时,解得:t=0(不合题意,舍去);此时当P与A重合,Q与C重合;②当12﹣t=24﹣4t时,解得:t=4;③当12﹣t=4t﹣12时,解得:t=4.8;④当12﹣t=4t﹣24时,解得:t=7.2;⑤当12﹣t=36﹣4t时,解得:t=8;⑥当12﹣t=4t﹣36时,解得:t=9.6;综上所述:t为4秒或4.8秒或7.2秒或8秒或9.6秒.类型二“三定一动”求平行四边形的顶点坐标当平面直角坐标系中有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A、B、C三点,在平面内找第4个点,构成平行四边形;【典题练习】7.(2022春•西双版纳期末)在平面直角坐标系中,点A、B、C的坐标分别是A(0,1),B(1,0),C(3,1),若以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(4,0);②AB为对角线时,点D的坐标为(﹣2,0)③AC为对角线时,点D的坐标为(2,2)综上所述,点D的坐标是(﹣2,0)或(4,0)或(2,2);故答案为:(4,0)或(﹣2,0)或(2,2).8.(2018春•大邑县期末)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;(2)在图中作出△ABC关于y轴的对称图形△A2B2C2;(3)若以点A,B,C,D为顶点的四边形为平行四边形时,请直接写出满足条件的点D的坐标.【分析】(1)根据关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)分别以AB、BC、AC为对角线画平行四边形可得到D点坐标.【解答】解:(1)如图,△A11C1为所作;(2如图,△A2B2C2为所作;(3)满足条件的点D的坐标为(2,2)或(﹣4,﹣2)或(﹣6,4).9.(2023春•凤山县期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,且OA,OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C,过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求直线AB的解析式;(2)若△ABC的面积为15,求点C的坐标;(3)在(2)的条件下,在坐标平面内是否存在点P,使以O,C,E,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据绝对值和完全平方式的非负性得出OA和OB的值,然后确定A点和B点的坐标,用待定系数法求出直线AB的解析式即可;(2)根据△ABC的面积为15,得出AC的长,确定C点的坐标即可;(3)分情况根据平行四边形的性质分别求出P点的坐标即可.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,∴A(﹣8,0),B(0,6),设直线AB的解析式为y=kx+b,代入A点和B点的坐标得,解得,∴直线AB的解析式为y=;(2)∵△ABC的面积为15,∴AC•OB=15,即AC×6=15,∴AC=5,∵OA=8,∴OC=OA﹣AC=8﹣5=3,即C(﹣3,0);(3)存在,∵D点在直线AB上,设D(a,a+6),∵BC平分∠ABO,∴CD=OC,即=3,解得a=﹣,∴D(﹣,),设直线DE的解析式为y=sx+t,∴,解得,∴直线DE的解析式为y=﹣x﹣4,∴E(0,﹣4),设点P的坐标为(m,n),①以CE为对角线时,此时以O,C,E,P为顶点的四边形是矩形,∵O(0,0),C(﹣3,0),E(0,﹣4),∴P(﹣3,﹣4);②以OE为对角线时,由平行四边形对角线互相平分可知,,解得,即P'(3,﹣4);③以OC为对角线时,由平行四边形对角线互相平分可知,,解得,即P''(﹣3,4);综上所述,符合条件的P点坐标为(﹣3,﹣4)或(3,﹣4)或(﹣3,4).类型三“两定两动”求平行四边形的顶点坐标当坐标系中有2个定点,且另外两个动点均在特殊的位置上时,方法策略同类型二。

坐标平行四边形存在性问题

坐标平行四边形存在性问题

坐标平行四边形存在性问题在数学中,我们经常遇到各种几何形状的问题。

平行四边形是一种常见的四边形,其对边平行。

然而,在坐标系中,我们会面临一个关于平行四边形存在性的问题:对于给定的四个点,它们能否构成一个平行四边形?问题描述假设我们有坐标系中的四个点,分别为\(A(x_1, y_1)\),\(B(x_2, y_2)\),\(C(x_3, y_3)\)和\(D(x_4, y_4)\)。

我们需要判断这四个点是否能够构成一个平行四边形。

判断条件为了判断这四个点能否构成平行四边形,我们可以利用向量的性质来求解。

首先,我们求出向量\(\overrightarrow{AB}\)和\(\overrightarrow{DC}\)的坐标表示:\[ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) \]\[ \overrightarrow{DC} = (x_4 - x_3, y_4 - y_3) \]然后,我们求出向量\(\overrightarrow{AD}\)和\(\overrightarrow{BC}\)的坐标表示:\[ \overrightarrow{AD} = (x_4 - x_1, y_4 - y_1) \]\[ \overrightarrow{BC} = (x_3 - x_2, y_3 - y_2) \]接着,我们利用向量的性质来判断这四个点是否可以构成平行四边形。

两组对角线向量\(\overrightarrow{AB}\)和\(\overrightarrow{DC}\)、\(\overrightarrow{AD}\)和\(\overrightarrow{BC}\)平行的充分必要条件是它们的方向相同,也就是说,两组向量的比例相等。

具体来说,我们可以计算两组向量之间的比例关系:\[ \frac{\overrightarrow{AB_x}}{\overrightarrow{DC_x}} =\frac{\overrightarrow{AB_y}}{\overrightarrow{DC_y}} \]\[ \frac{\overrightarrow{AD_x}}{\overrightarrow{BC_x}} =\frac{\overrightarrow{AD_y}}{\overrightarrow{BC_y}} \]如果上述两个比例关系成立,那么这四个点构成一个平行四边形;否则,不能构成。

平行四边形存在性问题

平行四边形存在性问题

平行四边形存在性问题一、解平行四边形的存在性问题一般分三个步骤 第一步寻找分类标准,第二步画图,第三步计算.二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快.三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。

四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。

(辅助手段~三角形全等,等积法,中点坐标公式)例1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.例2、如图,抛物线:y=x 2﹣x ﹣与x 轴交于A 、B (A 在B左侧),A (﹣1,0)、B (3,0),顶点为C (1,﹣2)(1)求过A 、B 、C 三点的圆的半径.(2)在抛物线上找点P ,在y 轴上找点E ,使以A 、B 、P 、E 为顶点的四边形是平行四边形,求点P 、E 的坐标.例3.已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。

点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。

是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.例4.已知抛物线:x x y 22121+-= (1)求抛物线1y 的顶点坐标.(2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式.(3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,若存在,求出N 点的坐标;若不存在,请说明理由.例5.如图,抛物线223y x x =--与x 轴交A 、B 两点(A点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1、已知抛物线 c bx ax y ++=2经过A (-3,0),B(1,0),C(0,3)三点.(1)求抛物线的解析式;(2)P 为抛物线的顶点,M 为坐标平面内的点,若以A,C,P,M 为顶点的四边形为平行四边形,求点M 的坐标.2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.2的⊙C与x轴3、如图,在平面直角坐标系中,半径为5交于点A(-1,0),B(3,0)两点,且点C在x轴的上方.(1)求圆心C的坐标;(2)已知一个二次函数的图象经过点A,B,C,求这个二次函数的解析式;(3)设点P在y轴上,点M在(2)的二次函数图象上,如果以点P,M,A,B为顶点的四边形是平行四边形,请你直接写出点M的坐标.4、已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的解析式;(2)在x轴上找一点Q,使△QAB的周长最小,并求出此时Q点坐标;(3)若P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.①设线段DE的长为h,当0<a<3时,求h与a之间的函数关系式;②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.5.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标.6、如图1,在平面直角坐标系中,抛物线y=ax2+bx-3a经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F 为顶点的四边形是平行四边形,求点F的坐标;(3)如图2,P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ 的最大面积和此时Q点的坐标.7、已知平面直角坐标系xOy (如图),一次函数334y x =+的图像与y 轴交于点A ,点M在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长; (2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.8.如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知|OA |∶|OB |=1∶5,|OB |=|OC |,△ABC 的面积S △ABC =15,抛物线y =ax 2+bx +c (a ≠0)经过A 、B 、C 三点. (1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为求出点M 的坐标;若不存在,请说明理由.9、将抛物线c1:2y =x 轴翻折,得到抛物线c 2,如图所示.现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.。

一次函数背景下的平行四边形存在性问题

一次函数背景下的平行四边形存在性问题

一次函数背景下的平行四边形存在性问题
在解决一次函数背景下的平行四边形的存在性问题,我们需要首先先厘清平行四边形的性质:
1、平行四边形的对边平行且相等;
2、平行四边形的对角线互相平分。

总结:第③种情况共有3种做法,解法1利用平行直线斜率相等,
联立求出交点D坐标;解法2利用了图形运动思想,点C→点A的运动路径与点B→点D运动路径相同(也可以利用点C→点B,点A→点D);解法3利用了平行四边形的中心对称性对角中点互相重合。

三种办法殊途同归,但是方法2与3更为简单。

在解决平面直角坐标系中的平行四边形存在性问题时,首选解法3。

一方面计算过程简便,另一方面不考虑方向性。

将解法3进行一般化,我们可以得到以下结论:
上述问题中的问题1和2,将这类问题称为“三定一动”,即题目中有3个定点,1个动点,这个动点的横纵坐标都不确定,可以设这个定点为(x,y),此时有2个未知数。

上述问题中的问题3,将这类问题称为“二定二动”,即题目中有2个定点,2个动点,这两个动点的横纵坐标都不确定,但是这两个动点可能在直线上,也可能在坐标轴上,最后通过设元,还是体现了2个未知数。

即运用上述公式解决问题时,只能有2个未知量,不然无法解出
等式。

但是如果平行四边形中有一条边平行于坐标轴(问题1),则可以直接利用“对边相等”这个性质解决,相较于对角线法更为简单。

对于平行四边形的存在性问题,不难发现,一般情况下,动点最多也就两个,不管是在坐标轴上、还是在直线、甚至在今后所学的抛物线上,总是能够用字母表示出动点的坐标。

只要能够准确分类讨论,标对了点的坐标,接下来只要计算正确即可了。

平行四边形的存在性问题

平行四边形的存在性问题

平行四边形存在性问题【知识概括】确定平行四边形:对于A 、B 、C 三点固定,若存在点D 使得四边形ABCD 是平行四边形,则点D 只有一种情况,如图①;若存在点D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 有三种情况,如图②。

图 ① 图 ②【方法思路分析】一、必须明确以下情况:①、四边形ABCD 是平行四边形,AC 、BD 一定是对角线,即明确字母顺序,那么对角线就确定了;②、以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,对角线不确定,则需要分类讨论。

二、有关解析法的知识:①两点之间的距离公式:若A ) ,(11y x ,B ) ,(22y x ,则|AB|=特别地,若AB ∥x 轴,则||AB = ,若AB ∥y 轴,则||AB = ②中点坐标公式:若A ) ,(11y x ,B ) ,(22y x ,则A 、B 的中点M 为 ③①ABCD①,设四个顶点坐标分别是) (A A y x A ,,) (B B y x B ,,) (C C y x C ,,) (D D y x D ,,则满足:【方法运用】一、三定一动,探究平行四边形存在性1、已知)3 ,1(A ,)4 ,6(B ,)6 ,4(C ,在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形。

二、两定两动,探究平行四边形存在性2、已知)1 ,1(A 、)2 ,3(B ,点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,求D C 、的坐标。

【解题步骤要点总结】先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据性质写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.三、拓展延伸已知A 为(0,3),B 为(4,2),点C 在x 轴上,D 是平面直角坐标系内一点,(1)若以A 、B 、C 、D 四点为顶点的四边形是矩形,求点D 的坐标。

平行四边形存在性

平行四边形存在性

平行四边形的存在性东台卞进宇——部分参考广猛说题存在性问题一直是中考的热点题型,比如角的存在性、等腰三角形的存在性、全等三角形的存在性、相似三角形的存在性问题等等,而这类问题也是常常作为压轴题出现的。

平行四边形存在性问题是有两种说法的:一类是有序的,存在平行四边形ABCD,那么A、B、C、D四点的一定是按照顺时针或逆时针排布的;二类是无序的,以A、B、C、D为顶点的四边形是平行四边形,那么这四个点是没有固定顺序的。

本文主要讨论的就是第二类情况,无序状态下的平行四边形的存在性问题,并且从两个方面对这个问题进行讨论分析。

几何分析法三定点问题如图1,平面内存在三个定点A、B、C,在平面内找一点D,使得以A、B、C、D为顶点的四边形是平行四边形.对于三定点的问题,我们只需分三种情形讨论(如图2):①当AB为对角线时,D点所在位置为D1,采用斜化直思想,如图3构造全等三角形,从而求出D1坐标.②当AC为对角线时,D点所在位置为D2,同理可求出D2坐标.③当BC为对角线时,D点所在位置为D3,同理可求出D3坐标.两定点问题对于两个定点,两个动点的问题,其中一个动点基本是在直线上动的,还有一个动点可以在直线上动,也可以在双曲线上动,甚至在抛物线上动,我们把在直线上的那个动点称为主动点,另一个动点称为从动点(特殊的如果两个动点都在直线上,那么主动点和从动点随意).对于此类问题我们步骤如下:第一步:以定线段为边还是为对角线,分两类情况讨论;第二步:以主动点的直线轨迹去分析从动点的直线轨迹,并画出;第三步:找出从动点的直线轨迹与从动点一开始所在轨迹的所有交点,此点为最终的从动点位置,并反过来确定主动点最终位置;第四步:利用上述全等三角形的构造法确定两个动点的坐标.举例:如图4,平面内存在两定点A 、B ,动点C 在x 轴上,动点D 在y 轴上,使得以A 、B 、C 、D 为顶点的四边形是平行四边形.分析:以定线段AB 为平行四边形的边还是对角线分两种情况讨论:① 以定线段AB 为平行四边形的边,则AB CD ∥.由主动点C 点的直线轨迹,确定从动点D 点的直线轨迹,如图5所示的a 、b 两条直线为D 点的轨迹,则最终D 点位置为a 、b 两条直线与双曲线的交点D 1 、D 2,并反向确定最终C 点的位置,如图6.② 以定线段AB 为平行四边形的对角线,则AB 与CD 互相平分. 由主动点C 点的直线轨迹,确定从动点D 点的直线轨迹,如图7所示的直线c 为D 点的轨迹,则最终D 点位置为直线c 与双曲线的交点D 3,并反向确定最终C 点的位置,如图8.坐标通法要用坐标通法解决平行四边形存在性问题,我们首要前提是需要了解中点公式.如图9,在平面直角坐标系中,若已知点(,)A A A x y 、点(,)B B B x y 和点(,)C C C x y ,且点C 为线段AB 的中点,则有22A B C AB C x x x y y y . 如图10,在平面直角坐标系中,若四边形ABCD 是平行四边形,根据中点公式有22A C P A C P x x x y y y 和22B D P B D P x x x y y y ,所以A C B D AC BD x x x x y y y y .对于大多数平行四边形存在性问题,我们基本上都可以用坐标通法来解决,具体步骤如下: 第一步:写出或设出三个顶点坐标;第二步:以“哪两个顶点相对”为分类标准,分三类情况讨论,列出方程,求出第四个顶点坐标;第三步:将第四个顶点坐标带入相应的函数关系式即可.例题演练:例1:已知反比例6y x上有两点(2,3)A 和(6,1)B ,点C 在x 轴上,点D 在反比例图像上,若以A 、B 、C 、D 为顶点的四边形是平行四边形,求出点C 和点D 的坐标.方法一:几何分析法第一种情况:AB CD ∥构造D 点直线轨迹,找出点D ,并反向找出点C ,并构造如图直角三角形,则212D N D M AP ,214NC MC BP ,所以11(3,2)(7,0)D C 、22(3,2)(7,0)D C . 第二种情况:AB 与CD 互相平分构造D 点直线轨迹,找出点D ,并反向找出点C ,中点(4,2)P ,则点33(,4)2D ,所以点313(,0)2C 综上所述:11(3,2)(7,0)D C 、22(3,2)(7,0)D C 、333(,4)213(,0)2D C方法二:坐标通法已知(2,3)A 、(6,1)B ,设(,0)C m第一种情况:BC 作为对角线有B C A D B C A D x x x x y y y y ,即62103D Dm x y ,得(4,2)D m 将(4,2)D m 带入6y x ,解得7m ,所以11(3,2)(7,0)D C 第二种情况:AC 作为对角线有A C B D A C B D x x x x y y y y ,即26301D D m x y ,得42D D x m y 将(4,2)D m 带入6y x ,解得7m ,所以22(3,2)(7,0)D C 第三种情况:AB 作为对角线有A B C D A B C D x x x x y y y y ,即26310D D m x y ,得84D Dx m y 将(8,4)D m 带入6y x ,解得132m ,所以333(,4)213(,0)2D C 综上所述:11(3,2)(7,0)D C 、22(3,2)(7,0)D C 、333(,4)213(,0)2D C。

巧解二次函数中平行四边形存在性问题

巧解二次函数中平行四边形存在性问题

图 2 图 3 图1 巧解二次函数中平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,借助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。

1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +).1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点, ∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .3 两类存在性问题解题策略例析与反思3.1 三个定点、一个动点,探究平行四边形的存在性问题图4例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a-1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形.反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.图53.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,设点P 坐标为(m ,132312--m m ). 尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. ①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m ,∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1).综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.图 6例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)易求抛物线的解析式为y=21x 2+x-4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4). 由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时,⎪⎩⎪⎨⎧--=-+++=+s m m s m 44210002 ∴s 1=-4,s 2=0(舍).∴Q 3(-4,4);③当以OB 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s 1=4,s 2=0(舍).∴Q 4(4,-4).综上,满足条件的点Q 为Q 1(-2+52,2-52)、Q 2(-2-52,2+52)、Q 3(-4,4)、Q 4(4,-4).反思:该题中的点Q 是直线y =-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.。

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略
平行四边形存在性问题是一个常见的几何问题,即给定4条线段,判断它们是否可以构成一个平行四边形。

虽然这个问题看起来很简单,但是解决起来却并不容易。

解决平行四边形存在性问题的第一步是要判断这四条线段是否为平行线段。

根据对称性,可以把这四条线段分成两组,分别是AB和CD,那么AB两条线段是否平行,与CD两条线段是否平行,就可以用一般平行线段的性质来判断,即两条平行线段之间的角度是180°。

若AB和CD两组线段都是平行线段,则说明这四条线段可能构成平行四边形,接下来就要判断对角线的关系。

可以用向量的性质来判断,即对角线的夹角是90°,判断时要将AB和CD两组线段的终点向量相加,若其夹角为90°,则说明这四条线段可以构成平行四边形。

另外,若AB两条线段不是平行线段,则这四条线段一定不能构成平行四边形。

因为平行四边形的4条边都是平行线段,而AB两条线段不是平行线段,则说明这四条线段不可能构成平行四边形。

总之,解决平行四边形存在性问题的关键是要判断四条线段之间的关系,即AB两条线段是否平行,以及AB两条线段的终点向量之和的夹角是否为90°。

只有当这两个条件都满足时,这四条线段才能构成平行四边形。

三定一动的平行四边形存在性问题总结

三定一动的平行四边形存在性问题总结
为顶点的四边形是平行四边形。
第二类型:两个动点平行四边形存在性问题
例2如图,在平面直角坐标系中,抛物线A(-1,0),B (3,0)C(0,-1)三点。
(1)求该抛物线的表达式;
(2)点Q在y轴上,在抛物线上是否存在一点P ,使Q、P、 A、B为顶点的四边形是平行四边形。若存在,请求出点P 的坐标;若不存在,请说明理由。
A 1个
B 2个
C 3个
D 4个
三定点确定的三条线段肯定有一条是平D行四边 形的对角线
但是哪一条不确定,
故分情况讨论:
⑴BC为对角线,
A
⑵AC为对角线。
⑶AB为对角线。
C
D
B
D
已知三个顶点的坐标,求第四个顶点的坐标,使其构成平行四边形
2.如图,在平面直角坐标系中,点A坐标(-1,0),B(3,0),C(0,2), 点D是平面内一点,若A、B 、C 、D四点恰好构成一个平 行四边形,则在平面内符合这样条件的点D的坐标为
C(0,2)
四个顶点的顺序已确定 故D点是唯一确定的.
(-1,0) A O
B(3,0) D (2,-2)
(2008•江西)如图:在平面直角坐标系中,有A(0,1), B(﹣1,0),C(1,0)三点坐标. (1)若点D与A,B,C三点构成平行四边形, 请写出所有符合条件的点D的坐标; (2)选择(1)中符合条件的一点D,求直线BD的解析式.
三定一动确定
平行四边形的方法
C
D
A
B
三定一动确定平行四边形的方法
三定点确定的三条线段肯定有一条是平行四边 形的对角线 但是哪一条不确定, 故分三种情况讨论:有三种结果. ⑴BC为对角线, ⑵AC为对角线。 ⑶AB为对角线。

平行四边形的存在性问题的处理方法

平行四边形的存在性问题的处理方法

平行四边形的存在性问题的处理一、问题说明关于此类问题,其实已经不是考试的主流了,但是作业及期末考试偶有出现,同学们又不会进行处理,所以简单将解题思路讲解一下,同学们可以自己看看。

二、解题方法总结平行四边形的存在性问题中,已知两点,求双动点的存在性问题是比较经典的。

以这个问题为切入点,讲讲解决这类问题需要克服的两个难点:(1)分类的处理(如何找到所有存在的可能性)(2)计算技巧的处理(平移法)三、问题的演绎例1,(已知三点求一点)如图在坐标平面内再找一点D,使得点A,点B,点C,点D组成平行四边形。

(一)分类处理任意连接两个已知点,例如选择连接AC,对线段AC进行分类讨论(1)若AC是平行四边形的边,则BD一定会和AC平行,且长度等于AC,所以点D在点B的右上方或左下方(如下图)(3,0)(1,1)C1C2(3,0)C(2)若AC是平行四边形的对角线,则BD和AC相互平分,则点D位置如图综上所述存在3个点D满足要求(二)计算技巧的处理平行四边形的计算方法很多,从平移的角度去处理是非常简单的以D1为例:如红色箭头标注方向为例:∵点C(0,-1)往右平移1个单位往上平移2个单位得点A(1,1)∴点D1的坐标是点B以同样的方式平移得到,点D坐标为(4,2)同样类似的方法得到点D2的坐标为(2,-2)D3的坐标为(-2,0)D 3(3,0)2D 31例2,已知二次函数322--=x x y 上两点A(-1,0),C(2,-3),点M在X轴上运动,点N在抛物线上运动,求出所有的点M的坐标。

使得点A ,C,M,N组成平行四边形。

、解题分析:已知点A,点C,所以只需要对AC进行分类讨论,点M在X轴上运动,所以设成(a,0),点N通过点M平移得到,然后代入二次函数解析式求解即可。

设点M的坐标为(a,0)(1)若AC是边,则点N在M的左上方或者右下方当点N在左上方时,点N的坐标(a-3,3)将点N(a-3,3)代入322--=x x y 中解得724±=a 当点N在右上方时,点N的坐标(a+3,-3)将点N(a+3,-3)代入322--=x x y 中解得3-=a 或1-=a (舍)(2)若AC是对角线时,则点N的坐标为(1-a,-3)将点N(1-a,-3)代入322--=x x y 中解得1=a 或1-=a (舍)四、问题的拓展双动点的载体,可以是坐标轴,二次函数。

18.2.3三定一动的平行四边形存在性问题总结

18.2.3三定一动的平行四边形存在性问题总结

(2005•武汉)如图,在平面直角坐标系中,点A、B、C的坐标 分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象 限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标 是 . (2,5)
2.如图,在平面直角坐标系中,点A坐标(-2,1),B(3,-3),C(4,0),点D 是平面内任意一点,若A、B 、C 、D四点恰好构成一个平行四 边形,求在平面内符合这样条件的点D的坐标.
(1) m=1 y=x+1 y= x - 2x + 1 O (2)点C、D是定点,点P、E两个动点 设P点坐标(X,x+1 得 ( x+1)- ( ),则点E坐标(X, x - 2x + 1 )由 PE=DC x - 2x + 1
2 2 2
A P D B E C
)=2
练习
二次函数 y= 2x - 2 的图象与X轴交于A 、B两点,如图所示,与y 轴交于C点.直线x=m(m>1)与X轴交于点D. (1)求A 、B 、C三点的坐标。 (2)在直线x=m(m>1)上取一点P(点P在第一象限),要使以 PDB为顶点的三角形与以B为顶点的三角形相似,求P点得坐标 (用含m的代数式表示) 2 (3)在(2)成立的条件下,问抛物线 y= 2x - 2 的图象上是否 存在一点Q,使四边形ABPQ是平行四边形?若存在,请求出此时 m的值;若不存在,请说明理由。 y
C D
三定点确定的三条线段肯定有一条是平行四边 D 形的对角线 但是哪一条不确定, 故分情况讨论: ⑴BC为对角线, A ⑵AC为对角线。 ⑶AB为对角线。 D
B
已知三个顶点的坐标,求第四个顶点的坐标,使其构成平行四边形 2.如图,在平面直角坐标系中,点A坐标(-1,0),B(3,0),C(0,2), 点D是平面内一点,若A、B 、C 、D四点恰好构成一个平 行四边形,则在平面内符合这样条件的点D的坐标为

中考数学复习难题突破专题六:平行四边形存在性问题

中考数学复习难题突破专题六:平行四边形存在性问题

9
∴点 M3 的纵坐标为-
. 4
9 将 y M=- 4代入抛物线的函数表达式,得-
∴ x N= x M- 3=- 7- 1 或 7- 1,
9 =-
3x2+
3x,解得
44
xM= 2-
7或 x M= 2+
7,
( ) ∴ N3 - 7- 1, 0 , N4( 7-1, 0) .
综上所述,满足条件的点 N 有 4 个, N1(2 , 0) , N2(6 ,0) , N3( - 7-1, 0) , N4( 7- 1, 0) .
③ ________,然后联立①②③,即可求得 a,b, c,从而得到函数表达式.
(2) 假设存在满足条件的点 F,连结 BF,CF, OF,过点 F 作 FH⊥x 轴于点 H, FG⊥ y 轴于点 G.设点 F
的横坐标为 t ,则点 F 的坐标可表示为 ________ ,然后分别用 t 表示出△ OBF,△ OFC的面积,而△ AOC 的
图 Z6- 5
2. [2019 ·泰安 ] 如图 Z6- 6,是将抛物线 y =- x2 平移后得到的抛物线,其对称轴为直线 x 轴的一个交点为 A( - 1,0) ,另一个交点为 B,与 y 轴的交点为 C.
x= 1,与
(1) 求抛物线的函数表达式.
(2) 若点 N为抛物线上一点,且 BC⊥NC,求点 N 的坐标. 33
(1) 求抛物线的解析式.
(2) 在第二象限内取一点 C,作 CD垂直 x 轴于点 D,连结 AC,且 AD= 5,CD= 8,将 Rt △ACD沿 x 轴向
右平移 m个单位长度,当点 C 落在抛物线上时,求 m的值.
(3) 在 (2) 的条件下,当点 C 第一次落在抛物线上时记为点 E,点 P 是抛物线对称轴上一点.试探究在

平行四边形的存在性问题

平行四边形的存在性问题

精选PPT
9
第三步 计算——思路就在画图的过程中
yx22x3 A(1,0)C , (0,3)
如果AE为对角线, 那么C、F到x轴距离相等, 直线与抛物线有2个交点F. 再由AF=CE确定点E(2个).
解方 x22 程 x3 3 得 x F 1 7 ,x F ' 1 7 由 H EO A 1 精选知 PPTE ( 27,0 )E ,'( 27 1,00 )
点E在x轴上 点F在抛物线上
AE为对角线
AE为边
精选PPT
5
第一步确定分类标准与第二步画图相结合
AE为对角线 AE为边
A、C、E、F
点E在x轴上 点F在抛物线上
如果AE为边, 那么由AE//CF确定点F, 再精选由PPTAE=CF确定点E(2个6).
第一步确定分类标准与第二步画图相结合
AE为对角线 AE为边
平行四边形存在性问题
分两类型 第一类型:三定一动平行四边形存在性问题 第二类型:两定两动平行四边形存在性问题
精选PPT
1
第一类型:一个动点平行四边形存在性问题
抛砖引玉
1.点A、B 、C是平面内不在同一条直线上的三点, 点D是平面内任意一点,若A、B 、C 、D四点恰好 构成一个平行四边形,则在平面内符合这样条件的 点D有C ( )
小结
第一步确定分类标准与第二步画图相结合 第三步 计算——思路就在画图的过程中
画图的顺序:因E而F 因F而E 画图的依据:平行(尺)且相等(规)
精选PPT
11
09普陀25
若点P是x轴上一点,以P、A、D为顶点作平行
四边形,该平行四边形的另一顶点E在y轴上,
写出点P的坐标.
精选PPT

中考数学复习指导:平行四边形存在性问题的解题模型

中考数学复习指导:平行四边形存在性问题的解题模型

平行四边形存在性问题的解题模型平行四边形存在性问题是近年来各地中考的热点,其图形复杂,不确定因素较多,解题有一定的难度.因此对此类问题建立解题模型,则可以大大降低学生思维难度. 模型原理 对角线互相平分的四边形是平行四边形.模型工具 中点坐标公式:若点A (x 1,y 1)、B (x 2,y 2),则线段AB 的中点为C (122x x +,122y y +) 一、模型探究点A 、B 、C 是坐标平面内不在同一直线上的三点.(1)画出以A 、B 、C 三点为顶点的平行四边形;(2)若A 、B 、C 三点的坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),写出平行四边形第四个顶点D 的坐标.解 (1)过点A 、B 、C 分别作BC 、AC 、AB 的平行线,则以A 、B 、C 三点为顶点的平行四边形有三个,如图1.(2)在以BC 为对角线的□CABD 1中,设BC 与AD 1的交点为E ,则有BE =CE ,AE =AD 1.因为B (x 2,y 2),C(x 3,y 3),由中点坐标公式,可得E (232x x +,232y y +) 设D1(x D ,y D ),则由中点坐标公式,可得AD 1中点E 为模型结论1.以不在同一直线上的三点为顶点的平行四边形有三个.由已知的三点坐标,按对角线分类,利用中点坐标公式,可直接写出第四个顶点的坐标,姑且称此法为“中点坐标法”.2.已知点A、B、C是坐标平面内不在同一直线上的三点,求点D,使得以A,B,C,D为顶点的四边形为平行四边形.结论①若AB为平行四边形对角线,则D=A+B-C;②若AC为平行四边形对角线,则D=A+C-B;③若BC为平行四边形对角线,则D=B+C-A.说明“D=A+B-C”是指D点的横坐标=A点的横坐标+B点的横坐标-C点的横坐标;D点的纵坐标=A点的纵坐标+B点的纵坐标-C点的纵坐标.二、模型运用1.三个定点,一个动点,探究平行四边形的存在性例1 如图2,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P、A、C、N为顶点的四边形为平行四边形?若存在,求出点P的坐标.解(1)抛物线的函数表达式为y=x2-2x-3;(2)易得A(-1,0)、C(0,-3)、N(-3,0).下面探讨以A、C、N三点为顶点的平行四边形的第四个顶点坐标.如图3,由平移的性质直接写出第四个顶点的坐标:以CN为对角线,第四个顶点坐标为P1(-2,-3);以AC为对角线,第四个顶点坐标为P2(2,-3);以AN为对角线,第四个顶点坐标为P3(-4,3).将其分别代入抛物线y=x2-2x-3中检验,其中只有P2(2,-3)在抛物线上.点评本题已知三个定点坐标的具体数值,可以根据坐标平移的性质,直接写出第四个顶点的坐标.值得注意的是,若没有约定由三点构成的三条线段中哪条为边或对角线,则三种情况都必须考虑.例2 已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为舱直线y=12x-a与y轴相交于C点,与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(_______),N(_______);(2)如图4,在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?解(1)M(1,a-1),N(43a,-13a);(2)易得A(0,a)、C(0,-a)、N(43a,-13a).下面探讨以A、C、N三点为顶点的平行四边形的第四个顶点的坐标,如图5.若以CN为对角线,第四个顶点为P1(43a,-73a).代入解析式得a=-38,即P1(-12,78);若以AC为对角线,第四个顶点为P2(-43a,13a).代入解析式得a=-158,即P2(52,-58);若以AN为对角线,第四个顶点为P3(43a,53a).代入解析式得a=158>0.不合题意,无解,∴所以在抛物线上存在点P1(-12,78)和P2(52,-58),使得以P,A,C,N为顶点的四边形是平行四边形.点评本题已知三个定点坐标,虽不是具体数值(含字母a),但依然可以根据模型直接写出第四个顶点的坐标.看上去此法冗长,三种情况必须逐一探究,但思路简单,解题严谨.2.两个定点、两个动点,探究平行四边形的存在性例3 如图6,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y 轴的正半轴上,OA =4,OC =3.若抛物线的顶点在边BC 上,且抛物线经过O 、A 两点,直线AC 交抛物线于点D ,(1)求抛物线的解析式;(2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.解 (1)抛物线的解析式为 2334y x x =-+. (2)点D 的坐标为(1,-94). (3)存在.假设N 点坐标为(n ,0),又因为A(4,0),D(1,94). ①若AN 为对角线,则点彤的坐标为(n +3,-94), 代入抛物线解析式,得n =-17所以N 点坐标为(-17,0),或(-17,0);②若AD 为对角线,则点M 的坐标为(5-n ,94) 代入抛物线解析式,得n 1=2,n 2=4(舍去),所以N 点坐标为(2,0);③若DN为对角线,则点M的坐标为(n-3,94)代入抛物线解析式,得n1=6,n2=4(舍去),所以N点坐标为(6,0),综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3-1,0),N4(-1,0).点评对于两个定点、两个动点的问题,我们的思路是,先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,根据中点坐标模型,用该未知数表示另一个动点的坐标;最后再根据动点应满足的条件,求出榴应点的坐标.三、中点坐标模型的思考中点坐标模型是巧妙利用平行四边形对角线互相平分这一原理,结合中点坐标公式,归纳总结出的一种确定平行四边形顶点坐标的方法,该方法的最大优点是避免了复杂的画图,使得分类讨论变得简单,不会有遗漏.中点坐标模型实际就是要用代数的方法研究几何问题,加强数形之间的联系,突出数形结合的思想.这就启发我们在日常的教学活动中,要加强对新课程的研究,渗透新课程的理念,按照新课程的要求及时渗透数形结合的思想、方程思想,引导学生从不同的角度思考问题,这样才‘能从教材的例、习题中获得解决问题的新方法、新思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形存在性问题
一、解平行四边形的存在性问题一般分三个步骤
第一步寻找分类标准,第二步画图,第三步计算.
二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快.
三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。

四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。

(辅助手段~三角形全等,等积法,中点坐标公式)
例1.已知抛物线
b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .
⑴直接写出抛物线的对称轴,及抛物线与x 轴
的另一个交点B 的坐标;
⑵当点C 在以AB 为直径的⊙P 上时,求抛物
线的解析式;
⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.
例2、如图,抛物线:y=x 2﹣x ﹣与x 轴交于A 、B (A 在B
左侧),A (﹣1,0)、B (3,0),顶点为C (1,﹣2)(1)求过
A 、
B 、
C 三点的圆的半径.(2)在抛物线上找点P ,在y 轴上找
点E ,使以A 、B 、P 、E 为顶点的四边形是平行四边形,求点P 、
E 的坐标.
例3.已知,如图抛物线
23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。

点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。

是否存在以A 、
C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.
例4.已知抛物线:x x y 22121+-= (1)求抛物线1y 的顶点坐标. (2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式. (3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,
若存在,求出N 点的坐标;若不存在,请说明理由.
例5.如图,抛物线223y x x =--与x 轴交A 、B 两点(A
点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的
横坐标为2.
(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛
物线于E 点,求线段PE 长度的最大值;
(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理x y
y 1
234567895
4
3
2
1
-1
-2
-3
-41y 2 -1
由.
练习1、已知抛物线 c bx ax y ++=2
经过A (-3,0),B(1,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)P 为抛物线的顶点,M 为坐标平面内的点,若以A,C,P ,M 为顶点的四边形为平行四边形,求点M 的坐标.
2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三
象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面
积为S .求S 关于m 的函数关系式,并求出S 的最大值.
(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
3、如图,在平面直角坐标系中,半径为52的⊙C 与x 轴交于点A(-1,0),B(3,0)两点,且点C 在x 轴的上方.
(1)求圆心C 的坐标;
(2)已知一个二次函数的图象经过点A,B,C,求这个二次函数的解析式;
(3)设点P 在y 轴上,点M 在(2)的二次函数图象上,如果以点P ,M,A,B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.
M C B
A O x
y
4、已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值及这个二次函数的解析式;
(2)在x轴上找一点Q,使△QAB的周长最小,并求出
此时Q点坐标;
(3)若P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①设线段DE的长为h,当0<a<3时,求h与a之间的函数关系式;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
5.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两
点(点A在点B的左侧),与y轴交于点C,顶点为P.若以
A、C、P、M为顶点的四边形是平行四边形,求点M的坐标.
6、如图1,在平面直角坐标系中,抛物线y=ax2+bx-3a经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.
(1)求该抛物线的解析式及点C、D的坐标;
(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F
为顶点的四边形是平行四边形,求点F 的坐标;
(3)如图2,P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.
7、已知平面直角坐标系xOy (如图),一次函数334y x =
+的图像与y 轴交于点A ,点M 在正比例函数32
y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经
过点A 、M .
(1)求线段AM 的长;
(2)求这个二次函数的解析式;
(3)如果点B 在y 轴上,且位于点A 下方,点C 在上
述二次函数的图像上,点D 在一次函数334
y x =
+的图像上,且四边形ABCD 是菱形,求点C 的坐标.
8.如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个
顶点在x 轴上,顶点C 在y 轴的负半轴上.已知|OA |∶|OB |
=1∶5,|OB |=|OC |,△ABC 的面积S △ABC =15,抛物线y
=ax 2+bx +c (a ≠0)经过A 、B 、C 三点.
(1)求此抛物线的函数表达式;
(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则
在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为72?若存在,求出点M的坐标;若不存在,请说明理由.
9、将抛物线c1:233
=-+沿x轴翻折,得到抛物线c2,
y x
如图所示.
现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的
顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2
向右也平移m个单位长度,平移后得到新抛物线的顶点为N,
与x轴的交点从左到右依次为D、E.在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档