钢碳钢和合金钢精修订

合集下载

SAEJ411碳素钢和合金钢

SAEJ411碳素钢和合金钢

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.QUESTIONS REGARDING THIS DOCUMENT: (724) 772-8512 FAX: (724) 776-0243TO PLACE A DOCUMENT ORDER; (724) 776-4970 FAX: (724) 776-0790SAE WEB ADDRESS 2.1.2ASTM P UBLICATION—Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.ASTM A29—Specification for Steel Bars, Carbon and Alloy, Hot-Wrought and Cold-FInished, General Requirements for3.Steel—Steel is a malleable alloy of iron and carbon that has been made molten in the process of manufactureand contains approximately 0.05 to 2.0% carbon, as well as some manganese and sometimes other alloying elements.3.1Carbon Steel—Steel is considered to be carbon steel when no minimum content is specified or required foraluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, or zirconium, or any other element added to obtain a desired alloying effect: when the specified minimum for copper does not exceed 0.40%; or when the maximum content specified for any of the following elements does not exceed the following percentage: manganese, 1.65%; silicon, 0.60%; copper, 0.60%. For fine grain carbon steels, minimum or maximum levels of grain refiners (Al, Cb, V) can be specified. Boron may be added to killed fine grain carbon steel to improve hardenability.In all carbon steels, small quantities of certain residual elements, such as copper, nickel, molybdenum, chromium, etc., are unavoidably retained from raw materials. Those elements are considered detrimental for special applications, the maximum acceptable content of these incidental elements should be specified by the purchaser.3.2Alloy Steel—Steel is considered to be alloy steel when the maximum of the range given for the content ofalloying elements exceeds one or more of the following limits: manganese, 1.65%; silicon, 0.60%; copper,0.60%; or in which a definite range or definite minimum quantity for any of the following elements is specified orrequired within the limits of the recognized field of constructional alloy steels: aluminum and chromium up to3.99%: cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, or any other alloyingelement added to obtain a desired alloying effect.4.Steelmaking Processes—These fall into two general groups: acid or basic, according to the character of thefurnace lining. Thus electric processes may be either acid or basic. Basic oxygen, as the name implies, is an exclusively basic process. The choice of an acid or basic furnace is usually determined mainly by the phosphorus in the available raw materials and the content of phosphorus permissible in the finished steel.Phosphorus is an acid-forming element and, in its oxide form, will react with any suitable base to form a slag in the steelmaking furnace. In basic processes, the metallurgist and steelmaker take advantage of this chemical behavior by oxidizing the phosphorus with iron oxide, which yields up its oxygen to the phosphorus. This permits the iron to remain as part of the steelmaking bath, while the acid phosphoric oxide is separated by floating up into the molten basic lime slag. In acid processes, furnaces are generally lined with silica, which is acid in nature and will not tolerate the use of basic materials for fluxes. Since an acid slag has no affinity for impurities such as phosphorus, the steel cannot be dephosphorized by fluxing and the content of this element remains at the level contained in the raw material, or may be concentrated somewhat in the finished steel due to loss of other materials from the original metallic charge.Most iron ores in the United States are of a phosphorus content suitable only for basic steelmaking processes: hence, all of the nation’s wrought steel is so made. The following are the principal steelmaking processes used in the United States:4.1Basic Electric—The principal advantage of this process is optional control in the furnace permitting steel to betreated under oxidizing, reducing, or neutral slags, and pouring off and replacement of slags during the process. In this manner, and depending on specified requirements, objectionable elements may be substantially reduced and a high degree of refinement obtained in the steel bath. Practically all grades of steel can be made by the basic electric furnace, and the process with or without supplementary processes is used for producing SAE Wrought stainless steels.4.2Basic Oxygen—The prime advantage of this process is the rate at which steel can be produced. The natureof the process is such that large quantities of molten iron must be readily available, since refining is accomplished by the exothermic reactions of high purity oxygen with the various elements contained in the molten iron.4.3Ladle Refining—Today the majority of steels are actually refined to final chemistry and cleanlinessrequirements in a ladle refining facility. This facility takes the ladle of steel which was tapped from the electric arc furnace (EAF) or basic oxygen furnace (BOF), and through the use of the ladle as a vessel further refines the steel. Through the use of optional electric arc reheating capability, inert gas stirring, and optional degassing capabilities; the ladle of steel is trimmed to the final chemistry requirements and inclusions are removed for cleaner steel. The ladle refining station is the facility which actually makes the specific grade of steel to the customer’s specification.4.4Other—Another method increasing in use in the production of stainless, tool, and specialty steels is ESR(electroslag refining). In this process, as-cast electric furnace melted electrodes are progressively melted and solidified in a water cooled copper mold under a blanket of molten flus. Melting results from the heat generated by the resistance of the molten flux to electric current passing between the electrode and the solidifying ingot.Refining occurs as the electrode melts and droplets of molten metal pass through the flux and their impurities are removed by reaction with the flux. The progressively solidified ingot thus produced is very homogeneous and sound, and may be directly processed into mill products.The AOD (argon oxygen decarburization) process has become an important steel refining system for specialty steel grades. Originally employed to replace electric furnace basic slag practice for stainless steels, it is now refining alloy, tool, silicon-iron, electrical, and other specialties. The AOD system refining vessel simply accepts molten iron from whatever source is available, that is, electric furnace, BOF, blast furnace or cupola and completes all chemical and refining stages.The process is based on the principle that when argon gas is mixed with oxygen and injected into the melt, the inert gas dilutes the carbon monoxide resulting from the oxidation of carbon and reduces its partial pressure.This shifts the reaction equilibrium to favor the oxidation of carbon over other oxidizable metals such as chromium. As a result, a higher chromium content can be charged in the melt allowing the conservation of ferrochromium and making this attractive in the economic production of stainless steel.AOD melting also allows control of hydrogen in flake sensitive grades to the point that the need for long anneals is eliminated.4.5Vacuum Treatment—The use of vacuum treatment can be employed with electric furnace, BOF, and ladlemetallurgy furnace steelmaking, and is adaptable to all grades of carbon and alloy steel.There are two types of treatments commonly used. The first is simply “vacuum degassing” the steel to remove hydrogen gas and avoid the necessity for long slow cooling cycles for heavy sections such as blooms, billets, and slabs. The reduced hydrogen content provides steel with improved internal soundness and resistance to internal rupturing or “flaking.” The second treatment is infrequently utilized since the advent of ladle metallurgy facilities. It is referred to as “vacuum carbon deoxidation” (VCD). While this process will also remove hydrogen from the liquid steel, it serves the added purpose of deoxiding the steel. These steels exhibit improved cleanliness compared with conventional product.In today’s modern steelmaking practices, the steel cleanliness is usually achieved in the ladle metallurgy treatment, and VCD treatments are not frequently used. During the ladle metallurgy treatment, the liquid steel is constantly being stirred via argon gas or induction stirring. This induces the liquid steel to have contact with the artificial slag cover on the ladle, the artificial slag captures the inclusions in the steel and prevents them from reentering the molten steel.4.6Strand Casting—This process involves the direct casting of steel from the ladle into slabs, blooms, or billets.In strand casting, a heat of steel is tapped into ladle in the conventional manner. The liquid steel is then teemed into a tundish, which acts as a reservoir to provide for a controlled casting rate. The steel flows from the tundish into the casting machine and rapid solidification begins in the open-ended water cooled copper molds. The partially solidified slab, bloom, or billet is continuously extracted from the mold by an up and down oscillating movement of the mold. Solidification is completed by cooling the moving cast shape through a water cooling spray system. Several strands may be cast simultaneously, depending on the heat size and section size. A reduction in size may be carried out by hot working the product prior to cutting the standard into lengths. Chemical segregation is minimized, due to the rapid solidification rate of the strand cast product.Good casting practice should include measures to protect the molten steel from reoxidation (exposure to air).These measures include, but are not limited to, ladle to tundish shrouding, artificial tundish slag, tundish to mold shrouding, and mold powder. The shrouding technique can employ ceramic shrouds, gaseous shrouds or some combination of both.When two or more heats of steel are cast without interruption, the process is called continuous casting or sequence casting.Some strand casting machines can incorporate electromagnetic stirring (EMS) in the molds and/or below the molds. The EMS stirs the molten steel within the solidified shell. Also below the mold or prior to complete solidification soft or hard reduction of the strand can be employed. These steps help to improve as-cast center quality, reduce segregation, and promote the formation of an equiaxed grain zone.The process of strand casting steel has become the predominant process for the manufacture of steel products. This is due to the advances in the technology of strand casting both from a production aspect and material quality aspect. The quality of strand cast material has become at least equivalent, and in many cases better than the traditional ingot casting process.4.7Ingot Casting—This process has been designed to meet a variety of conditions of manufacture. Ingots areusually cast as square or rectangular in cross section with rounded corners. Occasionally they are cast in round cross sections. They are usually tapered and cast big end up and hot topped. Ingot steel is subject to internal variations in chemical composition and structure due to the natural phenomena which occur as the steel solidifies.Shrinkage in the ingot during solidification results in the formation of a central cavity known as pipe. Primary pipe is located in the upper portion of the ingot. Under some conditions, another shrinkage cavity, known as secondary pipe, may form in the ingot below but not connected with the primary pipe. Secondary pipe is normally not exposed to the air and therefore not oxidized. This allows it to be welded during hot working of the ingot, and results in no detriment to the integrity of the product. Primary pipe is controlled by the hot topping system and any remnants are cropped during the ingot breakdown.There are two methods of ingot production, bottom pouring and top pouring. In bottom pouring, the molten steel flows through a center sprue or trumpet into a runner system filling the ingots from the bottom. Generally there are multiple ingots filled simultaneously from one runner system. The molten steel in the ingot molds is covered by a bottom pouring flux compound.Additionally, the teeming stream can be shrouded to reduce the potential for steel reoxidation and the generation of exogenous inclusions. Once the ingots are filled, a hot topping compound is applied to each ingot.Top pouring is accomplished by filling each ingot individually by teeming the molten steel directly into the top of each ingot much like filling a glass of water. Once the mold is filled, a hot topping compound may be applied to each ingot. Shrouding of the teeming stream is generally more difficult and not as effective in top pouring.5.Steel Processing—After the molten steel has solidified into a solid in either the strand casting process or theingot process the as-cast product is processed into a finished product through several stages. These include primary rolling, inspection, conditioning, hot-rolling, and sometimes cold finishing.5.1Primary Rolling, Inspection, and Conditioning—Cast blooms and ingots are reduced into billets by hot-rolling. This is called primary rolling, and it is also a phase where manufacturers have an opportunity to inspect and enhance the surface of the billet by conditioning.Primary rolling involves the reheating or “soaking” of the ingot or cast bloom followed by the reduction of the heated section by rolling in continuous or reversing type primary mills. In a continuous mill, the section is continuously passed through one or more strands to produce the billet or bloom. In a reversing mill, the section is alternately passed forward and backward, reducing the section into a billet or bloom.Generally, at some point in the primary rolling process, the surface of the section is inspected and conditioned.Inspection is the process of detecting surface imperfections and conditioning is the means of removing them.Inspection of the surface may be visual or automatic by magnetic particle or other means. Conditioning generally involves the removal of surface imperfections by grinding, torching, or other means.Ultrasonic testing of billets can also be performed to test internal quality of the billets.5.2Hot-Rolling—Hot-rolling initially involves the reheating of billets in continuous furnaces that tightly controltemperature and atmosphere to limit surface decarburization. Heated billets exit the furnace and pass througha series of rolling stands for reduction into the bar section, which goes on to a cooling bed or into a coiling tub.Interstand cooling, tension-free rolling and continuous, electronic dimensional measuring with feedback are some of the measures employed to achieve high quality, hot-rolled product.5.3Cold Finishing—Some products receive additional processing through cold finishing operations. Theseoperations are designed to enhance the steel’s surface quality and/or mechanical properties.6.Quality Classifications—Technically, quality, as the term relates to steel products, may be indicative of manyconditions, such as the degree of internal soundness, relative uniformity of composition, relative freedom from detrimental surface imperfections, and finish. Steel quality also relates to general suitability for particular applications. Sheet steel surface requirements may be broadly identified as to the end use by the suffix E for exposed parts requiring a good painted surface, and the suffix U for unexposed parts for which surface finish is less important.Carbon steel may be obtained in a number of fundamental qualities, which reflect various degrees of the quality conditions mentioned. Some of those qualities may be modified by such requirements as austenitic grain size, special discard, macroetch test, special hardenability, maximum incidental alloy elements, restricted chemical composition, and nonmetallic inclusions. In addition, several of the products have special qualities, which are intended for specific end uses or fabricating practices, that is, scrapless nut quality, axle shaft quality, gun barrel quality, or shell quality.Alloy steels also may be obtained in special qualities. Superimposed on some of these qualities may be such requirements as extensometer test, fracture test, impact test, macroetch test, nonmetallic inclusion tests, special hardenability test, and grain size test.For complete descriptions of the qualities and supplementary requirements for carbon and alloy steels, reference should be made to the latest applicable Steel Products Manual Section. Titles of these manuals are listed in Section 2.7.Types of Steel—In steelmaking, the principal reaction is the combination of carbon and oxygen to form a gas.If the oxygen available for this reaction is not removed prior to or during casting, the gaseous products continue to evolve during solidification. Proper control of the evolution of gas determines the type of steel produced. All alloy steels and strand cast steels are killed steels. Killed steels refers to those steels which have a deoxidizing element (such as aluminum or silicon) added to eliminate the gaseous oxygen. Carbon steel may be produced as killed, semi-killed, or rimmed. The vast majority of steels are of the killed type.7.1Killed steel is a type of steel from which there may be only a slight evolution of gases during solidification of themetal. Killed steels have more uniform chemical composition and properties than the other types. However, there may be variations in composition, depending on the steelmaking practices used. Alloy steels are of the killed type, while carbon steels may be killed or may be of the following types:7.2Rimmed steels have marked differences in chemical composition across the section. The typical structure ofrimmed steel results from a marked gas evolution during solidification of the outer rim, caused by a reaction between the carbon in the solidifying metal and dissolved oxygen. The outer rim is lower in carbon, phosphorus, and sulfur than the average composition, whereas the inner portion, or core, is higher than the average in those elements. The technology of manufacturing rimmed steels limits the maximum contents of carbon and manganese and those maximum contents vary among producers. Rimmed steels do not retain any significant percentages of highly oxidizible elements, such as aluminum, silicon, or titanium.Rimmed steel products, because of their chemical composition and their surface and other characteristics, may be used advantageously for the manufacture of finished articles involving cold bending, cold forming, deep drawing, and in some cases, cold heading applications.7.3Semi-killed steels have characteristics intermediate between those of killed and rimmed steels. During thesolidification of semikilled steel, some gas is evolved and entrapped within the body of the ingot. This tends to compensate for the shrinkage that accompanies solidification.7.4Capped steels have characteristics, which combine some features of rimmed and semi-killed steels. Afterpouring, the rimming action is stopped after a brief interval by means of mechanical or chemical capping. The thin lower carbon rim has surface and forming properties comparable to those of rimmed steel, whereas the uniformity of composition and properties more nearly approaches that of semi-killed steels. Capped steel products, because of their chemical composition, surface, and other characteristics, may be used to advantage when the material is to withstand cold bending, cold forming, or cold heading.monly Specified Elements—It is the purpose here to outline briefly the effects of various elements onthe steelmaking practices and steel characteristics. The effects of a single element on either practice or characteristics are modified by the influence of other elements. These interrelations, frequently of a synergistic nature, must be considered when evaluating a change in specified composition. However, to simplify this presentation, the various elements will be discussed individually. The scope of this discussion will permit only suggestions of the modifying effects of other elements or of steelmaking practices on the effects of the element under consideration. Aluminum, titanium, and columbium, though not specified in SAE standard steels, are at times present to achieve deoxidation or fine grain size.8.1Carbon is present in all steel and is the principal hardening element. The hot-rolled strength and hardnessincrease significantly with increased carbon content, particularly at the low and medium carbon levels. Ductility and weldability decrease with increasing carbon content. Carbon also determines the level of hardness or strength attainable by quenching. Carbon segregates, and because of its major effect on properties, carbon segregation is frequently of more significance and importance than the segregation of other elements.8.2Manganese contributes to strength and hardness, but to a lesser degree than carbon. The amount of increasein these properties is dependent upon the carbon content, that is, higher carbon steels are affected more by manganese than lower carbon steels. Increasing the manganese content decreases weldability, but to a lesser extent than carbon. Manganese tends to increase the rate of carbon penetration during carburizing and enhances hardenability in quenching. Manganese is generally beneficial to surface quality, particularly in resulfurized steels. Manganese has a moderate tendency to segregate during solidification.8.3Phosphorus in appreciable amounts increases the hot-rolled strength and hardness, but at the sacrifice ofductility and toughness. Increased phosphorus content in quenched and tempered steels is also detrimental to ductility, toughness, and fatigue. Consequently, for most applications, phosphorus is maintained below a specific maximum. This varies with the grade and quality level. In certain low carbon, free machining steels, higher phosphorus content is specified for its effect on machinability. Phosphorus has a pronounced tendency to segregate.8.4Sulfur lowers ductility and toughness in the transverse direction as the content increases. Weldabilitydecreases with increasing sulfur. Sulfur is very detrimental to surface quality, particularly in the lower manganese steels. For these reasons, a maximum sulfur content is specified for most steels. However, for some steels, sulfur is added to improve the machinability. Sulfur also has a pronounced tendency to segregate. Sulfur occurs in steel primarily in the form of manganese sulfide inclusions. Obviously, greater frequency of such inclusions is to be expected in the resulfurized grades.8.5Silicon is one of the principal deoxidizers used in steelmaking and, therefore, the amount of silicon present isrelated to the type of steel. Rimmed and capped steels contain no significant amounts of silicon. Semi-killed steels may contain moderate amounts of silicon, although there is a definite maximum amount that can be tolerated in such steels. Killed carbon steels may contain any amount of silicon up to 0.60% maximum.Silicon is somewhat less effective than manganese in increasing as-rolled strength and hardness. Silicon has only a slight tendency to segregate. In low-carbon steels, silicon is usually detrimental to surface quality, and this condition is more pronounced in low-carbon resulfurized grades.Silicon can help improve toughness and reduce relaxator in heat-treated spring steels.8.6Copper has a moderate tendency to segregate. Copper in appreciable amounts is detrimental to hot workingoperations. Copper adversely affects forge welding, but it does not seriously affect arc or acetylene welding.Copper is detrimental to surface quality and exaggerates the surface defects inherent in resulfurized steels.Copper is, however, beneficial to atmospheric corrosion resistance when present in amounts exceeding 0.20%.8.7Lead is an element sometimes added to carbon and alloy steels through mechanical dispersion duringteeming or casting for the purpose of improving the machining characteristics of such steels. When so added, the range is generally 0.15 to 0.35%.8.8Boron is added to steel in small amounts (0.0005 to 0.0030%) to increase hardenability. Special melting andheating techniques are essential to obtain the desired hardenability results. Boron does not measurably affect the hot-rolled, normalized, or annealed properties of steel. Boron is most effective as a hardenability agent in lower carbon steels.8.9Chromium is generally added to steel to increase resistance to corrosion and oxidation, increasehardenability, improve high temperature strength, or improve abrasion resistance in high-carbon compositions.Chromium is a strong carbide former. Complex chromium-iron carbides go into solution in austenite slowly;therefore, a sufficient heating time before quenching is necessary.Chromium is essentially a hardening element and is frequently used with a toughening element such as nickel to produce superior mechanical properties. At higher temperatures, chromium contributes increased strength, but is ordinarily used for applications of this nature in conjunction with molybdenum.8.10Nickel, when used as an alloying element, is a ferrite strengthener. Since nickel does not form any carbidecompounds in steel, it remains in solution in the ferrite, thus strengthening and toughening the ferrite phase.Nickel steels are easily heat treated because nickel lowers the critical cooling rate. In combination with chromium, nickel produces alloy steels with greater hardenability, higher impact strength, and greater fatigue resistance than are possible with carbon steels.8.11Molybdenum promotes hardenability of steel and is useful where hardenability control is essential. Whenmolybdenum is in solid solution in austenite prior to quenching, the reaction rates for transformation become considerably slower as compared with carbon steel. It widens the temperature range of effective heat treated response since it has a tendency to form stable carbides. Molybdenum provides hardenability with a minimum detrimental effect on cold-forming characteristics. Molybdenum steels in the quenched condition require higher tempering temperatures to obtain the same degree of softness as comparable carbon and alloy steels.It also increases the tensile and creep strengths of steel at high temperatures. Alloy steels that contain 0.15% to 0.30% molybdenum show a minimized susceptibility to temper embrittlement.8.12Vanadium increases the hot-rolled mechanical properties of steel and may be used to enhance hardenability.It can be used to inhibit austenitic grain growth through the formation of precipitates. The grain growth inhibiting effects promote a fine grain structure that imparts strength and toughness to steels. However, the precipitates of Al, Cb, and/or Ti offer a more effective means of austenitic grain coarsening resistance.Vanadium is also used in some microalloy steel since its ability to produce vanadium carbonitride precipitates from hot forging or hot-rolling temperatures imparts strength and hardness levels comparable to quench and tempered steels. It can be used in combination with columbium, aluminum, and/or titanium.8.13Aluminum is primarily used as a deoxidizer and austenitic grain refiner. In increased amounts, it combinesreadily with nitrogen to form aluminum nitrides which combines readily with nitrogen to form aluminum nitrides which contribute to high surface hardness and superior wear resistance.8.14Selenium is added to enhance machinability. It combines with manganese sulfide inclusions to modify theirshape to be more globular; it also combines with manganese to form manganese selenides, which are inclusions which behave like manganese sulfides and are beneficial to machining.8.15Tellurium is added to enhance machinability. Its main purpose is to modify the shape of the manganesesulfides. However, tellurium will form iron tellurides, which result in hot shortness problems and require special hot-rolling considerations.8.16Bismuth is added to enhance machinability. It behaves much like lead in that it is present in a finely dispersedform in the solid steel.8.17Calcium is added to steel to promote the strand castability of aluminum grain refined steel. It forms calciumaluminate inclusions which remain liquid at steel casting temperatures, as opposed to alumina inclusions which are solid at casting temperatures. The alumina inclusions build up on nozzles and shrouds and cause clogging problems. Calcium is also added to strand cast or ingot steels to modify the alumina inclusions from a hard, brittle stringer to a softer, globular inclusion which is less detrimental to carbide tooling during machining operations.。

79 ASTMA29A29M热加工碳素钢和合金钢棒材的一般要求(中文)

79 ASTMA29A29M热加工碳素钢和合金钢棒材的一般要求(中文)

ASTM A29/A29M-05热加工碳素钢和合金钢棒材的一般要求1本标准是以固定代号A 29/A 29M发布的。

其后的数字表示原文本正式通过的年号;在有修订的情况下,为最后一次的修订年号;括弧中数字为最后一次重新确认的年号。

年号右上角有希腊字母(ε)的,表示自最后一次修订或确认之后编辑上有所改动。

本标准已经美国防部认可采用1.范围*1.1本标准2规定了一组通用技术要求。

除需方订单或个别标准另有规定外,本标准适用于下述ASTM 标准(或者引用本标准或部分引用本标准的其他ASTM标准)规定的碳素钢和合金钢棒材:标准名称ASTM标准号A热轧碳素钢棒材淬火和回火碳素钢棒材 A321用‘T’型钢轨碳素钢轧制棒材和型钢 A499商品级M-级碳素钢棒材 A575特殊级热加工碳素钢棒材 A576保证力学性能要求的商品级碳素钢棒材 A663保证力学性能特殊级热加工碳素钢棒材 A675弹簧用碳素钢和合金钢棒材 A689冷加工碳素钢棒材标准级冷加工碳素钢棒材 A108消除应力退火保证力学性能要求的冷拉棒材 A311/A311M热轧合金钢棒材标准级合金钢棒材 A322保证末端淬透性要求的合金钢棒材 A304热加工和冷加工淬火和回火合金钢棒材 A434高温部件或承压部件或高温承压部件用热加工合金钢棒材 A739冷加工合金钢棒材热加工或冷加工淬火和回火合金钢棒材 A434压力管线构件热加工或冷加工特殊级碳素钢棒材 A696A这些标准指的是各标准的最新版本,见于ASTM标准年度汇编01.05卷,或从ASTM索取单行本。

1.2 在技术要求有矛盾时,应按照需方订单、各材料标准和本标准一般技术要求的顺序执行。

1.3 以英寸-磅单位制或SI单位制表示出的值都可作为标准值。

本标准中,SI单位制以括号示出,不同单位制所表示出的数值并不完全等同;因此,应采用同一单位制数值。

混合使用这两个单位制可能导致不符合本标准要求。

1本标准属ASTM A01钢、不锈钢和相关合金委员会管辖,由A01.15棒材分委员会具体负责。

碳钢及合金钢应用与区别

碳钢及合金钢应用与区别
在汽车制造中,合金钢主要用于制造车身结构、底盘和发 动机部件;在建筑领域,合金钢用于制造高层建筑的承重 结构和高强度螺栓等;在电力和能源领域,合金钢用于制 造发电机组、锅炉、压力容器等关键设备。
04
碳钢与合金钢的区别
化学成分差异
碳钢
主要由铁和碳组成,通常含有少量的 硅、锰、磷、硫等元素。
合金钢
在碳钢的基础上添加了其他合金元素, 如铬、镍、钨、钒等,以提高钢材的 特定性能。
其他应用领域
石油和化工
碳钢可用于制造石油和化工行业 的管道、储罐和反应器等设备。
电力和能源
碳钢可用于制造发电厂的锅炉、汽 轮机和核反应堆等设备。
铁路和船舶
碳钢在铁路和船舶制造中也有广泛 应用,如铁路轨道、船舶船体和机 械部件等。
03
合金钢的应用
航空航天
航空航天领域对材料性能要求极高,合金钢因其高强度、耐 高温和良好的抗疲劳性能而被广泛应用于飞机和航天器的制 造。例如,机身结构、起落架、发动机部件等都离不开合金 钢。
VS
未来碳钢和合金钢的发展趋势将更加 注重高性能、轻量化、环保化和智能 化,以满足不断变化的市场需求和产 业升级的需要。
感谢观看
THANKS
碳钢及合金钢应用与 区别
• 碳钢与合金钢简介 • 碳钢的应用 • 合金钢的应用 • 碳钢与合金钢的区别 • 总结
目录
01
碳钢与合金钢简介
碳钢的定义与分类
定义
碳钢是一种主要由铁和碳元素组 成的合金,其中碳含量通常在2% 以下。
分类
根据碳含量、质量等级、用途等 ,碳钢可分为多种类型,如普通 碳素结构钢、优质碳素结构钢和 特殊质量非合金钢等。
工具和刀具
碳钢制成的工具和刀具具有高硬度和 耐磨性,适用于各种切削和加工任务。

A M中文版公制碳钢和合金钢螺母性能等级规定

A M中文版公制碳钢和合金钢螺母性能等级规定

ASTM A563M-公制碳钢和合金钢螺母性能等级规定1 前言1.1本规范包括常用的与螺丝、螺栓以及其它外螺纹紧固件配合的8个性能等级的碳钢以及合金钢的六角螺母和六角法兰螺母的机械及化学成分要求。

(备注1 –本规范中所称得等级皆是指性能等级。

备注2 – 5,9,10,12级的性能等级要求等同ISO898-2.8S和10S的等级要求等同ISO 4775高强度结构栓接用宽对边六角螺母.产品等级B.性能类别8和10,的要求。

8S3和10S3在ISO 规范中无相应规定)1.2 8S3和10S3等级的螺母必须遵从ASTM A588/A588M做防锈处理1.3 每一等级适用的螺母尺寸范围详见机械性能要求表格1.4 附录X1是一个给设计师及采购选择合适等级的指南1.5 附录X2是关于六角开槽螺母和六角锁紧螺母相关性能的数据。

(备注3 –本规范为ASTM A 563的公制指南)1.6 除另有说明外,本规范中所列出的项目均遵从ASTM F 1789对其定义的解说。

2 参考数据2.1 ASTM标准A 153/A153M 钢铁零件热浸镀锌规范A 325M 热处理后抗拉强度在830Mpa以上的结构螺栓(公制)规范A 394标准热镀锌电力铁塔螺栓A 490M结构钢连接用10.9和10.9.3级高强度钢螺栓(米制)标准规范A 588/A 588M 4英寸(100mm)厚屈服点最小为50ksi(345MPa)的高强度低合金结构钢标准规范A 751钢制品化学分析的试验方法、操作和术语B 695 钢铁表面的锌机械沉积镀层标准规范D 3951商业用包装规范F 568M: 碳素和合金钢外螺纹米制紧固件标准规范F 606M: 测定外螺纹及内螺纹紧固件、垫圈及铆钉机械特性的标准试验方法(米制)F 812/F 812M: 英制和米制系列螺母的表面不均匀性F789:F16机械紧固件标准术语G101:低合金钢耐大气腐蚀估价2.2 ANSI标准B1.13M M型米制螺纹B18.2.4.1M 公制六角螺母,1型B18.2.4.2M 公制六角螺母,2 型B18.2.4.3M 公制开槽六角螺母B18.2.4.4M 公制六角法兰螺母B18.2.4.5M 公制六角锁紧螺母B18.2.4.6M 公制重型六角螺母2.3 ISO 标准ISO 898-2 紧固件机械性能规范,第二部分,螺母及标准负荷要求ISO 4775高强度结构栓接用宽对边六角螺母.产品等级B.性能类别8和103 订单要求3.1如要采购本规范下所定义的螺母,则订单应包括以下信息:3.1.1 数量(所需螺母数量)3.1.2 公称通径和螺距3.1.3 关于所需螺母的类型的基本描述(比如,六角,六角法兰等)3.1.4 螺母性能等级3.1.5 镀锌-对镀锌的加工要求,热浸,机械沉积或是不需要(具体见4.7的要求)3.1.6 其它表面处理-如有需要的其它防护处理3.1.7 ASTM标准的名称,出版年份,以及3.1.8 其它特殊要求3.2 如对螺母的抗拉强度有要求,则任一等级的螺母都可用相同对边宽的高等级螺母替代。

AAR M201-2005(中文)

AAR M201-2005(中文)

标准M-201-05铸钢件正式通过:1923;修订:1984,1993,1997,2000,2003,20051.0 范围本标准适用于机车车辆及其他各种用途的级别为A,B,B+C,D和E的碳钢和合金钢铸件。

除非其他的AAR标准对某种具体产品规定了不同的要求,AAR 标准M-201对所有的铸件作出了规定。

2.0 采购的基础除非采购方另有规定,A级钢铸件应以不作退火、退火或正火状态供货。

B 级和B+级钢铸件应以正火或正火加回火状态供货。

C级钢铸件以正火加回火或淬火加回火状态供货。

D级和E级钢铸件应以淬火加回火状态供货。

2.1根据采购方的要求,证明书将成为验收的依据。

证明书应包括这样的说明,即材料是按照本标准的所有适用条款来进行制造、取样、试验和检查的,并符合所有标准条款的要求。

每一份提供的证明书应由供货方或制造方的指定代表签字。

没有具体声明之处,应理解为依据采购方的要求,记录标准中提及的内容应供采购方备查。

3.0 记录制造方应将所有标准所要求的所有的质量记录、机械试验报告、化学试验报告和热处理记录保存至少3年。

这些记录是按要求提供给采购方的。

制造方也应将记录至少保存3年,从单独铸件序号中提供可追查性,需要序号的地方,记录如上所述。

制造4.0 熔炼方法钢水可用下列一种或几种方法熔炼:平炉,电炉,坩锅炉,转炉或氧气顶吹转炉。

5.0 热处理铸件应清理干净,以便能很好地接受热处理。

铸件内腔不得留有造型材料。

然后铸件应按照与第2条要求相适应的步骤进行热处理。

浇注后,铸件应以不会损害铸件质量的速度冷却到1000℉(538℃)。

5.1 完全退火铸件应加热到相变区域以上的一个适当温度,保持一段需要的时间,以便达到完全奥氏体化和细化晶粒,随后在炉内慢慢冷却。

除非采购方另有规定,制造方有权在规定用完全退火的情况下选用正火以替代完全退火。

5.2 正火钢铸件正火钢铸件应按如下程序进行处理:5.2.1将铸件均匀加热到相变区域以上的一个适当温度,保持适当时间,以便达到完全奥氏体化和细化晶粒。

ASTMA194-A194M-17中文版

ASTMA194-A194M-17中文版

ASTMA194-A194M-17中⽂版ASTM A194/A194M-17 ⾼温⾼压⽤碳钢和合⾦钢螺帽标准规范 1本标准以固定的代号A194/A194M颁发。

紧接代号后⾯的数字,表⽰采⽤的年份。

如经修订,则表⽰最近修订的年份。

括号内的数字表⽰最近重新审批的年份。

上标(ε)表⽰最近修订或重新审批以来编辑上的变动。

本标准业经国防部各机构批准使⽤。

1 范围1.1 本规范2涉及公称直径?英吋⾄4英吋、公制M6⾄M100的各种碳钢、合⾦钢和马⽒体不锈钢的螺帽。

它也涉及公称直径为?英吋和M6及以上的奥⽒体不锈钢螺帽。

这种螺帽适⽤于⾼温或⾼压场合,或者适⽤于这两种场合。

未经需⽅允许,各种等级的螺帽不得互相替代。

1.2 ⽤来制造螺帽的棒料应通过热成形制作,然后通过⽆⼼磨削或通过冷拉作进⼀步加⼯。

奥⽒体不锈钢可进⾏固溶退⽕,或者进⾏退⽕和形变硬化。

当依据附加要求SI订购退⽕和形变硬化的奥⽒体不锈钢螺帽时,需⽅应特别注意§7.2.2、附加要求SI以及附录X1,务必彻底了解其含义。

1.3 附加要求(S1~S6)是列出来供需⽅选择的。

在询价单、合同和订单中提出要求时,才可实施这些附加要求。

1.4 本规范同时采⽤英吋―磅制和国际单位制。

但是,除⾮订单规定采⽤带M的规范,所有材料均按英吋―磅制供货。

1.5 不论是⽤英吋―磅制表⽰的数值,还是⽤国际单位制表⽰的数值,均应单独看作是标准数值。

在本规范的⾏⽂中,国际单位表⽰于括号内。

每种单位制所表⽰的数值并⾮精确的等效值。

因此,每种单位制必须独⽴使⽤,互不依赖。

将两种单位制的数值结合使⽤会产⽣与本标准不⼀致的后果。

2 参考⽂件2.1 ASTM 标准:A153/A153M钢铁部件热浸镀锌规范3A276不锈钢棒料和型材规范4A320/A320M低温环境⽤合⾦钢螺栓材料规范5A370 钢制品机械性能试验⽅法和定义6A962/A962M 适⽤于深冷⾄蠕变范围任何温度的钢质紧固件或紧固件材料的⼀般要求5B633 钢铁部件电镀锌规范7B695 钢铁部件机械喷涂锌层规范7B696 机械喷涂镉层规范7B766 电镀层规范7E112 平均粒度的测定⽅法2.2 美国国家标准9:B1.1 统⼀螺钉螺纹B1.13M 公制螺钉螺纹B18.2.2 四⽅和六⾓螺帽B18.2.4.6 公制重型六⾓螺帽3 术语3.1 本标准所特有的术语的定义:3.1.1 奥⽒体级――带有“8”或“9”等词头的所有等级。

GOST 8479-70 结构钢、碳钢和合金钢锻件一般技术规范

GOST 8479-70 结构钢、碳钢和合金钢锻件一般技术规范

结构钢、碳钢和合金钢锻件的一般技术规范GOST 8479-70违反标准追究法律责任该标准涵盖了一般意义上的直径(厚度)至800mm,由锻造法或热模法制造的结构钢、碳钢、低合金钢和合金钢锻件。

该标准规定了锻件类别和对验收、交货的基本技术要求。

该标准不能代替现行的针对其他类型锻件的标准和技术规范,其他类型锻件指对生产方法、表面质量、采用专门热处理方式等有特别要求的锻件。

1.技术要求1.1锻件生产应当符合该标准,按照由既定程序确定的图纸和具体产品的技术规范文件来进行生产。

锻件按照测试类型分为以下几组,见表1.(变更条款,变更号No3)1.2由消费者指定锻件类别,在工件图纸上技术要求栏指出类别号码。

1.3按照消费者要求,锻件交货应当进行该标准之外的附加测试类型(白点测试,包曼试验、超声波探伤和潜望检测、剩余应力值的测定、工作温度下的屈服强度、测定工作温度下和零下温度下的冲击韧性、钢结构的宏观微观分析、弯曲试验、测定晶粒值等)。

在这种情况下,锻件可归入表1中的以下类别:II, III, IV, V.表1锻件类型IIIIII 测试类型不需测试测定硬度测定硬度1.测试拉力2.测定冲击韧性3.测定硬度1.测试拉力2.测定冲击韧性3.测定硬度成批次条件同种或不同钢牌号锻件同种或不同钢牌号锻件,同时进行热处理同种或不同钢牌号锻件,按照同样的方式进行热处理-硬度同上屈服强度收缩冲击韧性-屈服强度收缩冲击韧性-交货性能IV 同一炉钢锻件,同时进行热处理V 每个锻件都单独对待(完整版联系翻译者获取Q1)2.测试方法2.1按照同一个图纸生产的锻件,由生产企业编制成批。

编制成批的条件在表1中指明了。

允许把图纸不同但牌号相同、外形和尺寸相近的锻件合并成一批。

(变更条款,变更号No1)2.2如果订单中没有指出其他检测方法,则需不借助放大设备逐一检查锻件外观。

2.3对于除第I类外的其他各类锻件,必须测试的数量在表4中列出。

(完整版联系翻译者获取Q1)。

碳素钢和合金钢铸钢件材料规范

碳素钢和合金钢铸钢件材料规范

碳素钢和合金钢铸钢件材料规范1 目的规定本公司生产产品的原辅材料——承压铸钢件(以下简称铸钢件)的技术要求、试验方法及规则。

2 范围适用于公司产品用碳素钢和合金钢铸件。

3 职责3.1技术部负责制定产品零件的锻件图样及技术要求。

3.2质检部负责产品铸件的检验。

3.3采购部负责确认合格供方。

4 内容4.1引用标准GB/T1135.0 铸件机械加工余量GB/6414 铸件尺寸公差GB/T1135.1 铸件重量公差GB6060.1 表面粗糙度比较样块铸造表面GB9452 热处理炉有效加热区测定方法JB/T9727 阀门铸钢件外观质量要求Q/ZB-156 铸造内圆角及过渡尺寸Q/ZB-157 铸造外圆角4.2总则4.2.1 铸钢件应符合本规范要求并按照经规程程序批准的技术文件的图样制造。

4.2.2 采用一般熔炼方法制造的铸钢件,其最高工作压力额定值不大于70MPa(10000PSI)特殊熔铸方法除外。

4.3 产品规范级别(PSL)、材料代号(K)应符合产品的设计规范和产品规范。

4.4化学成份4.4.1 铸钢件化学成份分析取样一般以炉前钢桶取样为准,仲裁分析可以从铸钢本体取样。

4.4.2 铸钢件化学成份极限不应超过表1、表2规定。

4.4.3 合金元素的最大偏差符合表3规定。

4.4.4 铸钢件的残余元素应不超过表4规定。

表1 %表2 %表3 合金元素最大偏差范围%注:表3中各元素的最大偏差当应使各元素的合金含量不超过表1规定的值。

表 4 铸钢件残余元素%4.4.5 常用铸钢件化学成份有及允差应符合附录A或附录B的要求。

注:附录A给出我国材料的化学成份及允差,附录B给出了相对应的美国材料化学成份及允差。

如用户有要求,按用户要求选择。

如用户无要求,则按附录A执行。

4.5工艺要求4.5.1 熔炼方法4.5.1.1 制造厂必须制定规范的熔炼工艺文件指导生产。

4.5.1.2 铸钢件的熔炼一般采用碱性电弧炉或感应电弧炉进行,当能保证表2中规定硫、磷含量时,酸性电弧炉熔炼的铸钢件也可以接受;在熔炼过程中采用真空感应熔炼(VIM)或者采用真空脱气、氢-氧脱碳方法熔炼(AOD)可以接受,无论采用上述何种方法熔炼,钢水都必须经过充分的镇静以使能得到纯净优质的钢,保证铸件具有压力容器的质量。

JISG0587-2007 ,碳钢及低合金钢锻件的超声波探伤方法.pdf

JISG0587-2007  ,碳钢及低合金钢锻件的超声波探伤方法.pdf

碳钢及低合金钢锻件的超声波检验方法序言:本日本工业标准于1987年出版,到目前为止经过两次修订,最后一次修订是1995年。

本次修订是为了适应DGS曲线图精确度的提高同时增加了人工缺陷的灵敏度校准。

到本标准起草为止无与本标准一致的国际标准。

1适用范围本方法适用于采用A型脉冲回波式超声波探伤仪检验(以下称“检验”)厚度不小于20mm或外圆曲率半径不小于50mm的碳钢及低合金钢锻件(以下称“钢锻件”)。

当供需双方协商同意使用超声波衰减方法检验时,本标准可以用于不锈钢锻件检验。

2引用标准下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

JIS B 0601 表面粗糙度及图面表示方法JIS G 0431 钢铁制品无损检验人员资格鉴定JIS K 2238 机油JIS Z 2300 无损检测术语和定义JIS Z 2305 无损检测试验——检验人员资格鉴定及认证JIS Z 2345 超声检测标准试块JIS Z 2352 脉冲反射式超声波探伤设备总体性能的评价方法3 术语和定义JIS Z 2300和下列术语和定义适用于本标准。

3.1 Q值根据超声探伤仪器和探头所测得的频率,其值等于中心频率值除以带宽。

4 检验工程师负责锻件超声波检验的工程师应通过JIS G 0431,JIS Z 2305或者是通过类似同等规格的资格考试,具有足够的知识、技巧及实践经验,具有一定的钢锻件制造方法的知识及经验、对制造过程中产生探伤缺陷的特征等相关内容具有丰富经验。

5 超声波检测设备5.1超声波检测设备:用于探伤的超声波检测设备应满足下列要求a)具备脉冲回波方式的A型显示,并适用于频率范围在1MHz 到5MHz。

b) 根据JIS Z 2352 的4.1 条款的要求测试垂直线性,垂直线性的最大偏差在±3%范围内。

c)根据JIS Z 2352 的4.2 条款的要求测试水平线性,水平线性最大误差在±1%范围内。

合金钢碳素钢

合金钢碳素钢

合金钢碳素钢
合金钢和碳素钢是两种常见的金属材料,它们在工业生产和日常生活中都有广泛的应用。

本文将从合金钢和碳素钢的定义、特点、应用等方面进行介绍。

合金钢是一种含有其他元素的钢,通常是铬、镍、钼、钴、钒等元素。

这些元素的加入可以改变钢的性质,如提高硬度、耐腐蚀性、耐磨性等。

合金钢的强度和硬度比碳素钢高,因此在制造高强度零件和机械零件时广泛应用。

例如,汽车发动机的曲轴、齿轮、轴承等都是用合金钢制造的。

碳素钢是一种含有碳元素的钢,通常含有0.05%至2.0%的碳。

碳素钢的强度和硬度较低,但具有良好的可塑性和可焊性。

碳素钢广泛应用于建筑、机械、汽车、船舶等领域。

例如,建筑中的钢筋、汽车的车架、机械的轴承等都是用碳素钢制造的。

合金钢和碳素钢的区别在于合金钢中含有其他元素,而碳素钢只含有碳元素。

这些元素的加入可以改变钢的性质,使其具有更好的性能。

例如,铬元素可以提高钢的耐腐蚀性,钼元素可以提高钢的硬度和强度。

总的来说,合金钢和碳素钢都是重要的金属材料,它们在工业生产和日常生活中都有广泛的应用。

选择合适的材料可以提高产品的性能和质量,从而更好地满足人们的需求。

ISO898.1-2009中文

ISO898.1-2009中文

ISO 898-1:2009(ISO第四次修订)二〇〇九年四月一日Mechanical properties of fasteners made of carbon steel and alloy steel—Part 1: Bolts, screws and studs with specified- property classes Coarse thread and fine pitch thread碳钢和合金钢紧固件机械性能第一部份螺栓、螺钉和螺柱粗牙和细牙系列(译文)目录前言…………………………………………………………………………………………1 范围………………………………………………………………………………………….2 引用标准…………………………………………………………………………………….3 术语和定义………………………………………………………………………………….4 代号和单位………………………………………………………………………………….5 性能等级的标记制度………………………………………………………………………..6 材料…………………………………………………………………………………………..7 机械性能和物理性能………………………………………………………………………..8 试验方法的适用性………………………………………………………………………….8.1 总则………………………………………………………………………………………..8.2 紧固件的承载能力………………………………………………………………………..8.3 制造者的控制……………………………………………………………………………….. 8.4 供应方的控制………………………………………………………………………………. 8.5 需求方的控制………………………………………………………………………………..8.6 实物紧固件和机加工试样可实施的相应试验系列………………………………………..9 试验方法………………………………………………………………………………………..9.1 螺栓和螺钉(不含螺柱)实物的楔负载试验………………………………………………9.2 螺栓、螺钉和螺柱的抗拉强度测定,R m……………………………………………………9.3 螺栓、螺钉和螺柱实物拉伸实验时测定断后伸长,A f和0.0048d非比例伸长应力,R pf……9.4 因头部强度弱,而不断在未旋合螺纹长度内的螺钉拉力试验………………………………9.5 腰状杆紧固件的拉力试验……………………………………………………………………9.6 螺栓、螺钉和螺柱的保证载荷试验…………………………………………………………9.7 机械加工试样的拉力试验……………………………………………………………………9.8 头部坚固性试验………………………………………………………………………………9.9 硬度试验………………………………………………………………………………………..9.10 脱碳试验……………………………………………………………………………………9.11 渗碳试验……………………………………………………………………………………9.12 再回火试验…………………………………………………………………………………9.13 扭矩试验…………………………………………………………………………………….9.14 机加工试样的冲击试验……………………………………………………………………..9.15 表面缺陷检查……………………………………………………………………………….10 标记……………………………………………………………………………………………10.1 总则…………………………………………………………………………………………10.2 制造者的识别标志……………………………………………………………………….. 10.3 紧固件承载能力的名称和标记…………………………………………………………. 10.4 因几何形状而降低了承载能力的紧固件的名称和标记………………………………. 10.5 包装标识……………………………………………………………………………………附录A抗拉强度和断后伸长率的关系………………………………………………………..附录B 高温对紧固件力学性能的影响…………………………………………………………. 附录C 全尺寸紧固件的断后伸长率,A f……………………………………………………….. 引用文献1 范围本ISO898标准规定由碳钢和合金钢制造的,在环境温度为10℃~35℃条件下进行试验的螺栓、螺钉和螺栓的机械和物理性能。

对GB150_2_2011中碳素钢和低合金钢钢板部分的几点认识_江慧丰

对GB150_2_2011中碳素钢和低合金钢钢板部分的几点认识_江慧丰

低温用钢板
16MnDR 15MnNiDR 15MnNiNbDR 09MnNiDR 08Ni3DR 06Ni9DR 07MnNiVDR 07MnNiMoDR
中高温用钢板
15CrMoR 14Cr1MoR 12Cr2Mo1R 12Cr1MoVR 12Cr2Mo1VR
2011 表 4 中仅 需要指出的是, 在 GB 150. 2给出了 15 个牌号碳素钢和低合金钢钢板的使用 Mo 钢 温度下 限, 并 未 给 出 另 外 5 个 牌 号 的 Cr( 15CrMoR、 14Cr1MoR、 12Cr2Mo1R、 12Cr1MoVR 和 12Cr2Mo1VR) 钢板的使用温度下限。 这主要 Mo 钢一般用于中高温临氢环境, 不会 是因为 Cr用于 低 温 条 件, 因此其使用温度下限取为室温 20℃ 。 1998 相比, GB 150. 22011 中新增 与 GB 150了 7 个 低 合 金 钢 钢 板 牌 号 ( 12Cr1MoVR、 12Cr2Mo1VR、 12MnNiVR、 15MnNiNbDR、 07MnNiMoDR、 08Ni3DR 和 06Ni9DR ) , 扩大了标 准规定的材料选择范围, 设计温度覆盖范围更广,
第 41 卷
第4 期




407
高温用钢板 ( 5 个牌号 ) , 下面对各类钢板用途进 。 行简介 中常温用钢板 3. 1. 1 Q245R 3. 1 1997[9] ) 、 Q245R 即 为 原 来 的 20g ( GB 71320R ( GB 66541996[10] ) , 2011 ( GB 在 GB150. 27132008 ) 中厚度范围由 6 ~ 100mm 扩大至 3 ~ 150mm, 热轧、 控轧、 正火态使用, 广泛用于制造各 类压力容器。 3. 1. 2 Q345R Q345R 即 为 原 来 的 16Mng ( GB 7131997 ) 、 19Mng ( GB 7131997 ) 、 16MnR ( GB 66541996 ) , 新标准 中 厚 度 范 围 由 6 ~ 150mm 扩 大 至 3 ~ 200mm, 热轧、 控轧、 正火态使用, 是压力容器中应 广泛用于 用范围最广且使用量最大的一个钢号, 制造单层卷焊容器、 多层包扎容器、 整体多层夹紧 容器、 热套容器和球形容器。 3. 1. 3 Q370R Q370R 即为原来的 15MnNbR ( GB 66541996 第 1 号修改单 ) , 厚度范围 10 ~ 60mm, 正火态使 用, 主要用于制造球形容器。 3. 1. 4 18MnMoNbR 18MnMoNbR, 厚度范围 30 ~ 100mm, 正火加 回火态使用, 主要用于制造氨合成塔及尿素合成 塔等厚壁容器。 3. 1. 5 13MnNiMoR 13MnNiMoR 即 为 原 来 的 13MnNiCrMoNbg ( GB 7131997 ) 、 13MnNiMoNbR ( GB 66541996 ) , 新标准中厚度范围由不大于 120mm 扩大至 30 ~ 150mm, 正火加回火态使用, 主要用于制造单层卷 焊厚壁压力容器。 3. 1. 6 07MnMoVR 07MnMoVR 即 为 原 来 的 07MnCrMoVR ( GB 191892003[11]) , 新标准中厚度范围由 12 ~ 60mm 扩大至 10 ~ 60mm, 调质态使用, 主要用于制造氧 气球罐、 丙烯球罐等压力容器。 3. 1. 7 12MnNiVR 12MnNiVR, 大线能量钢板, 新标准中厚度范 围由 12 ~ 60mm 扩大至 10 ~ 60mm, 调质态使用, 主要用于制造大型原油储罐等压力容器 。 低温用钢板 3. 2. 1 16MnDR 3. 2 16MnDR, - 40℃ 级钢板, 新标准中厚度范围

A563M中文版公制碳钢和合金钢螺母性能等级规定

A563M中文版公制碳钢和合金钢螺母性能等级规定

ASTM A563M-公制碳钢和合金钢螺母性能等级规定1 前言1.1本规范包括常用的与螺丝、螺栓以及其它外螺纹紧固件配合的8个性能等级的碳钢以及合金钢的六角螺母和六角法兰螺母的机械及化学成分要求。

(备注1 –本规范中所称得等级皆是指性能等级。

备注2 – 5,9,10,12级的性能等级要求等同ISO898-2.8S和10S的等级要求等同ISO 4775高强度结构栓接用宽对边六角螺母.产品等级B.性能类别8和10,的要求。

8S3和10S3在ISO 规范中无相应规定)1.2 8S3和10S3等级的螺母必须遵从ASTM A588/A588M做防锈处理1.3 每一等级适用的螺母尺寸范围详见机械性能要求表格1.4 附录X1是一个给设计师及采购选择合适等级的指南1.5 附录X2是关于六角开槽螺母和六角锁紧螺母相关性能的数据。

(备注3 –本规范为ASTM A 563的公制指南)1.6 除另有说明外,本规范中所列出的项目均遵从ASTM F 1789对其定义的解说。

2 参考数据2.1 ASTM标准A 153/A153M 钢铁零件热浸镀锌规范A 325M 热处理后抗拉强度在830Mpa以上的结构螺栓(公制)规范A 394标准热镀锌电力铁塔螺栓A 490M结构钢连接用10.9和10.9.3级高强度钢螺栓(米制)标准规范A 588/A 588M 4英寸(100mm)厚屈服点最小为50ksi(345MPa)的高强度低合金结构钢标准规范A 751钢制品化学分析的试验方法、操作和术语B 695 钢铁表面的锌机械沉积镀层标准规范D 3951商业用包装规范F 568M: 碳素和合金钢外螺纹米制紧固件标准规范F 606M: 测定外螺纹及内螺纹紧固件、垫圈及铆钉机械特性的标准试验方法(米制)F 812/F 812M: 英制和米制系列螺母的表面不均匀性F789:F16机械紧固件标准术语G101:低合金钢耐大气腐蚀估价2.2 ANSI标准B1.13M M型米制螺纹B18.2.4.1M 公制六角螺母,1型B18.2.4.2M 公制六角螺母,2 型B18.2.4.3M 公制开槽六角螺母B18.2.4.4M 公制六角法兰螺母B18.2.4.5M 公制六角锁紧螺母B18.2.4.6M 公制重型六角螺母2.3 ISO 标准ISO 898-2 紧固件机械性能规范,第二部分,螺母及标准负荷要求ISO 4775高强度结构栓接用宽对边六角螺母.产品等级B.性能类别8和103 订单要求3.1如要采购本规范下所定义的螺母,则订单应包括以下信息:3.1.1 数量(所需螺母数量)3.1.2 公称通径和螺距3.1.3 关于所需螺母的类型的基本描述(比如,六角,六角法兰等)3.1.4 螺母性能等级3.1.5 镀锌-对镀锌的加工要求,热浸,机械沉积或是不需要(具体见4.7的要求)3.1.6 其它表面处理-如有需要的其它防护处理3.1.7 ASTM标准的名称,出版年份,以及3.1.8 其它特殊要求3.2 如对螺母的抗拉强度有要求,则任一等级的螺母都可用相同对边宽的高等级螺母替代。

ASTM A29&A29M-05 热锻及冷加工碳素钢和合金钢棒

ASTM A29&A29M-05 热锻及冷加工碳素钢和合金钢棒

ASTM A29&A29M-05 热锻及冷加工碳素钢和合金钢棒不锈钢 1214 美标是 12L14,日标是 SUM24L,一般我们习惯把国产的 1214 叫 1214,进口的叫24L,其实是一种材料;1215易切削钢为环保料,与1214相比不含铅及不含有对环境有害物质,切削性良好;A3钢为普通的低碳钢,相当于现在的Q235,在普通结构上用的最多.,焊接性好。

ASTM材料标准是美国材料与试验协会制定的标准,ASME是美国机械工程师协会的标准;ASTM材料经ASME认可,可用于承压设备后就成为ASME材料(ASME锅炉压力容器规范第Ⅱ卷),ASME材料标准大部分都是引用ASTM的,也有引用其他国际性规范,如中、欧、日、澳等标准,我国的16MnR等有被引用。

ASME标准中的材料编号以SA打头,而ASTM标准中的材料编号以A打头。

在ASME锅炉压力容器规范第Ⅱ卷各篇开篇部分有明确说明是否与ASTM等同以及具体的不同点。

ASME材料用于承压设备,检验项目要比ASTM的多,主要是一些材料增加了焊接、热处理、无损检测等要求。

ASTM标准的编号方法ASTM标准编号形式为:标准代号+字母分类代码+标准序号+制定年份+标准英文名称。

示例:ASTM A311M-95(1996) 冷制合金钢棒材标准规范ASTM+A+311M+95(1996)+冷制合金钢棒材标准规范标准代号+字母分类代码+标准序号+制定年份+标准英文名称说明:1. 标准序号后带字母M的为米制单位标准,不带字母M的为英制单位标准。

2. 制定年限后面括号内的年代为标准重新审定的年代。

3. a.b.c......表示修订版次。

4. 字母分类代码为:A ——黑色金属B ——有色金属(铜,铝,粉末冶金材料,导线等)C ——水泥,陶瓷,混凝土与砖石材料D ——其它各种材料(石油产品,燃料,低强塑料等)E ——杂类(金属化学分析,耐火试验,无损试验,统计方法等)F ——特殊用途材料(电子材料,防震材料,外科用材料等)G ——材料的腐蚀,变质与降级。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢碳钢和合金钢SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#碳素钢1.概述钢分为碳素钢(简称碳钢)和合金两大类。

碳钢是指含碳量小于2.11%并含有少量硅、锰、硫、磷杂质的铁碳合金。

工业用碳钢的含碳量一般为0.05%~1.35%。

为了提高钢的力学性能、工艺性能或某些特殊性能(如耐腐蚀性、耐热性、耐磨性等),冶炼中有目的地加入一些合金元素(如Mn、Si、Cr、Ni、Mo、W、V、Ti等),这种钢称为合金钢。

合金钢的分类方法有多种,常见的有以下两种。

(1)按用途分类分为三类:合金结构钢,用于制造各种性能要求更高的机械零件和工程构件;合金结构钢,用于制造各种性能要求更高的刃具、量具和模具;特殊性能钢,具有特殊物理和化学性能的钢,如不锈钢、耐热钢、耐磨钢等。

(2)铵合金元素总含量多少分类分为三类:低合金钢,合金元素总含量小于5%;中合金钢,合金元素总含量为5%~10%;高合金钢,合金元素总含量大于10%。

2.合金钢牌号的表示方法合金钢是按钢材的含碳量以及所含合金元素的种类和数量编号的。

①钢号首部是表示含碳量以及所含合金结构钢与碳素结构钢相同,以万分之一的碳作为单位,如首部数字为45,则表示平均含碳量为0.45%;合金工具钢以千分之一的碳作为单位,如首部数字为5,则表示平均含碳量为0.5%。

②在表示含碳量的数字后面,用元素的化学符号表示出所含的合金元素。

合金元素的含量以百分之几表示,当平均含量小于1.5%时,只标明元素符号,不标含量。

如25Mn2V,表示平均含碳量为0.25%,含锰量约为2%,含钒量小于1.5%的合金结构钢。

又如9SiCr,表示平均含碳量为0.9%,含硅、铬都少于1.5%的合金工具钢。

③对于含碳量超过1.0%的合金工具钢,则在牌号中不表示含碳量。

如CrWMn钢,表示含碳量大于1.0%并含有铬、钨、锰三种合金元素的合金工具钢。

但也有特例,高速钢的含碳量小于1.0%,牌号中也不表示含碳量。

如W18Cr4V钢,其含碳量仅为0.7%~0.8%。

④特殊性能钢牌号中也不表示方法基本上与合金工具钢相同。

如2Cr13,表示平均含碳量为0.2%,含铬量约为13%的不锈钢。

⑤有些特殊用钢,则用专门的表示方法,如滚动轴承钢,其牌号以G表示,不标含碳量,铬的平均含量用千分之几表示。

如GCr15,表示含铬量为1.5%的滚动轴承钢。

⑥对于高级优质钢,在钢号末尾加一个“A”字,如38CrMoAIA。

低合金工具钢中常用的有9Mn2v、9SiCr、CrWMn等。

9SiCr可用于制作丝锥、板牙等。

由于铬、硅同时加入,淬透性明显提高,油淬直径可达40~50mm;同时还能强化铁素体,尤其是硅的强化作用显着;另外Cr还能细化碳化物,使之均匀分部,因而耐磨性提高,不易崩刀;Si还能提高回火稳定性,使钢在250~300℃仍能保持HRC60以上。

9SiCr可采用分级或等温淬火,以减少变形,因而常用于指作形状复杂的、要求变形小的刀具。

硅使钢在加热时容易脱碳,退火后硬度偏高(HB217~241),造成切削加工困难,热处理时要予以注意。

CrWMn钢的含碳量为0.90%~1.05%,铬、钨、锰同时加入,使钢具有更高的硬度(64~66HRC)和耐磨性,但红硬性不如9CrSi。

但CrWMn钢热处理后变形小,故称微变形钢。

主要用来制造较精密的低速刀具,如长铰刀、拉刀等。

是指碳含量低于2%,并有少量、以及、硫等杂质的碳合金。

工业上应用的碳含量一般不超过1.4%。

这是因为含碳量超过此量后,钢现出很大的硬脆性,并且加工困难,失去生产和使用价值。

碳素钢按其质量不同可分为和优质碳素结构钢二类。

优质碳素结构钢规定硫、磷的允许含量比普通碳素钢低,所以综合性能比普通碳素钢好。

(1)生产制造方法。

碳素钢的冶炼通常在转炉、平炉中进行。

转炉一般冶炼普通碳素钢,而平炉可以冶炼各种优质钢。

近年来氧气顶吹转炉技术发展很快,有趋势可代替平炉炼钢。

将炼好的钢液注入钢锭模,就得到各种钢锭。

钢锭经过锻压或轧制后便加工成各种形状的和锻件。

钢锭经过压力加工后,能够改善钢的内部组织和夹杂物分布,所以同样成分的钢材要比钢锭的性能优越一些。

(2)用途。

碳素钢主要用来制造强度要求不高的机器零件和各种构件。

广泛应用于机械制造的各个方面。

如、、等。

它是一种应用最广、用途最大的钢材。

2.主要生产及输往国家、地区我国的鞍山钢厂、宝山钢厂、上海钢厂、太原钢厂、重庆钢厂、天津钢厂等是出口碳素钢的主要产地。

一般碳素钢多加工成型材,如角钢、扁钢、等输往日本、香港、东南亚、中东等国家和地区。

3.主要进口生产国家我国主要从日本、俄罗斯、德国、东欧等国家进口。

与其他钢类相比,碳素钢进口数量最多。

进口到货后缺重问题较为突出。

收用货部门要加强到货后重量的验收。

4.种类碳素钢按含碳量可划分为低碳钢、中碳钢和高碳钢。

高碳钢属于工具钢,详见“工具钢”部分。

低碳钢如20号钢一般多用来制作渗碳零件。

工艺是先进行渗碳处理,随后进行淬火和低温回火。

经这样处理后零件表面具有较高的硬度而心部具有良好的塑性。

而中碳钢如45号钢根据使用条件不同,热处理方式也不同。

一般做热加工使用的要进行调质处理,即淬火后高温回火。

其他条件使用的可进行正火处理。

5.规格及外观质量碳素钢的品种主要有、扁钢、方钢等。

经冷、热加工后钢材的表面不得有裂缝、结疤、夹杂、折叠和发纹等缺陷。

尺寸和允许公差必须符合相应品种国家标准的要求。

6.成分现把国标、日本标准中某些主要钢号的化学成分列举,如表6―7―20。

S30C、S45C钢号中Ni-Cr应小于0.35%,其他国家的标准号有EN10083T―91.ГОСТ1050等。

7.物理性能现把国标、日本标准中某些主要钢号的机械性能如表6―7―21。

裸装,国产钢按钢号在端部进行涂色,详见GB/T699-88标准规定。

9.注意事项碳素钢淬火时通常采用水冷,但对小尺寸的中碳钢,尤其是直径为8―12mm的45号钢淬火时容易产生裂纹,这是一个较为复杂的问题。

目前采取的措施是淬火时试样在水中快速搅动,或者采用油冷,可避免出现裂纹。

JB/T5300—1991《通用阀门材料》规定碳素钢制阀门的适用温度范围为-30~450℃。

SH3064—1994《石油化工钢制通用阀门选用、检验及验收》标准中,规定碳素钢制阀门的适用温度为-20~425℃。

使用下限规定为-20℃,是为了与GB150—1998《钢制压力容器》相一致。

ASMEB16.34—2004《法兰和焊接端阀门》压力-温度额定值基准中规定:WCB、A105(碳素钢)适用温度范围为-29~425℃,不允许在425℃以上长期使用。

这是因为碳素钢在425℃以上有石墨化倾向。

(引自《调节阀实用手册》)根据实际经验来看:对于碳钢,当应用温度超过400度的时间就不能用WCB、WCC等碳钢,材料的物理性质会发生改变,此时就推荐用低合金刚以上的材料如WC6.WC9等。

对于斑竹这句话“个人认为调节阀在使用用中还需要考虑介质压力对阀体强度的影响,随着压力的增高,最高使用温度会有所下降。

”说的也比较模糊。

对于调节阀,材料的选型是比较复杂的,需要知道工况(最好有几个),参数包括流量FLOW,入口压力INPUTPRESSURE,出口压力OUTPRESSURE?工作温度:TEMP另外还要设计压力、温度:DESIGNPRESSURE、TEMP泄露等级:ALLOWABLELEAKAGE另外对于选用气动、电动执行机构要有规定。

更正:上面是我的回答,这句话是正确的:根据实际经验来看:对于碳钢,当应用温度超过400度的时间就不能用WCB、WCC碳钢,材料的物理性质会发生改变,就是石墨化,此时就推荐用低合金刚以上的材料如WC6.WC9等。

是最后一句说的有问题,调节阀材料的选择我们一般只考虑工质特点,设计温度,压力就可以拉。

但是对于调节阀口径的选择是一件很复杂的事情.需要很多计算.对于斑竹说的:个人认为调节阀在使用用中还需要考虑介质压力对阀体强度的影响,随着压力的增高,最高使用温度会有所下降。

这句话也很对.但是我们对于闸阀来看,我们是这样选材料的,根据问题我们就可以选出材料,然后根据ANSIB16.34-2004制定的温压标准,我们根据该材料的设计温度下的不同的压力等级(CLASS)所对应的许用压力,该许用压力大于设计压力时其对应的压力等级即为所要选用的压力等级.注意:在一定的温度下,压力等级(CLASS)越高,许用压力就越大,比如,343摄氏度,CLASS1500?时,对应的许用压力为18.512MP,如果我们设计压力为28MP,这时我们就看CLASS2500,对应的最大许用压力30.854MP,那么我们就选CLASS2500,就是WCBCLASS2500,然后我们再根据接管的尺寸选公称通径.另外:同一压力等级下,温度越高,许用压力就越小拉.以上是没有考虑别的因素,比如腐蚀的工质等等,呵呵,我们的产品工质都是水或蒸汽,所以这是习惯的模式.对于调节阀,大家考虑一下是否也可以同样的方法来选择材料.当然假如工质为水。

相关文档
最新文档