2018中考数学试卷及答案

合集下载

山西省2018年中考数学试卷及答案解析

山西省2018年中考数学试卷及答案解析

2018 年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. a 3 2 a6B. 2a 2 3a 2 6a2C. 2a 2 a 3 2a6D.2633 ()2b ba a -=-【答案】D【考点】整式运算【解析】A. a3 2 a6 B2a2 3a2 5a2 C. 2a2 a3 2a54. 下列一元二次方程中,没有实数根的是()A. x2 2x 0B. x2 4x 1 0C. 2x2 4x 3 0D. 3x2 5x 2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市万件 B. 万件 C. 万件 D. 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 104 立方米/时B.106 立方米/时C. 106 立方米/时D.105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6 2 D.3【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y x28x9化为y a x h2k的形式为()A. y x 4 2 7B. y x 4 2 25C.y x 4 2 7D. yx 4 2 25【答案】B【考点】二次函数的顶点式【解析】y x2 8x 9 x2 8x 16 16 9 x 4 2 2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()π-4 B. 4π-8 C. 8π-4 D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(321)(321) .【答案】17【考点】平方差公式【解析】∵(a b)(a b) a2 b2 ∴(321)(321) (32)2 1 18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则1 2 3 4 5 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴1 2 3 4 5 360.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 8x 11x 115解得x 5∴高的最大值为11 5 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG BF c o s BFA 2323∴AF 2FG 315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】12 5【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D为 AB 中点∴CD=BD∴∠DCB=∠B∵OC=OF∴∠OCF=∠OFC∴∠CFO=∠B∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF BF12BC 4Rt △ ABC 中, s i n B 35Rt △ BGF 中, FGBF sin B 435 125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 ) 16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1k 1 x b (k 10) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2 (k 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 0 ;( 3)当 x 为 何 值 时 ,y 1 y 2 ,请直接写出 x的 取 值 范 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 k 1 x b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x 4 或 0 x 2.18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少【考点】条形统计图,扇形统计图【解析】(1)解:(2)解:1010+15100% 40%.答:男生所占的百分比为 40%.(3)解:500 21%=105(人).答:估计其中参加“书法”项目活动的有 105 人.(4)解:15155== 15+10+8+1548165答:正好抽到参加“器乐”活动项目的女生的概率为516.19.(本题 8 分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,B C 相交于点C,分别与桥面交于 A,B两点,且点 A,B,C在同一竖直平面内.测量数据∠A 的度数∠B 的度数AB 的长度38°28°234 米... ...(1 )请帮助该小组根据上tan 38,s in 28,c os 28,t an 28);(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD AB 于点 D.设 CD= x 米,在 Rt ADC 中,∠ADC=90°,∠A=38°.AD BD AB 234 .54x 2x 234.解得 x72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号”列 车时速更快 , 安 全 性车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x 83经检验, x 83是原方程的根 .答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ 三 步 , 过 点 A 作 AZ 四 步 , 过 点 Z 作 ZY 则有 AX=BY=XY.下面是该结论的部分 证明: 证明: A Z / / A ' Z BA ' Z 'BAZ又 ∠A 'BZ'=∠A BZ. △BA ' Z △BAZZ ' A 'BZ ' .ZABZ同 理 可 得 Y ' Z 'BZ '. Z ' A 'Y ' Z ' .YZ BZ ZAYZZ ' A ' Y ' Z ' , ZA YZ ....任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面 ., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / ZA , 四边形 AXYZ 是 平 行 四 边 形 . ZA YZ ,AXYZ 是菱形 ( 2) 答 :证明: C D C B , 1 2 ZY / / AC , 1 3 . 2= 3 .YB YZ . 四边形 AXYZ 是 菱 形 , AX=XY=YZ. AX=BY=XY.(3)上述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) . A.平移 B.旋转 C.轴对称 D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E A B , AE 2 AB AD 2 AB , AD AE 四边形 ABCD 是 矩 形 , AD / / BC .EM EBDM AB=( 依 据 1 ) BE AB ,1EMDM = EM DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD AE , AM DE . (依据 2)AM 垂直平分 DE .反 思 交 流 : (1) 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 : 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,CBEABC GHC 90. 1+2=90.四边形 CEFG 为 正 方 形 ,CG CE , GCE 90.1 3 90.2= 3.△GHC ≌ △CBE .HC BE .四边形 ABCD 是 矩 形 , AD BC .AD 2 AB , BE AB , BC 2BE 2HC .HC BH .GH 垂直平分 BC.点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM BC 于点 M,过点 E 作 EN FM 于点 N.BMN ENM ENF 90.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,CBE ABC 90.四边形BENM 为矩形.BM EN,BEN 90. 1 2 90.四边形 CEFG 为正方形,EF EC, CEF 90. 2 3 90.1= 3. CBE ENF 90,△ENF≌△EBC.NE BE. BM BE.四边形 ABCD 是矩形,AD BC.AD 2AB, AB BE.BC 2BM .BM MC.FM 垂直平分 BC,点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∠CBE=∠ABC=∠N=90°. ∠1+∠3=90°.四边形 CEFG 为正方形,EC=EF,∠CEF=90°.∠1+∠2=90°. ∠2=∠3.△ENF △CBE.NF=BE,NE=BC.四边形 ABCD 是矩形,AD=BC.AD=2AB,B E=AB. 设 BE=a,则 BC=EN=2a,NF=a.BF=CF. 点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y 0 ,得2114=033x x -- 解得 x 1 3 , x 2 4 . 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x 0 ,得 y 4 . 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 4) , Q (1,3) . 2 ( 3) 过点 F 作 FG PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 . OBC QFG 45 . GQ FG 2 FQ . PE ∥ AC , 1 2 . FG ∥x 轴, 2 3 . 1 3 .FGP AOC 90 , △FGP ∽△AOC .。

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

江苏扬州市2018年中考数学试题(含答案解析)

江苏扬州市2018年中考数学试题(含答案解析)

江苏省扬州市2018年中考数学试题一、选择题:1. 的倒数是()A. B. C. 5 D.【答案】A【解析】分析:根据倒数的定义进行解答即可.详解:∵(-5)×(-)=1,∴-5的倒数是-.故选A.点睛:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2. 使有意义的的取值范围是()A. B. C. D.【答案】C【解析】分析:根据被开方数是非负数,可得答案.详解:由题意,得x-3≥0,解得x≥3,故选C.3. 如图所示的几何体的主视图是()A. B. C. D.【答案】B【解析】根据主视图的定义,几何体的主视图由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,故选B.4. 下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D. 某日最高气温是,最低气温是,则该日气温的极差是【答案】B【解析】分析:直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.详解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,故此选项错误;故选B.点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5. 已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.6. 在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7. 在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A. ①②③B. ①C. ①②D. ②③【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题9. 在人体血液中,红细胞直径约为,数据0.00077用科学记数法表示为__________.【答案】【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-4,故答案为:7.7×10-4.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 因式分解:__________.【答案】【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11. 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】【解析】分析:根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.详解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,二种;故其概率为:.点睛:本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12. 若是方程的一个根,则的值为__________.【答案】2018【解析】分析:根据一元二次方程的解的定义即可求出答案.详解:由题意可知:2m2-3m-1=0,∴2m2-3m=1∴原式=3(2m2-3m)+2015=2018故答案为:2018点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13. 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为__________.【答案】【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.详解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故答案为:.点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14. 不等式组的解集为__________.【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. 如图,已知的半径为2,内接于,,则__________.【答案】【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16. 关于的方程有两个不相等的实数根,那么的取值范围是__________.【答案】且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17. 如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为__________.【答案】【解析】分析:由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF 与OF的长,即可确定出D坐标.详解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8-x,在Rt△ODE中,根据勾股定理得:42+(8-x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF=,则D(,-).故答案为:(,-).点睛:此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18. 如图,在等腰中,,点的坐标为,若直线:把分成面积相等的两部分,则的值为__________.【答案】【解析】分析:根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.详解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题19. 计算或化简.(1);(2).【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20. 对于任意实数、,定义关于“”的一种运算如下:.例如.(1)求的值;(2)若,且,求的值.【答案】(1);(2).【解析】分析:(1)根据新定义型运算法则即可求出答案.(2)列出方程组即可求出答案详解:(1)(2)由题意得∴.点睛:本题考查新定义型运算,解题的关键是正确利用运算法则,本题属于基础题型.21. 江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是,;(2)扇形统计图中“自行车”对应的扇形的圆心角为度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【答案】(1)50人,;(2);(3)该校最喜爱的省运动会项目是篮球的学生人数为480人.【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.详解:(1)样本容量是9÷18%=50,a+b=50-20-9-10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22. 4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【答案】(1);(2).【解析】解:(1)总共有四个,奇数有两个,所以概率就是(2)根据题意得:一次函数图形过第一、二、四象限,则∴图象经过第一、二、四象限的概率是.分析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.详解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.【答案】货车的速度是千米/小时.【解析】分析:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设货车的速度为由题意得经检验是该方程的解答:货车的速度是千米/小时.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24. 如图,在平行四边形中,,点是的中点,连接并延长,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求菱形的面积.【答案】(1)证明见解析;(2).【解析】分析:(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;详解:(1)∵四边形是平行四边形∴,∴∵是的中点,∴∴在与中,∵,∴四边形是平行四边形∵,∴四边形是菱形(2)∵四边形是菱形,∴,∴∵∴∴∵,∴,∴.点睛:本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25. 如图,在中,,于点,于点,以点为圆心,为半径作半圆,交于点.(1)求证:是的切线;(2)若点是的中点,,求图中阴影部分的面积;(3)在(2)的条件下,点是边上的动点,当取最小值时,直接写出的长.【答案】(1)证明见解析;(2);(3).【解析】分析:(1)过作垂线,垂足为,证明OM=OE即可;(2)根据“S△AEO-S扇形EOF=S阴影”进行计算即可;(3)作关于的对称点,交于,连接交于,此时最小.通过证明∽即可求解详解:(1)过作垂线,垂足为∵,∴平分∵∴∵为⊙的半径,∴为⊙的半径,∴是⊙的切线(2)∵且是的中点∴,,∴∵∴即,∴(3)作关于的对称点,交于,连接交于此时最小由(2)知,,∴∵∴,,∵,∴∽∴即∵,∴即,∴.点睛:本题是圆的综合题,主要考查了圆的切线的判定,不规则图形的面积计算以及最短路径问题.找出点E的对称点G是解决一题的关键.26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】分析:(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.详解:(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.点睛:此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27. 问题呈现如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.问题解决(1)直接写出图1中的值为_________;(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;思维拓展(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.【答案】(1)见解析;(2);(3)(1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出【解析】分析:的值;(2)仿(1)的思路作图,即可求解;(3)方法同(2)详解:(1)如图进行构造由勾股定理得:DM=,MN=,DN=∵()2+()2=()2∴D M2+MN2=DN2∴△DMN是直角三角形.∵MN∥EC∴∠CPN=∠DNM,∵tan∠DNM=,∴=2.(2)∵,∴∴(3),证明同(2).点睛:本题考查了非直角三角形中锐角三角函数值的求法.求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形是解题的关键.28. 如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.【答案】(1)的中点坐标是;(2)或;(3),. 【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,②当△PAQ∽△CBQ时,,分别列方程可得t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.详解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2-15t+9=0,(t-3)(t-)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2-9t+9=0,t=,∵0≤t≤6,>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2-3x+2=(x-)2-,∴顶点k(,-),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=-x+4,则,x2-3x+2=-x+4,解得:x1=3(舍),x2=-,∴D(-,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2-3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(-,)或(,).点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.。

四川省资阳市2018年中考数学试题(含答案解析)

四川省资阳市2018年中考数学试题(含答案解析)

2018年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。

1.(3.00分)﹣的相反数是()A.3 B.﹣3 C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5 B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()A.﹣3.5×10﹣4 B.﹣3.5×104C.3.5×10﹣4D.﹣3.5×10﹣36.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.887.(3.00分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a28.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a﹣1)2+=0,则a+b=.13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA 在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。

新疆自治区2018年中考[数学]考试真题与答案解析

新疆自治区2018年中考[数学]考试真题与答案解析

新疆自治区2018年中考[数学]考试真题与答案解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.的相反数是( )A.﹣B.2C.﹣2D.0.5【解答】解:的相反数是﹣.故选:A.2.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.的相反数是解题的关键.3.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A.B.C.D.【解答】解:从左边看竖直叠放2个正方形.故选:C.4.下列计算正确的是( )A.a2?a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=3【解答】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a?a﹣a?2b+b?a﹣b?2b=a2﹣2ab+ab﹣2b2=a2﹣ab ﹣2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.5.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为( )A.85°B.75°C.60°D.30°【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是( )A.①②B.②③C.①③D.①②③【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.7.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )A.6cm B.4cm C.3cm D.2cm【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.8.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:,故选:B.9.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A.B.1C.D.2【解答】解:如图作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.二、填空题10.点(﹣1,2)所在的象限是第 二 象限.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.11.如果代数式有意义,那么实数x的取值范围是 x≥1 .【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.12.如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是 .【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .【解答】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.14.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元.【解答】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.15.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是 ②③ (填写所有正确结论的序号).【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.三、解答题16.计算:﹣2sin45°+()﹣1﹣|2﹣|.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.17.先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.18.已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.19.如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是菱形.20.如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).21.杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了 20 名学生,其中C类女生有 2 名,D类男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.22.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO~△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==23.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB?QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF?OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).。

2018河南中考数学试题及答案word

2018河南中考数学试题及答案word

2018河南中考数学试题及答案word2018年河南省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 1D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个算式的结果大于0?A. 2-3B. 3-2C. 0-5D. 5-0答案:D4. 已知一个三角形的两边长分别为3cm和4cm,那么第三边的长度范围是:A. 0到7cmB. 1到7cmC. 3到7cmD. 1到5cm答案:C5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B6. 一个圆的半径为2cm,那么它的面积是多少平方厘米?A. 4πB. 8πC. 6πD. 12π答案:B7. 计算下列哪个算式的结果是偶数?A. 3+5B. 4+6C. 7+9D. 8+10答案:D8. 下列哪个不等式是正确的?A. 2x > 4B. 3x ≤ 9C. 5x < 15D. 6x ≥ 18答案:B9. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 计算2的3次方,结果是______。

答案:813. 一个等腰三角形的底边长为6cm,如果底角是45°,那么腰长是______。

答案:6cm14. 一个数除以-2的结果是3,那么这个数是______。

答案:-615. 一个圆的直径是10cm,那么它的周长是______。

答案:10π cm16. 计算(-2)的平方,结果是______。

答案:417. 一个三角形的内角和是______。

山东枣庄市2018年中考数学试题(含答案解析)

山东枣庄市2018年中考数学试题(含答案解析)

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴, 解得. ∴抛物线表达式:y=﹣x 2+x +4;(2)△ABC 是直角三角形.令y=0,则﹣x 2+x +4=0,解得x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得,在Rt △ABO 中AB 2=BO 2+AO 2=22+42=20,在Rt △AOC 中AC 2=AO 2+CO 2=42+82=80,又∵BC=OB +OC=2+8=10,∴在△ABC 中AB 2+AC 2=20+80=102=BC 2∴△ABC 是直角三角形.(3)∵A (0,4),C (8,0),∴AC==4,①以A 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(﹣8,0),②以C 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(8﹣4,0)或(8+4,0) ③作AC 的垂直平分线,交x 轴于N ,此时N 的坐标为(3,0),综上,若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0). (4)如图,设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D , ∴MD ∥OA ,∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n +2∴MD=(n +2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA ﹣BN•MD =(n +2)×4﹣×(n +2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0)。

2018年河南省中考数学试卷含答案解析

2018年河南省中考数学试卷含答案解析

2018 年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共30 分)1.( 3 分)﹣的相反数是()A.﹣B.C.﹣D.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 10113.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=15 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是%B.众数是%C.均匀数是 %D.方差是06.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=08.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC于点G,则点G 的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.( 2018.河南 .10)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度y(cm2)随时间x( s)变化的关系图象,匀速运动到点B,图2 是点 F 运动时,△ FBC的面积则 a 的值为()A.B. 2C.D.2二、仔细填一填(本大题共 5 小题,每题 3 分,满分15 分,请把答案填在答题卷相应题号的横线上)11.(3 分)计算: | ﹣5| ﹣=.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点O,∠ EOD=50°,则∠ BOC的度数为.13.( 3 分)不等式组的最小整数解是.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为.15.(3 分)如图,∠△A′BC与△ ABC对于MAN=90°,点 C 在边BC所在直线对称,点AM 上, AC=4,点 B 为边 AN 上一动点,连结BC,D,E 分别为 AC, BC的中点,连结 DE 并延长交A′B所在直线于点F,连结A′E.当△A′EF为直角三角形时,AB 的长为.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有人;(2)扇形统计图中,扇形 E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D 的度数为②当∠ D 的度数为时,四边形ECFG为菱形;时,四边形ECOG为正方形.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求y 对于x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售收益w 最大,最大值是元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为;②∠ AMB 的度数为.(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点O 在平面内旋转,AC, BD 所在直线交于点M,若OD=1,OB=,请直接写出当点 C 与点M 重合时AC的长.23.( 11 分)如图,抛物线 y=ax2 +6x+c 交 x 轴于 A, B 两点,交 y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线BC于M.点①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.2018 年河南省中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 2018.河南 .1)﹣的相反数是()A.﹣B.C.﹣D.【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣的相反数是:.应选: B.【评论】本题主要考察了相反数,正确掌握相反数的定义是解题重点.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 1011【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:亿,用科学记数法表示为×1010,应选: C.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【剖析】正方体的表面睁开图,相对的面之间必定相隔一个正方形,依据这一特色作答.【解答】解:正方体的表面睁开图,相对的面之间必定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.应选: D.【评论】本题主要考察了正方体相对两个面上的文字,注意正方体的空间图形,从相对面下手,剖析及解答问题.4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=1【剖析】分别依据幂的乘方、同类项观点、同底数幂相乘及归并同类项法例逐个计算即可判断.【解答】解: A、(﹣ x2)3=﹣ x6,此选项错误;B、 x2、 x3不是同类项,不可以归并,此选项错误;C、 x3x4=x7,此选项正确;D、 2x3﹣ x3=x3,此选项错误;应选: C.【评论】本题主要考察整式的运算,解题的重点是掌握幂的乘方、同类项观点、同底数幂相乘及归并同类项法例.5 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是 %B.众数是 %C.均匀数是 %D.方差是0【剖析】直接利用方差的意义以及均匀数的求法和中位数、众数的定义分别剖析得出答案.【解答】解: A、按大小次序排序为:%, %, %, %, %,故中位数是: %,故此选项错误;B、众数是 %,正确;C、(%+%+%+%+%)=%,应选项C错误;D、∵ 5 个数据不完好同样,∴方差不行能为零,故此选项错误.应选: B.【评论】本题主要考察了方差的意义以及均匀数的求法和中位数、众数的定义,正确掌握有关定义是解题重点.6.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.【剖析】设设合伙人数为【解答】解:设合伙人数为x 人,羊价为 yx 人,羊价为线,依据羊的价钱不变列出方程组.y 线,依据题意,可列方程组为:.应选: A.【评论】本题考察了由实质问题抽象出二元一次方程组,找准等量关系是解题的重点.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=0【剖析】依据一元二次方程根的鉴别式判断即可.【解答】解: A、 x2+6x+9=0△=62﹣ 4× 9=36﹣ 36=0,方程有两个相等实数根;B、 x2=xx2﹣x=0△=(﹣ 1)2﹣ 4×1× 0=1> 0两个不相等实数根;C、 x2+3=2xx2﹣2x+3=0△=(﹣ 2)2﹣ 4×1× 3=﹣8<0,方程无实根;D、( x﹣ 1)2+1=0(x﹣ 1)2=﹣ 1,则方程无实根;应选: B.【评论】本题考察的是一元二次方程根的鉴别式,一元二次方程ax2+bx+c=0( a≠ 0)的根与△=b 2﹣4ac 有以下关系:①当△> 0时,方程有两个不相等的两个实数根;②当△=0 时,方程有两个相等的两个实数根;③当△<0 时,方程无实数根.8.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.【剖析】直接利用树状图法列举出全部可能从而求出概率.【解答】解:令 3 张用 A123,A ,A,表示,用 B表示,可得:,一共有 12 种可能,两张卡片正面图案同样的有 6 种,故从中随机抽取两张,则这两张卡片正面图案同样的概率是:.应选: D.【评论】本题主要考察了树状图法求概率,正确列举出全部的可能是解题重点.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点 D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC 于点 G,则点 G 的坐标为()A.(﹣ 1, 2) B.(, 2) C.( 3﹣,2) D.(﹣2, 2)【剖析】依照勾股定理即可获得Rt△ AOH 中, AO=,依照∠ AGO=∠ AOG,即可获得AG=AO=,从而得出 HG=﹣ 1,可得 G(﹣ 1, 2).【解答】解:∵ AOBC的极点 O( 0,0), A(﹣ 1, 2),∴AH=1, HO=2,∴Rt△ AOH 中, AO=,由题可得, OF 均分∠ AOB,∴∠ AOG=∠ EOG,又∵ AG∥ OE,∴∠ AGO=∠ EOG,∴∠ AGO=∠ AOG,∴AG=AO= ,∴HG= ﹣1,∴G(﹣1,2),应选: A.【评论】本题主要考察了角均分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,而后求出有关的线段长,是解决这种问题的基本方法和规律.10.( 3 分)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度匀速运动到点B,图2 是点 F 运动时,△FBC的面积y( cm2)随时间x( s)变化的关系图象,则 a 的值为()A.B. 2C.D. 2【剖析】经过剖析图象,点 F 从点 A 到 D 用 as,此时,△高 DE,再由图象可知,BD=,应用两次勾股定理分别求【解答】解:过点 D 作 DE⊥ BC于点 E FBC的面积为BE 和 a.a,依此可求菱形的由图象可知,点∴AD=a∴∴DE=2当点 F从 D到∴BD=Rt△ DBE 中,F 由点B 时,用A 到点sD 用时为as,△ FBC的面积为acm2.BE=∵ABCD是菱形∴E C=a﹣1, DC=a Rt△ DEC中,a2=22 +( a﹣ 1)2解得 a=应选: C.【评论】本题综合考察了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点地点之间的关系.二、仔细填一填(本大题共号的横线上)11.( 3 分)计算: | ﹣ 5| ﹣5 小题,每题= 2.3 分,满分15 分,请把答案填在答题卷相应题【剖析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式 =5﹣ 3=2.故答案为: 2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点 O,∠ EOD=50°,则∠ BOC的度数为 140° .【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB=90°,∵∠ EOD=50°,∴∠ BOD=40°,则∠ BOC的度数为: 180°﹣ 40°=140°.故答案为: 140°.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.13.( 3 分)不等式组的最小整数解是﹣2.【剖析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣ 3,解不等式②得:x≤1,∴不等式组的解集为﹣3< x≤ 1,∴不等式组的最小整数解是﹣ 2 ,故答案为:﹣ 2.【评论】本题考察认识一元一次不等式组和不等式组的整数解,能依据不等式的解集得出不等式组的解集是解本题的重点.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为π .【剖析】利用弧长公式L=,计算即可;【解答】解:△ ABC 绕AC 的中点 D 逆时针旋转90°获得△A'B′,C'此时点A′在斜边AB 上,CA′⊥ AB,∴∠ ACA′=∠ BCA′=45,°∴∠ BCB′=135,°∴S 阴==π.【评论】本题考察旋转变换、弧长公式等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.15.(3 分)如图,∠MAN=90°,点 C 在边AM上, AC=4,点B 为边AN上一动点,连结BC,△A′BC与△ ABC对于 BC所在直线对称,点 D, E 分别为 AC, BC的中点,连结A′B所在直线于点 F,连结 A′E.当△ A′ EF为直角三角形时, AB 的长为 4 或DE 并延长交4.【剖析】当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,依据对称的性质和平行线可得:A'C=A'E=4,依据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠ A'FE=90°时,如图2,证明△ ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴A'C=AC=4,∠ ACB=∠ A'CB,∵点 D, E 分别为 AC, BC的中点,∴D、 E 是△ ABC 的中位线,∴D E∥AB,∴∠ CDE=∠ MAN=90°,∴∠ CDE=∠ A'EF,∴AC∥A'E,∴∠ ACB=∠ A'EC,∴∠ A'CB=∠ A'EC,∴A'C=A'E=4,Rt△ A'CB 中,∵ E 是斜边 BC的中点,∴B C=2A'B=8,由勾股定理得:AB2=BC2﹣ AC2,∴AB==4 ;②当∠ A'FE=90°时,如图2,∵∠ ADF=∠ A=∠ DFB=90°,∴∠ ABF=90°,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴∠ ABC=∠ CBA'=45°,∴△ ABC是等腰直角三角形,∴A B=AC=4;综上所述, AB 的长为 4或 4;故答案为: 4或4;等腰直角三角形的判【评论】本题考察了三角形的中位线定理、勾股定理、轴对称的性质、定、直角三角形斜边中线的性质,并利用分类议论的思想解决问题.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.【剖析】依据分式的运算法例即可求出答案,【解答】解:当 x=+1 时,原式 ==1﹣ x=﹣【评论】本题考察分式的运算,解题的重点是娴熟运用分式的运算法例,本题属于基础题型.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有2000人;(2)扇形统计图中,扇形 E 的圆心角度数是° ;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.【剖析】(1 )将 A 选项人数除以总人数即可得;(2)用 360°乘以 E 选项人数所占比率可得;(3)用总人数乘以 D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中 C 选项人数所占百分比可得.【解答】解:( 1)本次接受检查的市民人数为 300÷15%=2000 人,故答案为: 2000;(2)扇形统计图中,扇形 E 的圆心角度数是360°×=°,故答案为:°;(3) D 选项的人数为 2000 × 25%=500,补全条形图以下:(4)估计赞成“选育无絮杨品种,并推行种植”的人数为70×40%=28(万人).【评论】本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.【剖析】(1 )将 P 点坐标代入y=,利用待定系数法即可求出反比率函数的分析式;(2)依据矩形知足的两个条件画出切合要求的两个矩形即可.【解答】解:( 1)∵反比率函数y=(x>0)的图象过格点P( 2, 2),∴k=2× 2=4,∴反比率函数的分析式为 y= ;(2)以下图:矩形 OAPB、矩形 OCDP即为所求作的图形.【评论】本题考察了作图﹣应用与设计作图,反比率函数图象上点的坐标特色,待定系数法求反比率函数分析式,矩形的判断与性质,正确求出反比率函数的分析式是解题的重点.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D的度数为 30°时,四边形 ECFG为菱形;②当∠ D 的度数为° 时,四边形ECOG为正方形.【剖析】( 1)连结 OC,如图,利用切线的性质得∠1+∠ 4=90°,再利用等腰三角形和互余证明∠ 1=∠ 2,而后依据等腰三角形的判断定理获得结论;( 2)①当∠D=30°时,∠ DAO=60°,证明△CEF 和△ FEG 都为等边三角形,从而获得EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠ D=°时,∠ DAO=°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△ OEC≌△ OEG 获得∠ OEG=∠ OCE=90°,从而证明四边形 ECOG为矩形,而后进一步证明四边形ECOG为正方形.【解答】(1 )证明:连结OC,如图,∵CE 为切线,∴OC⊥ CE,∴∠ OCE=90°,即∠ 1+∠4=90°,∵DO⊥AB,∴∠ 3+∠ B=90°,而∠ 2=∠ 3,∴∠ 2+∠ B=90°,而 OB=OC,∴∠ 4=∠ B,∴∠ 1=∠ 2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而 AB 为直径,∴∠ ACB=90°,∴∠ B=30°,∴∠ 3=∠ 2=60°,而 CE=FE,∴△ CEF为等边三角形,∴C E=CF=EF,同理可得∠ GFE=60°,利用对称得 FG=FC,∵F G=EF,∴△ FEG为等边三角形,∴EG=FG,∴E F=FG=GE=CE,∴四边形 ECFG为菱形;②当∠D=°时,∠DAO=°,而 OA=OC,∴∠ OCA=∠ OAC=°,∴∠ AOC=180°﹣°﹣°=45°,∴∠ AOC=45°,∴∠ COE=45°,利用对称得∠ EOG=45°,∴∠ COG=90°,易得△ OEC≌△ OEG,∴∠ OEG=∠ OCE=90°,∴四边形ECOG为矩形,而 OC=OG,∴四边形ECOG为正方形.故答案为 30°,°.【评论】本题考察了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,结构定理图,得出垂直关系.也考察了菱形和正方形的判断.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)【剖析】利用锐角三角函数,在 Rt△ ACE和 Rt△ DBF中,分别求出AE、BF 的长.计算出 EF.通过矩形 CEFH获得 CH 的长.【解答】解:在 Rt△ ACE中,∵tan ∠ CAE=,∴AE==≈≈ 21(cm)在 Rt△ DBF 中,∵tan ∠ DBF= ,∴BF==≈=40( cm)∵E F=EA+AB+BF≈ 21+90+40=151( cm)∵C E⊥ EF, CH⊥ DF, DF⊥EF∴四边形CEFH是矩形,∴C H=EF=151cm答:高、低杠间的水平距离CH 的长为 151cm.【评论】本题考察了锐角三角函数解直角三角形.题目难度不大,注意精准度.21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求 y 对于 x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是80元,当销售单价x= 100元时,日销售收益w 最大,最大值是2000元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元【剖析】(1 )依据题意和表格中的数据能够求得y 对于 x 的函数分析式;(2)依据题意能够列出相应的方程,从而能够求得生产成本和w 的最大值;(3)依据题意能够列出相应的不等式,从而能够获得科技创新后的成本.【解答】解;( 1)设 y 对于 x 的函数分析式为y=kx+b,,得,即 y 对于 x 的函数分析式是 y=﹣ 5x+600,当 x=115 时, y=﹣ 5× 115+600=25 ,即 m 的值是 25;(2)设成本为 a 元/ 个,当 x=85 时, 875=175×( 85﹣ a),得 a=80,w=(﹣ 5x+600)(x﹣ 80) =﹣5x2+1000x﹣ 48000=﹣5( x﹣ 100)2+2000,∴当 x=100时, w 获得最大值,此时w=2000 ,故答案为:80, 100, 2000 ;(3)设科技创新后成本为 b 元,当x=90 时,(﹣ 5× 90+600 )( 90﹣ b)≥ 3750,解得, b≤ 65,答:该产品的成本单价应不超出65 元.【评论】本题考察二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的重点是明确题意,找出所求问题需要的条件,利用函数和数形联合的思想解答.22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为1;②∠ AMB 的度数为40° .(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠ AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点 O 在平面内旋转,AC, BD 所在直线交于点M,若 OD=1,OB=,请直接写出当点 C 与点 M 重合时 AC的长.【剖析】(1 )①证明△ COA≌△ DOB( SAS),得 AC=BD,比值为1;②由△ COA≌△ DOB,得∠ CAO=∠ DBO,依据三角形的内角和定理得:∠AMB=180° ﹣(∠DBO+∠ OAB+∠ABD) =180 °﹣ 140 °=40 °;(2)依据两边的比相等且夹角相等可得△AOC∽△ BOD,则性质得∠ AMB 的度数;(3)正确绘图形,当点 C 与点 M 重合时,有两种状况:如图△BOD,则∠ AMB=90°,,可得AC的长.3 和=,由全等三角形的4,同理可得:△AOC∽【解答】解:( 1)问题发现①如图 1,∵∠ AOB=∠ COD=40°,∴∠ COA=∠DOB,∵OC=OD, OA=OB,∴△ COA≌△ DOB( SAS),∴AC=BD,∴=1,②∵△ COA≌△ DOB,∴∠ CAO=∠ DBO,∵∠ AOB=40°,∴∠ OAB+∠ ABO=140°,在△ AMB 中,∠AMB=180° ﹣(∠ CAO+∠ OAB+∠ ABD)=180°﹣(∠ DBO+∠ OAB+∠ ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比研究如图2,=,∠ AMB=90°,原因是:Rt△ COD 中,∠ DCO=30°,∠ DOC=90°,∴,同理得:,∴,∵∠ AOB=∠ COD=90°,∴∠ AOC=∠ BOD,∴△ AOC∽△ BOD,∴=,∠ CAO=∠ DBO,OAB+∠ ABM+∠ DBO) =90°;在△ AMB 中,∠ AMB=180° ﹣(∠ MAB+∠ ABM) =180°﹣(∠(3)拓展延长①点 C 与点 M 重合时,如图3,同理得:△ AOC∽△ BOD,∴∠ AMB=90°,,设 BD=x,则 AC= x,Rt△ COD 中,∠ OCD=30°, OD=1,∴C D=2, BC=x﹣2,Rt△ AOB 中,∠ OAB=30°, OB=,∴A B=2OB=2 ,在 Rt△ AMB 中,由勾股定理得: AC2+BC2=AB2,,x2﹣x﹣ 6=0,(x﹣ 3)( x+2) =0,x1=3,x2=﹣ 2,∴A C=3 ;②点 C 与点 M 重合时,如图4,同理得:∠ AMB=90°,,设 BD=x,则 AC= x,在 Rt△ AMB 中,由勾股定理得:AC2+BC2=AB2,+( x+2) 2=x2+x﹣ 6=0,(x+3)( x﹣ 2) =0,x1=﹣3, x2=2,∴A C=2 ;综上所述, AC 的长为 3或 2 .【评论】本题是三角形的综合题,主要考察了三角形全等和相像的性质和判断,几何变换问题,解题的重点是能得出:△ AOC∽△ BOD,依据相像三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.( 11 分)如图,抛物线y=ax2 +6x+c 交 x 轴于 A, B 两点,交y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线 BC于点 M.①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.【剖析】(1 )利用一次函数分析式确立C( 0,﹣ 5), B( 5, 0),而后利用待定系数法求抛物线分析式;(2)①先解方程﹣x2+6x﹣ 5=0 得 A( 1, 0),再判断△ OCB 为等腰直角三角形获得∠OBC=∠OCB=45°,则△ AMB 为等腰直角三角形,因此AM=2,接着依据平行四边形的性质获得PQ=AM=2 ,PQ⊥ BC,作 PD⊥ x 轴交直线 BC于 D,如图 1,利用∠ PDQ=45°获得 PD= PQ=4,设P( m,﹣ m2 +6m﹣ 5),则 D( m,m﹣ 5),议论:当 P 点在直线 BC 上方时, PD=﹣ m2+6m﹣5﹣( m﹣ 5) =4;当 P 点在直线 BC 下方时, PD=m﹣ 5﹣(﹣ m2+6m﹣5 ),而后分别解方程即可获得 P 点的横坐标;②作 AN⊥BC 于 N, NH⊥x 轴于 H,作 AC 的垂直均分线交 BC 于 M 1,交 AC 于 E,如图 2,利用等腰三角形的性质和三角形外角性质获得∠AM1B=2∠ ACB,再确立 N(3,﹣ 2),AC 的分析式为y=5x﹣ 5, E 点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的分析式为 y=﹣x+b,把 E(,﹣)代入求出 b 获得直线 EM1的分析式为 y=﹣x﹣,则解方程组得 M 1点的坐标;作直线BC上作点 M1对于 N 点的对称点M2,如图 2,利用对称性获得∠AM2C=∠ AM 1B=2∠ ACB,设 M2( x,x﹣5 ),依据中点坐标公式获得3=,而后求出x 即可获得M2的坐标,从而获得知足条件的点M 的坐标.【解答】解:( 1)当 x=0 时, y=x﹣5=﹣ 5,则 C( 0,﹣ 5),当 y=0 时, x﹣5=0,解得 x=5,则 B( 5, 0),。

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。

每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

2018年陕西中考数学试题及答案word

2018年陕西中考数学试题及答案word

2018年陕西中考数学试题及答案word一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是正确的)1. 下列哪个数是无理数?A. 0.33333...(3无限循环)B. √2C. 0.5D. 1/32. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定3. 函数y=-2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 无法确定5. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 120°C. 30°D. 180°6. 已知一个直角三角形的两条直角边长分别为6和8,那么这个三角形的斜边长是多少?A. 10B. √100C. √145D. 无法确定7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 无法确定8. 已知一个圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 100πD. 无法确定9. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 无法确定10. 函数y=x²-4x+4的最小值是多少?A. 0B. 1C. 4D. 无法确定二、填空题(本题共5小题,每小题3分,共15分)11. 已知一个数的平方是16,那么这个数可能是_________。

12. 一个数的平方根是4,那么这个数的立方根是_________。

13. 一个角的余角是30°,那么这个角的补角是_________。

14. 如果一个角是另一个角的两倍,且这个角比另一个角大60°,那么这两个角的度数分别是_________。

15. 已知一个等差数列的前三项分别是1,3,5,那么这个数列的第五项是_________。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。

2018陕西省中考数学试卷(附答案解析版)

2018陕西省中考数学试卷(附答案解析版)

2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−1172.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12B.12C.﹣2 D.25.(3.00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4 B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3.00分)(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.43√2B.2√2 C.83√2 D.3√27.(3.00分)(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=√2EF B.AB=2EF C.AB=√3EF D.AB=√5EF 9.(3.00分)(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3.00分)(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3 √10(填“>”、“<”或“=”).中,AC 与BE 相交于点F ,则∠AFE 的度数为 .13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),则这个反比例函数的表达式为 .14.(3.00分)(2018•陕西)如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .三、解答题(共11小题,计78分。

(完整版)2018年辽宁省大连市中考数学试卷(答案+解析)

(完整版)2018年辽宁省大连市中考数学试卷(答案+解析)

2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.13D.−132.(3分)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(3分)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.13B.49C.12D.598.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=329.(3分)如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(2,3),B(6,1)两点,当k1x+b<k2x时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(3分)因式分解:x2﹣x=.12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(3分)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(3分)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)16.(3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(√3+2)2﹣√48+2﹣218.(9分)解不等式组:{x−1≥2x x−12≤x319.(9分)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(12分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(10分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC 沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.13D.−13【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.(3分)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.3.(3分)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.4.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.5.(3分)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.6.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=√AB2−OA2=√52−32=4,∴BD=2OB=8,故选:A.7.(3分)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.13B.49C.12D.59【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:123123423453456所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为59,故选:D.8.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.9.(3分)如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(2,3),B(6,1)两点,当k1x+b<k2x时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.【解答】解:由图象可知,当k1x+b<k2x时,x的取值范围为0<x<2或x>6.故选:D.10.(3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)因式分解:x2﹣x=x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x (x ﹣1).12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是 189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数. 【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201, 所以该组数据的中位数是189,故答案为:189.13.(3分)一个扇形的圆心角为120°,它所对的弧长为6πcm ,则此扇形的半径为 9 cm . 【分析】根据弧长公式L =nπR 180求解即可.【解答】解:∵L =nπR 180,∴R =180×6π120π=9.故答案为:9.14.(3分)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x 匹大马,y 匹小马,根据题意可列方程组为 {x +y =1003x +y3=100 . 【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得, {x +y =1003x +y3=100, 故答案为:{x +y =1003x +y3=100.15.(3分)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m ,则旗杆AB 的高度约为 9.5 m .(精确到0.1m .参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)【分析】根据三角函数和直角三角形的性质解答即可. 【解答】解:过D 作DE ⊥AB ,∵在D 处测得旗杆顶端A 的仰角为53°, ∴∠ADE =53°, ∵BC =DE =6m ,∴AE =DE •tan 53°≈6×1.33≈7.98m ,∴AB =AE +BE =AE +CD =7.98+1.5=9.48m ≈9.5m ,故答案为:9.516.(3分)如图,矩形ABCD 中,AB =2,BC =3,点E 为AD 上一点,且∠ABE =30°,将△ABE 沿BE 翻折,得到△A ′BE ,连接CA ′并延长,与AD 相交于点F ,则DF 的长为 6﹣2√3 .【分析】如图作A ′H ⊥BC 于H .由△CDF ∽△A ′HC ,可得DF CH =CD A′H,延长构建方程即可解决问题;【解答】解:如图作A ′H ⊥BC 于H .∵∠ABC =90°,∠ABE =∠EBA ′=30°, ∴∠A ′BH =30°,∴A ′H =12BA ′=1,BH =√3A ′H =√3,∴CH =3﹣√3, ∵△CDF ∽△A ′HC , ∴DF CH =CD A′H,∴3−3=21,∴DF =6﹣2√3,故答案为6﹣2√3.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分) 17.(9分)计算:(√3+2)2﹣√48+2﹣2【分析】根据完全平方公式和零指数幂的意义计算. 【解答】解:原式=3+4√3+4﹣4√3+14 =294.18.(9分)解不等式组:{x −1≥2xx−12≤x 3【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【解答】解:{x −1≥2x①x−12≤x 3②∵解不等式①得:x ≤﹣1, 解不等式②得:x ≤3,∴不等式组的解集为x ≤﹣1.19.(9分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF =CE . 求证:BE =DF .【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,{OB=OD∠BOE=∠DOF OE=OF,∴△BEO≌△DFO,∴BE=DF.20.(12分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%;(2)被调查学生的总数为50人,其中,最喜欢篮球的有16人,最喜欢足球的学生数占被调查总人数的百分比为24%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=50−10−4−16−6−250×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为650×450=54人.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x 个字,则乙平均每分钟打(x +20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【解答】解:设甲平均每分钟打x 个字,则乙平均每分钟打(x +20)个字, 根据题意得:135x=180x+20,解得:x =60,经检验,x =60是原分式方程的解.答:甲平均每分钟打60个字.22.(9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49. 【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 625 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 a +b =50 . 【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m ×n ,…,56×4,57×3,58×2,59×1. 猜想mn 的最大值为 900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625; (2)观察题目给出的等式即可发现a 与b 的数量关系是a +b =50;【类比】由于m +n =60,将n =60﹣m 代入mn ,得mn =﹣m 2+60m =﹣(m ﹣30)2+900,利用二次函数的性质即可得出m =30时,mn 的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625. 故答案为625;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是a +b =50. 故答案为a +b =50;【类比】由题意,可得m +n =60, 将n =60﹣m 代入mn ,得mn =﹣m 2+60m =﹣(m ﹣30)2+900, ∴m =30时,mn 的最大值为900.故答案为900.23.(10分)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,点E 在BC 的延长线上,且∠DEC =∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB =8,CE =2时,求AC 的长.【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)先判断出AC ⊥BD ,进而求出BC =AB =8,进而判断出△BCD ∽△DCE ,求出CD ,再用勾股定理求出BD ,最后判断出△CFD ∽△BCD ,即可得出结论. 【解答】解:(1)如图, 连接BD ,∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°, ∵∠DEC =∠BAC , ∴∠BAC +∠CDE =90°, ∵∠BAC =∠BDC , ∴∠BDC +∠CDE =90°, ∴∠BDE =90°,即:BD ⊥DE , ∵点D 在⊙O 上, ∴DE 是⊙O 的切线;(2)∵DE ∥AC , ∵∠BDE =90°, ∴∠BFC =90°,∴CB =AB =8,AF =CF =12AC ,∵∠CDE +∠BDC =90°,∠BDC +∠CBD =90°, ∴∠CDE =∠CBD , ∵∠DCE =∠BCD =90°, ∴△BCD ∽△DCE , ∴BC CD=CD CE , ∴8CD=CD 2,∴CD =4,在Rt △BCD 中,BD =√BC 2+CD 2=4√5 同理:△CFD ∽△BCD , ∴CF BC =CDBD , ∴CF 8=4√5,∴CF =8√55,∴AC =2AF =16√55.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图1,直线AB 与x 轴、y 轴分别相交于点A 、B ,将线段AB 绕点A 顺时针旋转90°,得到AC ,连接BC ,将△ABC 沿射线BA 平移,当点C 到达x 轴时运动停止.设平移距离为m ,平移后的图形在x 轴下方部分的面积为S ,S 关于m 的函数图象如图2所示(其中0<m ≤a ,a <m ≤b 时,函数的解析式不同). (1)填空:△ABC 的面积为 52;(2)求直线AB 的解析式;(3)求S 关于m 的解析式,并写出m 的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB ≌△CEA ,得出AE =OB ,CE =OA ,再由图2知,点C 的纵坐标是点B 纵坐标的2倍,即可利用三角形ABC 的面积求出OB ,OA ,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论. 【解答】解:(1)结合△ABC 的移动和图2知,点B 移动到点A 处,就是图2中,m =a 时,S =S △A 'B 'D =54, 点C 移动到x 轴上时,即:m =b 时,S =S △A 'B 'C '=S △ABC =52, 故答案为52,(2)如图2,过点C 作CE ⊥x 轴于E , ∴∠AEC =∠BOA =90°, ∵∠BAC =90°,∴∠OAB +∠CAE =90°, ∵∠OAB +∠OBA =90°, ∴∠OBA =∠CAE , 由旋转知,AB =AC , ∴△AOB ≌△CEA , ∴AE =OB ,CE =OA ,由图2知,点C 的纵坐标是点B 纵坐标的2倍, ∴OA =2OB , ∴AB 2=5OB 2,由(1)知,S △ABC =52=12AB 2=12×5OB 2,∴OB =1, ∴OA =2,∴A (2,0),B (0,1),∴直线AB 的解析式为y =﹣12x +1;(3)由(2)知,AB 2=5, ∴AB =√5,①当0≤m ≤√5时,如图3,∵∠AOB =∠AA 'F ,∠OAB =∠A 'AF , ∴△AOB ∽△AA 'F , ∴AA′OA =A′F OB,由运动知,AA '=m , ∴m 2=A′F 1,∴A 'F =12m ,∴S =12AA '×A 'F =14m 2,②当√5<m ≤2√5时,如图4 同①的方法得,A 'F =12m , ∴C 'F =√5﹣12m ,过点C 作CE ⊥x 轴于E ,过点B 作BM ⊥CE 于E , ∴BM =3,CM =1, 易知,△ACE ∽△FC 'H , ∴ACC′F =CEC′H,∴√55−12m=2C′H∴C 'H =√5−m √5, 在Rt △FHC '中,FH =12C 'H =√5−m2√5由平移知,∠C 'GF =∠CBM , ∵∠BMC =∠GHC ', ∴△BMC ∽△GHC ', ∴BM GH =CM C′H ,∴3GH=2√5−m √5∴GH =√5−m)√5,∴GF =GH ﹣FH =√5−m)2√5∴S =S △A 'B 'C '﹣S △C 'FG =52﹣12×√5−m)2√5×√5−m √5=52﹣14(2√5﹣m )2,即:S ={14m 2(0≤m ≤√5)52−14(2√5−m)2(√5<m ≤2√5).25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出DFAB=DEBK=1k,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴DFAB=DEBK=1k,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE26.(12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m ﹣5≤x ≤2m ﹣2时,y 的最大值为2,求m 的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,由AB ∥x 轴且AB =4,可得出点B 的坐标为(m +2,4a +2m ﹣5),设BD =t ,则点C 的坐标为(m +2+t ,4a +2m ﹣5﹣t ),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其正值即可得出t 值,再利用三角形的面积公式即可得出S △ABC 的值;(3)由(2)的结论结合S △ABC =2可求出a 值,分三种情况考虑:①当m >2m ﹣2,即m <2时,x =2m ﹣2时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元二次方程,解之可求出m 的值;②当2m ﹣5≤m ≤2m ﹣2,即2≤m ≤5时,x =m 时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元一次方程,解之可求出m 的值;③当m <2m ﹣5,即m >5时,x =2m ﹣5时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元一次方程,解之可求出m 的值.综上即可得出结论.【解答】解:(1)∵y =ax 2﹣2amx +am 2+2m ﹣5=a (x ﹣m )2+2m ﹣5, ∴抛物线的顶点坐标为(m ,2m ﹣5). 故答案为:(m ,2m ﹣5).(2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,如图所示. ∵AB ∥x 轴,且AB =4,∴点B 的坐标为(m +2,4a +2m ﹣5). ∵∠ABC =135°, ∴设BD =t ,则CD =t ,∴点C 的坐标为(m +2+t ,4a +2m ﹣5﹣t ). ∵点C 在抛物线y =a (x ﹣m )2+2m ﹣5上, ∴4a +2m ﹣5﹣t =a (2+t )2+2m ﹣5, 整理,得:at 2+(4a +1)t =0, 解得:t 1=0(舍去),t 2=﹣4a+1a,∴S △ABC =12AB •CD =﹣8a+2a .(3)∵△ABC 的面积为2, ∴﹣8a+2a =2,解得:a =﹣15,∴抛物线的解析式为y =﹣15(x ﹣m )2+2m ﹣5. 分三种情况考虑:①当m >2m ﹣2,即m <2时,有﹣15(2m ﹣2﹣m )2+2m ﹣5=2,整理,得:m 2﹣14m +39=0,解得:m 1=7﹣√10(舍去),m 2=7+√10(舍去); ②当2m ﹣5≤m ≤2m ﹣2,即2≤m ≤5时,有2m ﹣5=2,解得:m=72;③当m<2m﹣5,即m>5时,有﹣15(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2√10(舍去),m4=10+2√10.综上所述:m的值为72或10+2√10.第21页(共21页)。

2018年江苏省南通市中考数学试题及参考答案案

2018年江苏省南通市中考数学试题及参考答案案

南通市2018年中考数学试卷(满分:150分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2018江苏南通中考,1,3分,★☆☆) 6的相反数是( ) A .-6B .6C .-16D .162.(2018江苏南通中考,2,3分,★☆☆)计算x 2·x 3结果是( )A .2x 5B .x 5C .x 6D .x 83.(2018江苏南通中考,3,3x 的 取值范围是( ) A .x <1B .x ≤1C .x >1D .x ≥14.(2018江苏南通中考,4,3分,★☆☆)2017年国内生产总量达到827 000亿元,稳居 世界第二.将数827 000用科学记数法表示为( ) A .82.7×104B .8.27×105C .0.827×106D .8.27×1065.(2018江苏南通中考,5,3分,★☆☆) 下列长度的三条线段能组成直角三角形的是 ( )A .3,4,5B .2,3,4C .4,6,7D .5,11,126.(2018江苏南通中考,6,3分,★☆☆) 如图,数轴上的点A ,B ,O ,C ,D 分别表 示数-2,-1,0,1,2.则表示数2的点P 应落在( ) A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上7.(2018江苏南通中考,7,3分,★☆☆) 若一个凸多边形的内角和为720°,则这个多 边形的边数为( )A .4B .5C .6D .78.(2018江苏南通中考,8,3分,★☆☆)一个圆锥的主视图是边长为4 cm 的正三角形, 则这个圆锥的侧面积等于( )A .16π cm 2B .12π cm 2C .8π cm 2D .4π cm 29.(2018江苏南通中考,9,3分,★★☆) 如图,Rt △ABC 中,∠ACB =90°,CD 平分- 2- 1123∠ACB 交AB 于点D ,按下列步骤作图.步骤1:分别以点C 和点D 为圆心,大于12CD 的长为半径作弧,两弧相交于M ,N 两点; 步骤2:作直线MN ,分别交AC ,BC 于点E ,F ; 步骤3:连接DE ,DF .若AC =4,BC =2,则线段DE 的长为( )A .53B .32CD .43CDM NE F AB第9题图10. (2018江苏南通中考,10,3分,★★☆)如图,矩形ABCD 中,E 是AB 的中点,将 △BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE =43.设AB =x ,△ABF 的面积为y , 则y 与x 的函数图像大致为( )A B C D第10题图AEB CDFG二、填空题(本大题共8小题,每小题3分,满分24分.不需写出解答过程)11.(2018江苏南通中考,11,3分,★☆☆)计算3a2b-a2b=__________.12.(2018江苏南通中考,12,3分,★☆☆)某校学生来自甲,乙,丙三个地区,其人数比为2∶7∶3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为________度.第12题图13.(2018江苏南通中考,13,3分,★☆☆)一个等腰三角形的两边长分别为4 cm和9 cm,则它的周长为_________cm.14.(2018江苏南通中考,14,3分,★☆☆)如图,∠AOB=40°,OP平分∠AOB,点C 为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=________度.APDECB第14题图15.(2018江苏南通中考,15,3★★☆)古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?若设快马x天可追上慢马,则由题意,可列方程为___________________.16.(2018江苏南通中考,16,3分,★★☆)如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是_________(填序号).第16题图17.(2018江苏南通中考,17,3分,★☆☆)若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为__________.18.(2018江苏南通中考,18,3分★★☆)在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数y=2tx的图像分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为___________.三、解答题(本大题共10小题,满分96分.解答时应写出文字说明、证明过程或演算步骤)19(1).(2018·江苏南通中考,19(1),5分,★☆☆)计算:(-2)2(-3)0-(13)-2;19(2).(2018·江苏南通中考,19(2),5分,★☆☆)计算:229369a aaa a--÷++.20.(2018江苏南通中考,20,8分,★☆☆)解方程21133x xx x=+++.21.(2018·江苏南通中考,21,8分,★★☆)一个不透明的口袋中有三个完全相同的小球,把他们分别标号1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.22.(2018·江苏南通中考,22,8分,★★☆)如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B取∠ABD=120°,BD=520 m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E取1.732,结果取整数)?第22题图23.(2018江苏南通中考,23,9分,★★☆)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况,对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:收集数据17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19对这30个数据按组距3进行分组,并整理、描述和分析如下:频数分布表数据分布表请根据以上信息解答下列问题.(1)填空:a=__________,b=__________,c=__________.(2)若将月销售额不低于25万元确定为销售目标,则有_______位营业员获得奖励.(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?请说明理由.24.(2018江苏南通中考,24,8分,★★☆)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF.(2)若DC=4,DE=2,求直径AB的长.D EAOB FC第 24题图25.(2018江苏南通中考,25,9分,★★☆)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:根据以上信息解答下列问题: (1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.26.(2018江苏南通中考,26,10分,★★☆)在平面直角坐标系xOy 中,已知抛物线y =x 2-2(k -1)x +k 2-52k (k 为常数).(1)若抛物线经过点(1,k 2),求k 的值.(2)若抛物线经过点(2k ,y 1)和点(2,y 2),且y 1>y 2,求k 的取值范围.(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值-32,求k 的值.27.(2018江苏南通中考,27,13分,★★☆) 如图,正方形ABCD 中,AB =O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF . (1)求证:AE =CF .(2)若A ,E ,O 三点共线,连接OF ,求线段OF 的长. (3)求线段OF 长的最小值.A BCOE DF A BCD第 27题图28.(2018江苏南通中考,28,13分,★★★)【定义】如图1,A ,B 为直线l 同侧的两点,过点A 作直线l 的对称点A ′,连接A ′B 交直线l 于点P ,连接AP ,则称点P 为点A ,B 关于直线l 的“等角点”.【运用】如图2,在平面直角坐标系xOy 中,已知A (2),B (-2)两点. (1)C (4),D (4,E (4,12)三点中,点______是点A ,B 关于直线x =4的等角点.(2)若直线l 垂直于x 轴,点P (m ,n )是点A ,B 关于直线l 的等角点,其中m >2,∠APB=α,求证:tan2 =2n. (3)若点P 是点A ,B 关于直线y =ax +b (a ≠0)的等角点,且点P 位于直线AB 的右下方,当∠APB =60°时,求b 的取值范围(直接写出结果).AA ′BPl图1 图2 第 27题图南通市2018年初中数学答案全解全析1.答案:A解析:只有符号不同的两个数是相反数,所以6的相反数是-6,故选A . 考查内容:相反数的定义命题意图:本题主要考查了相反数的定义,正确把握相反数的定义是解题关键.难度较小. 2.答案:B解析:同底数幂相乘,应该底数不变,指数相加,∴x2·x3=x5,故选B.考查内容:同底数幂的乘法运算命题意图:本题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.难度较小.3.答案:D解析:二次根式有意义的条件是被开方数是非负数,∴x-1≥0,∴x≥1,故选D.考查内容:二次根式有意义的条件命题意图:本题考查的是二次根式有意义的条件,即被开方数大于等于0.难度较小.4.答案:B解析:827 000的整数位数有6位,所以n=6-1=5,所以827 000=8.27×105.考查内容:科学记数法命题意图:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.难度较小.知识归纳:科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.①确定a:a是只有一位整数的数,即1≤a≤10;②确定n:当原数≥10时,n等于原数的整数位数减去1,或等于原数变为a时,小数点移动的位数.5.答案:A解析:∵32+42=52,∴三条线段能组成直角三角形,故选项A正确;∵22+32≠42,∴三条线段不能组成直角三角形,故选项B错误;∵42+62≠72,∴三条线段不能组成直角三角形,故选项C错误;∵52+112≠122,∴三条线段不能组成直角三角形,故选项D错误.故选A.考查内容:勾股定理逆定理命题意图:本题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.难度较小.知识归纳:根据勾股定理逆定理,能组成直角三角形必须满足两条较短边的平方和是否等于最长边的平方,若满足,则说明能组成直角三角形,反之则不成立.6.答案:B解析:∵2<3,∴-1<2<0,∴P应落在线段BO上,故选择B.考查内容:无理数的估算、实数与数轴命题意图:本题考查的是无理数的估算、实数与数轴,正确估算无理数的大小是解题的关键.难度较小.7.答案:C解析:设这个多边形的边数n,由多边形的内角和公式,(n-2)·180°=720°,∴n=6,故选C.考查内容:多边形的内角和定理命题意图:本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.难度较小.8.答案:C解析:因为圆锥的主视图是边长为4 cm的正三角形,所以圆锥地面圆的直径和圆锥的母线长均为4 cm,可得圆锥侧面展开图的弧长为4π,圆锥的侧面积为S=12lR=12×4π×4=8π.故选C.考查内容:圆锥的侧面积命题意图:本题考查了圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.难度较小.9.答案:D解析:由∠ACB=90°,CD平分∠ACB可知,∠ACD=∠DCB=45°,由作图可知EF垂直平分CD,∴CE=DE,CF=DF.∴∠ACD=∠EDC=45°,∠BCD=∠FDC=45°.∴∠DEC =∠CFD=90°=∠ACB,∴四边形ECFD是矩形.又CE=DE,∴四边形ECFD是正方形.∴DE∥BC,∴△AED∽△ACB,∴AE DEAC BC=,设DE=x,则442x x-=,则DE=x=43,故选D.考查内容:相似三角形的判定和性质、正方形的判定和性质命题意图:本题考查相似三角形的判定和性质、线段的垂直平分线的性质、正方形的判定和性质、勾股定理等知识,解题的关键是学会利用面积法构建方程解决问题.难度中等偏上.10.答案:D解析:设BF,EC交于点G.∵将△BCE沿CE翻折,点B落在点F处,∴CE垂直平分BF,BF=BE.又∵AE=BE,∴AE=BE=BF.∴点F在以AB为直径的圆上.∴∠AFB=90°=∠EGB.∴EG∥AF.∴∠FAB=∠GEB.∵矩形ABCD中,CD∥AB,∴∠DCE=∠GEB=∠FAB.,∵tan∠DCE=43,∴tan∠FAB=BFAF=43.设AF=3a,BF=4a,则AB=5a.又AB=x,∴AF=35x,BF=45x.∴y=12·(35x)·(45x)=625x2(x>0).当x=5时,y=6.故选D.考查内容:解直角三角形、轴对称图形性质、相似三角形的性质等知识命题意图:本题为代数几何综合题,考查了解直角三角形、轴对称图形性质、相似三角形的性质等知识.解答关键是做到数形结合.难度较大.11.答案:2a2b解析:根据合并同类项时“字母部分不变,系数相加减”,可得3a2b-a2b=(3-1)a2b=2a2b.考查内容:合并同类项命题意图:本题主要考查合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.难度较小.12.答案:60解析:甲地区所在扇形的圆心角度数:360°×22+7+3=60°.考查内容:扇形统计图的知识命题意图:本题考查了扇形统计图的知识,解答本题的关键是求出各地区人数所占的比例,另外要求掌握扇形统计图的特点.难度较小.13.答案:22解析:已知等腰三角形的两边长分别为4 cm和9 cm,分两种情况讨论是否能组成三角形,需要检验两条较短边之和是否大于最长边:①若等腰三角形三边长为4 cm ,4 cm,9 cm,∵4+4=8<9,不能构成三角形,舍去;②若等腰三角形三边长为4 cm ,9cm,9 cm,∵4+9=13>9,能构成三角形,此时周长为:4+9+9=22(cm).考查内容:等腰三角形的性质和三角形的三边关系命题意图:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.难度较小.14.答案:130解析:∵∠AOB=40°,OP平分∠AOB,∴∠AOP=∠POB=20°.∵CD⊥OA,∴∠ODC =90°,∴∠DCP=∠ODC+∠AOP=110°.∵CE∥OB,∠PCE=∠POB=20°.∴∠DCE =∠DCP+∠PCE=130°.考查内容:平行线的性质和三角形的外角性质的应用命题意图:本题考查了平行线的性质和三角形的外角性质的应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角之和.难度较小.15.答案:240x-150x=150×12解析:设快马x天可以追上慢马,根据“快马x天所跑的路程-慢马x天所跑的路程=慢马先行的路程”可得,240x-150x=150×12.考查内容:一元一次方程的应用命题意图:本题考查了一元一次方程的应用,解答本题的关键是设出未知数,挖掘出隐含条件.难度适中.16.答案:②解析:∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=12∠BAC,∠DCA=12∠BCA.∵AE∥CD,CE∥AD,∴四边形ADCE为平行四边形.要使四边形ADCE为菱形,则需要条件AD=CD,∴需要条件∠DAC=∠DCA.又∠DAC=12∠BAC,∠DCA=12∠BCA.∴需要条件∠BAC=∠BCA.∴需要条件②AB=BC.考查内容:菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识命题意图:本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.难度中等偏上17.答案:7 2解析:∵关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,∴△=0.∴(-2m) 2-4×12(-4m+1)=0.∴4m2+8m-2=0.m2+2m=12.∴(m-2)2-2m(m-1)=-m2-2m+4=-12+4=72.考查内容:根的判别式命题意图:本题考查根的判别式以及完全平方公式,单项式乘多项式的知识,解题的关键是正确理解根的判别式的作用,本题属于基础题型.难度适中18.答案:4解析:由题意画出示意图,设P A,BQ交于点F.当x=2t时,y=2tx=12t,∴Q(2t,12t).又∵A(2t,0),∴AQ=12t.设BC解析式为:y=kx+b.∵B(0,-2t),C(2t,4t),∴2,24b tkt b t=-⎧⎨+=⎩.∴3,2k b t =⎧⎨=-⎩. ∴BC 解析式为:y =3x -2t .解方程组2,32t y xy x t ⎧=⎪⎨⎪=-⎩,得11,x t y t =⎧⎨=⎩,11,33t x y t⎧=-⎪⎨⎪=-⎩(舍去).∴P (t ,t ) .∵S △P AB -S △PQB =t ,∴S △PFQ -S △BF A =t .∴S △P AQ -S △BAQ =t .∴12AQ ×p x =t .∴12×12t ×t =t .t 1=0(舍去),t 2=4.∴t 的值为4.第18题答图考查内容:一次函数与反比例函数的交点问题命题意图:本题考查了待定系数法求一次函数解析式、反比例函数的图像及其性质以及计算图形面积的问题.解题的关键是确定交点P 的坐标.难度中等偏上 19(1). 解析:原式=4-4+1-9=-8. 考查内容:实数的运算命题意图:本题实数的运算,解题的关键是掌握立方根、零指数幂、负整数指数幂的法则.难度较小19(2).解析:原式=2(3)(3)(3)a a a +-+·33a - =33a +. 考查内容:分式的乘除法算命题意图:本题主要考查分式的乘除法,解题的关键是掌握分式混合运算顺序与混合运算法则,难度较小20. 解析:方程两边乘3(x +1),得3x =2x +3(x +1),解得x =32-. 检验:当x =32-时,3(x +1)≠0. 所以,原分式方程的解为x =32-. 考查内容:分式方程命题意图:当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.分式方程里单独的一个数和字母也必须乘最简公分母.难度中等 21. 解析:根据题意画出如下树状图:或列表如下:根据树状图或列表可知,可能出现的结果共有9种,并且它们出现的可能性相等,其中两次取出的小球标号相同的的结果共有3种,所以P(两次取出的小球标号相同)=39=13. 考查内容:列表法或树状图法求概率命题意图:本题考查了用列表法或画树状图法求概率.列表法或画树状图可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图适合两步或两步以上完成的事件.要熟练掌握:概率=事件所包15含的可能结果数与全部可能结果总数的比,即如果一个事件有n 种可能的情况,且它们的可能性相同,其中事件A 出现了m 种结果,那么事件A 的概率P(A)=nm.难度适中 22.解析:∵∠ABD =120°,∠D =30°,∴∠E =90°.∵在Rt △BDE 中,cos D =DEBD .∴DE =BD ·cos D .∴DE =BD ·cos30°=520×3=3(m ). 答:DE 长约为450m 时正好使A ,C ,E 三点在一直线上. 考查内容:三角形的外角性质、解直角三角形命题意图:本题考查三角形的外角性质与解直角三角形的应用.关键是从题中抽象出解直角三角形这一数学模型,画出准确的示意图,领会数形结合的思想的应用.难度适中第一次 第二次1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1) (3,2) (3,3)23.解析:(1)3,4,15;(2)8;(3)月销售额定为18万元比较合适.理由:有统计到的数据可以知道,月销售额在18万元(含18万元)的有16人,约占总人数的一半,可以估计,如果月销售额定为18万元,约有一半左右的营业员能达到销售目标.考查内容:众数、样本估计整体、平均数和中位数.命题意图:本题考查了对样本数据进行分析的相关知识,考察了频数分布表、平均数、众数和中位数等相关知识,并能利用中位数的意义解决实际问题.难度中等偏上24.解析:(1)∵AB为⊙O的直径,∴∠AEB=90°.∴∠DEF=90°.∵DC与⊙O相切于点C,∴∠DCO=90°.∵AD⊥CD,∴∠D=90°=∠DEF=∠DCO.∴四边形CDEF是矩形.∴∠EFC=90°.∴OC⊥BE.∴EF=BF.(2)∵四边形CDEF是矩形.∴EF=CD=4,CF=DE=2 .由(1),EF=BF.∴BF=4.设⊙O的半径为r,则OB=r,OF=r-2.在Rt△OBF中,根据勾股定理可得,OF2+BF2=OB2.∴(r-2)2+42=r2.r=5.∴AB=10.考查内容:切线的性质、垂径定理、矩形的判定与性质、勾股定理命题意图:本题考查切线的性质与判定、垂径定理、矩形的判定与性质、勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.难度中等偏上25.解析:(1)设A,B两种商品的单价分别为x元/件,y元/件.根据题意,得355,365.x yx y+=⎧⎨+=⎩解得20,15.xy=⎧⎨=⎩答:A,B两种商品的单价分别为20元/件,15元/件.(2)设第三次购买A种商品m件,购买商品的总费用W元;则购买B种商品(12-m)件.W=20m+15(12-m)=5m+180.又由题意x≥2(12-m),∴m≥8.∵W随m的增大而增大,∴当m=8时,W有最小值,此时12-m=4.∴最省钱的购买方案是购买A种商品8件,B种商品4件.考查内容:二元一次方程组的应用以及一元一次不等式的应用命题意图:本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等量关系于不等量关系是解题的关键.难度中等偏上26.解析:(1)∵抛物线y=x2-2(k-1)x+k2-52k(k为常数)经过点(1,k2),∴1-2(k-1)+k2-52k=k2.解得k=23.(2)∵抛物线经过点(2k,y1)和点(2,y2),∴y1=(2k)2-4k (k-1)+k2-52k=k2+32k,y2=4-4(k-1)+k2-52k=k2-132k+8;又∵y1>y2,∴k2+32k>k2-132k+8,∴k>1.(3)∵抛物线y=x2-2(k-1)x+k2-52k=(x-k+1) 2-12k-1,∴平移后的解析式为y=(x-k) 2-12k-1.∴该抛物线的对称轴为直线x=k.①若k<1,则当x=1时,y有最小值-32.∴(1-k) 2-12k-1=-32,解得k1=1,k2=3 2.∵k<1,∴k1=1,k2=32都不符合题意,舍去.②若1≤k≤2,则当x=k时,y有最小值-32.∴-12k-1=-32,解得k=1.③若k>2,则当x=2时,y有最小值-32.∴(2-k) 2-12k-1=-32,解得k1=3,k2=32.∵k>1,∴k=3.综上,k的值为1或3 .考查内容:二次函数图象性质及二次函数图象平移命题意图:本题为二次函数综合题,考查了二次函数图象性质及二次函数图象平移与最值、二次函数与一元二次不等式、方程的关系等.解答时注意用k表示顶点.难度较大27.解析:(1)∵正方形ABCD.∴OC=OA,∠ADC=90°.∵线段DE绕点D逆时针旋转90°得DF,∴DE=DF,∠EAF=90°.∴∠ADE=∠CDF.∴△ADE≌△CDF.∴AE=CF.(2)如图,作FH⊥BC,交BC的延长线于点H.∵正方形ABCD .∴∠B =90°,BC =AB =.又∵O 是BC 边的中点,∴OC =OB. ∵A ,E ,O 三点共线,∴点E 在线段BC 上.在Rt △ABO 中,OA5.又∵OE =2,∴CF =AE =3.∵△ADE ≌△CDF .∴∠DAE =∠DCF .又∵∠DAB =∠DCH =90°,∴∠BAO =∠HCF . 又∵∠H =∠B =90°.∴△BAO ∽△HCF .∴AB BO AOCH HF CF==53=. ∴FHCHOH∴OF(3)如图,连接OD ,将△ODE 绕点D 逆时针旋转90°得到△IDF ,连接OI ,OF .在Rt △OCD 中,OD5.在Rt △ODI 中,OI∵OF ≥OI -FI ,又∵FI =OE =2.∴OF2. ∴线段OF 长的最小值为2.考查内容:正方形的性质、三角形全等及相似的性质和判定、勾股定理命题意图:本题是四边形的综合题,考查了正方形的性质、三角形全等及相似的性质和判定、勾股定理等,第三问判断最值是难点,将OF 的长利用三角形全等转化为PE 的长,从而解决问题.难度较大28.解析:(1)如下图,过点A 作直线x =4的对称点A ′,连接A ′B 交直线x =4于点P ,则点P 为点A ,B 关于直线l 的“等角点”.A BCOE DF H A BCOEDFI∵A (2),∴A ′(6).设直线A ′B 解析式为:y =kx +b ,又∵B (-2),∴62k b k b ⎧+⎪⎨-+=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线A ′B 解析式为:yx .当x =4时,y.∴点C (4)是点A ,B 关于直线x =4的等角点. (2)方法①:如下图,过点A 作直线l 的对称点A ′,连接A ′B 交直线l 于点P ,交x 轴于点Q ,连接AP ,设直线l 交A A ′于点G ,交x 轴于点H .∵A ′与点A 关于直线x =m 对称,∴A ′P =AP .∴∠A =∠A ′=2α.又∵A A ′∥x 轴,∴∠A ′QH =∠A ′=2α. ∵点P (m ,n ),∴H (m ,0),PH =n .∵A (2),A ′与点A 关于直线x =m 对称,∴A ′(2m -2).设直线A ′B 解析式为:y =kx +b ,又∵B (-2,-),∴(22)2k m b k b ⎧-+=⎪⎨-+=⎪⎩解得kb⎧=⎪⎪⎨⎪=⎪⎩∴直线A′B解析式为:yx 当y=0x=0.解得x=m-2.∴Q(m-2,0).又∵H(m,0)∴QH=2.又∵PH=n.∴在Rt△PQH中,tan∠A′QH=tan2α=PHQH=2n.方法②:如上图,易证△NBQ≌△MAQ,∴Q为A′B的中点.∵A′(2m-2),B(-2,),∴∴Q(m-2,0).又∵H(m,0)∴QH=2.又∵PH=n.∴在Rt△PQH中,tan∠A′QH=tan2α=PHQH=2n.(3)如图,当且点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对的圆心角为60°,且圆心在AB下方的圆上.若直线y=ax+b(a≠0)与圆相交,设圆与直线y =ax+b(a≠0)的另一个交点为Q.由对称性可知,∠APQ=∠A′PQ,又∠APB=60°,∴∠APQ=∠A′PQ=60°.∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°.∴∠BAQ=60°=∠AQB=∠ABQ.∴△ABQ是等边三角形.∵线段AB为定线段,∴点Q为定点.若直线y =ax+b(a≠0)与圆相切,易得点P与Q重合.∴直线y=ax+b(a≠0)经过定点Q.连接OQ,过点A,Q分别作AM⊥y轴,QN⊥y轴,垂直分别为M,N.∵A(2),B(-2),∴OA=OB∵△ABQ是等边三角形,∴∠AOQ=∠BOQ=90°,OQ OB∴∠AOM+∠NOQ=90°,又∵∠AOM+∠MAO=90°,∴∠NOQ=∠MAO.又∵∠AMO=∠ONQ=90°,∴△AMO∽∠ONQ.∴AMMO AOON NQ OQ==.∴2ON==.∴ON=,NQ=3.∴Q(3,-).∴直线BQ解析式为:yx,直线AQ解析式为:y=-+.若点P与B重合,则直线PQ与直线BQ重合,b;又∵直线y=ax+b(a≠0),且点P位于直线AB的右下方,∴b的取值范围为:b且b≠-或b>.考查内容:一次函数、圆以及锐角三角函数的相关知识命题意图:本题为代数几何综合题,注意考查了学生自主探究的能力,建立在直角坐标系里的探究题目,里面涉及新的定义,综合考查了一次函数、圆以及锐角三角函数的相关知识,解答关键是数形结合.难度较大.- 21 -。

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。

)1.(3分) 下面有理数比较大小,正确的是()A。

<﹣2B。

﹣5<3C。

﹣2<﹣3D。

1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》3.(3分) 下列运算正确的是()A。

(﹣a3)2=﹣a6B。

2a2+3a2=6a2C。

2a2•a3=2a6D。

(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。

| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。

2018年江苏省常州市中考数学试卷(含答案)

2018年江苏省常州市中考数学试卷(含答案)

2018年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=______.10.若分式有意义,则x的取值范围是______.11.分解因式:x3﹣2x2+x=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.若代数式x﹣5与2x﹣1的值相等,则x的值是______.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是______km.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是______.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=______.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是______.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.解方程和不等式组:(1)+=1(2).21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了______名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,点P表示的数是1.5,则﹣=0.75>﹣1,则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【考点】垂线段最短.【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y2>y1建立不等式,求解不等式即可.【解答】解:由表可知,(﹣1,0),(0,1)在直线一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1.【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x 的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是1.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【考点】多项式乘多项式.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.解方程和不等式组:(1)+=1(2).【考点】解分式方程;解一元一次不等式组.【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,=10.即a最小值答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【考点】一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【考点】四边形综合题.【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,=(DE+BC)×DM=(1+2)×=,∴S梯形EDBC由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m <1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴=(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【考点】圆的综合题.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF ≌△CDF,。

四川省泸州市2018年中考数学试题(含答案)

四川省泸州市2018年中考数学试题(含答案)

2018 年四川省泸州市中考数学试卷一、选择题(本大题共12 个小题,每小题 3 分,共36 分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3 分)在﹣2,0,,2 四个数中,最小的是()A.﹣2 B.0 C.D.22.(3 分)2017 年,全国参加汉语考试的人数约为 6500000,将 6500000 用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107 D.65×1053.(3 分)下列计算,结果等于 a4 的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a24.(3 分)如图是一个由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3 分)如图,直线 a∥b,直线 c 分别交 a,b 于点 A,C,∠BAC 的平分线交直线 b 于点 D,若∠1=50°,则∠2 的度数是()A.50°B.70°C.80°D.110°6.(3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 1415 16 17人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,E 是 AB 中点,且 AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.88.(3 分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为 a,较短直角边长为 b.若 ab=8,大正方形的面积为 25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3 分)已知关于 x 的一元二次方程 x2﹣2x+k﹣1=0 有两个不相等的实数根,则实数 k 的取值范围是()A.k≤2 B.k≤0 C.k<2D.k<010.(3 分)如图,正方形 ABCD 中,E,F 分别在边 AD,CD 上,AF,BE 相交于点 G,若 AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3 分)在平面直角坐标系内,以原点 O 为原心,1 为半径作圆,点 P 在直线 y= 上运动,过点 P 作该圆的一条切线,切点为 A,则 PA 的最小值为()A.3 B.2 C.D.12.(3 分)已知二次函数y=ax2+2ax+3a2+3(其中x 是自变量),当x≥2 时,y 随 x 的增大而增大,且﹣2≤x≤1 时,y 的最大值为 9,则 a 的值为()A.1 或﹣2 B.或C.D.1二、填空题(每小题 3 分,共12 分)13.(3 分)若二次根式在实数范围内有意义,则 x 的取值范围是.14.(3 分)分解因式:3a2﹣3= .15.(3 分)已知 x1,x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,则的值是.16.(3 分)如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为.三、(每小题 6 分,共18 分)17.(6 分)计算:π0+ +()﹣1﹣|﹣4|.18.(6 分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6 分)化简:(1+ )÷.四、(每小题7 分,共14 分)20.(7 分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取 n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图 7 所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求 n 的值;(2)若该校学生共有 1200 人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的 4 名学生中有 3 名男生和 1 名女生,现从这 4 名学生中任意抽取 2 名学生,求恰好抽到 2 名男生的概率.21.(7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的 2.5 倍,用800 元单独购买甲图书比用 800 元单独购买乙图书要少 24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的 2 倍多 8 本,且用于购买甲、乙两种图书的总经费不超过 1060 元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8 分,共16 分)22.(8 分)如图,甲建筑物 AD,乙建筑物 BC 的水平距离 AB 为 90m,且乙建筑物的高度是甲建筑物高度的 6 倍,从 E(A,E,B 在同一水平线上)点测得 D 点的仰角为30°,测得 C 点的仰角为 60°,求这两座建筑物顶端 C、D 间的距离(计算结果用根号表示,不取近似值).23.(8 分)一次函数 y=kx+b 的图象经过点 A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数 y= (m>0)的图象相交于点 C(x1,y 1),D(x2,y2),与y 轴交于点 E,且 CD=CE,求 m 的值.六、(每小题12 分,共24 分)24.(12 分)如图,已知 AB,CD 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延长线于点 P,⊙O 的弦 DE 交 AB 于点 F,且 DF=EF.(1)求证:CO2=OF•OP;(2)连接 EB 交 CD 于点 G,过点 G 作 GH⊥AB 于点 H,若 PC=4 ,PB=4,求GH 的长.25.(12 分)如图 11,已知二次函数 y=ax2﹣(2a﹣)x+3 的图象经过点 A(4,0),与y 轴交于点 B.在 x 轴上有一动点 C(m,0)(0<m<4),过点 C 作 x 轴的垂线交直线 AB 于点 E,交该二次函数图象于点 D.(1)求 a 的值和直线 AB 的解析式;(2)过点 D 作 DF⊥AB 于点 F,设△ACE,△DEF 的面积分别为 S1,S2,若S1=4S2,求 m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且▱DEGH 周长取最大值时,求点 G 的坐标.2018 年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12 个小题,每小题 3 分,共36 分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3 分)在﹣2,0,,2 四个数中,最小的是()A.﹣2 B.0 C.D.2【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2 最小,故选:A.2.(3 分)2017 年,全国参加汉语考试的人数约为 6500000,将 6500000 用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107 D.65×105【解答】解:6500000=6.5×106,故选:B.3.(3 分)下列计算,结果等于 a4 的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2【解答】解:A、a+3a=4a,错误;B、a5 和 a 不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.4.(3 分)如图是一个由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.5.(3 分)如图,直线 a∥b,直线 c 分别交 a,b 于点 A,C,∠BAC 的平分线交直线 b 于点 D,若∠1=50°,则∠2 的度数是()A.50°B.70°C.80°D.110°【解答】解:∵∠BAC 的平分线交直线 b 于点 D,∴∠BAD=∠CAD,∵直线 a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.6.(3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16 17人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【解答】解:由表可知 16 岁出现次数最多,所以众数为 16 岁,因为共有 1+2+2+3+1=9 个数据,所以中位数为第 5 个数据,即中位数为 15 岁,故选:A.7.(3 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,E 是 AB 中点,且 AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.8【解答】解:∵四边形 ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴OE= BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形 ABCD 的周长=2×8=16,故选:B.8.(3 分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为 a,较短直角边长为 b.若 ab=8,大正方形的面积为 25,则小正方形的边长为()A.9 B.6 C.4 D.3【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab= ×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.9.(3 分)已知关于 x 的一元二次方程 x2﹣2x+k﹣1=0 有两个不相等的实数根,则实数 k 的取值范围是()A.k≤2 B.k≤0 C.k<2D.k<0【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得 k<2.故选:C.10.(3 分)如图,正方形 ABCD 中,E,F 分别在边 AD,CD 上,AF,BE 相交于点 G,若 AE=3ED,DF=CF,则的值是()A.B.C.D.【解答】解:如图作,FN∥AD,交 AB 于 N,交 BE 于 M.∵四边形 ABCD 是正方形,∴AB∥CD,∵FN∥AD,∴四边形 ANFD 是平行四边形,∵∠D=90°,∴四边形 ANFD 是解析式,∵AE=3DE,设 DE=a,则 AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN= a,∴FM= a,∵AE∥FM,∴= = = ,故选:C.11.(3 分)在平面直角坐标系内,以原点 O 为原心,1 为半径作圆,点 P 在直线 y= 上运动,过点 P 作该圆的一条切线,切点为 A,则 PA 的最小值为()A.3 B.2 C.D.【解答】解:如图,直线 y= x+2 与 x 轴交于点 C,与 y 轴交于点 D,作 OH ⊥CD 于 H,当 x=0 时,y= x+2 =2 ,则 D(0,2),当 y=0 时,x+2 =0,解得 x=﹣2,则 C(﹣2,0),∴CD= =4,∵OH•CD=OC•OD,∴OH= = ,连接 OA,如图,∵PA 为⊙O 的切线,∴OA⊥PA,∴PA= = ,当 OP 的值最小时,PA 的值最小,而 OP 的最小值为 OH 的长,∴PA 的最小值为= .故选:D.12.(3 分)已知二次函数y=ax2+2ax+3a2+3(其中x 是自变量),当x≥2 时,y 随 x 的增大而增大,且﹣2≤x≤1 时,y 的最大值为 9,则 a 的值为()A.1 或﹣2 B.或C.D.1【解答】解:∵二次函数 y=ax2+2ax+3a2+3(其中 x 是自变量),∴对称轴是直线 x=﹣=﹣1,∵当 x≥2 时,y 随 x 的增大而增大,∴a>0,∵﹣2≤x≤1 时,y 的最大值为 9,∴x=1 时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或 a=﹣2(不合题意舍去).故选:D.二、填空题(每小题 3 分,共12 分)13.(3 分)若二次根式在实数范围内有意义,则 x 的取值范围是x≥1 .【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得 x≥1.故答案为:x≥1.14.(3 分)分解因式:3a2﹣3= 3(a+1)(a﹣1).【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).15.(3 分)已知 x1,x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,则的值是 6 .【解答】解:∵x1、x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴= + = = = =6.故答案为:6.16.(3 分)如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为13 .【解答】解:如图作 AH⊥BC 于 H,连接 AD.∵EG 垂直平分线段 AC,∴DA=DC,∴DF+DC=AD+DF,∴当 A、D、F 共线时,DF+DC 的值最小,最小值就是线段 AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF= = =13,∴DF+DC 的最小值为 13.故答案为 13.三、(每小题 6 分,共18 分)17.(6 分)计算:π0+ +()﹣1﹣|﹣4|.【解答】解:原式=1+4+2﹣4=3.18.(6 分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【解答】证明:∵DA=BE,∴DE=AB,在△ABC 和△DEF 中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.19.(6 分)化简:(1+ )÷.【解答】解:原式= •= .四、(每小题7 分,共14 分)20.(7 分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取 n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图 7 所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求 n 的值;(2)若该校学生共有 1200 人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的 4 名学生中有 3 名男生和 1 名女生,现从这 4 名学生中任意抽取 2 名学生,求恰好抽到 2 名男生的概率.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为 50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为 240 人;(3)画树状图为:共有 12 种等可能的结果数,其中恰好抽到 2 名男生的结果数为 6,所以恰好抽到 2 名男生的概率= = .21.(7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的 2.5 倍,用800 元单独购买甲图书比用 800 元单独购买乙图书要少 24 本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的 2 倍多 8 本,且用于购买甲、乙两种图书的总经费不超过 1060 元,那么该图书馆最多可以购买多少本乙图书?【解答】解:(1)设乙图书每本价格为 x 元,则甲图书每本价格是 2.5x 元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20 是原方程的根,则 2.5x=50,答:乙图书每本价格为 20 元,则甲图书每本价格是 50 元;(2)设购买甲图书本数为 x,则购买乙图书的本数为:2x+8,故 50x+20(2x+8)≤1060,解得:x≤10,故 2x+8≤28,答:该图书馆最多可以购买 28 本乙图书.五、(每小题8 分,共16 分)22.(8 分)如图,甲建筑物 AD,乙建筑物 BC 的水平距离 AB 为 90m,且乙建筑物的高度是甲建筑物高度的 6 倍,从 E(A,E,B 在同一水平线上)点测得 D 点的仰角为30°,测得 C 点的仰角为60°,求这两座建筑物顶端 C、D 间的距离(计算结果用根号表示,不取近似值).【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在 Rt△ADE 中,tan30°=,sin30°=∴AE= = AD,DE=2AD;在 Rt△BCE 中,tan60°=,sin60°=,∴BE= =2 AD,CE= =4 AD;∵AE+BE=AB=90m∴AD+2 AD=90∴AD=10 (m)∴DE=20 m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD= = =20 (m)答:这两座建筑物顶端 C、D 间的距离为 20 m.23.(8 分)一次函数 y=kx+b 的图象经过点 A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数 y= (m>0)的图象相交于点 C(x1,y 1),D(x2,y2),与y 轴交于点 E,且 CD=CE,求 m 的值.【解答】解:(1)把点 A(﹣2,12),B(8,﹣3)代入 y=kx+b 得:解得:∴一次函数解析式为:y=﹣(2)分别过点 C、D 做 CA⊥y 轴于点 A,DB⊥y 轴于点 B设点 C 坐标为(a,b),由已知 ab=m由(1)点 E 坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点 D 坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得 m=6a∵ab=m∴b=6则点 D 坐标化为(a,3)∵点 D 在 y=﹣图象上∴a=4∴m=ab=24六、(每小题12 分,共24 分)24.(12 分)如图,已知 AB,CD 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延长线于点 P,⊙O 的弦 DE 交 AB 于点 F,且 DF=EF.(1)求证:CO2=OF•OP;(2)连接 EB 交 CD 于点 G,过点 G 作 GH⊥AB 于点 H,若 PC=4 ,PB=4,求GH 的长.【解答】(1)证明:∵PC 是⊙O 的切线,∴OC⊥PC,∴∠PCO=90°,∵AB 是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴= ,∵OD=OC,∴OC2=OF•OP.(2)解:如图作 CM⊥OP 于 M,连接 EC、EO.设 OC=OB=r.在 Rt△POC 中,∵PC2+OC2=PO2,∴(4 )2+r2=(r+4)2,∴r=2,∵CM= = ,∵DC 是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形 EFMC 是矩形,∴EF=CM= ,在 Rt△OEF 中,OF= = ,∴EC=2OF= ,∵EC∥OB,∴= = ,∵GH∥CM,∴= = ,∴GH= .25.(12 分)如图 11,已知二次函数 y=ax2﹣(2a﹣)x+3 的图象经过点 A(4,0),与y 轴交于点 B.在 x 轴上有一动点 C(m,0)(0<m<4),过点 C 作 x 轴的垂线交直线 AB 于点 E,交该二次函数图象于点 D.(1)求 a 的值和直线 AB 的解析式;(2)过点 D 作 DF⊥AB 于点 F,设△ACE,△DEF 的面积分别为 S1,S2,若S1=4S2,求 m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且▱DEGH 周长取最大值时,求点 G 的坐标.【解答】解:(1)把点 A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线 AB 解析式为 y=kx+b把 A(4,0),B(0,3)代入解得∴直线 AB 解析式为:y=﹣(2)由已知,点 D 坐标为(m,﹣)点 E 坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y 轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE ∴解得 m1= ,m2=﹣(舍去)故 m 值为(3)如图,过点 G 做 GM⊥DC 于点 M由(2)DE=﹣同理 HG=﹣∵四边形 DEGH 是平行四边形∴﹣=﹣整理得:(n﹣m)[ ]=0∵m≠n∴m+n=4,即 n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH 周长 L=2[﹣+ ]=﹣∵a=﹣<0∴m=﹣时,L 最大.∴n=4﹣=∴G 点坐标为(,)。

2018年泰州市中考数学试卷含答案

2018年泰州市中考数学试卷含答案

2018年泰州市中考数学试卷含答案泰州市2018年初中毕业升学统一考试数学试题(含参考答案)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.-(-2)等于( )A。

-2 B。

2 C。

1/2 D。

±22.下列运算正确的是( )A。

2+3=5 B。

18=23 C。

2×3=5 D。

2÷3=2/33.下列几何体中,主视图与俯视图不相同的是( )A。

正方体 B。

四棱锥 C。

圆柱 D。

球4.XXX是一名职业足球队员,根据以往比赛数据统计,XXX进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A。

XXX明天的进球率为10% B。

XXX明天每射球10次必进球1次 C。

XXX明天有可能进球 D。

XXX明天肯定进球5.已知x1,x2是关于x的方程x2-ax-2=0的两根,下列结论一定正确的是( )A。

x1≠x2 B。

x1+x2>0 C。

x1×x2>0 D。

x1<x26.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是( )A。

线段PQ始终经过点(2,3) B。

线段PQ始终经过点(3,2) C。

线段PQ始终经过点(2,2) D。

线段PQ不可能始终经过某一定点第Ⅱ卷(共132分)二、填空题(每题5分,共20分,将答案填在答题纸上)7.8的立方根等于2.8.亚洲陆地面积约为4400万平方千米,将xxxxxxxx用科学记数法表示为4.4×107.9.计算:x×(-2x2)/3=-2x3/3.10.分解因式:a3-a=a(a2-1)。

11.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是方差。

2018年山东省菏泽市中考数学试卷(word原版+解析版)

2018年山东省菏泽市中考数学试卷(word原版+解析版)

2018年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号填在答题卡的相应位置。

) 1.(3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.12.(3分)习近平主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒土俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0。

34×107B.34×105 C.3.4×105D.3.4×1063.(3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°4.(3分)如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.5.(3分)关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣16.(3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°7.(3分)规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么点与互相垂直.下列四组向量,互相垂直的是() A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1) D.=(,﹣),=(()2,4)8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,请把最后结果填写在答题卡的相应区域内.)9.(3分)不等式组的最小整数解是.10.(3分)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.11.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.12.(3分)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是度.13.(3分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.14.(3分)一组“数值转换机"按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(本大题共10个小题,共78分,请把解答或证明过程写在答题卡的相应区域内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学试卷
说明:1.全卷共6页,满分为150 分,考试用时为120分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案 无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

第Ⅰ卷(共42分)
一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列运算结果为正数的是( )
A .2(3)-
B .32-÷
C .0(2017)⨯-
D .23-
2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )
A .1
B .2-
C .0.813
D .8.13
3.用量角器测量MON ∠的度数,操作正确的是( )
4.2
3
222333
m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n
5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()
A.①B.②C.③D.④
6.如图为张小亮的答卷,他的得分应是()
A.100分B.80分C.60分D.40分
7.若ABC
∆,则'B
A B C
∆的每条边长增加各自的10%得'''
∠的度数相比
∠的度数与其对应角B
()
A.增加了10%B.减少了10%C.增加了(110%)
+D.没有改变
8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()
9.求证:菱形的两条对角线互相垂直.
已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC BD
⊥.
以下是排乱的证明过程:①又BO DO
=,
②∴AO BD
⊥.
⊥,即AC BD
③∵四边形ABCD是菱形,
④∴AB AD
=.
证明步骤正确的顺序是()
A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→
③→②
10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是()
A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒
11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()
12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )
A .4446+-=
B .004446++=
C .34446++=
D .14446-÷+= 13.若321x x -=-( )11
x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数
14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )
A .甲组比乙组大
B .甲、乙两组相同
C .乙组比甲组大
D .无法判断
15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是
整数)的个数为k,则反比例函数
k
y
x
=(0
x>)的图象是()
16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:
将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()
A.1.4 B.1.1 C.0.8 D.0.5
第Ⅱ卷(共78分)
二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)
17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM AC
=,BN BC
=,测得200
MN m
=,则A,B间的距离为m.
18.如图,依据尺规作图的痕迹,计算α∠= .
19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}
22min (1),1x x -=,则x = . 三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)
20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .
(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?
(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .
21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.
(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;
(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;
(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.
22.发现 任意五个连续整数的平方和是5的倍数.
验证 (1)22222(1)0123-++++的结果是5的几倍?
(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.
23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .
(1)求证:AP BQ =;
(2)当3BQ =QD 的长(结果保留π);
(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.
24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988
y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .
(1)求点C ,E 的坐标及直线AB 的解析式;
(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;
(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.
25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3
A =.点P 为AD 边上任意一点,连接P
B ,将PB 绕点P 逆时针旋转90︒得到线段PQ .
(1)当10DPQ ∠=︒时,求APB ∠的大小;
(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);
(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).
26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.
(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(1)
m 个月的利润相差最大,求m.。

相关文档
最新文档