清华大学 标准学术能力测试题

合集下载

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末学业质量监测试题含解析

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末学业质量监测试题含解析

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题只有一个选项符合题意)1、下列说法正确的是A.硅酸可由二氧化硅与水反应制得B.Na2SiO3是硅酸盐,但不能溶于水C.硅是非金属元素,它的单质是灰黑色有金属光泽的固体D.硅是制造光导纤维的材料2、既能与盐酸反应,又能与NaOH溶液反应的是①Si;②Al(OH)3;③NaHCO3;④Al2O3;⑤Na2CO3A.全部B.①②④C.②④⑤D.②③④3、N A代表阿伏加德罗常数,下列说法正确的是()A.0.1mol Fe 与0.1mol Cl2反应,转移的电子数目为0.3N AB.1.12L Cl2含有1.7N A个质子C.标准状况下,22.4L SO3含N A个硫原子数D.3.2g O2和O3的混合物中含有的氧原子数目为0.2N A4、用N A表示阿伏加德罗常数的值。

下列说法正确的是A.11.2 L CO2所含有的分子数为0.5.N aB.0.1mol•L-1 MgCl2的溶液中Cl-数为0.1N AC.1 mol Na2O2与足量H2O反应电子转移总数为2N AD.常温常压下,48gO3和O2的混合气体中含有的氧原子数为3N A5、《本草衍义》中对精制芒硝过程有如下叙述:“朴硝以水淋汁,澄清,再经熬炼减半,倾木盆中,经宿,遂结芒有廉棱者。

”文中未涉及的操作方法是A.溶解B.蒸发C.蒸馏D.结晶6、熔融烧碱应选用的仪器是()A.生铁坩埚B.普通玻璃坩埚C.石英坩埚D.陶瓷坩埚7、下列有关试剂的取用说法不正确的是()A.胶头滴管可用来取用少量液体试剂B.无毒的固体试剂可用手直接取用C.多取的钠可放回原试剂瓶中D.取用固体试剂时,可用药匙8、生活中处处有化学,下列说法中正确的是( )A.CO2和CH4都是能引起温室效应的气体B.治疗胃酸过多的药物主要成分为Al(OH)3或Na2CO3等C.明矾溶于水产生具有吸附性的胶体粒子,常用于饮用水的杀菌消毒D.鲜榨苹果汁中含Fe2+,加入维C,利用其氧化性,可防止苹果汁变黄9、下列有关化学用语表达正确的是A.35Cl−和37Cl−离子结构示意图均可以表示为:B.HClO的结构式:H−Cl−OC.HF的电子式:UD.质子数为92、中子数为146的U原子:1469210、下列各组物质能相互反应得到Al(OH)3的是()A.Al2O3跟H2O共热B.Al跟NaOH溶液共热C.Al(NO3)3跟过量的NaOH溶液D.AlCl3跟过量的NH3·H2O11、下列各组离子能够大量共存的是()A.加入Al粉后产生H2的溶液中:Na+、HCO3¯、SO42-、Cl¯B.滴加石蕊试剂变红的溶液中:Na+、Fe2+、NO3¯、Cl¯C.氢氧化铁胶体中:Na+、K+、S2-、Br-D.澄清透明的溶液中:Cu2+、H+、NH4+、SO42-12、在两个密闭容器中,分别充满等物质的量的甲、乙两种气体,它们的温度和摩尔质量均相同。

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末质量跟踪监视模拟试题含解析

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末质量跟踪监视模拟试题含解析

清华大学中学生标准学术能力诊断性测试2025届化学高一上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个选项符合题意)1、某学习小组为了探究碳酸钠溶液与盐酸的反应,将等体积的a mol/LNa2CO3溶液和b mol/L盐酸相互滴加混合,收集的气体体积大小关系为: V1>V2>0。

下列有关说法正确的是A.V1是盐酸滴入到碳酸钠中产生的气体B.a=bC.2a>b>a D.2a=b2、下列有关化学基本概念的判断依据正确的是A.弱电解质:溶液的导电能力弱B.共价化合物:含有共价键C.离子化合物:含有离子键D.分子晶体:常温下不导电3、下列物质中①Al ②NaHCO3③Al2O3④Mg(OH)2⑤Al(OH)3中,既能与盐酸反应又能与氢氧化钠溶液反应的化合物是()A.①②③⑤B.①④⑤C.②③⑤D.①③④4、当光束通过下列分散系时,能产生丁达尔效应的是()A.稀盐酸B.CuSO4溶液C.Fe(OH)3胶体D.NaCl 溶液5、用下列实验装置完成对应的实验,操作正确并能达到实验目的的是A.称量NaOH固体B.配制100ml 0.1mol·L-1盐酸C.用自来水制备少量蒸馏水D.分离酒精和水的混合物6、为确定下列置于空气中的物质是否变质,所选检验试剂(括号内物质)不能达到目的的是()A.NaOH溶液(Ca(OH)2溶液) B.次氯酸钠溶液(稀硫酸)C.过氧化钠(氯化钙溶液) D.氯水溶液(硝酸银溶液)7、下列有关钠及其化合物说法不正确的是A.实验室将Na保存在煤油中B.金属钠在空气中长期放置,最终生成物为Na2CO3C.将钠元素的单质或者化合物在火焰上灼烧,火焰为黄色D.可用澄清石灰水鉴别Na2CO3溶液和NaHCO3溶液8、下列离子方程式正确的是( )A.向硫酸铝溶液中加入过量氨水:Al3++ 3OH-= Al(OH)3↓B.向Ba(OH)2溶液中滴加NaHSO4溶液至混合溶液恰好为中性:Ba2++OH-+H++SO42-= BaSO4↓+H2O C.FeSO4溶液与稀硫酸、双氧水混合:2Fe2++ H2O2 + 2H+=2Fe3+ + 2H2OD.向NaHCO3溶液中加入足量Ba(OH)2的溶液:Ba2++2HCO3-+2OH-= 2H2O+BaCO3↓+ CO32-9、下列说法错误的是( )A.钠在空气燃烧时先熔化,再燃烧,最后所得的产物是Na2O2B.铝因在空气中形成了一薄层致密的氧化膜,保护内层金属,故铝不需特殊保护C.铁因在潮湿的空气中形成的氧化物薄膜疏松,不能保护内层金属D.SiO2是酸性氧化物,不与任何酸发生反应10、FeCl3、CuCl2的混合溶液中加入一定量的铁粉,充分反应后固体完全溶解,则下列判断正确的是()A.溶液中一定含Cu2+和Fe2+B.溶液中一定含Cu2+和Fe3+C.溶液中一定含Fe3+和Fe2+D.溶液中一定含Fe3+、Cu2+和Fe2+11、下列反应的离子方程式正确的是()A.FeCl3溶液腐蚀铜线路板:Fe3++Cu=Fe2++Cu2+B.氯气通入水中:Cl2+H2O=2H++ClO-+Cl-C.金属铝加入到NaOH溶液中:2Al+2OH-+2H2O=2AlO2-+3H2↑D.Na2O加入稀硫酸中:O2-+2H+=H2O12、同温同压下,相同质量的铝、铁分别与足量盐酸反应时,放出氢气的体积比是()A.1∶1 B.56∶27 C.9∶28 D.28∶913、下列叙述正确的是A.常温常压下,1.5 mol O2的体积约为33.6 LB.NaOH的摩尔质量是40 gC.100 mL水中溶解了5.85 g NaCl,则溶液中NaCl的物质的量浓度为1 mol·L-1D.同温同压下,相同体积的任何气体所含的分子数一定相同14、过滤后的食盐水仍含有可溶性的CaCl2、MgCl2、Na2SO4等杂质,通过如下几个实验步骤,可制得纯净的食盐水:①加入稍过量的BaCl2溶液;②加入稍过量的NaOH溶液;③加入稍过量的Na2CO3溶液;④滴入稀盐酸至无气泡产生;⑤过滤。

清华大学中学生标准学术能力诊断性测试2024届数学高一下期末学业水平测试试题含解析

清华大学中学生标准学术能力诊断性测试2024届数学高一下期末学业水平测试试题含解析

清华大学中学生标准学术能力诊断性测试2024届数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1( ) A .cos160︒ B .cos160±︒ C .cos160±︒D .cos160-︒2.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .103.已知函数sin y x =和cos y x =在区间I 上都是减函数,那么区间I 可以是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭4.角α的终边经过点221⎛⎫- ⎪ ⎪⎝⎭,那么tan α的值为( )A .12B .C .3-D .5.得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将sin 2y x =的图象( ) A .向左移动6π B .向右移动6π C .向左移动3π D .向右移动3π 6.一个三棱锥的三视图如图所示,则该棱锥的全面积为( )A .1232+B .1262+C .932+D .962+7.若2cos75a =,4cos15b =,a 与b 的夹角为30,则a b ⋅的值是( ) A .12B .32C .3D .238.执行如图所示的程序框图,若输入3k =,则输出S =( )A .13B .15C .40D .469.三角形的三条边长是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最大边长为( ) A .4B .5C .6D .710.函数cos tan y x x =⋅(302x π≤<且2x π≠)的图像是下列图像中的( )A .B .C .D .二、填空题:本大题共6小题,每小题5分,共30分。

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

标准学术能力诊断性测试2024年9月测试数学试卷(A 卷)本试卷共150分,考试时间90分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,a b ∈R ,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.集合(){}{}22ln 23,23,A x y x x B y y x x x A ==--==-+∈∣∣,则A B ⋂=R ð()A.(),1∞-- B.()(],13,6∞--⋃C.()3,∞+ D.()[),16,∞∞--⋃+3.已知复数z 满足5z z ⋅=,则24i z -+的最大值为()C. D.4.已知非零向量,a b 满足3a b = ,向量a 在向量b 方向上的投影向量是9b - ,则a 与b 夹角的余弦值为() A.33 B.13 C.33- D.13-5.设函数()f x 的定义域为R ,且()()()()42,2f x f x f x f x -++=+=-,当[]1,2x ∈时,()()()2,303f x ax x b f f =+++=-,则b a -=()A.9-B.6-C.6D.96.班级里有50名学生,在一次考试中统计出平均分为80分,方差为70,后来发现有3名同学的分数登错了,甲实际得60分却记成了75分,乙实际得80分却记成了90分,丙实际得90分却记成了65分,则关于更正后的平均分和方差分别是()A.82,73 B.80,73 C.82,67D.80,677.已知()sin 404cos50cos40cos θθ-=⋅⋅ ,且ππ,22θ⎛⎫∈- ⎪⎝⎭,则θ=()A.π3- B.π6- C.π6 D.π38.已知函数()2221x f x x =-++,则不等式()()2232f t f t +->的解集为()A.()(),13,∞∞--⋃+ B.()1,3- C.()(),31,∞∞--⋃+ D.()3,1-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对但不全得3分,有错选的得0分.9.已知实数,,a b c 满足0a b c <<<,则下列结论正确的是()A.11a c b c>-- B.a a c b b c +<+C.b c a c a b --> D.2ac b bc ab+<+10.已知函数()sin3cos3f x a x x =-,且()3π4f x f ⎛⎫≤⎪⎝⎭对任意的x ∈R 恒成立,则下列结论正确的是()A.1a =±B.()f x 的图象关于点π,04⎛⎫ ⎪⎝⎭对称C.将()f x 的图象向左移π12个单位,得到的图象关于y 轴对称D.当π23π,1236x ⎡⎤∈-⎢⎥⎣⎦时,满足()2f x ≤-成立的x 的取值范围是π7π,3636⎡⎤-⎢⎥⎣⎦11.在长方体1111ABCD A B C D -中,已知4,2AB BC ==,13,AA M N =、分别为1111B C A B 、的中点,则下列结论正确的是()A.异面直线BM 与AC 所成角的余弦值为7210B.点T 为长方形ABCD 内一点,满足1D T ∥平面BMN 时,1D T的最小值为5C.三棱锥1B B MN -的外接球的体积为14πD.过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面周长为+三、填空题:本题共3小题,每小题5分,共15分.12.若实数,x y 满足1232,34x y x y ≤+≤≤-+≤,则x y +的取值范围是__________.13.如图所示,在梯形ABCD 中,1,3AE AB AD =∥,3,BC BC AD CE =与BD 交于点O ,若AO x AD y AB =+ ,则x y -=__________.14.在四面体ABCD 中,3,,CD AD CD BC CD =⊥⊥,且AD 与BC 所成的角为30 .若四面体ABCD 的体积为2,则它的外接球表面积的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数12213i z =-+=--.(1)若12z z z =,求z ;(2)在复平面内,复数12,z z 对应的向量分别是,OA OB ,其中O 是原点,求AOB ∠的大小.16.(15分)在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos cos 1a C b A c -+=.(1)求角A ;(2)已知b D =为BC 边上一点,且2,BD BAC ADC ∠∠==,求AD 的长.17.(15分)如图所示,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥平面ABCD ,点Q 为PA 的三等分点,满足13PQ PA =.(1)设平面QCD 与直线PB 相交于点S ,求证:QS ∥CD ;(2)若3,2,60,AB AD DAB PA ∠==== ,求直线CQ 与平面PAD 所成角的大小.18.(17分)甲、乙两位同学进行投篮训练,每个人投3次,甲同学投篮的命中率为p ,乙同学投篮的命中率为()q p q >,且在投篮中每人每次是否命中的结果互不影响.已知每次投篮甲、乙同时命中的概率为15,恰有一人命中的概率为815.(1)求,p q 的值;(2)求甲、乙两人投篮总共命中两次的概率.19.(17分)已知函数()233x x f x a --=⋅+是偶函数,()246h x x x =-+.(1)求函数()e 2x y h a =-的零点;(2)当[],x m n ∈时,函数(()h f x 与()f x 的值域相同,求n m -的最大值.标准学术能力诊断性测试2024年9月测试数学(A卷)参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678A B C C D B A C二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对但不全的得3分,有错选的得0分.91011AD BC BD三、填空题:本题共3小题,每小题5分,共15分.12.21,55⎡⎤-⎢⎥⎣⎦13.11114.73π-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)解:(1)()() ()()12224i13i24i26i4i127i13i13i13i19i5 zzz-+---++-++ =====-+-+---5z∴==(2)依题意向量()()2,4,1,3OA OB=-=--于是有()()()214310OA OB⋅=-⨯-+⨯-=-OA OB====AOB∠为OA 与OB 的夹角,2cos2OA OBAOBOA OB∠⋅∴==-[]0,πAOB∠∈,3π4AOB∠∴=16.(15分)解:(1)由正弦定理可得:cos sin cos sin cos 1sin a C b A C B A c C--+==()cos 1sin sin cos sin A C A C B ∴+=-,由()sin sin B A C =+可得:()cos sin sin sin cos sin A C C A C A C ⋅+=-+,cos sin sin sin cos sin cos cos sin A C C A C A C A C ⋅+=--,cos sin sin cos sin A C C A C∴⋅+=-sin 0C ≠ 可得:cos 1cos A A +=-,1cos 2A ∴=-,()0,πA ∈ ,2π3A ∴=(2),BAC ADC BCA ACD ∠∠∠∠== ,BAC ∴ 与ADC 相似,满足:AC BC CD AC =,设CD x =,则有3x =解得:1,3x x ==-(舍去),即:1CD =2π3ADC BAC ∠∠== ,在ADC 中,由余弦定理可得:2222πcos 32AD CD AC AD CD+-=⋅⋅,即:211221AD AD +--=⨯⨯解得:1,2AD AD ==-(舍去),AD ∴的长为117.(15分)解:(1)证明:因为平面QCD 与直线PB 相交于点S ,所以平面QCD ⋂平面PAB QS=因为四边形ABCD 为平行四边形,AB ∴∥CD ,AB ⊄ 平面,QCD CD ⊂平面,QCD AB ∴∥平面QCDAB ⊂ 平面PAB ,平面QCD ⋂平面,PAB QS AB =∴∥QS ,AB ∥,CD QS ∴∥CD(2)过点C 作CH AD ⊥于点H ,PA ⊥ 平面,ABCD PA ⊂平面PAD ,所以平面PAD ⊥平面ABCD ,因为平面PAD ⋂平面ABCD AD =,且CH AD ⊥,CH ∴⊥平面PAD连接,QH CQH ∠∴是直线CQ 与平面PAD 所成的角因为点Q 为PA 的三等分点,232,223PA QA PA =∴==,在Rt DCH 中,333sin602CH =⋅= 在ACD 中,利用余弦定理可得:222223cos120,19223AC AC +-=∴=⨯⨯ ,在Rt QAC 中,222(22)1933QC QA AC =+=+=在Rt QCH 中,3312sin 233CH CQH CQ ∠===,可得π6CQH ∠=,即直线CQ 与平面PAD 所成的角等于π618.(17分)解:(1)设事件A :甲投篮命中,事件B :乙投篮命中,甲、乙投篮同时命中的事件为C ,则C AB =,恰有一人命中的事件为D ,则D AB AB =⋃,由于两人投篮互不影响,且在投篮中每人每次是否命中的结果互不影响,所以A 与B 相互独立,,AB AB 互斥,所以:()()()()P C P AB P A P B ==⋅()(()()(()()()P D P AB AB P AB P AB P A P B P A P B =⋃=+=⋅+⋅可得:()()1581115pq p q p q ⎧=⎪⎪⎨⎪-+-=⎪⎩解得:1335p q ⎧=⎪⎪⎨⎪=⎪⎩或3315,,,1533p p q p q q ⎧=⎪⎪>∴==⎨⎪=⎪⎩(2)设i A :甲投篮命中了i 次;j B :乙投篮命中了j 次,,0,1,2,3i j =,()30285125P A ⎛⎫== ⎪⎝⎭()2213223223365555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2223232323545555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()3028327P B ⎛⎫== ⎪⎝⎭()2211221221433333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2222112112233333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭设E :甲、乙两人投篮总共命中两次,则021120E A B A B A B =++由于i A 与j B 相互独立,021120,,A B A B A B 互斥,()()()()()()()()021*********P E P A B A B A B P A P B P A P B P A P B ∴=++=⋅+⋅+⋅8236454830412591259125271125=⨯+⨯+⨯=19.(17分)解:(1)()233x x f x a --=⋅+ 是偶函数,则()()f x f x -=,即11333399x x x x a a --⋅+=⋅+,()113309x x a -⎛⎫∴--= ⎪⎝⎭,由x 的任意性得119a =,即9a =()246h x x x =-+ ,()()()()()22e 2e 4e 618e 4e 12e 6e 2x xx x x x x y h a ∴=-=-⋅+-=-⋅-=-+,令()()e 6e 20x x -+=,则e 6x =或e 2x =-(舍去),即ln6x =,()e 2x y h a ∴=-有一个零点,为ln6(2)设当[],x m n ∈时,函数()f x 的值域为[],s t ,则函数()()h f x 的值域也为[],s t ,由(1)知()2933332x x x x f x ---=⋅+=+≥=当且仅当33x x -=,即0x =时等号成立,令()p f x =,则2p ≥,()2246(2)2h x x x x =-+=-+ 在区间[)2,∞+上单调递增,所以当[],p s t ∈时,()2,s h p ≥的值域为()(),h s h t ⎡⎤⎣⎦,即()()h s s h t t ⎧=⎪⎨=⎪⎩,则224646s s s t t t ⎧-+=⎨-+=⎩,即,s t 为方程246x x x -+=的两个根,解得23s t =⎧⎨=⎩,所以当[],x m n ∈时,()f x 的值域为[]2,3令()30x x λ=>,则()133,1x x y f x λλλ-==+=+>,3x λ= 在()0,∞+上单调递增,对勾函数1y λλ=+在()1,∞+上单调递增,由复合函数的单调性知,()f x 在()0,∞+上单调递增,()f x 是偶函数,()f x ∴在(),0∞-上单调递减令()3f x =,即333x x -+=,解得332x +=或332x =,即33log 2x +=或33log 2x -=,故n m -的最大值为3333535735log log log 222-+-=答案解析1.A【解析】由22log log a b >可得0a b >>,由1122b a⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭可得a b >,由a b >得不到0a b >>,故必要性不成立;由0a b >>可以得到a b >,故充分性成立,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的充分不必要条件.2.B 【解析】集合(){}{}22ln 23230A x y x x x x x ==--=-->∣∣()(){}310{13},x x x x x x =-+>=<->∣∣或集合{}{}223,6B yy x x x A y y ==-+∈=>∣∣,{}()(]6,,13,6B y y A B ∞=≤∴⋂=--⋃R R ∣3.C【解析】复数z 满足5z z ⋅=,设22i,5z a b z z a b =+⋅=+=,()()2224i 24i (2)(4)z a b a b -+=-++=-++,则点()2,4-到圆225a b +=+=4.C【解析】设非零向量,a b 夹角为θ,向量a 在向量b 方向上的投影向量是39b - ,则cos ,39b a a b b θ⨯=-= ∣,解得3cos 3θ=-.5.D【解析】()()42f x f x -++= ,取()()1,312x f f =+=,()()()321211f f a b a b =-=-++=--,()()2f x f x +=- ,取()()0,2042x f f a b ===++,()()303,1423,2f f a b a b a +=---+++=-=- ,()()42f x f x -++= ,取2x =,则()21f =,则7b =,则729b a -=+=.6.B【解析】设更正前甲,乙,丙 的成绩依次为12350,,,,a a a a ,则12505080a a a +++=⨯ ,即507590655080a ++++=⨯ ,()222250(7580)(9080)(6580)807050a -+-+-++-=⨯ ,更正后平均分:()5016080908050x a =++++= ,()22222501(6080)(8080)(9080)807350s a ⎡⎤=-+-+-++-=⎣⎦ .7.A 【解析】()sin 40sin40cos cos40sin θθθ-=- 4cos50cos40cos 4sin40cos40cos θθ=⋅⋅=⋅⋅ 1cot40tan 4cos40θ⇒-=14cos40tan cot40θ-⇒=sin404sin40cos40cos40-=()sin 30102sin80cos40+-= 13cos102cos1022cos40+-=3313sin10cos10sin10cos102222cos40cos40--==()()sin 1060sin 50cos40cos40--===πππ,,223θθ⎛⎫∈-∴=- ⎪⎝⎭.8.C【解析】设()()21121x g x f x x =-=-++,()()2221112121x x x g x f x x x -⋅-=--=--+=--+++,()()2221102121x x x g x g x x x ⎛⎫⋅+-=-++--+= ⎪++⎝⎭,设()()1212121222,112121x x x x g x g x x x ⎛⎫⎛⎫>-=-+--+ ⎪ ⎪++⎝⎭⎝⎭()()()()()122121121222222021212121x x x x x x x x x x -⎛⎫=-+-=-+> ⎪++++⎝⎭,故()g x 为奇函数,且单调递增,()()()()()()22223212310230f t f t f t f t g t g t +->⇒-+-->⇒+->,()()()()()222302332g t g t g t g t g t +->⇒>--=-,故232t t >-,解得()(),31,t ∞∞∈--⋃+.9.AD【解析】A.0a b c <<<,可得a c b c -<-,故11a c b c>--,A 正确;B.设不等式成立,则()()a a c b c b b c b b b c++<++,可得ab ac ab bc +<+,即ac bc <,由0a b c <<<可得ac bc >,故假设不成立,B 错误;C.不妨假设211313210,,1332b c a c a b c a b --+--+=-<=-<=-<====--,故,C b c a c a b --<错误;D.设不等式成立,()()22,,,0ac b bc ab ac bc ab b a b c a b b a b c +<+-<--<-<<< ,()()a b c a b b -<-成立,故2ac b bc ab +<+成立,D 正确.10.BC【解析】A.()()sin3cos33sin 0,cos πf x a x x x ϕϕϕϕ⎛⎫=-=+=-=≤ ⎪⎝⎭()3π4f x f ⎛⎫≤ ⎪⎝⎭对任意x ∈R 恒成立,()f x ∴在3π4x =处取得极值,即3ππ3π42k ϕ⨯+=+,解得7π3ππ,sin 0,π,,sin 4422k ϕϕϕϕϕϕ=-+=-≤∴=-=-=- ,可求得1a =-,A 错误;B.()()3ππ3,0,44f x x f f x ⎛⎫⎛⎫=-=∴ ⎪ ⎪⎝⎭⎝⎭的图象关于点π,04⎛⎫ ⎪⎝⎭对称,B 正确;C.将()f x 的图象向左平移π12个单位,得到()π3ππ3331242g x x x x ⎛⎫⎛⎫=+⨯-=-=- ⎪ ⎪⎝⎭⎝⎭,函数图象关于y 轴对称,C 正确;D.()3π2342f x x ⎛⎫=-≤- ⎪⎝⎭,即3π1sin 342x ⎛⎫-≤- ⎪⎝⎭,7π3π11π2π32π646k x k ∴+≤-≤+,解得23π231π2ππ363363k x k +≤≤+,由题意知π23π,1236x ⎡⎤∈-⎢⎥⎣⎦,符合条件的k 的取值为1,0-,当1k =-时,π7π3636x -≤≤,均在定义域内,满足条件,当0k =时,23π31π3636x ≤≤,此时仅有23π36x =满足条件,所以满足()22f x ≤-成立的x 的取值范围为π7π23π,363636⎡⎤⎧⎫-⋃⎨⎬⎢⎣⎦⎩⎭,D 错误.11.BD【解析】A.MN ∥,AC BMN ∠∴为直线MN 与AC 所成角,在BMN 中,根据余弦定理可知222cos 2BM MN BN BMN BM MN∠+-=⋅,422BM MN BN ======,代入求得cos 10BMN A ∠=错误;B.取AD 的中点E ,取CD F ,取11A D 的中点S ,连接11,,,,EF D E D F AS SM ,SM ∥,AB AS ∥BM ,所以四边形ABMS 是平行四边形,AS ∥BM 且AS ∥11,D E D E ∴∥1BM D E ∴∥平面BMN ,同理可得1D F ∥平面BMN ,1DT ∥平面,BMN T ∈平面ABCD ,所以点T 的运动轨迹为线段EF ,在1ΔD EF 中,过点1D 作1D T EF ⊥,此时1D T 取得最小值,由题意可知,11D E D F EF ===,1111sin sin sin 105D EF BMN D T D E D EF ∠∠∠====,B 正确;C.取MN 的中点1O ,连接11B O ,则1111O N O M O B ==,过点1O 作1OO ∥1BB ,且111322OO BB ==,OM ∴为外接球的半径,在1Rt MB N 中,MN =,2R OM ∴==,34ππ,33V R C ∴==球错误;D.由平面11AA D D ∥平面11BB C C 得,过点,,D M N 的平面必与11,AA C C 有交点,设过点,,D M N 的平面与平面11AA D D 和平面11BB C C 分别交于,DO PM DO ∴∥,PM 同理可得DP ∥,ON 过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面图形为五边形DPMNO ,如图所示,以D 为坐标原点,以1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系,设,AO m CP n ==,则()()()()()0,0,0,2,0,,0,4,,1,4,3,2,2,3D O m P n M N ,()()()()0,2,3,1,0,3,2,0,,0,4,ON m PM n DO m DP n ∴=-=-== ,DP ∥,ON DO ∥PM ,()()2323m n n m ⎧=-⎪∴⎨=-⎪⎩,解得2m n ==,DO DP ∴==ON PM MN ====,所以五边形DPMNO 的周长为DO DP ON PM MN ++++==+,D 正确.12.21,55⎡⎤-⎢⎥⎣⎦【解析】令()()()()2323x y m x y n x y m n x m n y +=++-+=-++,2131m n m n -=⎧∴⎨+=⎩,解得()()2121,,235555m n x y x y x y ==-∴+=+--+,1232,34x y x y ≤+≤≤-+≤ ,则()()22441323,555555x y x y ≤+≤-≤--+≤-,24435555x y ∴-≤+≤-,即21,55x y ⎡⎤+∈-⎢⎣⎦.13.111【解析】建立如图所示的平面直角坐标系,设1AD =,则3BC =,()()()()220,0,3,0,,,1,,,33B C A m n D m n E m n ⎛⎫∴+ ⎪⎝⎭,所以直线BD 的方程为1n y x m =+,直线CE 的方程为()2329n y x m =--,联立两直线方程求得()()666655,,,,1,0,,11111111m n m n O AO AD AB m n +-⎛⎫⎛⎫∴=-==-- ⎪ ⎝⎭⎝⎭ ,6511,511m x my AO xAD y AB n ny -⎧=-⎪⎪=+∴⎨⎪-=-⎪⎩ ,解得651,,111111x y x y ==∴-=.14.73π-【解析】依题意,可将四面体ABCD 补形为如图所示的直三棱柱ADE FCB -,AD 与BC 所成的角为30 ,30BCF ∠∴= 或150,设,CB x CF y ==,外接球半径记为R ,外接球的球心如图点O ,11113sin 23324ABCD CBF V DC S xy BCF xy ∠⎛⎫∴=⋅⋅=⨯⨯== ⎪⎝⎭ ,解得8xy =,在2Rt OCO 中,2222222223922sin 4BF R OC OO CO BF BCF ∠⎛⎫⎛⎫==+=+=+ ⎪ ⎪⎝⎭⎝⎭,在BCF 中,由余弦定理可得2222cos BF BC CF BC CF BCF ∠=+-⋅⋅,要使外接球表面积最小,则R 要尽可能小,则BCF ∠应取30 ,(2222BF x y xy ∴=+≥-,当且仅当x y =时取等,(22min 99732444R BF xy ∴=+=+=-所以外接球表面积的最小值2min min 4π73πS R ==-.。

2024届北京市清华大学中学生标准学术能力诊断性测试1月测试英语试卷

2024届北京市清华大学中学生标准学术能力诊断性测试1月测试英语试卷

2024届北京市清华大学中学生标准学术能力诊断性测试1月测试英语试卷一、阅读理解From hawk hikes to private sleepovers at the zoo, there is a great selection of animal-related experiences available to groups. Here are some top options to get closer to various wonderful wildlife.Chester ZooThe newest attractions here are the Madagascar Lemur Walkthrough experience, which gives visitors the opportunity to walk alongside ring-tailed and red-ruffed lemurs, and the interactive American Wetland Aviary, which is home to birds like scarlet ibises and flamingos. Group rates are available for parties of 15 or more and there are various catering options, including sit-down meals at the restaurant at the heart of the zoo.ZSL Whipsnade ZooUntil September 2022, it is offering groups of up to 60 the opportunity to experience a private Nature Night, on which they’ll get to explore the zoo privately after the public has left, take part in activities like quizzes, camp overnight, and get up early for a private tour along the green trail before it reopens to the public again.West Midland Safari ParkThe latest attraction at the park is the new African Walking Trail. Opened in May, the trail features three viewpoints that allow visitors to see the park’s African animals on foot. There’s also a four-mile drive-through safari area with red panda, penguin and lorikeet areas. Groups of ten plus, arriving in the same vehicle, can save more than 40%.Knowsley Safari ParkThe five-mile safari drive through the site takes you past free-roaming lions, rhinos and more than 100cheeky baboons. There’s a foot safari area, where the highlight is the Amur Tiger Trail with transparent walled viewing areas where you can get nose-to-nose with 450-pound tigers. Groups of 15 people and more, arriving in one vehicle, qualify for special ticket rates.1.Who is the passage intended for?A.Animal-loving students.B.Forest hiking fans.C.Group tour organizers.D.Wildlife preservationists.2.Visitors can experience private tours in ________.A.Chester ZooB.ZSL Whipsnade ZooC.West Midland Safari ParkD.Knowsley Safari Park3.From the passage, we know that ________.A.delicious meals are offered to tourists in the four parksB.private tours are available in the four parksC.all the parks can provide driving-through servicesD.visitors can have access to walking trails in the four parksScientists regularly make vital new discoveries, but few can claim to have invented an entirely new field of science. Chemist Carolyn Bertozzi is one of them. Her discovery of biorthogonal chemistry (生物正交化学) in 2003 created a brand-new discipline of scientific investigation, which has enabled countless advances in medical science and led to a far greater understanding of biology at a molecular (分子的) level. On October 5, Bertozzi was awarded the Nobel Prize in Chemistry, jointly with two other professors. She is also the only woman to be awarded a Nobel Prize in science this year, after an all-male line-up in 2021.Bertozzi was the middle daughter of an MIT physics professor and a secretary. Few predicted that Bertozzi would be the most famous person in the family. While her academic performance was not bad in high school, she was fond of playing soccer. She end ed up being admitted to Harvard University. Despite her talent in soccer, she found it too time-consuming and quit the sport to devote herself to academics.But before becoming a rock star scientist, Bertozzi almost became an actual rock star. When she started at Harvard, she was tempted to major in music. That idea was “unpopular” with her parents, and she was timid about defying them. Instead, she chose the premed (医学预科的) trackthat included classes in math and sciences, and declared herself a biology major at the end of her first year of college.Her interest in music did not completely fall by the wayside, however. Bertozzi played keyboards and sang backup vocals for a hair metal band. Bertozzi, however, did not play with the band for long. Once the band’s practices and performances conflicted with her labs and classes, there was only one outcome.Plus, she’d soon have organic chemistry to think about a course which is infamous for weeding out pre-meds. Without any clear career ambitions up to that point, Bertozzi had been thinking about possibly becoming a doctor when, in her sophomore year (大二学年), she suddenly fell so head over heels in love with her chemistry course that she couldn’t tear herself away from her textbooks long enough to go out on Saturday nights. A torture to many was pure pleasure for her. Bertozzi changed her major from biology to chemistry a year later.Bertozzi has sometimes joked about her having missed out on her chance to follow Morello to LosAngeles. “I didn’t get on that bus, and my playing is now limited to ‘The Wheel's on the Bus Go Round,’ I’m waiting for my sons to get old enough to appreciate 1980s heavy metal!”4.Which of the following statements is TRUE according to the passage?A.Bertozzi is one of those scientists who made significant new discoveries.B.Bertozzi was the only female to win a Nobel Prize in science in 2021.C.Bertozzi played keyboards and sang backup vocals throughout her college years.D.Bertozzi initially planned to become a doctor.5.The underlined word in Para. 3 means ________.A.tell B.disobey C.approach D.threaten6.The organic chemistry course Bertozzi took was known to be ________.A.easy and enjoyableB.difficult to pass for pre-med studentsC.popular among hair metal band playersD.a required course for all college students7.What kind of person do you think Carolyn Bertozzi is?A.Brave and sympathetic.B.Athletic and critical.C.Humble and passionate.D.Talented and creative.Willie Sutton, a once celebrated American criminal, was partly famous for saying he robbed banks because “that’s where the money is.” Actually, museums are where the money is. In a single gallery there can be paintings worth more, taken together, than a whole fleet of jets. And while banks can hide their money in basements, museums have to put their valuables in plain sight.Nothing could be worse than the thought of a painting as important as The Scream, Edvard Munch’s impressive image of a man screaming against the backdrop of a blood-red sky, disappearing into a criminal underworld that doesn’t care much about careful treatment of art works. Art theft is a vast problem around the world. As many as 10,000 precious items of all kinds disappear each year. And for smaller museums in particular, it may not be a problem they can afford to solve. The money for insurance on very famous pictures would be budget destroyers even for the largest museums.Although large museums have had their share of embarrassing robberies, the greatest problem is small institutions. Neither can afford heavy security. Large museums attach alarms to their most valuable paintings, but a modest alarm system can cost $500,000 or more. Some museums are looking into tracking equipment that would allow them to follow stolen items once they leave the museums. But conservators are concerned that if they have to insert something, it might damage the object. Meanwhile, smaller museums can barely afford enough guards, relying instead on elderly staff.Thieves sometimes try using artworks as money for other underworld deals. The planners of the 2006 robbery of Russborough House near Dublin, who stole 18 paintings, tried in vain to trade them for Irish Republican Army members held in British prison. Others demand a ransom (赎金) from the museum that owns the pictures. Once thieves in Frankfurt, Germany, made off with two major works by J.M.W. Turner from the Tate Gallery in London. The paintings, worth more than $80 million, were recovered in 2012 after the Tate paid more than $5 million to people having “information” about the paintings. Though ransom is illegal in Britain, money for looking into a case is not, provided that police agree the source of the information is unconnected to the crime. All the same, where information money end s and ransom begins is often a gray area.8.Why do smaller museums face a greater challenge in preventing art theft?A.They lack experienced staff.B.They cannot afford high-tech security systems.C.They do not have valuable artworks.D.They lack interest in art conservation.9.What is the concern of conservators regarding the use of tracking equipment to prevent art theft?A.It might damage the artwork.B.It is too expensive for smaller museums.C.It is difficult to insert into the paintings.D.It is ineffective for valuable paintings.10.From Paragraph 4, we can learn that ________.A.the thieves demanded a ransom from the Tate GalleryB.the Tate Gallery regained the lost paintings illegallyC.the money paid was considered an information fee, not a ransomD.the police requested the Tate Gallery to pay the money11.The purpose of this passage is ________.A.to remind criminals to protect and preserve the paintingB.to give suggestions on how to avoid the crimes of art theftC.to urge museums to set up more advanced security systemsD.to make people aware of art theft and the necessity of good security systemsWho cares if people think wrongly that the Internet has had more important influences than the washing machine? Why does it matter that people are more impressed by the most recent changes?It would not matter if these misjudgments were just a matter of people’s opinions. However, they have real impacts, as they result in misguided use of scarce resources.The fascination with the ICT(Information and Communication Technology) revolution, represented by the Internet, has made some rich countries wrongly conclude that making things is so “yesterday” that they should try to live on ideas. This belief in “post-industrial society” has ledthose countries to neglect their manufacturing sector (制造业) with negative consequences for their economies.Even more worryingly, the fascination with the Internet by people in rich countries has moved the international community to worry about the “digital divide” between the rich countries and the poor countries. This has led companies and individuals to donate money to developing countries to buy computer equipment and Internet facilities. The question, however, is whether this is what the developing countries need the most. Perhaps giving money for those less fashionable things such as digging wells, extending electricity networks and making more affordable washing machines would have improved people’s lives more than giving every child a laptop computer or setting up Internet centres in rural villages, I am not saying that those things are necessarily more important, but many donators have rushed into fancy programmes without carefully assessing the relative long-term costs and benefits of alternative uses of their money.In yet another example, a fascination with the new has led people to believe that the recent changes in the technologies of communications and transportation are so revolutionary that now we live in a “borderless world”. As a result, in the last twenty years or so, many people have come to believe that whatever change is happening today is the result of great technological progress, going against which will be like trying to turn the clock back. Believing in such a world, many governments have put an end to some of the very necessary regulations on cross-border flows of capital, labour and goods, with poor results.Understanding technological trends is very important for correctly designing economic policies, both at the national and the international levels, and for making the right career choices at the individual level. However, our fascination with the latest, and our under valuation of what has already become common, can, and has, led us in all sorts of wrong directions.12.What are the effects of people’ misjudgments on the influences of new technology?A.It stimulates innovation.B.It affects their personal opinions.C.It influences their use of resources.D.It leads to improved technology.13.Why is the “digital divide” a concern related to the fascination with the Internet in rich countries?A.It leads to competition between rich and poor countries.B.It results in a lack of access to technology in developing countries.C.It increases the cost of computer equipment in rich countries.D.It promotes global digital cooperation.14.From Paragraph 4, we know that ________.A.donating for technology is always the better optionB.the author does not provide opinions on this matterC.donating for technology and basic needs should be balancedD.donating for basic needs should be prioritized over technology15.What is the passage mainly about?A.Significance of information and communication technology.B.Serious consequences of over-emphasizing high technology.C.Technological trends guiding economic policy making.D.How to use donation money in the new age.There’s a Symphony Just Below the Surface — Can You Hear It?Imagine it’s your birthday, and your friends and family pool their money to get you the best gift you can imagine: tickets for fabulous seats to see your favorite musical act. But what if you got to the venue and something terrible had just happened to you? 16 . Even while facing the prospect of extreme difficulty in your life, you are so thrilled to see your favorite group that fora couple of hours, you can put all of that behind you.17 . That is the ability to suspend our fears and worries and focus on what we love. In the example of the concert, we know that when the music ends, we may go back to our concerns, but while it’s playing, there is nothing we can do about them, so we might as well just give in.Life always has its music, and we don’t need to be front-row center at a concert to hear it. Throughout our lives, no matter what else is going on, a melody is present. But we are often so focused on the present moment that we fail to hear the melody. 18 .We can become magnificent listeners to life, with enough practice. And let’s face it, this is something we were born to do, so the skill is there, waiting for us to employ it. We can tap into the music, and when we do find ourselves distracted from it, we can use consciousness to bring us right back. It is as simple as saying, “OK, I’m distracted again; I am going to start listening again.”19 .Life is always playing music, but we have to listen, and we listen by being present. We can do this. 20 . When we do this, we’ll discover that the symphony inside of us is magnificent.A.As humans, we have been given a wonderful giftB.These feelings may last several minutes or even last several hoursC.In a word, wisdom and patience are the things that listening to the music of life requires D.Soon, we will find that we have to redirect ourselves less and less, and we hear the music more and moreE.You’d broken your knees, say, or you learned of a failure of examF.The noise of our worry drowns out all the other things we might otherwise hear and enjoy G.We just need to realize and engage with the music of life that is always playing二、完形填空When Alex Lin was 11 years old, he read a(an) 21 article in the newspaper, which said that people were 22 old computers in backyards, throwing TVs into streams, and dumping(丢弃) cell phones in the garbage. This was dangerous because e waste contains harmful 23 that can leak into the environment, getting into crops, animals, water supplies—and people.Alex was really worried and decided to make it next project for WIN—the Westerly Innovations Network. Alex and six of his friends had 24 this organization to help solve community problems two years before.But what could they do about this project with e-waste? The team spent several weeks gathering information about the harmful chemicals in e waste and their 25 on humans. They learned how to dispose (处置) of e-waste 26 and how it could be recycled. Then, they sent out a survey and found only one in eight knew what e-waste was, let alone how to dispose of it.Alex and his friends went into 27 . They advertised in the local newspaper and 28 notices to students, asking residents to bring their 29 electronics to the school parking lot. The drive lasted two days, and they 30 over 9,500 kilograms of e waste.The next step was to set up a long-term e-waste drop-off center for the town. After some research, they’d learned that reusing is the best way to 31 electronic devices and it is seven times more 32 than recycling. So, they began learning to refurbish(翻新) computers themselves and distributed them to students who didn’t have their own. In this way, they could help students in the area and protect the environment at the same time.For a 33 solution to e waste, the drop off center wasn’t enough. Laws would have to be passed. In 2016,WIN helped 34 for an e waste bill in their town, which required companies that manufactured or sold electronics to take back e waste. The bill clearly 35 the dumping of e waste.Because of the work of WIN, more and more people, like Alex and his team, are getting the message about safe disposal of e-waste. As Alex says, “Today’s technology should not become tomorrow’s harmful garbage.21.A.alarming B.terrifying C.embarrassing D.inspiring 22.A.carrying B.burying C.taking D.destroying 23.A.subjects B.restrictions C.bacterial D.chemicals 24.A.developed B.recognized C.formed D.restored 25.A.affects B.effects C.consequences D.attempts 26.A.properly B.instantly C.constantly D.gradually 27.A.enthusiasm B.action C.behavior D.energy 28.A.distributed B.contributed C.established D.conducted 29.A.unexpected B.unwanted C.useless D.meaningless 30.A.obtained B.collected C.ordered D.donated 31.A.break down B.take in C.expose to D.deal with 32.A.efficient B.economical C.effective D.beneficial 33.A.lasting B.physical C.original D.crucial 34.A.push B.delay C.accept D.pass 35.A.prevents B.permits C.predicts D.forbids三、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。

2025届清华大学中学生标准学术能力诊断性测试语文高三第一学期期末学业水平测试试题含解析

2025届清华大学中学生标准学术能力诊断性测试语文高三第一学期期末学业水平测试试题含解析

2025届清华大学中学生标准学术能力诊断性测试语文高三第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.1.阅读下面的文字,完成下面小题。

维权孙春平吴老太到三亚有好几年了。

每年11月初南下,待来年春暖花开的时候再回东北去,被人称作候鸟一族。

吴老太患有肺气肿,以前每到冬天,就觉得气短,听人说海南冬天暖和,还没有雾霾,便坐火车跑来一试。

这一试就上瘾了,那口气一下就吸到了肺窝最深处,甜甜的、润润的,连吐出去都觉不舍。

当然,当候鸟也需有本钱。

要住房,还要坐飞机,是一笔不小的费用。

人家腰包厚实的,在海南买了房,飞到落脚处便有了巢,好比去年来过的老燕子。

可吴老太没这种方便,穷候鸟必须精打细算。

吴老太退休前在一个国营煤矿管矿灯管三十多年,后来据说是资源危困,退休金两千元不到。

老伴过世得早,活着时是矿工,矿难后只见了骨灰盒,还有一笔抚恤金。

那笔钱后来给儿子买了一室一厅的房子,不然,只怕儿子连媳妇都娶不上。

穷有穷的活法。

吴老太买不起房,那就租,租也不敢去正规小区,太贵。

她是去城中村。

当地村民等着拆迁,早把房子盖得密密匝匝。

但便宜啊,一月几百元钱就说下来了。

飞机票贵,咱坐火车,睡不起卧铺咱坐硬座行不?刚来三亚时,吴老太还曾去住宅小区翻过垃圾箱,她想把租房的钱翻出来。

但那活计只干了三天,房东不干了,说院子本来就小,不可再堆放纸壳易拉罐。

吴老太想想也是,歇了手。

清华大学中学生标准学术能力诊断性测试2025届物理高三上期中考试试题含解析

清华大学中学生标准学术能力诊断性测试2025届物理高三上期中考试试题含解析

清华大学中学生标准学术能力诊断性测试2025届物理高三上期中考试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为A.B.C.D.2、如图所示,物体从光滑斜面的顶端由静止下滑,经时间t速度为v1,此时施加平行于斜面向上的恒力F,又经时间t物体回到出发点,速度为v2,已知下滑过程中物体始终未脱离斜面,则v1:v2的值为()A.1:1 B.2:1C.3:1 D.4:13、如图所示,重为10N的小球套在与水平面成370角的硬杆上,现用一垂直于杆向上、大小为20N的力F拉小球,使小球处于静止状态(已知)A.小球不一定受摩擦力的作用B.小球受摩擦力的方向一定沿杆向上,大小为6NC.杆对小球的弹力方向垂直于杆向下,大小为4.8ND.杆对小球的弹力方向垂直于杆向上,大小为12N4、将一小球竖直向上抛出,小球在运动过程中所受到的空气阻力不可忽略.a为小球运动轨迹上的一点,小球上升和下降经过a点时的动能分别为E k1和E k1.从抛出开始到小球第一次经过a点时重力所做的功为W1,从抛出开始到小球第二次经过a点时重力所做的功为W1.下列选项正确的是()A.E k1=E k1,W1=W1B.E k1>E k1,W1=W1C .E k 1<E k 1,W 1<W 1D .E k 1>E k 1,W 1<W 15、如图所示,一箱苹果沿着倾角为θ的斜面,以速度v 匀速下滑.在箱子的中央有一个质量为m 的苹果,它受到周围苹果对它作用力的方向( )A .沿斜面向上B .沿斜面向下C .竖直向上D .垂直斜面向上6、如图所示,欲使在粗糙斜面上匀速下滑的木块A 停下,可采用的方法是A .对木块A 施加一个垂直于斜面的力B .增大斜面的倾角C .对木块A 施加一个竖直向下的力D .在木块A 上再叠放一个重物二、多项选择题:本题共4小题,每小题5分,共20分。

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题(解析版)

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题(解析版)

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题一、单选题1.已知全集U =R ,集合10x A x x ⎧⎫-=≥⎨⎬⎩⎭,(){}lg 31B x y x ==-,则()UA B =ð( ) A .(]0,1 B .10,3⎛⎤ ⎥⎝⎦C .1,13⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】求出集合A 、B ,利用补集的定义求出集合U B ð,然后利用交集的定义可求出集合()U A B ∩ð. 【详解】(]11000,1x x A x x x x ⎧⎫⎧⎫--=≥=≤=⎨⎬⎨⎬⎩⎭⎩⎭,(){}{}1lg 31310,3B x y x x x ⎛⎫==-=->=+∞ ⎪⎝⎭,则1,3U B ⎛⎤=-∞ ⎥⎝⎦ð,因此,()10,3U A B ⎛⎤= ⎥⎝⎦ð.故选:B. 【点睛】本题考查交集和补集的计算,同时也考查分式不等式与对数函数定义域的计算,考查运算求解能力,属于基础题. 2.已知a R ∈,复数23a iz i -=+(i 为虚数单位),若z 为纯虚数,则a =( ) A .23B .23- C .6 D .6-【答案】A【解析】利用复数的除法法则将复数z 表示为一般形式,由题意得出该复数的实部为零,虚部不为零,可求出实数a 的值. 【详解】()()()()()()233262326333101010a i i a a i a i a a z i i i i ----+--+====-++-, 由于复数z 为纯虚数,则320106010a a -⎧=⎪⎪⎨+⎪≠⎪⎩,解得23a =.故选:A. 【点睛】本题考查复数的除法运算,同时考查了复数相关的概念,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,考查运算求解能力,属于基础题.3.某单位200名职工的年龄分布情况如图所示,现要从中抽取25名职工进行问卷调查,若采用分层抽样方法,则40~50岁年龄段应抽取的人数是( )A .7B .8C .9D .10【答案】C【解析】先计算出饼图中40~50岁的职工所占的比例,再乘以25即可得出结果. 【详解】由题中饼图可知,40~50岁年龄段的职工所占的比例为10.440.20.36--=, 因此,40~50岁年龄段应抽取的人数是250.369⨯=. 故选:C. 【点睛】本题考查利用分层抽样计算所抽取的人数,根据分层抽样的特点列方程是解题的关键,考查运算求解能力,属于基础题.4.下列函数中,在区间()0,∞+上单调递增的是( ) A .3x y -= B .0.5log y x =C .21y x=D .12x y x +=+ 【答案】D【解析】分析各选项中函数在区间()0,∞+上的单调性,可得出合乎题意的选项.【详解】对于A 选项,函数133xx y -⎛⎫== ⎪⎝⎭在区间()0,∞+上为减函数; 对于B 选项,函数0.5log y x =在区间()0,∞+上为减函数; 对于C 选项,函数21y x =在区间()0,∞+上是减函数; 对于D 选项,函数()21111222x x y x x x +-+===-+++在区间()0,∞+上是增函数. 故选:D. 【点睛】本题考查基本初等函数单调性的判断,熟悉一些基本初等函数的单调性是判断的关键,考查推理能力,属于基础题.5.已知抛物线24y x =的焦点为F ,直线l 过点F 与抛物线交于A 、B 两点,若3AF BF =,则AB =( )A .4B .92C .132D .163【答案】D【解析】设直线l 的方程为1x my =+,由3AF BF =,得出3AF FB =uu u r uu r,可得出123y y =-,并将直线l 的方程与抛物线的方程联立,列出韦达定理,结合关系式123y y =-求得213m =,再利用抛物线的定义可求出AB . 【详解】 如下图所示:抛物线24y x =的焦点为()1,0F ,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立241y xx my ⎧=⎨=+⎩,得2440y my --=.由韦达定理得124y y m +=,124y y =-,3AF BF =,3AF FB ∴=,即()()11221,31,x y x y --=-,123y y ∴-=,即123y y =-.则12224y y y m +=-=,得22y m =-,由221224312y y y m -==-=-,所以,213m =. 由抛物线的定义得()()()21212124162112444433AB x x my my m y y m =++=++++=++=+=+=. 故选:D. 【点睛】本题考查抛物线焦点弦的性质,将直线方程与抛物线联立,利用韦达定理法结合抛物线的定义求解是解题的关键,考查运算求解能力,属于中等题. 6.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则()()sin 22sin cos 2παπαπα⎛⎫+--+= ⎪⎝⎭( )A .75B .15C .15-D .3125【答案】A【解析】利用两角差的正切公式求出tan α的值,然后利用诱导公式、二倍角公式结合弦化切的思想可求出所求代数式的值. 【详解】tan tantan 114tan 41tan 31tan tan 4παπααπαα--⎛⎫-===- ⎪+⎝⎭+,解得1tan 2α=. 因此,()()sin 22sin cos cos 22sin cos 2παπαπαααα⎛⎫+--+=+ ⎪⎝⎭222222cos sin 2sin cos cos sin 2sin cos cos sin αααααααααα-+=-+=+222222222222211cos sin 2sin cos 121tan 2tan 722cos cos cos cos sin 1tan 511cos cos 2αααααααααααααα⎛⎫-+⨯-+ ⎪-+⎝⎭====+⎛⎫++ ⎪⎝⎭. 故选:A. 【点睛】本题考查两角差的正切公式、诱导公式、二倍角公式求值,解题的关键就是利用弦化切思想进行化简,同时也要注意弦化切所适用的基本类型,考查运算求解能力,属于中等题.7.设变量x 、y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,且z kx y =+的最大值为12,则实数k 的值为( ) A .2- B .3-C .2D .3【答案】C【解析】作出不等式组所表示的可行域,可知当直线z kx y =+经过可行域的顶点()4,4和点()0,12时,直线z kx y =+在y 轴上的截距最大,且为12,再将点()4,4代入直线z kx y =+的方程可求出实数k 的值. 【详解】作出不等式组20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩所表示的可行域如下图所示:联立240240x y x y -+=⎧⎨--=⎩,得44x y =⎧⎨=⎩,得点()4,4A .作直线z kx y =+,由图形可知,当直线z kx y =+过点()0,12P 和点()4,4A 时,直线z kx y =+在y 轴上的截距最大,此时z 取到最大值,即max 4412z k =+=,解得2k =.故选:C. 【点睛】本题考查含参的线性规划问题,解题的关键就是利用数形结合法找出线性目标函数取得最值时的位置,考查数形结合思想的应用,属于中等题.8.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )AB.7C.12D【答案】B【解析】利用两角差的正弦公式和边角互化思想可求得tan B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 322b A a B a B a B π⎛⎫=-=- ⎪⎝⎭,即1sin sin cos sin sin 22A B A B A B =-,即3sin sin cos A B A A =, sin 0A >,3sin B B ∴=,得tan 3B =,0B π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c bC B=,因此,1sin sin c B C b ===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.9.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C【解析】作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式2R =球的直径2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积. 【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD , 可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径5AC ,且2PB =.所以,三棱锥P ACD -外接球的直径为2R ==因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=. 故选:C. 【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.10.函数||13cos 6x y x e =-的大致图象是( ) A . B . C . D .【答案】A【解析】设()13cos 6xf x x e =-,利用定义分析函数()y f x =的奇偶性,然后利用导数判断出函数()y f x =在区间()0,∞+上的单调性,即可得出函数()y f x =的图象. 【详解】设()13cos 6xf x x e =-,该函数的定义域为R , ()()()113cos 3cos 66x xf x x e x e f x --=--=-=,则函数()y f x =为偶函数.当0x >时,()13cos 6xf x x e =-,当0πx <<时,()13sin 06xf x x e '=--<;当x π>时,()113sin 3066x f x x e e π'=--<-<.所以,函数()y f x =在区间()0,∞+上为减函数. 因此,选项A 中的图象为函数13cos 6xy x e =-的图象. 故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点与函数值符号来进行判断,考查推理能力,属于中等题.11.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,直线:l y =与C 交于A 、B 两点,AF 、BF 的中点分别为M 、N ,若以线段MN 为直径的圆经过原点,则双曲线的离心率为( )A .3B .1C 2D 1【答案】D【解析】作出图形,由题意得出2MON π∠=,再由中位线的性质可得出2AFB π∠=,设双曲线C 的左焦点为F ',可得出2F AF π'∠=,6AF F π'∠=,可得出AF '=,AF c =,再利用双曲线的定义即可求出其离心率.【详解】如下图所示,设双曲线C 的焦距为()20c c >,由于以线段MN 为直径的圆经过原点,则2MON π∠=,AF 、BF 的中点分别为M 、N ,且O 为AB 的中点,//OM BF ∴,//ON AF ,2AFB π∴∠=,O 为FF '的中点,所以,四边形AFBF '为矩形,2F AF π'∴∠=,由于直线l 3AOF π∠=,所以,6AF F π'∠=,2cos6AF c π'∴==,2sin6AF c c π==,由双曲线的定义得2AF AF a '-=2c a -=,因此,双曲线C 的离心率为1c e a ===. 故选:D. 【点睛】本题考查双曲线离心率的计算,考查了双曲线的定义,在涉及焦点三角形问题时,应充分分析三角形的形状,结合正弦、余弦定理以及锐角三角函数来计算,考查分析问题和解决问题的能力,属于中等题.12.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .83【答案】C【解析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29m =,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题.二、填空题13.已知{}n a 为等比数列,若33a =,512a =,则7a =__________. 【答案】48【解析】利用等比中项的性质得出2537a a a =,由此可得出7a 的值.【详解】由等比中项的性质可得2537a a a =,2257312483a a a ∴===. 故答案为:48. 【点睛】本题考查等比数列中项的计算,利用等比中项的性质进行计算是解题的关键,考查运算求解能力,属于基础题.14.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【答案】33,2⎡⎤-⎢⎥⎣⎦ 【解析】将点()0,1的坐标代入函数()y f x =的解析式,求出4πθ=,利用诱导公式和二倍角余弦公式得出()22sin 2sin 1f x x x =--+,换元[]sin 1,1t x =∈-,于是可将函数()y f x =的值域转化为二次函数213222y t ⎛⎫=-++ ⎪⎝⎭在[]1,1t ∈-上的值域,利用二次函数的基本性质即可求解. 【详解】由题意可得()02cos2cos02cos211f θθ=+=+=,得cos20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.【点睛】本题考查正弦型二次函数值域的求解,利用诱导公式、二倍角余弦公式化为有关正弦的二次函数的值域是解题的关键,考查化归与转化思想的应用,属于中等题.15.黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用,其定义为:()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x -+=,当[]0,1x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭_________. 【答案】15-【解析】先利用题中条件推导出函数()y f x =是以2为周期的周期函数,然后利用题中定义结合周期性和奇偶性可分别求出185f ⎛⎫⎪⎝⎭和()lg30f 的值,相加即可. 【详解】由于函数()y f x =是定义在R 上的奇函数,且()()20f x f x +-=,()()()22f x f x f x ∴=--=-,所以,函数()y f x =是以2为周期的周期函数,则181822214=555555f f f f R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()()()()()()lg30lg3lg10lg31lg311lg31lg30f f f f f R =+=+=-=--=--=, 因此,()181lg 3055f f ⎛⎫+=-⎪⎝⎭. 故答案为:15-. 【点睛】本题考查新定义函数值的计算,推导出函数的周期是解题的关键,考查推理能力与计算能力,属于中等题.16.如图,正方体1111ABCD A B C D -的棱长为a ,E 、F 分别是AB 、BC 的中点,过点1D 、E 、F 的截面将正方体分割成两部分,则较小部分几何体的体积为__________.【答案】32572a 【解析】先将截面1D EF 在正方体各个面上的交线画出来,并将位于截面下方的几何体的体积计算出来,即可得出答案. 【详解】 如下图所示,延长EF 分别交DA 、DC 的延长线于M 、N ,连接DM 交1AA 于点G ,连接1D N 交1CC 于点H ,再连接GE 、HF ,则该截面截正方形的截面为五边形1D GEFH .//BC AD Q ,则//AM BF ,则EMA EFB ∠=∠,EAM EBF ∠=∠,E 为AB 的中点,则AE BE =,EAM EBF ∴∆≅∆,2aAM BF ∴==,同理2a CN =, 11//AM A D ,11GAMGA D ∴∆∆,11112AG AM A G A D ∴==,1133a AG AA ∴==, 在Rt MDN ∆中,32DM DN a ==,则21928DMN S DM DN a ∆=⋅=, 123111933388D DMNDMN V S DD a a a -∆=⋅=⨯⨯=,2211112228AMNS AM AE a a ∆⎛⎫=⋅=⨯= ⎪⎝⎭,2311111338372G AME AME V S AG a a a -∆=⋅=⨯⨯=,所以,正方体位于截面1D GEFH 下方的几何体体积为133333125122872722D DMN G AME V V a a a a ---=-⨯=<.因此,较小部分几何体的体积为32572a . 故答案为:32572a . 【点睛】本题考查截面截几何体所得体积的计算,作出截面图形是解题的关键,考查推理能力与计算能力,属于中等题.三、解答题17.某学校为了解学生假期参与志愿服务活动的情况,随机调查了30名男生,30名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):(1)能否有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关?(2)以这60名学生参与志愿服务活动时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机抽查10名学生,试估计这10名学生中一周参与志愿服务活动时间超过1小时的人数. 附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(1)有,理由见解析;(2)6.【解析】(1)列出22⨯列联表,根据表格中的数据计算出2K 的观测值,并将2K 的值与3.841作大小比较,即可判断出题中结论的正误;(2)根据表格中的数据得出参与志愿服务活动时间超过1小时的频率,然后乘以10即可得出结果. 【详解】(1)22⨯列联表如下表所示:()222602216814403.8413624309K ⨯⨯-⨯==>⨯⨯, 因此,有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关;(2)由表格中的数据可知,该校参与志愿服务活动时间超过1小时的学生频率为360.660=, 因此,抽取的10名学生中一周参与志愿服务活动时间超过1小时的人数为100.66⨯=. 【点睛】本题考查独立性检验思想的应用,同时也考查了分层抽样中频数的计算,考查运算求解能力,属于基础题.18.已知数列{}n a 是等差数列,其前n 项和为n S ,且35a =,4237S a -=,数列{}n b 为等比数列,且12b a =,49b S =. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n a c b =,设数列{}n c 的前n 项和为n T ,求证:113n T ≤<. 【答案】(1)21n a n =-,3nn b =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,列出关于1a 和d 的方程组,求出这两个量,利用等差数列的通项公式求出n a ,根据题意求出1b 和q ,利用等比数列的通项公式可求出n b ;(2)求出n c ,然后利用错位相减法求出n T ,再利用数列{}n T 的单调性即可证明出113n T ≤<. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得()()3142112534637a a d S a a d a d =+=⎧⎨-=+-+=⎩,即112537a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()()1112121n a a n d n n ∴=+-=+-=-.123b a ==,34918998132b S a d q ⨯==+==,解得3q =, 因此,111333n n nn b b q --==⨯=.综上所述,21n a n =-,3nn b =;(2)213n n n n a n c b -==,23135213333n nn T -∴=++++,① 231113232133333n nn n n T +--=++++,② ①-②得,21231121121222211213313333333313n n n n n n n T -++⎛⎫- ⎪--⎝⎭=++++-=+--111111212221333333n n n n n -++-+⎛⎫=+--=- ⎪⎝⎭,1113n n n T +∴=-<, 又110n n n T T c ++-=>,则数列{}n T 是单调递增数列,则113n T T ≥=. 因此,113n T ≤<. 【点睛】本题考查等差数列和等比数列通项公式的计算,同时也考查了错位相减法求和,考查运算求解能力,属于中等题.19.如图,已知四边形ABCD 为梯形,//AB CD ,90CBA ∠=,四边形ACFE 为矩形,且平面ACFE ⊥平面ABCD ,又AB BC CF a ===,2CD a =.(1)求证:DE BF ⊥; (2)求点E 到平面BDF 的距离. 【答案】(1)证明见解析;(2)a .【解析】(1)取BF 的中点M ,连接DM 、EM ,利用三线合一得出BF DM ⊥,BF EM ⊥,利用直线与平面垂直的判定定理可证明出BF ⊥平面DEM ,即可得出DE BF ⊥;(2)过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,证明出EN ⊥平面BDF ,并计算出DEM ∆三边边长,然后利用等面积法求出EN ,即为点E 到平面BDF 的距离. 【详解】(1)如下图所示,取BF 的中点M ,连接DM 、EM ,四边形ACFE 为矩形,AC CF ∴⊥,平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,CF ⊂平面ACFE ,CF ∴⊥平面ABCD ,CD ⊂平面ABCD ,CF CD ∴⊥,DF ∴==,四边形ABCD 为梯形,//AB CD ,90CBA ∠=,90BCD ∴∠=,BD ∴==,M 为BF 的中点,DM BF ∴⊥,同理可得BE BF ==,EM BF ∴⊥,又DMEM M =,BF ∴⊥平面DEM .DE ⊂平面DEM ,DE BF ∴⊥;(2)如下图所示,过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,由(1)知,BF ⊥平面DEM ,EN ⊂平面DEM ,EN BF ∴⊥.EN DM ⊥,DM BF M =,EN ∴⊥平面BDF .由(1)知,CF ⊥平面ABCD ,BC ⊂平面ABCD ,CF BC ∴⊥,BF ∴=,DM a ==,EM ==, CF ⊥平面ABCD ,//AE CF ,AE ∴⊥平面ABCD ,AD ⊂Q 平面ABCD ,AE AD ∴⊥,由于四边形ABCD 为直角梯形,且90ABC ∠=,AD ∴==,DE ∴=,222DE EM DM ∴+=,则90DEM ∠=.由等面积法可得2DE EMEN a DM⋅===. 因此,点E 到平面BDF 的距离为a . 【点睛】本题考查异面直线垂直的证明,同时也考查了点到平面距离的计算,一般作出垂线或者利用等体积法进行计算,考查推理能力与计算能力,属于中等题.20.已知点52,3M ⎛⎫ ⎪⎝⎭在椭圆()2222:10x y E a b a b+=>>上,1A 、2A 分别为E 的左、右顶点,直线1A M 与2A M 的斜率之积为59-,F 为椭圆的右焦点,直线9:2l x =.(1)求椭圆E 的方程;(2)直线m 过点F 且与椭圆E 交于B 、C 两点,直线2BA 、2CA 分别与直线l 交于P 、Q 两点.试问:以PQ 为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.【答案】(1)22195x y +=;(2)过定点()2,0和()7,0,理由见解析. 【解析】(1)利用直线1A M 与2A M 的斜率之积为59-,得出3a =,再由点M 在椭圆上,可求出b 的值,即可得出椭圆E 的标准方程;(2)由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫⎪⎝⎭,求出p 、q ,将直线BC 的方程与椭圆E 的方程联立,列出韦达定理,求出pq 的值,由0PK QK ⋅=,结合韦达定理求出k 的值,即可得出定点K 的坐标.【详解】(1)点M 在椭圆E 上,则2225431a b⎛⎫⎪⎝⎭+=,①, 易知点()1,0A a -、()2,0A a ,直线1A M 的斜率为1532k a =+,直线2A M 的斜率为1532k a =-,由题意可得122255949k k a ==--,解得3a =,代入①式得b = 因此,椭圆E 的方程为22195x y +=;(2)易知,直线m 不能与x 轴重合.由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫ ⎪⎝⎭, 如下图所示:易知点()23,0A ,22//A B A P ,即()1131,//,2ty y p ⎛⎫-⎪⎝⎭,()11312y p ty ∴=-, 得()11321y p ty =-,同理可得()22321y q ty =-. 将直线m 的方程与椭圆E 的方程联立222195x ty x y =+⎧⎪⎨+=⎪⎩,消去x 得,()225920250t y ty ++-=,()()2224001005990010t t t ∆=++=+>. 由韦达定理得1222059t y y t +=-+,1222559y y t =-+, ()()()21212222121212222599925594114412520415959y y y y t pq ty ty t y y t y y t t t t ⎛⎫⨯- ⎪+⎝⎭∴====---⎡⎤⎛⎫-++⎣⎦⨯-++ ⎪++⎝⎭,9,2PK k p ⎛⎫=-- ⎪⎝⎭,9,2QK k q ⎛⎫=-- ⎪⎝⎭,2299250224PK QK k pq k ⎛⎫⎛⎫∴⋅=-+=--= ⎪ ⎪⎝⎭⎝⎭,解得2k =或7.因此,以PQ 为直径的圆过定点()2,0和()7,0.【点睛】本题考查椭圆方程的求解,同时也考查了圆过定点的问题,一般将直线方程与椭圆方程联立,利用韦达定理设而不求法求解,考查计算能力,属于中等题. 21..已知函数()ln f x x ax =-,a R ∈.(1)当1a =-时,求曲线()y f x =在点()()1,1M f 处的切线方程; (2)当1a >时,求证:函数()()g x f x a =+恰有两个零点. 【答案】(1)210x y --=;(2)证明见解析.【解析】(1)将1a =-代入函数()y f x =的解析式得()ln f x x x =+,求出()1f 和()1f '的值,然后利用点斜式可得出所求切线的方程;(2)可得出()10g =,利用导数分析函数()y g x =在区间()0,∞+上的单调性,利用零点存在定理证明出函数()y g x =在区间10,a ⎛⎫⎪⎝⎭上有且只有一个零点,从而可证明出结论成立. 【详解】(1)当1a =-时,()ln f x x x =+,则()11f =,()11f x x'=+,()12f '∴=. 因此,曲线()y f x =在点()()1,1M f 处的切线方程为()121y x -=-,即210x y --=;(2)()()ln g x f x a x ax a =+=-+Q ,则()10g =.1a >Q ,则()11ax g x a -'=-=,令()0g x '=,得()10,1x =∈,列表如下:所以,函数()y g x =在1x a=处取得极大值,亦即最大值,即()max 11ln g x g a a a ⎛⎫==-- ⎪⎝⎭.令()1ln h a a a =--,1a >,则()1110a h a a a-'=-=>, 所以,函数()y h a =在()1,a ∈+∞上单调递增,则()()10h a h >=,()ln 0a a a a g e e ae a ae ----=-+=-<,且11a a e e a-=<, 所以,函数()y g x =在区间1,ae a -⎛⎫⎪⎝⎭上有一个零点, ()11,,a ⎛⎫+∞⊆+∞⎪⎝⎭,所以,函数()y g x =在区间()1,+∞上单调递减, 当1x >时,则()()10g x g <=,所以,函数()y g x =在区间()1,+∞上没有零点. 综上所述,函数()()g x f x a =+恰有两个零点. 【点睛】本题考查利用导数求函数的切线方程,同时也考查了利用导数研究函数的零点个数问题,一般结合导数研究函数的单调性,结合极值与最值的符号来进行分析,考查化归与转化思想的应用,属于中等题.22.以平面直角坐标系中的坐标原点为极点,x 轴的正半抽为极轴,建立极坐标系,曲线C 的极坐标方程是6sin 4cos ρθθ=+,直线l 的参数方程是4cos 3sin x t y t αα=+⎧⎨=+⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于M 、N两点,且MN =l 的倾斜角α. 【答案】(1)()()222313x y -+-=;(2)6π或56π. 【解析】(1)在曲线C 的极坐标的两边同时乘以ρ,再由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩,可将曲线C的极坐标方程化为直角坐标方程;(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,并列出韦达定理,借助弦长公式即可计算出α的值. 【详解】(1)在曲线C 的极坐标的两边同时乘以ρ,得26sin 4cos ρρθρθ=+,所以,曲线C 的直角坐标方程为2246x y x y +=+,即()()222313x y -+-=; (2)设点M 、N 在直线l 上对应的参数分别为1t 、2t ,将直线l 的参数方程代入曲线C 的直角坐标方程,得()2222cos sin 13t t αα++=, 即24cos 90t t α+-=,216cos 360α∆=+>, 由韦达定理得124cos t t α+=-,129t t =-,12MN t t ∴=-===cos 2α=±, 0απ<<,因此,6πα=或56π. 【点睛】本题考查极坐标方程与普通方程之间的转化,同时也考查了利用直线与圆所得弦长求直线的倾斜角,考查了韦达定理的应用,考查运算求解能力,属于中等题.23.己知函数()3132f x x x =+-+的最大值为m ,a 、b 、c 均为正实数,且a b c m ++=.(1)求证:1119a b c++≥;(2+≤.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用绝对值三角不等式可求出函数()y f x =的最大值为1,可得出1a b c ++=,然后将代数式a b c ++与111a b c++相乘,利用柯西不等式可证明出1119a b c++≥;(2)利用柯西不等式得()()2111a b c ++++≥,化简后可证明出≤【详解】(1)由绝对值三角不等式得()()32311m x x =+-+=,1a b c ∴++=, 由柯西不等式得()21111119a b ca b c a b c ⎛⎫++=++++≥= ⎪⎝⎭,当且仅当13a b c ===时,等号成立,因此,1119a b c++≥;(2)由柯西不等式得()()2111a b c ++++≥,即23≤,13a b c ===时,等号成立.≤. 【点睛】本题考查利用柯西不等式证明不等式,同时也考查了利用绝对值三角不等式求绝对值函数的最值,在利用柯西不等式证明不等式时,需要对代数式进行合理配凑,考查计算能力,属于中等题.。

清华大学中学生标准学术能力诊断性测试2024届生物高一上期末考试试题含解析

清华大学中学生标准学术能力诊断性测试2024届生物高一上期末考试试题含解析

清华大学中学生标准学术能力诊断性测试2024届生物高一上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共7小题,每小题6分,共42分。

)1.如图所示,原来置于黑暗环境中的绿色植物移至光下后,CO2的吸收量发生了改变。

下列叙述中,正确的是A.曲线AB段表示绿色植物没有进行光合作用B.曲线BC段表示绿色植物只进行光合作用C.在B点显示绿色植物光合作用和呼吸作用速率相等D.整段曲线表明,随光照强度递增,光合作用增强,呼吸作用减弱2.近年,埃博拉病毒肆虐非洲西部。

感染该病毒的重度患者状如“活死人”,下列有关埃博拉病毒的叙述中错误的是A.培养埃博拉病毒的培养基中应该含有氨基酸、葡萄糖等有机物B.埃博拉病毒不属于生命系统,但其增殖离不开活细胞C.埃博拉病毒只有一种类型的核酸D.埃博拉病毒的组成元素中一定含有C、H、0、N、P3.当生物体新陈代谢旺盛和生长迅速时,通常自由水与结合水的比值A.会增大B.会减小C.无变化D.波动大4.小肠绒毛上皮细胞能够从肠道吸收葡萄糖,却很难吸收相对分子质量比葡萄糖小的木糖。

这个事实说明细胞膜具有()A.流动性B.选择透过性C.磷脂分子D.糖类分子5.下列与有丝分裂相关叙述错误的是A.随着着丝点的分裂,染色体数目加倍B.有丝分裂是真核生物体细胞的主要增殖方式C.与动物细胞有丝分裂方式不同,植物细胞有丝分裂末期可形成赤道板D.减数分裂是一种特殊的有丝分裂6.将鼠的肝细胞磨碎,进行差速离心(即将细胞匀浆放在离心管中,先进行低速离心,使较大颗粒形成沉淀;再用高速离心沉淀上清液中的小颗粒物质,从而将细胞不同的结构逐级分开),结果如下图所示。

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中学业水平测试模拟试题含解析

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中学业水平测试模拟试题含解析

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、关于磁场和磁感线的描述,正确的说法有()A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,都不是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极出发,到南极终止D.磁感线就是细铁屑在磁铁周围排列出的曲线,没有细铁屑的地方就没有磁感线2、如图一根不可伸长的绝缘细线一端固定于O点,另一端系一带电小球,置于水平向右的匀强电场中,现把细线水平拉直,小球从A点静止释放,经最低点B后,小球摆到C点时速度为0,则A.小球在B点时的速度最大B.从A到C的过程中小球的电势能一直增大C.小球从A到C的过程中,机械能先减少后增大D.小球在B点时的绳子拉力最大3、两个小灯泡,分别标有“1 A 4 W”和“2 A 1 W”的字样,则它们均正常发光时的电阻阻值之比为( )A.2∶1 B.16∶1 C.4∶1 D.1∶164、某物体做直线运动的v-t图像如图所示,下列说法正确的是A.0 ~ 2s内物体做匀速直线运动B.0 ~ 2s内物体做匀减速直线运动C.0 ~ 2s内物体的位移为2mD.0 ~ 2s内物体的位移为零5、一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,则小球将(假定电场足够大)()A.做自由落体运动B.做曲线运动C.做变加速直线运动D.做匀加速直线运动6、关于物理学家和他们的贡献,下列说法中正确的是()A.法拉第发现了电磁感应现象,并制作了世界上第一台发电机B.奥斯特发现了电流的磁效应,并提出了分子电流假说C.牛顿发现万有引力定律,并通过实验测出了引力常量D.库仑提出了库仑定律,并最早用实验测得元电荷e的数值二、多项选择题:本题共4小题,每小题5分,共20分。

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中教学质量检测模拟试题含解析

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中教学质量检测模拟试题含解析

2024届清华大学中学生标准学术能力诊断性测试物理高二第一学期期中教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、在光滑的水平桌面上,质量为m的物块A以速度v向右运动,与静止在桌面上的质量为3m的物块B发生正碰,以向右为正方向,碰撞后,物块A的速度不可能为( )A.0 B.-15v C.25v D.110v2、如图所示,AB、CD为两平行金属板,A、B两板间电势差为U.C、D始终和电源相接(图中并未画出),且板间的场强为E.一质量为m、电荷量为q的带电粒子(重力不计)由静止开始,经AB加速进入CD之间并发生偏转,最后打在荧光屏上,CD极板长均为x,与荧光屏距离为L,则:A.该粒子带负电B.该粒子在电场中的偏移量为C.该粒子打在屏上O点下方和O相距的位置D.该粒子打在屏上的动能为qU3、把竖直向下的90N的力分解为两个分力,一个分力在水平方向上等于120N,则另一个分力的大小为( )A.30N B.90N C.120N D.150N4、一段粗细均匀的柱形电阻丝,电阻为2Ω,当把它均匀拉长,使其横截面的直径变为原来的12,则此电阻丝的阻值为A.4ΩB.8ΩC.16ΩD.32Ω5、某静电场方向平行于x轴,其电势φ随x的变化规律如图所示.设x轴正方向为电场强度E的正方向,下图分别表示x轴上各点的电场强度E随x的变化图象,其中可能正确的是A.B.C.D.6、物理学引入“质点”、“点电荷”等概念,从科学研究方法上来说是属于A.控制变量的方法B.实验观察的方法C.建立理想化的物理模型的方法D.等效替代的方法二、多项选择题:本题共4小题,每小题5分,共20分。

北京市清华大学2024年高三英语11月中学生标准学术能力诊断性测试试题含解析

北京市清华大学2024年高三英语11月中学生标准学术能力诊断性测试试题含解析
1.What can you do when you are in the unknown Cilento?
A.Swim in a pool.B.Have a spa.
C.Explore medieval towns.D.Walk through olive groves.
2.Which destination is your best choice if you intend to travel to Europe after October?
【答案】1. C 2. A 3. D
【解析】
这是一篇应用文。文章主要介绍了秋天的四个欧洲之旅。
【1题详解】
细微环节理解题。依据The unknown Cilento部分“leaving modernity behind and venturing inland to medieval (中世纪的) hilltop towns.”可知,把现代化抛在脑后,去内陆的中世纪山顶城镇冒险。由此可知,在unknown Cilento可以探究中世纪的城镇。故选C。
Carpathian clambers
Poland and Slovakia are separated by the Carpathian Mountains and their large forest-filled valleys.Starting and ending in Krakow, this trip covers both countries.Some days include the option of climbing to snowy peaks or taking easier, lower-altitude options, and you’ll likely meet the Gorals — a culturally-distinct group known as “highlanders”.Most memorable activity will be walking along the300m-high Dunajec River to spa town Szczawnica.Seven nights £630, including transport, luggage transfers and walking st departure October 24.

清华大学标准学术能力测试题

清华大学标准学术能力测试题

2017清华大学标准学术能力测试题1、a i a 2 L a ?是数字1到9的一个排列,则 a i a 2a 3 a 4a §a 6 a 7a 8a 9的最小值为( A . 213 B . 214 C . 215D . 216【答案】BM 33 a 1?a 2L a 9 33 9! 3 70a 1 2a 1X L 2016a 2°16X 20151008( x 2 x 1)令 x 1,得 a 1 2耳 L 2016a 2016 1008因此所求值为1009。

72 2142145 26 4 3 72 70M 70 7272 由题可知9 8 1 79! 6! 7 8 9720 7 8 94900 70703分析:a 1,a 2 L a 99!三元均值1离散的数 0靠近之值【解析】设a 1a 2a 3 a 4a 5a 6a ?a 8a 9二M 则由三元均值另一方面由均值M 339! 33 72 70 72 33 713 213由此,M 的最小值为214.2、设 x 2 1008a 。

2a 2X2016a 2016X,则a 。

2a 1 3a 2 L 2017a 2016的值是( A . 1008 【答案】 1009C . 2016 2017分析:1看系数【解析】 解法1: 两边同乘 X ,有x x 210081a °x a 1x 2 2017a 2016x两边求导,得1008x x 21007x 12xa °2a 1x L2017a 2016X 2016令x 1,得a 02耳 L2017 a 20161009解法2:令x 1,可得a 0 a 1 L a 2016 1对题中等式,两边求导,得3、集合S 1 2L 25 , A S ,且A 的所有子集中元素之和不同,则下列选项正确的有16Amax B . A max 7C . a i 51 3 a2 a3 a4 a 5,则i 1 a i2D .若Aa a ?a 4 a 5,则 丄 2i 1 a.4、过椭圆 2—1的右焦点F2作一条直线交椭圆于3A ,B ,则 F 1AB 的内切圆面积可能是(A . 1 【答案】分析:△ F i AB 周长C 为定值4a 8 , S A ABF 18焦点弦长公式。

2025届清华大学中学生标准学术能力诊断性测试生物高三上期末考试模拟试题含解析

2025届清华大学中学生标准学术能力诊断性测试生物高三上期末考试模拟试题含解析

2025届清华大学中学生标准学术能力诊断性测试生物高三上期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:(共6小题,每小题6分,共36分。

每小题只有一个选项符合题目要求)1.下列有关生物学研究和实验方法的叙述,不正确的是A.采用标志重捕法调查种群密度时,若部分标志物脱落,则实验所得到数值与实际数值相比偏大B.在探究淀粉酶的最适温度时,为了减小误差需要设置预实验C.用纸层析法分离色素,滤纸条上的色素带颜色自下而上依次呈黄绿色、蓝绿色、黄色、橙黄色D.“建立血糖调节的模型”采用的实验方法是模型方法,模拟活动本身就是构建动态的物理模型2.某生态系统中,除分解者外,仅有甲、乙、丙、丁、戊5个种群。

调查得知,该生态系统有4个营养级,相邻营养级之间的能量传递效率为3%~24%,且每个种群只处于一个营养级。

一年内输入各种群的能量数值如表所示,表中能量数值的单位相同。

下列叙述正确的是()种群甲乙丙丁戊能量1.56 2.84 3.3 4.48 5.54A.表中所示的能量总和是流经该生态系统的总能量B.若土壤中含有一定浓度的重金属铬,则甲生物比乙生物体内污染物浓度铬含量低C.该生态系统中第二营养级与第三营养级之间的能量传递效率约为6.4%D.该生态系统内实现了物质循环,碳元素在各种群间循环的主要存在形式是CO23.下图为某种细菌中脲酶基因转录的mRNA部分序列。

现有一细菌的脲酶由于基因突变而失活,突变后基因转录的mRNA在图中箭头所示位置增加了70个核苷酸,使图示序列中出现终止密码(终止密码有UAG、UGA和UAA)。

下列有关说法错误的是()A.突变基因转录的mRNA中,终止密码为UGAB.突变基因表达的蛋白含115个氨基酸C.其线粒体的环状DNA分子中每个脱氧核糖都与两个磷酸相连D.突变基因所在DNA复制时所需的酶有解旋酶、DNA聚合酶等4.下图表示某森林生态系统一年内CO2消耗量与释放量的情况,其中甲表示该生态系统消费者呼吸作用CO2释放量,乙表示分解者呼吸作用CO2释放量,丙表示生产者呼吸作用CO2释放量,丁表示生产者光合作用及化能合成作用CO2消耗量,下列叙述不正确的是A.碳循环在甲、乙、丙构成的生物群落内部是以含碳有机物的形式双向传递B.流经该生态系统的总能量可用丁来表示C.人工生态系统中CO2的消耗量与释放量关系往往不符合上图D.根据图示关系可推测该森林生态系统的抵抗力稳定性正在上升5.下列关于细胞结构与组成成分的叙述,错误的是()A.细胞膜、内质网膜和核膜含有的磷脂分子结构相同,但蛋白质不同B.盐酸能使染色质中的DNA与蛋白质分离,有利于DNA与健那绿结合C.细胞核、线粒体和叶绿体中都含有DNA、RNA和蛋白质D.内质网和高尔基体既参与物质加工,又参与物质运输6.现用高杆抗病(AABB)品系和矮秆不抗病(aabb)品系培育矮杆抗病(aaBB)品系,对其过程分析错误的是A.F1中虽未表现出矮杆抗病的性状组合,但已经集中了相关基因B.F2中出现重组性状的原因是F1产生配子时发生了基因重组C.选种一般从F2开始,因为F2出现了性状分离D.通常利用F2的花粉进行单倍体育种,可以明显缩短育种年限二、综合题:本大题共4小题7.(9分)下图表示某种绿色植物叶肉细胞中部分新陈代谢过程,X1、X2表示某种特殊分子,数字序号表示过程,请据图回答:(1)①过程中,ATP转化成ADP时,产生的磷酸基团被______________接受,同时在物质X2H的作用下使之成为卡尔文循环形成的第一个糖,此后的许多反应都是为了_____________。

2023-2024学年清华大学中学生标准学术能力诊断性测试化学高一上期末监测试题含解析

2023-2024学年清华大学中学生标准学术能力诊断性测试化学高一上期末监测试题含解析

2023-2024学年清华大学中学生标准学术能力诊断性测试化学高一上期末监测试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题只有一个选项符合题意)1、如图为刻蚀在玻璃上的精美的花纹图案,则该刻蚀过程中发生的主要化学反应为( )A . 3222CaCO 2HCl CaCl H O CO +++↑B . 322NaHCO HClNaCl H O CO +++↑ C . 42Si 4HF SiF 2H +↑+↑ D . 242SiO 4HF SiF 2H O +↑+2、将一定量的钠和铝的混合粉末投入水中,粉末完全溶解后,得到30mLOH -浓度为1 mol∙L −1的溶液。

然后再向其中加入1 mol∙L −1的盐酸,到沉淀量最大时消耗盐酸80mL ,则混合粉末中钠的物质的量是( )A .0.08molB .0.05molC .0.03molD .0.04mol3、将12.4克氧化钠溶于87.6克水中,所得溶液溶质的质量分数是( )A .8.0%B .12.4%C .16%D .32%4、 “3G”手机出现后,以光导纤维为基础的高速信息通道尤显重要。

下列物质中用于制造光导纤维的材料是 A .铜合金 B .陶瓷 C .聚乙烯 D .二氧化硅5、各物质中含有的少量杂质以及除去这些杂质对应的方法如表所示。

序号物质 杂质 除杂方法 ①KNO 3 溶液 KOH 加入适量 FeCl 3 溶液,并过滤 ② FeSO 4 溶液 CuSO 4加入过量铁粉,并过滤③ H 2 CO 2通过盛有NaOH 溶液的洗气瓶,再通过盛有浓硫酸的洗气瓶④ NaNO 3 CaCO 3 溶解、过滤、蒸发、冷却、结晶 其中正确的一组是A.①②③④B.③④C.②③④D.①②③6、下列各组物质中分子数相同的是()A.2 L CO和2 L CO2B.9 g H2O和标准状况下11.2 L CO2C.标准状况下1 mol O2和22.4 L H2O D.0.2 mol NH3和4.48 L HCl气体7、实验室配制一定物质的量浓度的溶液,一定要用到的一组仪器是()A.托盘天平、药匙、烧杯、容量瓶B.量筒(或滴定管、移液管)、容量瓶C.容量瓶、烧杯、玻璃棒、胶头滴管D.容量瓶、烧杯、玻璃棒、分液漏斗8、下列萃取分液操作(用CCl4作萃取剂,从碘水中萃取碘)中错误的是()A.饱和碘水和CCl4加入分液漏斗中后,塞上上口部的塞子,用一手压住分液漏斗上口部,一手握住活塞部分,把分液漏斗倒转过来振荡B.静置,待分液漏斗中液体分层后,先使分液漏斗内外空气相通(准备放出液体)C.打开分液漏斗的活塞,使全部下层液体沿承接液体的烧杯内壁慢慢流出D.最后继续打开活塞,另用容器承接并保存上层液体9、碘在地壳中主要以NaIO3形式存在,在海水中主要以I-形式存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017清华大学标准学术能力测试题1、129a a a ,,,L 是数字1到9的一个排列,则123456789a a a a a a a a a ++的最小值为( ) A .213 B .214 C .215 D .216【答案】B分析:129,9!a a a =L 三元均值10⎧⎨⎩离散的数靠近之值【解析】设123456789=a a a a a a a a a M ++则由三元均值370M ≥=≈⨯39!6!78972078949007070=⨯⨯⨯=⨯⨯⨯≈⨯≈由题可知981752643727072214⋅⋅+⋅⋅+⋅⋅=++=另一方面由均值213M >=>=由此,M 的最小值为214.2、设()100822201601220161x x a a x a x a x -+=++++L ,则0122016232017a a a a ++++L 的值是( )A .1008B .1009C .2016D .2017 【答案】B 分析:12⎧⎨⎩看系数赋值【解析】解法1:两边同乘x ,有()10082220170120161x x x a x a x a x -+=+++L两边求导,得()()100722016012016100812122017x x x x aa x a x -+-=+++L 令1x =,得012016220171009a a a +++=L 解法2:令1x =,可得0120161a a a +++=L对题中等式,两边求导,得20152112016220161008(1)a a x a xx x +++=-+L 令1x =,得112016220161008a a a +++=L 因此所求值为1009。

3、集合{}1225S =,,,L ,A S ⊆,且A 的所有子集中元素之和不同,则下列选项正确的有( ) A .max 6A =B .max 7A =C .若{}12345A a a a a a =,,,,,则51132i i a =<∑ D .若{}12345A a a a a a =,,,,,则5112i ia =<∑4、过椭圆22143x y +=的右焦点2F 作一条直线交椭圆于A ,B ,则1F AB ∆的内切圆面积可能是( )A .1B .2C .3D .4【答案】A分析:1F AB △周长C 为定值48a =,1182ABF S C =⋅⋅△焦点弦长公式。

焦半径,在12AF F △中21AF F θ=∠121222F F cAF AF c =⎧⎨+=⎩设2AF x =,则由余弦定理()()2222222cos a x x c x c θ-=+-g g g所以2cos b x a c θ=-由焦点弦2222||sin ab AB b c θ=+⋅。

【解析】设直线AB 的倾斜角为θ,则222222||sin 3sin ab l AB l C θθ==++ 因此1121sin 2ABF S AB F F θ=⋅⋅△ 因此,设内切圆半径为r ,则1122sin 8ABF S AB F F Cθ⋅⋅==△Γ因此,内切圆面积为22122sin 3sin 83sin AB F F S θθππθ⋅⋅⎛⎫⎛⎫=⋅= ⎪ ⎪+⎝⎭⎝⎭求得S 的范围为50,16π⎡⎤⎢⎥⎣⎦5、{}n a ,{}n b 均为等差数列,已知11135a b =,22304a b =,33529a b =,则下列是{}n n a b 中的项的有( )A .810B .1147C .1540D .3672 【答案】A,B,C,D【解析】由题可得:()()222n n a b a n b n c =-+-+将112233135,304,529a b a b a b ===带入得135304529a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得28197304a b c =⎧⎪=⎨⎪=⎩;则22228197304n n a b n n ++=++、6、已知函数ty x x=+,过()10P ,作切线交函数图象于点M 和点N ,记()MN g t =,则下列说法中正确的有( )A .14t =时,PM PN ⊥ B .()g t 在定义域内单调递增 C .12t =时,M ,N 和()01,共线 D .()16g =【答案】C分析:共求切点弦。

引理:切点弦定理()22,G x y Ax Bxy Cy Px Ey F =+++++,过曲线(),0G x y =外一点()00,P x y 引曲线的切线,切点为12P P ,则弦12P P 就为点P 。

关于曲线(),0G x y =的切点弦,则对应的直线为(),0G x y =。

其中()000000,222x y xy x x y yG x y Ax x BCy y PE F ++=+++++ 【解析】题中曲线即2:0H x xy t -+=,由引理知10:102y xMN x t •+••-+=,即:220MN x y t -+=已知MN 与H ,得220x xt t +-=,得()||g t MN ==()g t =当14t =时,12554PM PN x x •=+u u u u r u u u r7、已知数列{}n x ,其中1x a =,2x b =,11n n n x x x +-=+(a ,b 是正整数),若2008为数列中的某一项,则a b +可能的取值有( ) A .8 B .9 C .10 D .118、投掷一枚均匀的骰子六次,存在k 使得1到k 次的点数之和为6的概率是p ,则p 的取值范围是( )A .00.25p <<B .0.250.5p <<C .0.50.75p <<D .0.751p <<9、在ABC ∆中,2AB =,3AC =,4BC =,O 为三角形的内心,若AO AB BC λμ=+u u u r u u u r u u u r,则36λμ+的值为( )A .1B .2C .3D .410、甲、乙、丙、丁四人做相互传球的游戏,第一次甲传给其他三人中的一人,第二次由拿到球的人再传给其他三人中的一人,这样的传球共进行了4次,则第四次球传回甲的概率是( ) A .727 B .527 C .78D .216411、已知椭圆()222210x y a b a b +=>>的离心率e 的取值范围为,直线1y z =-+交椭圆于M 和N ,且OM ON ⊥,则椭圆长轴的取值范围是( )A .B .C .D .12、在直角ABC ∆中,以直角边AB ,斜边BC 为其中一边分别向三角形所在一侧作正方形ABDE 和BCFG ,则向量GA u u u r 和DC u u u r的夹角为( )A .45︒B .60︒C .90︒D .120︒13、正方体1111ABCD A B C D -的棱长为1,底面中心为O ,11A D ,1CC 的中点分别为M ,N ,则三棱锥1O MB N -的体积为( )A .724B .748C .524D .54814、已知a ,b ,c 为正实数,则代数式938432a b cb c c a a b+++++的最小值为( ) A .4748B .1C .3536D .34【答案】A 分析:333a b c b cb c a a a+→=++ 【解析】设代数式为m ,令3,84,32b c x c c y a b z +=+=+=则111386331216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩。

于是61934748921642648y x y z x z m x y z y z x ⎛⎫⎛⎫⎛⎫=-++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭等号当且反当1:2:3x y z =⋅=即::10:21:1a b c =时取15、在ABC ∆中,60A ∠=︒,45B ∠=︒,A ∠的角平分线长度为2,CH AB ⊥于H ,则下列正确的是( ) A.CH = B.1AB = C.BC = D .3ABC S ∆=16、已知实数02x π⎛⎫∈,⎪⎝⎭,则下列方程有解的是( ) A .()()cos cos sin sin x x = B .()()sin cos cos sin x x = C .()()tan tan sin sin x x = D .()()tan sin sin tan x x =【答案】C分析:A,B 化同名(诱导公式)【解析】对于A cos(cos )sin(cos )sin(sin )2x x x π=->对于B sin(cos )cos(cos )cos(sin )2x x x π=-<对于C 令1arctan x π=,则11tan(tan )sin(sin )0x x -< 令24arctan3x π=则22tan(tan )sin(sin )10x x ->> 对于D ()()tan(sin )sin(tan )f x x g x x ==↗ 作差,()()()()()tan sin sin tan h x f x g x x x =-=-则()()()()322222cos tan cos cos cos(tan )cos (sin )cos sin cos cos sin cos x xx x x h x x x x x-'=-= 情况一:当0,arctan2x π⎛⎫∈ ⎪⎝⎭时,有sin ,tan 0,2x x π⎛⎫∈ ⎪⎝⎭,由均值及钦森cos(tan )2cos(sin )tan 2sin cos33x x x x++≤≤ 设函数()tan 2sin 3P x x x x =+-,求导()212cos 3cos P x x x'+- 因此()()()0x x >=φφ,即tan 2sin 3x xx +<带入()00h =,即题成立 情况二,成立17、已知01x <<,则下列正确的是( )A .222sin sin sin x x x x x x ⎛⎫<< ⎪⎝⎭ B .222sin sin sin x x x x x x ⎛⎫<< ⎪⎝⎭ C .222sin sin sin x xx x x x ⎛⎫<< ⎪⎝⎭ D .222sin sin sin x x x x x x ⎛⎫<< ⎪⎝⎭18、已知1sin 2x i α=+,21cos x i α=+,则2121213z ix z iz -+-的最小值是( )A .12B .2C .43D .3219、在空间中过点A 作平面π的垂线,垂足为B ,记()x B f A =,设α,β是两个不同的平面,对空间中的任意一点P ,()1Q f f P βα=⎡⎤⎣⎦,()2Q f f P αβ⎡⎤=⎣⎦,且有12PQ PQ =,则( )A .αβ⊥B .αβ∥C .α与β的(锐)二面角为45︒D .α与β的(锐)二面角为60︒20、某校共2017名学生,其中每名学生至少要选A ,B 中的一门课,也有些学生选了两门课,已知选修A 的人数占全校人数介于70%到75%之间,选B 的人数占40%到45%之间,则下列正确的是( )A .同时选A ,B 的可能有200人 B .同时选A ,B 的可能有300人C .同时选A ,B 的可能有400人D .同时选A ,B 的可能有500人21、已知D ,E 是Rt ABC ∆斜边BC 上的三等分点,设AD a =,AE b =,则实数对()a b ,可以是( ) A .()11, B .()12, C .()23, D .()34,22、已知函数()22f x x x =+,若存在实数t ,当[)1x m ∈,时,有()3f x t x +≤恒成立,则实数m 可以等于( ) A .3 B .6 C .9 D .1223、设R x y ,∈,函数()22214672f x y x y xy x y ,=+6---+的值域为M ,则( )A .1M ∈B .2M ∈C .3M ∈D .4M ∈【答案】C,D 分析:拉格朗日【解析】()()22,276672f x y x y x y y ⎡⎤=-+•+-+⎣⎦()()222776672x y y y y =---++-+ ()()2275233x y y =--+-+≥24、若N 的三个子集A ,B ,C 满足1A B B C C A ===I I I ,且A B C =∅I I ,则称()A B C ,,为N 的“有序子集列”,现有{}123456N =,,,,,,则N 有( )个有序子集列.A .540B .1280C .3240D .7680。

相关文档
最新文档