投影与视图(中考专题复习总结)
中考总复习:投影与视图--知识讲解
中考总复习:投影与视图—知识讲解【考纲要求】1.通过实例了解平行投影和中心投影的含义及简单应用;2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),能根据三视图描述基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常见的几何体的分类在丰富多彩的图形世界中,我们常见的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面相交成线,线线相交成点.要点诠释:体体相交可成点,不一定成线.3.基本几何体的展开图(1)正方体的展开图是六个正方形;(2)棱柱的展开图是两个多边形和一个长方形;(3)圆锥的展开图是一个圆和一个扇形;(4)圆柱的展开图是两个圆和一个长方形.考点二、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.【典型例题】类型一、三视图及展开图1.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22 B.19 C.16 D.13【思路点拨】视图、俯视图是分别从物体正面、上面看,所得到的图形.【答案】D;【解析】综合主视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:7+3+2+1=13个.故答案为:13.【总结升华】由三视图判断组成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.举一反三:【变式1】(2014秋•莲湖区校级期末)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个.【答案】7.【解析】∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有2个正方形,∴几何体第二层最少有2个正方体,∴最少有几何体5+2=7.【高清课堂:《空间与图形》专题:投影与视图例6】【变式2】下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A.5 B.6 C.7 D.8【答案】B.2.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.【思路点拨】动手操作看得到小正方体的阴影部分的具体部位即可.【答案】B左面看正面看上面看【解析】动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选B.【总结升华】用到的知识与正方体展开图有关,考察学生空间想象能力.建议学生在平时的教学过程中应结合实际模型将展开图的若干种情况分析清楚.举一反三:【变式】如图所示的是以一个由一些相同的小正方体组成的简单几何体的主视图和俯视图.设组成这个几何体的小正方体的个数为n,请写出n的所有可能的值.【答案】n为8,9,10,11.3.下列图形中经过折叠能围成一个棱柱的是()A. B. C. D.【思路点拨】利用四棱柱及其表面展开图的特点解题.【答案】D;【解析】A、侧面少一个长方形,故不能;B、侧面多一个长方形,折叠后不能围成棱柱,故不能;C、折叠后少一个底面,不能围成棱柱;只有D能围成四棱柱.故选D.【总结升华】四棱柱的侧面展开图为四个长方形组成的大长方形.举一反三:【高清课堂:《空间与图形》专题:投影与视图课堂练习3】【变式】如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是()A. B. C. D.【答案】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段.故选B.类型二、投影有关问题4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB的长.【思路点拨】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.【答案与解析】【解析1】解:如图1,过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.可得矩形BDFG.由题意得:.∴DF=DE×1.6÷2=14.4(m).∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1 图2【解析2】如图2,作DG∥AE,交AB于点G,BG的影长为BD,AG 的影长为DE,由题意得:AG 1.6=DE2.∴AG=18×1.6÷2=14.4(m).又∵BG 1.6=BD1.∴BG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).类型三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图考查几何体的形状,从俯视图看出几何体的小立方块最多的数目.【答案】17.【解析】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第二列各3块,第三列1块,从空中俯视的块数只要最低层有一块即可.因此,综合两图可知这个几何体的形状不能确定;如图,最多时有3×5+2×1=17块小立方体.故答案为17.【总结升华】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,但很容易出错.6.(2015•永春县校级自主招生)如图是某中学生公寓时的一个示意图(每栋公寓均朝正南方向,且楼高相等,相邻两栋公寓的距离也相等).已知该地区冬季正午的阳光与水平线的夹角为32°,在公寓的采光不受影响(冬季正午最底层受到阳光照射)的情况下,公寓的高为AB,相邻两公寓间的最小距离为BC.(1)若设计公寓高为20米,则相邻两公寓之间的距离至少需要多少米时,采光不受影响?(2)该中学现已建成的公寓为5层,每层高为3米,相邻两公寓的距离24米,问其采光是否符合要求?(参考数据:取sin32°=,cos32°=,tan32°=)【思路点拨】(1)在直角三角形ABC中,已知AB利用锐角三角函数求得BC的长即可;(2)利用楼高求得不受影响时候两楼之间的距离与24米比较即可得到结果;【答案与解析】解:(1)∵在直角三角形ABC中,AB=20米,∠ACB=32°,∴=ta n32°∴BC===32米,∴相邻两公寓之间的距离至少需要32米时,采光不受影响;(2)∵楼高=3×5=15米,∴不受影响时两楼之间的距离为15÷tan32°=24米,∵相邻两公寓的距离恰为24米,∴符合采光要求;【总结升华】本题是将实际问题转化为直角三角形中的数学问题,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高23m,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.【思路点拨】(1)如下图所示,过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4,在Rt△DFB中,tan∠B= DFBF,由此可以求出∠B;(2)过点A作AH垂直BP于点H.因为∠ACP=2∠B=60°所以∠BAC=30°,AC=BC=8.在Rt△ACH中,AH=AC•Sin∠ACP,所以可以求出AH了,即求出了光源A距平面的高度.【答案与解析】解:(1)过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4.在Rt△DFB中,tan∠B=DF233==BF2+43,所以∠B=30°;(2)过点A作AH垂直BP于点H.∵∠ACP=2∠B=60°,∴∠BAC=30°,∴AC=BC=8,在Rt△ACH中,AH=AC•Sin∠ACP=38=432,即光源A距平面的高度为43m.【总结升华】本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。
中考复习《图形的变换》投影与视图
1
2
3
4
1.【2020·福建·4 分】如图所示的六角螺母,其俯视图是( B )
A
B
C
D
2.【2019·福建·4 分】如图是由一个长方体和一个球组成的几何 体,它的主视图是( C )
A
B
C
D
3.【2018·福建·4 分】某几何体的三视图如图所示,则该几何体
是( C )
A.圆柱
B.三棱柱
C.长方体
教材梳理
第六章 图形的变换 第32课时 投影与视图
目录
01 知识梳理 02 考点突破
03 福建4年中考聚焦
01 知识梳理
·知识点1 投影 ·知识点2 三视图的有关概念与画法 ·知识点3 立体图形的展开与折叠
知识点1 投影
有关 定义
投影
一般地,用光线照射物体,在某个平面上得到
的影子叫做物体的①__投__影______,照射光线 叫做②投__影__线______,投影所在的平面叫做③ __投__影__面____.
图示(选其中一种)
一个圆和一个 扇形
两个全等的三 角形和三个矩 形
2.正方体展开图的常见类型及相对面(如图) (1)“一四一”型:
(2)“一三二”型:
(3)“二二二”型:
(4)“三三”型:
(注:相同颜色表示相对的面)
3.立体图形的折叠 一个几何体能展开成一个平面图形,这个平面图形就可 以折叠成相应的几何体,展开与折叠是一对互逆过程.
中心 由同一点发出的光线形成的投影叫做④ 投影 __中__心__投_影___________.
平行 由平行光线形成的投影叫做⑤ 有关 投影 __平__行__投__影____________.
中考数学投影视图知识点:复习要求
中考数学投影视图知识点:复习要求(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!中考数学投影视图知识点:复习要求似乎说到初中数学视图与投影,很多人都没有什么印象,这在中考数学复习要求中也确实有很小的席位,初中数学介绍视图与投影的篇幅不多,我们来看下中考复习要求。
中考数学专题复习:投影与视图
投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。
如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。
2023年中考数学解答题专项复习:投影与视图(附答案解析)
第 1 页 共 16 页
2.(2020•丛台区校级一模)如图(1)是一种包装盒的表面展开图,将它围起来可得到一个 几何体的模型.
(1)图(2)是根据 a,h 的取值画出的几何体的主视图和俯视图,请在网格中画出该几 何体的左视图. (2)已知 h=4.求 a 的值和该几何体的表面积.
第 2 页 共 16 页
9.(2021 秋•玄武区期末)如图,是由一些棱长都为 acm 的小正方体组合成的简单几何体.
第 5 页 共 16 页
(1)请在如图的方格中画出该几何体的俯视图和左视图.
(2)该几何体的表面积(含下底面)是
cm2;
(3)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以
再添加
(1)这个几何体的名称是
,其侧面积为
;
(2)画出它的一种表面展开图;
(3)求出左视图中 AB 的长.
6.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视
图,如图 1.
(1)由三视图可知,密封纸盒的形状是
;
(2)根据该几何体的三视图,在图 2 中补全它的表面展开图;
(3)请你根据图 1 中数据,计算这个密封纸盒的表面积.(结果保留根号)
第 4 页 共 16 页
7.(2021 秋•三明期末)在平整的地面上,把棱长都为 1 的若干个小正方体摆成如图的几何 体.
(1)请分别在网格中画出从上面,左面看到的形状图(用签字笔将对应的虚线描为实线 即可); (2)如果在这个几何体上再添加一些同样大小的小正方体,若保持从上面看和从左面看 的形状图不变,那么最多可以再添加几个小正方体?在这样的条件下,当添加最多的小 正方体后,求得到的新几何体的体积. 8.(2021 秋•安居区期末)如图所示的是一个用小正方体搭成的几何体的俯视图,小正方形 中的数字表示在该位置的小正方体的个数,请你画出它的主视图与左视图.
(完整版)投影与视图知识点总结
投影与视图知识点总结知识点一:中心投影有关概念1. 投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。
2. 手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影n知识点三:平行投影及应用1.平行投影的定义太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影2.平行投影的应用:(1)等高的物体垂直地面放置时,太阳光下的影长相等。
(2)等长的物体平行于地面放置时,太阳下的影长相等。
3.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。
例1:如图,小华(线段CD)在观察某建筑物AB(1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。
(2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m 和8m,求建筑物AB的高。
例2:小明在公园游玩,想利用太阳光下的影子测量一颗大树AB的高,他发现大树的影子恰好落在假山坡面CD和地面BC上,如图所示,经测量CD=4m,BC=10m,CD与地面成30度的角,此时量得1m标杆的影长为2m,请你帮助小明求出大树AB的高度?知识点四:视图1.常见几何体的三视图2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。
注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。
在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。
例1:如图是几个相同的小正方体组成的一个几何体,请画出它的三视图。
《常考题》初中九年级数学下册第二十九章《投影与视图》知识点总结(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示的几何体的俯视图是( )A .B .C .D . 3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是( )A .B .C .D . 4.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?( )A .12个B .13个C .14个D .15个 5.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是( ) A .正方形 B .平行四边形 C .矩形 D .等边三角形 6.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A.6 B.5 C.4 D.37.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个8.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm211.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥12.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A .7B .8C .9D .1013.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+ 15.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D .二、填空题16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.18.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.19.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.20.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.21.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.22.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.23.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.24.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.25.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是______.26.如图,在A 时测得某树的影长为4米,在B 时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题27.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .28.树AB 和木杆CD 在同一时刻的投影如图所示,木杆CD 高2m ,影子DE 长3m ;若树的影子BE 长7m ,则树AB 高多少m ?29.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.30.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.。
新课标九年级数学中考复习强效提升分数精华版视图与投影
视图与投影本章主要反映空间观念的内容,在承接七年级上册的《丰富的图形世界》,八年级上册的《图形的平移与旋转》、《位置的确定》等基础上,本章再研究空间观念的另一重要内容——视图与投影。
在生产实际中,我们经常用到投影和视图来表达空间形体,描述物体的形状与大小。
我们在七年级已经积累了画立方体及简单组合体的三种视图的有关经验,在本章还将进一步研究另外几种特殊几何体——圆柱、圆锥、球、直三棱柱和直四棱柱的三种视图。
除此之外,本章还将对平行投影与中心投影、视点、视线和盲区进行初步的探讨,这此内容看似相互独立,但本质上都有首密切联系。
事实上,在特殊位置下,物体的平行投影便是物体的三种视图;人看物体时的情形与中心投影本质上是一致的;影子与盲区也有很大相似性。
本章知识结构网络是:重点难点:1、会画三视图,了解中心投影和平行投影的含义及其简单应用,了解视点、视线、盲区的含义及其在生活中的应用。
2、通过画三视图实现几何体与三种视图的互相转化,通过对中心投影与平行投影的认识进行物体与投影之间的互相转化等。
中考趋向:本章知识在初中阶段是一个新增补的知识点,在中考试题中涉及本章的试题大多以填空题、选择题形式出现,当然也有少数地区以解答题的形式出现,命题所反映的主要考点有如下几个方面:1、考查三视图的基本概念及画几何体的三视图,或由三视图构造几何体的形状。
2、能正确区分与识别平行投影和中心投影。
3、能利用物体在太阳光线下或灯光下的影长,求物体的高度。
4、本单元主要考查观察能力和抽象能力。
学法指点:1、画三视图时应注意三视图的位置要准确,看得见的部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,这是画三视图的一种规定。
2、通过学习和实践活动,激发对视图与投影学习的好奇心,体会数学与现实生活的联系。
3、通过实例能够判断简单物体的三种视图,能根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化。
4、会画圆柱、圆锥、球的三种视图。
初中数学投影与视图知识点总复习含答案(1)
初中数学投影与视图知识点总复习含答案(1)一、选择题1.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.2.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【答案】A【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形. 详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B .点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.如图是一个正六棱柱的茶叶盒,其俯视图为( )A .B .C .D .【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B .考点:简单几何体的三视图.6.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S=12LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π,圆柱的侧面积=2π•1•4=8π,圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.7.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.8.如图所示,该几何体的主视图是()A .B .C .D .【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D .【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为( )A .πB 3πC 3D .31)π【答案】C【解析】【分析】 3得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形. ∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=3333 Sππ⨯=g底故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.【答案】C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C13.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.14.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图是某几何体得三视图,则这个几何体是( )A .球B .圆锥C .圆柱D .三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.20.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.。
中考数学一轮复习专题视图与投影
专题26 视图与投影考点总结【思维导图】【知识要点】知识点一投影一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影。
照射光线叫做投影线,投影所在的平面叫做投影面。
平行投影概念:由平行光线形成的投影叫做平行投影。
特征:1.等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.2.等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.平行投影变化规律:1.在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.2.在同一时刻,不同物体的物高与影长成正比例. 即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.中心投影概念:由同一点 (点光源) 发出的光线形成的投影叫做中心投影。
特征:1.等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.2等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.考查题型(求点光源的位置)点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.中心投影与平行投影的区别与联系:正投影正投影的定义:如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.1.线段的正投影分为三种情况.如图所示.①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;、②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.2.平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.3.立体图形的正投影.物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.【典型例题】1.(2019·四川中考模拟)下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是( ) A.B.C.D.【答案】A【解析】根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.2.(2019·广西中考模拟)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.3.(2019·北京清华附中中考模拟)如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长【答案】D【解析】由一点所发出的光线形成的投影叫做中心投影,而中心投影的影子长短与距离光源的距离有关,由题意可得,小莉和小玉在同一路灯下由于位置不同,影长也不相同,故无法判断谁的影子长,故选D.4.(2019·河北中考模拟)一个长方形的正投影不可能是()A.正方形B.矩形C.线段D.点【答案】D【详解】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是点,故选:D.5.(2019·湖北中考模拟)如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【答案】D【解析】试题分析:根据题意:水杯的杯口与投影面平行,即与光线垂直,则它的正投影图应是D.故选D.6.(2018·广东中考模拟)下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.【答案】C【解析】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选C.考查题型一中心投影的应用方法1.(2018·河北中考模拟)如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.2.(2020·银川外国语实验学校初三期末)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P 到地面的距离.【答案】(1)见解析;(2)见解析;(3)8米 【解析】()1如图:()2如图:()3//AB OP ,MAB ∴∽MOP ∆,AB AM OP OM ∴=,即1.6 2.510 2.5OP =+, 解得8OP =.即路灯灯泡P 到地面的距离是8米.3.(2019·泰兴市洋思中学初三期中)如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?【答案】(1)路灯A有6米高(2)王华的影子长83米.【解析】试题分析:22. 解:(1)由题可知AB//MC//NE,∴,而MC=NE∴∵CD=1米,EF=2米,BF=BD+4,∴BD=4米,∴AB==6米所以路灯A有6米高(2)依题意,设影长为x,则解得米答:王华的影子长83米.考查题型二利用平行投影确定影子的长度1.(2019·吉林中考模拟)如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.【答案】6.4【详解】解:由题可知:1.628树高,解得:树高=6.4米.2.(2018·四川中考模拟)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_____.【答案】10cm【详解】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴ABBC=DEEF∴53=6DE∴DE=10(m)故答案为10m.3.(2015·甘肃中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【详解】(1)平行;(2)连接AM、CG,过点E作EN⊥AB于点N,过点G作GM⊥CD于点M,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.考查题型三利用相似问题解决投影问题1.(2019·长沙市长郡双语实验中学中考模拟)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.【答案】5。
人教版九年级下册数学《投影与视图》中考考点
视图与投影视图与投影是中考试卷中必考内容,题型比较灵活,主要考察常见立体图形的三视图,由标数俯视图画主视图或左视图,由视图确定立方体的个数,及运用视图与投影知识解释生活中的实际问题等.为了帮助同学们更好的掌握这些知识,下面以2007年各地中考题为例,分考点简析如下:考点一:辨别立体图形的三种视图例1.(青岛市) 如图所示圆柱的左视图是( ).A B C D解:选B.例2.(济南市) 如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为2cm .解:填 36312评析:三视图是从正面、左面、上面三个方向看同一个物体分别得到的平面图形,主视图反映出物体的长和高, 左视图反映出物体的高和宽,俯视图反映出物体的长和宽,考点二: 由标数俯视图画主视图或左视图例3. (河南省) 由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ( )评析:本题考察同学们的空间相象能力,三种视图间的关系是俯视图的列数就是主视图的列数,从俯视图可以看出主视图有3列, 俯视图个每行标数的最大数2、3、1,从而左视图的三列依次应有2、3、1 个小正方形.(相象从俯视图的左侧看) 故应选A.考点三: 由视图确定立方体的个数例3.(茂名市)右图是由一些相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A .4B .5C .6D .7评析: 主视图的每一列都只有一个小正方形,说明这个几何体只有1层,从俯视图可知有3列,结合左视图可知俯视图中每个小正方体只有1个.故则搭成这个几何体的小正方体的个数是4个,选A.例4.(佳木斯市)如图,分别是由若干个完全相同的小正方体组成的一个几何体A .3个或4个B.4个或5个 C .5个或6个D.6个或7个ABCD主视图俯视图主视图左视图 俯视图评析:从主视图和俯视图来看这个几何体有2列,主视图第1列有1个小正方形,说明俯视图的第1列只有1层,主视图第2列有2个小正方形,说明俯视图的第2列有2层,即俯视图的第1行和第2行中至少有1行有2个小正方形或这两行都有2个小正方形,故组成这个几何体的小正方体的个数是4个或5个, 选B.说明: 由两种视图确定的小正方形的个数,往往不是唯一的.考点四: 视图与生活中的测量问题例5. (兰州铁一中高一实验班招生试题) 电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路一侧的一直线上,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是m2,已知AB、CD在灯光下的影长分别为mDNmBM6.0,6.1==.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子.(2)求标杆EF的影长.评析:在日常生活中,物体在太阳光下的影子是平行投影,而由各种灯光发出的光线可以看成是从一点发出的,因而物体在灯光下的影子是中心投影.本题是投影与相似形知识结合的问题.解:(1)如图EC A(2)设EF 的影长为,x FP =由相似三角形知识知:ONOCNP CE MN AC == 即:221.620.60.62x =+-++, 解得:0.4x =.所以EF 的影长为.4.0m综上所述,中考对视图与投影的考察注重同学们的空间想象能力,以及现实生活中的物体与影子的联系,同学们应注重培养良好的空间观念,才能适应新课标理念下的中考.。
2023年中考数学一轮复习:投影与视图(含解析)
2023年中考数学一轮复习:投影与视图一、单选题1.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是()A.B.C.D.2.如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是()A.主视图不变B.俯视图改变C.左视图不变D.以上三种视图都改变3.两个完全相同的长方体,按如图方式摆放,其主视图为()A.B.C.D.二、填空题4.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用个正方体,最多需用个正方体;5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.6.如图所示,水平放置的长方体的底面是长为4 cm、宽为2 cm的长方形,它的主视图的面积为12 2cm,则长方体的体积等于3cm.三、综合题7.下面图(1),图(2)分别是两种不同情形下旗杆和木杆的影子.(1)哪个图反映了阳光下的情形?(2)若同一时刻阳光下,木杆的影子长为0.8米,旗杆的影子长为7.2米,木杆的高为1.5米,求旗杆的高度.8.如图是由10个同样大小的小正方体搭成的物体,(1)请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.9.如图是小明用10块棱长都为3cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.10.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)11.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=,b=;(2)先化简,再求值:()()2223252ab a b ab a ab⎡⎤------⎣⎦.12.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.13.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.14.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m.15.如图,在平整的地面上,用10个棱长都为2cm的小正方体堆成一个几何体.(1)画出这个几何体的三视图;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.16.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数. 17.如图,是由6个大小相同的小正方体块搭建的几何体,其中每个小正方体的棱长为l厘米.(1)如果在这个几何体上再添加一些小立方体块,并保持俯视图和左视图不变,最多可以再添加个小立方块.(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.晚上,小亮在广场乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯P照射下的影子BC(请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m=,测得小亮影长2BC m=,小亮与灯杆的距离13BO m=,请求出灯杆的高PO.19.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无.盖.纸盒.操作探究:(1)若准备制作一个无盖..的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖..正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖..正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无.盖.长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高以及底面积,当小正方形边长为4cm时,求纸盒的容积.20.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)21.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加个正方体纸盒.22.阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A.6.5米B.5.75米C.6.05米D.7.25米(4)你能计算出丁树的高度吗?试试看.23.如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为 (cm)x ,折成的长方体盒子的容积为 ()3cm V ,直接写出用只含字母x 的式子表示这个盒子的高为 cm ,底面积为 2cm ,盒子的容积 V 为3cm ,(2)为探究盒子的体积与剪去的小正方形的边长 x 之间的关系,小明列表分析:填空:①m = , n = ;②由表格中的数据观察可知当 x 的值逐渐增大时, V 的值 .(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)24.如图,A 、B 、C 分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.(1)请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.(2)若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.25.测量金字塔高度:如图1,金字塔是正四棱锥 S ABCD -,点O是正方形 ABCD 的中心 SO 垂直于地面,是正四棱锥 S ABCD - 的高,泰勒斯借助太阳光.测量金字塔影子 PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 S ABCD - 表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 ABCD 的边长为 80m ,金字塔甲的影子是 50m PBC PC PB ==, ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.(2)测量乙金字塔高度:如图1,乙金字塔底座正方形 ABCD 边长为 80m ,金字塔乙的影子是PBC , 75PCB PC ∠=︒=, ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.答案解析部分1.【答案】B【解析】【解答】将A、C、D折叠,发现都不能合成切口,只有B选项折叠后两个剪去的三角形与另一个剪去的三角形交于一点,与题目中的题设一致,故答案为:B.【分析】利用正方体的展开图定义和特征逐项判断即可。
新人教版初中数学——视图与投影-知识点归纳及中考典型题解析
新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。
2025年广州市中考数学一轮复习:投影与视图(附答案解析)
4.一个几何体如图水平放置,它的俯视图是(
A.
B.
)
C.
【考点】简单组合体的三视图.
【专题】投影与视图;空间观念.
【答案】D
第 8页(共 20页)
D.
【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示,看不见的棱用虚
线表示.
【解答】解:从上面看,是一个正方形,正方形内部有两条纵向的虚线.
下几副不同的平面图形,则构成该几何体的小正方体的个数是
第 3页(共 20页)
个.
13.如图是由一些完全相同的小立方块搭成的几何体,从正面、左面、上面看到的形状图,
那么搭成这个几何体所用的小立方块个数是
块.
14.如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是
cm2.
15.某几何体的三视图如图所示,俯视图是长、宽分别为 2 和 1 的矩形,主视图相邻两边长
【解答】解:从左面看易得,是一列两个小正方形,每个小正方形中间有一条横向的虚
线.
故选:C.
【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
2.如图,由 5 个相同正方体组合而成的几何体,从左面看到的形状图是(
A.
B.
C.
)
D.
【考点】简单组合体的三视图.
【专题】投影与视图;空间观念.
2025 年广州市中考数学一轮复习:投影与视图
一.选择题(共 10 小题)
1.一个螺母如图放置,则它的左视图是(
A.
B.
)
C.
D.
2.如图,由 5 个相同正方体组合而成的几何体,从左面看到的形状图是(
A.
B.
C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③俯视图 从上面看到的图
2.画“三视图” 的原则
主视图
左视图
高 高平 齐
长对长 正
宽相等
宽
俯视图
①位置:
主视图 左视图 俯视图
②大小:
长对正,高平齐, 宽相等.
③虚实:
在画图时,看得见 部分的轮廓线通常 画成实线,看不见 部分的轮廓线通常 画成虚线.
做一做
1.(2007福建龙岩) .如图,一桶未启封的方便面
知识结构图:
平行投影
投影
投
影
中心投影
与
视
图
圆柱、圆锥、球、直三棱柱、直
视图 四棱柱等简单几何体的三视图
考点聚焦
考点1 投影
(1)投影:一般地,用光线照射物体,在某个平面 (地面、墙壁等)上得到的影子叫做物体的投影,其中 照射光线叫做投影线,投影所在的平面叫做投影面.
(2)平行投影:由平行光线(如太阳光线)所形 成的投影,称为平行投影.其中正投影是指投影线 垂直投影面产生的平行投影.
摆放在桌面上,则它的俯视图是( C )
2.(2007重庆)将如图所示的Rt△ABC绕直角边
AC旋转一周,所得几何体的主视图是( D )
A
C
B
2题图
A.
B.
C.
D.
3.(2007山西临汾)右图是由相同小正方形搭的几何体
的俯视图(小正方形中所标的数字表示在该位置上小
正方体的个数),则这个几何体的左视图是( C )
左视图
主视图
A. 9 B. 10
C. 11
俯视图
D. 12
8.有一实物如图,那么它的主视图(B)
A
B
C
D
9.如图所示是某种型号的正六角螺
c m 母毛坯的三视图,则它的表面积为(12 3 36.)
2
3cm
主视图 2cm
左视图
俯视图
10.(2013湖南怀化)九年级(1)班课外活动小组
利用标杆测量学校旗杆的高度,已知标杆高度
CD=3m,标杆与旗杆的水平距离BD=15m,人的眼
睛与地面的高度EF=1.6m,人与标杆的水平距离
DF=2m,求旗杆AB的高度.
A
解:过点E作EH⊥AB,交CD于点G C
CD⊥FB AB⊥FB
E G
H
CD∥AB △ C G E ∽ △ A H E
FD
B
CG EG AH EH
CDEF FD AH FDBD
况,无意之中,他发现这四个时刻向日葵影子的
长度各不相同,那么影子最长的时刻为【D】
A.上午12时
B.上午10时
C.上午9时30分 D.上午8时
做一做
3.已知两棵小树在同一时刻的 影子,你如何确定影子是在太 阳光线下还是在灯光的光线下 形成的。
两条光线是平行,因此 它们是太阳光下形成的.
两光线相交于一点,因 此它们是灯光下形成的.
31.6 2 AH 215
AH11.9
A B A H H B A H E F 1 1 . 9 1 . 6 1 3 . 5 ( m )
做一做
4.如图所示,快下降到地面的某伞兵在灯光下的
影子为AB.试确定灯源P的位置,并画出竖立
在地面上木桩的影子EF.(保留作图痕迹,不要
求写作法)
P
B
A(
EF
考ห้องสมุดไป่ตู้2 物体的三视图
1.三视图 ①主视图 从正面看到的图
到 的 图
从 上 面 看
俯 视 图
②左视图
左视图 从左面看到的图
从左面看到的图
太阳光
(3)中心投影:手电筒、路灯和台灯的光线可 以看成是从一点出发的,像这样的光线所形成 的投影称为中心投影.
做一做
1、晚上,小华出去散步,在经过一盏路灯时,他
发现自己的身影是【 D 】
A. 变长
B.变短
C. 先变长后变短 D.先变短后变长
2、小亮在上午8时、9时30分、10时、12时四次到
室外的阳光下观察向日葵的头茎随太阳转动的情
1
32
211
A.
B.
C.
D.
4.(2007吉林)如图,小芳和爸爸正在散步,爸爸身高
1.8m,他在地面上的影长为2.1m.若小芳比爸爸矮0.3m,
则她的影长为( ) C
A.1.3m B.1.65m
C.1.75m D.1.8m
7、如下图,是由一些相同的小正方体构成的几何体的 三视图,请问这几何体小正方体中的个数是 A .