第二章 波函数

合集下载

波函数和波动方程

波函数和波动方程

满足的波动方程
量子力学与原子核物理
第二章 波函数和波动方程
边界条件和归一化条件
边界条件 - 波函数 (r)及其导数 (r) / x
在边界处保持连续。 归一化条件 - 粒子在整个空间出现的几率为1
全空间 (r,t) 2d 3r 1
量子力学与原子核物理
第二章 波函数和波动方程
几率流密度 (1)
S方程: ( 2 2 V ) (r,t) i (r,t)
2m
t
*(r,t) 为 (r,t)的复数共轭, 它满足
( 2 2 V ) *(r,t) i *(r,t)
2m
t
其中
V
*
(r )

V
(r )
量子力学与原子核物理
第二章 波函数和波动方程
光子的偏振态的叠加 (1)
设有一束线性偏振光,射向一个理想的电气石 晶片
情况(a) 当光的偏振方向与晶轴平行时,光束 将全部通过。
情况(b) 当光的偏振方向与晶轴垂直时,光束 将被完全吸收。
情况(c) 当光的偏振方向与晶轴成角,光束部
分通过:
I I0 cos2
sin 0.776n
n 1
50.90
与实验结果吻合
量子力学与原子核物理
微观粒子的状态
第二章 波函数和波动方程
经典力学的决定性观念-经典力学中,对于一 个受到已知力的粒子(或系统),只要给定初始
条后任件意,时即刻t=0粒时子的(确或切系位统置)的与位动置量r,t 与那动么量在p以t
薛定谔方程的引入 (1)
描述一维自由粒子 的波函数
(x,t)
1
i ( pxEt)

第二章 波函数

第二章 波函数

12

根据归一化的定义,我们有
2 3 2
2 r / a r / a d r dxdydz 4 r ( e ) e dr 1s 1s 0
4 r 2 e 2 r / a dr a 3
0

归一化的波函数为
~ 1s
1
a 3
e r / a
2
m
2E
d 2 ( ) 0 2 d
首先考虑方程的渐近解
d 2 0, 2 d
2

32
~e
2 / 2
因为波函数在无穷远处为有限,
~e
2 / 2
e

2
2
H ( )
代入薛定谔方程,得
d H dH 2 ( 1) H 0 2 d d
用级数解法,H只能为一个中断多项式,得到
2
2n 1,
n 0, 1, 2, ...
33
1 En (n ) , n 0, 1, 2, ... 2
简谐振子的能谱是等间 隔的, 间距为ħω, 基态能 量不为零, 即零点能量为 ħω/2。
这是微观粒子波粒二象
定态与定态波函数定态薛定谔方程???eru??????????222?哈密顿算符2?242?2ruh????????eh??本征值方程当体系处于能量本征态时粒子的能量有确定值en??n以en表示体系能量算符的第n个本征值??n是与en相应的波函数则体系的第相应的波函数则体系的第n个定态波函数为nietnnrtre?????25nietnnnnnnrtcrtcre?????????转至第三章一维定态问题?具体阐述薛定谔方程的求解过程?波函数的获取方法熟悉几个重要的应用过程中需要的物理26?熟悉几个重要的应用过程中需要的物理模型26一维无限深势阱在一维空间运动的粒子其势场满足?????????axaxxu027?1阱外x?ax?a因为势壁无限高粒子不能穿透阱壁按照波函数的统计解释在阱壁和阱外粒子的波函数为零

量子力学 第二章 波函数和薛定谔方程

量子力学 第二章 波函数和薛定谔方程

x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2

2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )

2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:

2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e

(r ) p
1 (2)

3 2
e
i pr
(r , t )


( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的

第二章 波函数和薛定谔方程

第二章   波函数和薛定谔方程

2.波恩(Born)对波函数的统计解释,概率波 2.波恩 Born)对波函数的统计解释, 波恩( 水波的双狭缝干涉: 水波的双狭缝干涉:
I12 = h1 + h2 = h1 + h2 + (h h + h h )
2 2 2 * 1 2 * 1 2
= I1 + I2 +干涉项
11
子弹点射

1 2
ψ ψ
P1
1
2Байду номын сангаас
P
P 2
P= P +P 1 2
12
电子双缝衍射
电子的干涉现象与水波干射完全相似,但与子弹点射 完全不同。与水波干射的含意也有着本质的不同,前 者是强度,后者是接收到的电子多少!
13
电子干涉实验的结论: 电子干涉实验的结论: 大量电子在同一个实验中的统计结果,或者是一个 大量电子在同一个实验中的统计结果, 电子在多次相同实验中的统计结果。 电子在多次相同实验中的统计结果。
8
何为波包? 何为波包?
波包是各种波数(长)平面波的迭加。波包的频率是 波矢的函数( ω = ω(k)),我们将频率作泰勒展开
dω 1 d 2ω 2 ω(k) = ω(0) + k+ k +L 2 dk 2! dk dω d 2ω 是波包的群速度; 2 表示 ω(0)是基波,为常数;
波包的扩散;若 扩散。 由于
r Ψ(r , t) 的变化遵从薛定谔方程。 4) 的变化遵从薛定谔方程。
5
二、波函数的统计解释
r 如果粒子处于随时间和位置变化的力场 U(r , t) 中,它 的动量和能量不再是常量(或不同时为常量), ),粒子 的动量和能量不再是常量(或不同时为常量),粒子 的状态就不能用平面波描写, 的状态就不能用平面波描写,而必须用较复杂的波描 一般记为: 写,一般记为:

量子力学第二章波函数和薛定谔方程PPT课件

量子力学第二章波函数和薛定谔方程PPT课件
知道了描述微观粒子状态的波函数,就可知道粒子 在空间各点处出现的几率,以后的讨论进一步知道, 波函数给出体系的一切性质,因此说波函数描写体系 的量子状态(简称状态或态) ②波函数一般用复函数表示。
③波函数一般满足连续性、有限性、单值性。
10
3.波函数的归一化条件

(r,t)C (r,t)
t 时刻,在空间任意两点 r 和1
对几率是:
处r 2 找到粒子的相
((rr1 2,,tt))2 2C C((rr1 2,,tt))2 2((rr1 2,,tt))2 2
r , t 和 r ,所t 描写状态的相对几率是相同的,
这里的 是常数C 。
11
非相对论量子力学仅研究低能粒子,实物粒子不会产 生与湮灭。这样,对一个粒子而言,它在全空间出现的 几率等于一,所以粒子在空间各点出现的几率具有相对 性,只取决于波函数在空间各点强度的相对比例,而不 取决于强度的绝对大小,因而,将波函数乘上一个常数 后,所描写的粒子状态不变,即:
➢ 2.3 薛定谔方程
The Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
The current density of particles and conservation
laws
➢ 2.5 定态薛定谔方程
Time independent Schrödinger equation
8
设粒子状态由波函数 (r ,描t)述,波的强度是
(r,t)2*(r,t)(r,t)
按Born提出的波函数的统计解释,粒子在空间中
某一点 r 处出现的概率与粒子的波函数在该点模的
平方成比例
则微观粒子在t 时刻出现在 r 处体积元dτ内的几

第二章 波函数和薛定谔方程

第二章 波函数和薛定谔方程
思考题: • 半壁振子(两种情况)(图)(暂缺)
§2.5 一维谐振子
思考题: • 对称性 动量表象
§2.5 一维谐振子
思考题: • n维谐振子体系等间距能级 n个粒子 元激发(elementary exitation) 集合产生湮 灭算符
§2.6 一维薛定谔方程的普遍性质
一维非奇性势薛定谔方程的束缚态无简并
第二章 波函数和Schroinger方程

质子在钯中的波函数 /groups/materials%20characterisation/hydrogen%20in%20palladium.s html
薛定谔 ERWIN SCHRODINGER (1887-1961)
§2.8 三维薛定谔方程(辏力场情况)
角度部分的解
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
• 勒让德多项式的性质
别名
§2.8 三维薛定谔方程(辏力场情况)
§2.7 势垒贯穿
如果讨论的是势阱而不是势垒,那么只需要作代换
§2.7 势垒贯穿
共振透射的条件和共振能量
§2.8 三维薛定谔方程(辏力场情况)
• • •
• •
辏力 普遍性质 若U(r)处处有界=>波函数处处有界 若U(r)有极小值,则体系平均能量必大于势场 的极小值 能量算符的本征值比大于势场的极小值 若无穷远处势场为零,则能量本征值小于零 的能谱必定是分立谱,对应束缚态
§2.5 一维谐振子
• • Motivation: 数学上: 学会一套规范化的求解薛定谔方程的方案 通过数学,看物理

《波函数与波动方程》课件

《波函数与波动方程》课件
玻恩那里取得博士学位, 1924~1926年又和玻尔一 起工作 。
1932年海森堡获得诺贝尔 物理学奖。
举例
1. 设一维粒子具有确定的动量p0,即动量的 不确定度Δp=0. 相应的波函数为平面波
p0 (x) eip0 x/
2
所以 p0 (x) 1 ,即粒子在空间各点的几率 都相同(不依赖于x)。即粒子的位置是完全 不确定,即 Δx=∞ 。
P1 1 2
P2 2 2
P12 1 2 2 1 2 2 2 (12* 1*2 )
P1 P2 2 P1P cos
1 2
1,2 称为波函数(描述粒子波动性的函数 称为波函数),也就是说,接收器上某位置电子 数的多少,将由波函数的模的平方 2 来表征。
空间若有两个波,强度则应由波函数 1 2 的模的平方来描述。
2. 粒子是由波函数 (x,t) 来描述,但波函数并不能 告诉你,t0 时刻测量时,粒子在什么位置。粒子位 置可能在x1,可能在 x2, ,而在 x1 x1 dx 中发现 粒子的几率为 (x1,t0) 2 dx 。
也就是说, (x,t0) 2 在某 x 处越大,则在 时刻
测量发现粒子在该处的机会越多。(这表明,我
但是,这种描述是什么意思呢?它没有回答, 电子是一个个出现的问题;也没有回答,空间 电子稀疏时,但时间足够长后,干涉花纹照样 出现。
几率诠释—几率波
Max Born真正将量子粒子的微粒性和波 动性统一起来。
如电子用一波函数 (x)来描述,则
1. 从上面分析可以看到,在 x x dx 范围内, 接收到电子多少是与 P(x)dx (x) 2 d的x 大小有关;
们讲的是能预言到什么,但我们不能说出测量的
结果)。
我们如何来理解这一点呢?因如果对一个体 系去测量发现粒子可能就处于x1 ,只测得一个值。

大学物理:量子物理第二章 波函数和薛定谔方程-1

大学物理:量子物理第二章 波函数和薛定谔方程-1

量子力学
粒子状态的 坐标(位置) 基本描述 动量(运动速度) --都是确定量
粒子具有波粒二象性,不可 能同时具有确定的坐标和动 量,坐标和动量都是以一定 的几率出现。用波函数描写 体粒子的量子状态。
其它量
其它物理量如能量等都 所有其它量都是以一定几率
是坐标和动量的函数-- 出现--用波函数描写体粒子
电子在底片上各位置出现的几率不是常数,出现的几率大, 即出现干涉图样中的“亮条纹”;有些地方电子出现的几率 为零,没有电子到达,显示“暗条纹”。在电子双缝干涉实 验中观察到的,是大量事件所显示出来的一种概率分布。 玻恩对波函数物理意义的解释:波函数在空间某一点的 强度和在该点找到粒子的几率成正比。
8
E p2 2m
自由粒子波函数:
(x,
t
t)
i
E
( x, t )
E (x,t) i (x,t)
t
x
i
p
2
x 2
p2 2
p2
2 2
x2
2 2
i t 2m x2
3
一维自由粒子运动所遵从的薛定谔方程:
i
t
2
2m
2
x 2
三维自由粒子运动所遵从的薛定谔方程:
i
t
2
2m
(
2
x2
2
y 2
都是确定量
的量子状态。
11
例如在量子力学中力学量表示为:
对于一维粒子出现在x坐标的平均值为
x x | (x) |2 dx *(x) x (x)dx
相应的涨落偏差
结论:经典力学能够表示粒子确定的位置和动量,但是量子力
学中的波函数只能给出粒子位置的平均值x 及其偏差(x)2 。 12

第二章状态波函数和薛定谔方程

第二章状态波函数和薛定谔方程

第二章 状态波函数和薛定谔方程本章引入描述量子体系状态的波函数,给出波函数的几率波解释和态的叠加原理两个量子力学的基本假设,在此基础上建立非相对论量子力学的基本方程——薛定谔(Schr ödinger)方程,并通过几个具体实例介绍定态薛定谔方程的解法。

§2.1 波函数的几率波解释1.波函数由第一章的讨论可知,微观粒子的波粒二象性是对粒子运动的一种统计性的反映。

数学上,把这种具有统计性的物质波(粒子波)用一个物理量ψ来描述,称为波函数。

它是位置),,(z y x 和时间t 的复值函数,表示为ψ或),,,(t z y x ψ。

微观体系的状态总可以用一个波函数(,)t ψr 来完全描述,即从这个波函数可以得出体系的所有性质,且(,t)ψr 和C t ψ(r,)(C 为比例常数)描写同一量子状态。

引入波函数来描写微观粒子的运动状态是量子力学的基本假设之一。

2.波函数的几率波解释在历史上,人们对波函数的解释曾有过不同的看法。

有人认为波是由它所描写的粒子组成的;也有人认为粒子是无限多波长不同的平面波叠加而成的波包。

除以上两种观点外,还有其它一些不同的看法。

但是,这些看法都与实验事实相矛盾,而被物理学家们普遍接受的解释是玻恩(Born)提出的统计解释,即几率波解释。

为了说明玻恩的解释,我们首先来考察电子的双缝衍射试验。

在电子的双缝衍射实验中,电子枪发射强电子束时,荧光屏上马上显示出明暗相间的双缝衍射条纹,这是电子的波动性的表现。

当电子枪发射弱电子束时,屏上接收的只是一个一个的亮点(电子),这体现了电子的微粒性。

若对弱电子束的衍射作长时间的曝光,则得到的衍射花样与强电子束的衍射花样完全相同。

实验表明,在出现亮条纹的地方,亮点较密集,电子投射的数目较多,即电子投射几率较大;而在比较暗的地方,达到的电子数目较少,即电子投射的几率较小。

电子在衍射实验中所揭示的波动性质,可看成是大量电子在同一个实验中的统计结果,也可以认为是单个电子在多次相同实验中显示的统计结果。

第2章 波函数与薛定谔方程

第2章 波函数与薛定谔方程


二、波函数的统计解释


电子(微观粒子)到底是什么? 它既不是经典的粒子,也不是经典的波。它是粒子 和波动两重性矛盾的统一。实际上是粒子“颗粒性” (具有一定的质量和电荷等属性的客体,但不与粒
6

子具有确定轨道相对应,这是由于位置和动量不能 同时具有确定的值,即测不准关系,后讲)与波的 “相干叠加性”(呈现干涉、衍射等现象,但不与 某种实在物理量在空间分布的周期性变化相对应) 的统一。

ˆ i p
3 ˆ 则 p * ( r ) p ( r ) d r
20

可表为
ˆ ) p (,p
动量算符

上式表明,动量平均值与波函数的梯度密切相关 (与波数 k 成正比)。 动能T=p2/2m和角动量L=r×p的平均值也可类似 求出。 一般说来,粒子的力学量A的平均值可如下求出
2
A-1/2称为归一化因子。波函数归一化与否,并 不影响几率分布。
12

注意:1)象平面波等一些理想波函数,它 们不能归一化。对此的归一化问题将在后 边介绍; 2)对于归一化的波函数仍有一个模为1的 因子不定性,即相位(phase)不定性。

e i 1
e
i
2
2
13
三、统计解释对波函数提出的要求
3
一、 波动、粒子两重性矛盾的分析



1 把电子看成是物质波包
包括波动力学的创始人薛定谔、德布罗意等人把 电子波理解为电子的某种实际结构,即看成三维 空间中连续分布的某种物质波包,因而呈现出了 干涉、衍射等现象。波包的大小即电子的大小, 波包的群速度即电子运动的速度。按经典自由粒 子能量,并利用德布罗意关系可得

量子力学第二章波函数和方程.

量子力学第二章波函数和方程.
❖ 3.第三方面,方程不能包含状态参量,如 p, E等,否则方程 只能被粒子特定的状态所满足,而不能为各种可能的状态所满足。
(三) 自由粒子满足的方程
描写自由粒子波函数:


A
exp
i
(
p

r
Et )
应是所要建立的方程的解。
将上式对 t 微商,得:
i E
第二章 波函数 和 Schrodinger 方

§2.1 波函数的统计解释
子弹
光波
波:I≠I1+I2
光栅衍射
I Eo2
I Nh N
I大处 I小处 I=0
到达光子数多 到达光子数少 无光子到达
电子衍射
I | |2
IN
电子到达该处概率大 电子到达该处概率小 电子到达该处概率为零

= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
的几率密度
电子穿过狭缝 2出现在P点
的几率密度
相干项 正是由于相干项的 出现,才产生了衍
射花纹。
一般情况下,如果Ψ1和Ψ2 是体系的可能状态,那 末它们的线性叠加 Ψ= C1Ψ1 + C2Ψ2 也是该体系的一个可能状态.
量不再是常量(或不同时为常量)粒子的状态就不能用平面波
描写,而必须用较复杂的波描写,一般记为:
(r, t )
描写粒子状态的 波函数,它通常 是一个复函数。
经典概念中 粒子意味着
1.有一定质量、电荷等“颗粒性”的属性;
2.有确定的运动轨道,每一时刻有一定 位置和速度。

第二章 波函数与薛定谔方程

第二章 波函数与薛定谔方程

W
3.5
3



( x, y, z, t ) dxdydz
2
5、状态迭加——干涉项 i1 i 2 一般,为复函数,如1 10e , 2 20e 2 2 c11 c2 2 c1 1 c2 2 c1 1 c2 2
(8)
这就是薛定谔波动方程。它揭示了微观世界中物质运动 的基本规律,是量子力学的基本假设之一。 二、薛定谔方程的讨论 1、要求
⑴、对粒子的所有状态成立,波动方程系数不能含有状 态参量,如 x, p, L ……
(2)、必须满足迭加原理,即方程对于其解而言是线 性的,当1,2各为其解,则 a1 b2也是其解

ψ(r, t)
它描写当粒子不受外力F (r , t )作用,因而E , P不变的 自由粒子运动。
Ae
i ( pr Et )
2、一般 F≠0, 在外力场中,势能 , V ( r , t )
波函数
(r , t )满足薛定谔方程和边界条件称为
• 1、经典波表示 y ( x, t ), E (r , t ), P(r , t )
2、定域的几率守恒 薛定谔方程是非相对论量子力学的基本方程。在非相对 论(低能)情况下,实物粒子(m 0 )没有产生和湮 湮灭的现象,所以在随时间演化的过程中,粒子数目保 持不变(即粒子数守恒)。 对于一个粒子来说,在全空间中找到它的几率之总和应 不随时间改变,即
d 3 (r , t ) d r 0 dt
p2 E 2m
(1)
m 是粒子质量,按照德布罗意关系,与粒子运动相联系 2 的波的角频率 和波矢 k( k ),由下式给出

第二章波函数与薛定谔方程

第二章波函数与薛定谔方程

第二章 波函数与薛定谔方程2.1 设22()exp )2(x x A αψ-=,α为常数, 求归一化常数A . 解:由波函数满足的归一化条件()21x dx ψ+∞-∞=⎰有2222222222()exp 12()x x x x dx A dx A e dx A e dx αααψ+∞+∞+∞+∞---∞-∞-∞-∞-====⎰⎰⎰⎰由积分公式2x e dx +∞--∞=⎰有()()222211x x y e dx ed xe dy ααα+∞+∞+∞----∞-∞-∞===⎰⎰⎰即22221x A e dx A α+∞--∞==⎰,归一化常数A =2.2 设粒子波函数为(,,)x y z ψ ,求在(,)x x dx +范围中找到粒子的概率.解:在(,)x x dx +范围内找到粒子的概率为2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎛⎫⎪⎝⎭⎰⎰.2.3 设在球坐标系中,粒子波函数表为(,,)r ψθϕ,求:(1)在球壳(,)r r dr +中找到粒子的概率;(2)在(,)θϕ方向的立体角d Ω中找到粒子的概率.解:(1)在球壳(,)r r dr +中找到粒子的概率为()22|(,,)|r d r dr ψθϕΩ⎰; (2)在(,)θϕ方向的立体角d Ω中找到粒子的概率()22|(,,)|r r dr d ψθϕΩ⎰.2.4求平面单色波为00()p i x p x ψ⎛⎫⎪⎝⎭=在动量表象中的形式. 解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e2ipx p x t dx ϕψπ+∞--∞=⎰得单色平面波动量表象中的形式为()()()()001112122111,t ()e e 222ii p x px px p p x dx e dx ϕψπππ⎛⎫ ⎪⎝⎭+∞+∞---∞-∞⎛⎫ ⎪ ⎪⎝⎭==⎰⎰()()001e2i p p xdx p p δπ+∞---∞==-⎰即平面单色波的波函数在动量表象中的表示形式为()()00,p p t p p ϕδ=-.2.5 粒子在0x x =点的量子态为δ函数00()()x x x x ψδ=-,试在动量表象中写出此量子态的形式.解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e 2i px p x t dx ϕψπ+∞--∞=⎰得δ函数在动量表象中量子态的形式为()()()()00012211211()e e21,t ()2e 2ip i ip x x x x p p x dx x x dx δϕπψππ+∞-----∞+∞∞-===⎰⎰即量子态为δ函数的波函数在动量表象中表示形式为()()00121,t e2i px x p ϕπ-=.2.6 证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证0v ∇⨯=,其中/v j ρ=,ρ为概率密度,j 为概率流密度.证明:概率密度为()()(),,,r t r t r t ρψψ*=概率流密度为()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇根据薛定谔方程式可导出几率守恒方程,并定义几率流密度()()()()()(),,ln ,ln ,2,,2r t r t jv r t r t mi r t r t miψψψψρψψ***⎡⎤⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦∇∇==-=∇-∇()()()()()ln ,ln ,l 2,,n 2r t i m r r t r t t mi ψψψψ**⎡⎤⎣⎦=∇-=∇可见v 正比于一个标量场()(),,r t r t ψψ* 的对数的梯度.梯度场无旋,故v是一个无旋场(0v ∇⨯=).2.7 设粒子在复势场()()()12V r V r iV r =+ 中运动,其中()1V r 和()2V r为实数,证明粒子的概率不守恒,并求出在某一空间体积中粒子概率“丧失”或“增加”的速率.解:根据薛定谔方程及其复数共轭形式()22122i V iV t m ψψψ∂=-∇++∂ (2.7.1)()22122i V iV t mψψψ***∂-=-∇+-∂ (2.7.2)ψ**(2.7.1) -ψ*(2.7.2)得()222222i iV t t m ψψψψψψψψψψ*****⎛⎫ ⎪⎝⎭∂∂+=-∇-∇+∂∂()2222iV mψψψψψψ***=-∇⋅∇-∇+ (2.7.3)即()()222V t mi ψψψψψψψψ****∂+∇⋅∇-∇=∂,可以写为 22j V tρρ∂+∇⋅=∂(2.7.4)其中()()(),,,r t r t r t ρψψ*=,()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇.上式右边不为零,这意味着粒子的几率不守恒.将上式对空间Ω积分,则得3322Sd r jds d rV t ρρΩΩ∂+=∂⎰⎰⎰ 故某一空间体积中粒子概率“丧失”或“增加”的速率为3322S V d r jds d r t ρρΩΩ∂=-+∂⎰⎰⎰ .2.8 设()()()1212,0E E r c r c r ψψψ=+ ,问(),0r ψ是否为定态,为什么?求(),r t ψ.解:(1)由于定态是体系能量具有确定值的状态,而题中波函数(),0r ψ处于能量1E 的本征态()1E r ψ与能量2E 的本征态()2E r ψ 的叠加状态,故(),0r ψ 不是定态;(2) t 时刻的波函数为()()()121212,i i E t E t E E r t c r e c r eψψψ--=+.2.9 计算1ikr e ψ=和2ikr e r ψ-=相应的概率流密度,并由所得结果说明这两个波函数描述的是怎样传播的波.解:由微商关系式:x y z e e e x y z∂∂∂∇=++∂∂∂ ,r r r e r ∇==,3211r r e r r r ∇=-=-(1)1ψ的概率流密度为:1ikr e r ψ=,1ikr e rψ-*= ()()()2122211ikr ikrikr ikrik ik ikr r r r e r e r ikr e e ikre r e r r rr r r ikr e e r ψ⎛⎫⎪⎝⎭∇-∇-∇-∇-∇=∇===∇= 或()111111ikrikrikr ikr ikr ikr ikr ikr r r r ikr e e ike e e e ike r e r e e e rrr r r r r r ψ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∇=∇=∇+∇=∇+-∇=-= ()()()2212211ikrikr ikr ikr ikr i r r i r k k e r e r ikr e e ikre r e r r rr r r ikr e e r ψ-*------⎛⎫⎪⎝⎭∇-∇+-∇-∇=∇===--∇=+∇ ()()()()()11111,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikrikr ikr r r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦-+=--112r ikr ikr e mi r r ⎛⎫ ⎪⎝⎭--=+2rk e mr =即()12,r k j r t e mr=描述的是沿径向向外传播的球面波; (2) 2ψ的概率流密度为:2ikr e r ψ-=,2ikr e rψ*= ()()()2222211ikr ikrikr ikr ikri r kr ikr e r e r ikr e e ikre r e ikr e e r r r rr r r ψ-------⎛⎫⎪⎝⎭∇-∇+-∇-+∇-∇=∇===-∇= ()()()2222211ikr ikrikr ikrikr ikr r ikr e r e r ikr e e ikre r ik e r r rr r r e r e r ψ*⎛⎫⎪⎝⎭∇-∇-∇-∇=∇====∇∇- ()()()()()22222,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikr ikr ikrr r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+-=-- ()33112r ikr ikr e mi r r ⎛⎫ ⎪ ⎪⎝⎭-+-=-2rk e mr =-即()22,r k j r t e mr=-描述的是沿径向向内传播的球面波.2.10 粒子在一维势场中运动,若所处的外场均匀但与时间有关,即()(),V x t V t =,试用分离变量法求解一维薛定谔方程.解:由一维薛定谔波动方程()()()222,,,2i x t V x t x t t m x ψψ⎡⎤⎢⎥⎣⎦∂∂=-+∂∂ , 采用分离变量法求特解,令其特解可表示为()()(),x t x f t ψϕ=,带入一维薛定谔波动方程有()()()()()()()()()()2222i x f t x f t V t x f t t m x ϕϕϕ∂∂=-+∂∂ ()()()()()()()()2222x i f t f t x V t x f t t m xϕϕϕ∂∂=-+∂∂方程两边同时除以()()x f t ϕ可得()()()()()22212f t i x V t f t t m x x ϕϕ∂∂=-+∂∂ ()()()()()22212f t i V t x f t t m x x ϕεϕ∂∂-=-≡∂∂其中ε是既不依赖于t ,也不依赖于x 的常数.(1)此时关于时间部分为:()()()f t i V t f t tε∂-=∂ 方程两边同时对时间t 积分得()()()()()()00000ln tt t t t df i d d V d d i f d V d t f d d ττττετττττε-=⇒-=⎰⎰⎰⎰⎰()()()()00ln ti V d t ti f t V d t f t e ττεττε⎛⎫ ⎪⎝⎭-+⎛⎫ ⎪⎝⎭⎰=-+⇒=⎰(2)关于坐标的部分为:()()()()2222221202d d m x x x m x dx dx εϕεϕϕϕ-=⇒+=此二阶齐次微分方程的解为()x Ae ϕ±=由上述两部分可知()()()()0,t i V d t x t x f t Ae eττεψϕ⎛⎫ ⎪ ⎪⎝⎭-+±⎰==其中A 和ε均为常数,分别由归一化条件和初试条件决定.2.11 粒子在无限深方势阱中(0x a <<)中运动,对处于定态()n x ψ的粒子,证明:2ax =,()222226112a x x n π⎛⎫ ⎪⎝⎭-=-, 0p =,()222n p p mE -=,讨论n →∞的情况,并与经典计算结果比较.解:一维无限深方势阱内(0x a <<)粒子的波函数为()n n x x a πψ⎛⎫⎪⎝⎭=, 能量本征值为22222n n E ma π= .(1) ()()0n n n x n x x x x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==⎰⎰200cos 12sin 1222a a n x a n x x x a dx dx a a ππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎰⎰ 0020022cos sin 1111122aaa a n x n x x a a dx dx x a a a n πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎰⎰2a=(2)()222202n x a n x x x x dx a a ππ⎛⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝-=-⎰22222002212sin 1cos 222a a a n x a n x x dx x dx a a a a ππ⎛⎫⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭⎝⎭⎝⎭=-=--⎰⎰ 22220000112112cos cos 4a a a a n x a n xx dx x dx dx x dx a a a a a aππ=--+⎰⎰⎰⎰2222222260132412a a a a n n ππ⎛⎫ ⎪⎝⎭=--+=-(3)()()()(n n i i n x n x p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫-∇-∇ ⎪ ⎪⎝⎭⎝⎭==⎰⎰22022sin cos sin aan n x n x n n x i dx i dx a a a a a πππππ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-=-=⎰⎰0022022cos cos 222sin aaaa n x i n x n a a a n n x n i dx i a a a ππππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-==-=-⎰0=(4)()()222222220sin 2sin an n n x x x a n x p p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∂∂--∂∂-==⎰⎰2222222230022sin sin sin a an n x n a a a a n x n x dx dx a a πππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--==⎰⎰002222223301221cos sin 222a a a n x a n x x a n a n n a a dx πππππ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭-==-⎰22222n mE n a π==2.12 考虑质量为m 的粒子被限制在宽度为a 的一维无限深势阱();;0,2,2ax V x a x ⎧⎪⎪⎨⎪⎪⎩<=∞> 中运动,(1)粒子的能级和相应的波函数;(2)粒子处于基态的动量分布. 解:(1)在阱内体系所满足的定态薛定谔方程是2222d E m dx ψψ=- ,2a x < (2.12.1)在阱外,定态薛定谔方程为()2222V x d E m dx ψψψ+=- ,2a x > (2.12.2) (2.12.2)式中,()x V →∞.根据波函数所满足的连续性和有限性条件,只有当0ψ=时,(2.12.2)式才能成立,所以有0ψ=,2ax >(2.12.3) 该条件为解(2.12.1)式时所需的边界条件.为书写简便,引入记号1222mEα⎛⎫⎪⎝⎭= (2.12.4) 则(2.12.1)式简写为2220d dx αψψ+=,2a x <它的解是sin cos A x B x ψαα=+,ax <(2.12.5) 根据ψ的连续性,由(2.12.3)式20a ψ⎛⎫± ⎪⎝⎭=,代入(2.12.5),有22sin cos 0aaA B αα+=, 22sin cos 0aaA B αα-+=.由此得到2sin 0aA α=,2cos 0aB α=. (2.12.6)A 和B 不能同时为零,否则ψ到处为零,这在物理上是没有意义的.因此,我们得到两组解:(1) 0A =,2cos 0aα= (2.12.7) (2) 0B =,2sin 0aα= (2.12.8)由此可求得22anαπ=,1,2,3,n = (2.12.9)对于第一组解,n 为奇数;对于第二组解,n 为偶数. 0n =对应于ψ恒为零的解,n 等于负整数时解与n 等于相应正整数时解线性相关(仅差一负号),都不取.由(2.12.4)式和(2.12.9)式,得到体系的能量为22222n n E maπ= ,n 为正整数. (2.12.10) 将(2.12.7)式、(2.12.8)式依次代入(2.12.5)式中,并考虑(2.12.9)及(2.12.3)两式,得到一组解的波函数为sin ,20,2n n aA x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正偶数 (2.12.11)另一组解的波函数为cos ,20,2n n aB x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正奇数 (2.12.12)由归一化条件21dx ψ∞-∞=⎰可得常数A B ==(2)粒子处于基态时1n =,体系的能量为22122E ma π= ,波函数为1x aπψ=,对应于动量空间的波函数为:()()221a a i i px px p x e dx x e dx a πϕψ∞---∞-⎫⎛⎫⎪ ⎪⎪⎝⎭⎭==⎰22c os 2aipx a ap x e dx a π--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭==⎰ 其中积分项2cosaipx a x edx a π--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰采用两次分部积分求出: 222222cossin sin a i px a a ai ipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-⎰⎰222sin i ai a p p aipx a i eep a a x e dx a πππ---⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ (I)222222cossincos aipx a a aiipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=---⎰⎰2cos aipx a i a p x e dx aππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=-⎰ (II) 结合(I)、(II)两式可得2222222222cos 2cos i a i a p p ai px a a ap a e e a p p a x e dx a πππππ---⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭+= ⎪ ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎝⎭⎝⎭- ⎪ ⎪⎝⎭⎝⎭=⎰即()22cos a i px a ap a p x e dx a ππϕ--⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭== . 粒子处于基态的动量分布为()222224cos 221ap ap a p p a a p a πππϕπ⎛⎫ ⎪⎝⎭=⎡⎤⎛⎫⎛⎫++ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.14 粒子在如图所示的势阱中运动,设粒子处于第n 个束缚态,相应的能级为n E ,如0n V E ,求粒子在阱外出现的概率.解:00E V <<的情况下粒子处于束缚态:在阱外2ax ≥,定态波动方程为 ()022220V d m E dx ψψ--=令β=考虑到束缚态边界条件(x →∞处,()0x ψ→),方程应取如下形式的解(),2,2xx a Ae x x a Be x ββψ-⎧⎪⎪⎨⎪⎪⎩≥=≤-常数A 与B 由归一化条件确定(由于势场具有对称性A B =).在阱内2ax ≤,定态波动方程表示为22220d mE dx ψψ+= 令k =波函数偶宇称态的解为()cos x C kx ψ ,奇宇称态的解为()sin x D kx ψ . (a) 偶宇称态,波函数()x ψ及其微商()x ψ'在2ax =处是连续的; 22cos cos 2a a x x a xaC kx C k AeAe ββ==--=⇒=()()222cos sin 2xa a x x aAeC kx akC k Ae βββ-==-''-=⇒=-两式相比可得到能级公式为tan 2ka kβ=. 如0n V E ,k β=→=,()2122n ka π+→ ()2222222222+xa a aa a xB A A Aee e e dx Bedx dx x ββββββββψ∞------∞+===⎰⎰⎰阱外带入关系式2cos 2aa C k Ae β-=得()222cos 2C kax dx ψβ=⎰阱外()222221sin 22cos aa C C a ka kdx C kx dx x ψ-+==⎰⎰阱内由于()2122n ka π+→,所以2cos 02ka →,sin 0ka →,粒子出现在阱外的概率远小于粒子出现在阱内的概率()()2222C a dx dx x x ψψ≈≈⎰⎰全空间阱内粒子出现在阱外的概率为()()220222c cos 2=o 2=s =222C k ka V a E dxC a a dxa x x βββψψ⎰⎰全空间阱外22220222221cos 21tan 112ka k k E k V a k ββ⎝⎭====+⎛⎫+ ⎪+⎝⎭=+⎝⎭⎝⎭.2.16 利用厄米多项式的递推关系()()()11220n n n H H nH ξξξξ+--+=,()()12n n H nH ξξ-=',求证()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+,()()11()n n n d x x x dx ψα-+⎤⎥⎥⎦=, 并由此证明()n x ψ态下0x =,2nE V =,0p =,222n p m E T ==. 证明:(1)谐振子波函数()()22n n x H ξψξ-=,其中xξα=,α=关于Hermite 多项式有递推关系()()()11220n n n H H nH ξξξξ+--+=22ξ-得()()()22222211220n n n H H H ξξξξξξ---+--+=()()()2222221102n n n H H H ξξξξξξα---+--+= (*)()()()1120n n n x x xx αψ+--+=由此即得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=(2) 由()()2n n x H ξψξ-=,()()()()()()()()222222x x x n n n n d d d dx dx dx d dx x H x e H x e H x αααψααα---⎫⎫⎛⎫⎪⎪ ⎪=+⎨⎬⎪ ⎪⎪⎭⎝⎭⎭= ()()()()()2222212x x n n x e H x e n H x αααααα---⎫⎛⎫⎪ ⎪=-+⎬⎪⎪⎝⎭⎭(()()()()2222212x x n n x H x n H x ααααα---=-+代入(*)的变形式得()()()222222112n n n H H H ξξξαξξξ---+-=+()(()()()()2222212x x n n n d x dx x H x n H x αααψαα---=-+()()()()22222112122x n n n H H n H x αξξαξξα--+---=-++⎫⎪⎪⎭()()()1112n n n x x x αψ⎫⎪⎪⎭+--=- ()()11n n x x α-+⎤⎥⎥⎦=(3)()()111n n n n nx x dx dx x x ψαψψ+∞+∞**-∞-+-∞⎤⎥⎥⎦==⎰⎰()()11n n n n x x dx dx ψψψψ-++∞+∞**-∞-∞=0=(4)()222222111222n n n n n n V m x m x m x V dx dx dx ωωωψψψψψψ+∞+∞+∞***-∞-∞-∞⎛⎫ ⎪⎝⎭====⎰⎰⎰由(1)得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+再乘以x 得()()2111()n n n x x x x ψψψα-+⎤⎥⎥⎦=()()()()2211n n n n x x x x αα-+⎫⎤⎤⎪⎥⎥⎪⎥⎦⎦⎤⎥=⎭⎥⎦()()()()2222112n n n n x x x ψα-+⎤⎥⎦=++ ()()()()()222222112n n n n n n x xdx n dx x x x ψψψψα+∞+∞**-∞-∞-+⎧⎫⎤⎨⎬⎩=⎭=⎥⎦+++⎰⎰()()()()222002112n n n n n n x dx n x dx x dx ψψψψψψα+∞+∞**-++∞∞*--∞-∞⎫⎪=++⎬⎪⎩⎭⎰ ()2212n α=+()()222222212111122221112222n n n n E m x m m V ωωωωα=++⎛⎫=+= ⎪⎝⎭==(5)()()11n n n n n n n d d i dx dx i i x dx d p d x x xψψψψψα+∞+∞+∞**-∞-∞-+*-∞--⎤⎛⎫-⎥ ⎪⎝⎭⎥⎦===⎰⎰⎰()()11000n n n n i x x dx dx ψψαψψ-++∞+∞**-∞-∞⎫⎪=-=⎬⎪⎭(6)()()22221121222nn n nnd dm dx m dxxpT dxmx dxαψψψ+∞+∞**-∞--∞+⎧⎫⎤⎪⎪⎥⎨⎬⎥⎪⎪⎛⎫--⎪⎝⎭⎦⎩⎭===⎰⎰()()()() 222 2n nn nn n mx x dx dx x x αααψψ+∞+∞*-*-∞∞+-⎧⎫⎧⎫⎤⎤⎪⎪⎪⎪⎥⎥⎨⎬⎨⎬⎥⎥⎪⎪⎪⎪⎫⎪-⎬⎪⎭⎦⎦⎩⎭⎩⎭=()()()()220022214nn n nnndx dxx xnmx dxψψψψαψψ+∞+∞**-∞+-∞-⎫⎪⎪⎬⎪⎪⎪⎩⎭+∞*-∞+-=-⎰⎰⎰()222111222212144nm nn Enm mωωα⎛⎫⎪⎪⎝⎭⎛⎫⎪⎝⎭+==+=+=2.17 质量为m的粒子处于势阱()220;,1,20;xxxm xVω∞⎧>=≤⎪⎨⎪⎩中,求粒子的可能能量.提示:利用谐振子波函数()nxψ的奇偶性()()()1nn nx xψψ-=-.解:线性谐振子对应于本正函数()()221212122!xn nnx e H xnαααπψ-⎛⎫⎪=⎪⎝⎭,α=的本征值为12nE nω⎛⎫=+⎪⎝⎭.题中0x≤区域,粒子的波函数满足()0xϕ=.0x>区域粒子的波函数满足边界条件()00ϕ=,()0ϕ∞=,由波函数的连续性可知()00ϕ=.由谐振子波函数()nxψ的奇偶性条件()()()1nn nx xψψ-=-,我们得知只有当n取奇数时连续性条件才被满足,故此时粒子的可能能量值为()1321222nE n nωω⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,0,1,2,n=.相应的本正函数为()()21n nx xϕ+=.()()()222222121011122n n n A x dx A x dx A x dx ψψϕ+∞+∞+∞++-∞====⎰⎰⎰,故A =.2.18 设()1,r t ψ 和()2,r t ψ 是不含时势场()V r中薛定谔方程的两个解,证明对变量变化的全空间积分312d x ψψ*⎰与时间无关,即3120d d x dtψψ*=⎰. 证明:由题意得()1,r t ψ 和()2,r t ψ分别满足薛定谔波动方程()()()()22111,,,2i r t r t V r r t t m ψψψ∂=-∇+∂ (2.18.1) ()()()()22222,,,2i r t r t V r r t t mψψψ∂=-∇+∂ (2.18.2) ()1,r t ψ*⨯ ()2.18.2 - ()2,r t ψ⨯()2.18.1*()()()()()()()()222122112,,,,,,2i r t r t r t r t r t r t t mψψψψψψ***∂=∇-∇∂()()()()()22112,,,,2r t r t r t r t mψψψψ**=∇⋅∇-∇上式对全空间进行积分()()()()()()()()233122112,,,,,,2i r t r t d x r t r t r t r t d x t mψψψψψψ***∂=∇⋅∇-∇∂⎰⎰ ()()()()()22112,,,,2r t r t r t r t ds m ψψψψ**=∇-∇⋅⎰由于无穷远处波函数为零,积分项()()()()()2112,,,,r t r t r t r t ψψψψ**∇-∇⎰ 为零,即()()()132,0,d d x dtr t r t ψψ*= .。

第二章 波函数

第二章 波函数

自由粒子的能量
E p 2 / 2m
2 2 i t 2m
i E t
自由粒子波函数所满足的微分方程
自由粒子的薛定谔方程
若粒子在势场中运动,其势能为U(r),在这种情况 下,粒子的能量是 p2
E 2m U (r )
类比自由粒子的情况,得到波函数 所满足的微分方程
2 1 2 1 2 px A exp[ i(p r Et ) / ] 2 px 2 x

2 2 p x x 2
2
同理
2 2 2 2 p y y
2 2 2 p z2 z
可得
2 2 2 2 2 ( 2 2 2 ) ( p x p z2 p z2 ) x y z
k 2
A cos(k r t )
t )]

2
2 德布罗意自由粒子的平面波
利用de Broglie物质波的概念,我们可以得到量子力学中自由 粒子平面波的表达式
2i ( x, t ) A exp[ ( p x x Et )] h
2p x k h 2
A 薛定谔方程适用条件
• 只适用于低能粒子的体系,粒子具有较慢的运动 速度(υ<<c)
• 要求没有粒子的产生和湮灭,即粒子的数目始终保 持不变,--粒子数守恒
B.波动方程的建立
自由粒子的波函数
i A exp[ (p r Et )]
i i 将上式对t 求微商 EA exp[ i(p r Et ) / ] E t 即 i E t i i p x A exp[ i(p r Et ) / ] p x 对x求微商 x

第二章 波函数与薛定谔方程

第二章 波函数与薛定谔方程
1. 几率密度
在t时刻r点,单位体积内找到粒子的几率是: ω (r,t)=dW(r,t)/dτ =C|Ψ (r,t)|2 在体积V内,t时刻找到粒子的几率为: W(t)=∫VdW =∫Vω (r,t)dτ =C∫V|Ψ (r,t)|2dτ
2. 平方可积
由于粒子存在空间中, 在全空间找到粒子的几率应等于1,所以: ∫∞|Ψ (r,t)|2dτ =1, 无穷大表示对整 3.波函数的归一化条件 个空间积分
• 对于一维薛定谔方程,如果ψ1和ψ2是某个能量特 征值E的两个线性独立解,则 ψ1 ψ2’ - ψ2 ψ1’ =C(常数)
• 对于一维薛定谔方程,与任何一个能量特征值相 应的线性独立解最多有两个,即每个能级最多有 两个简并态。
关于定态薛定谔方程的定理
• 对于一维束缚态,所有能级都是非简并的,波 函数为实函数。 • 对于一维束缚定态,如果V(x)为偶宇称,则每 一个ψE(x)都有明确的宇称性。 例1 粒子的一维自由运动。
1 2 2
) 代入方程可得 u ( 满足的微分方程
u '' 2 u ' ( 1)u 0
u( ) 有限值, (-< <)
可得厄密方程本征值问题的本征值:
n 2n 1
例如
(n 0,1, 2,3, )
u 1, 1, E

2 3 u , 3, E 2
( )d 2

2

[ ]d
d dt
( )d

i 2


[ ]d
其微分形式与 流体力学中连 续性方程的形 式相同
d dt

(r , t )d Jd

量子力学第二章波函数

量子力学第二章波函数

第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。

自由粒子是不受力场作用的,它的能量与动量都是常量。

如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。

这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。

它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。

究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。

例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。

我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。

但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。

这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。

除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。

为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。

按照这种解释,描写粒子的波及是几率波。

按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。

但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。

第二章 波函数

第二章 波函数

波恩对波函数的统计解释: 波恩对波函数的统计解释 : 波函数在空间中某一点的 强度(振幅绝对值的平方)和在该点找到粒子的几率 强度 ( 振幅绝对值的平方 ) 和在该点找到粒子的 几率 成正比.波函数又称为几率波 几率波(Probability wave ). 成正比.波函数又称为几率波 . 按照波函数的统计解释,在粒子的衍射实验中, 按照波函数的统计解释,在粒子的衍射实验中, 衍射图样中衍射极大的地方,粒子投入的几率就大 极大的地方 几率就大, 衍射图样中衍射极大的地方,粒子投入的几率就大, 投射的粒子数也多;衍射极小的地方, 投射的粒子数也多;衍射极小的地方,粒子投射的几 率很小或等于零,粒子数很少或没有,相应地, 率很小或等于零,粒子数很少或没有,相应地,波的 强度很小或等于零. 强度很小或等于零. 人们曾经认为波是有它所描写的粒子组成的. 人们曾经认为波是有它所描写的粒子组成的.这 种看法是不正确的. 种看法是不正确的. 光的衍射现象是由波的干涉产生的. 光的衍射现象是由波的干涉产生的. 如果波是有它所描写的粒子组成, 如果波是有它所描写的粒子组成,则粒子流的衍射 现象应当是由于组成波的这些粒子相互作用而形成的 应当是由于组成波的这些粒子相互作用而形成的. 现象应当是由于组成波的这些粒子相互作用而形成的.
1 ik r ψ k (r ) = e V
(2.14) )
2.2 Superposition Principle (量子力学中的态叠加原理 量子力学中的态叠加原理) 量子力学中的态叠加原理
一,态叠加原理 经典物理中,声波和光波都遵从叠加原理. 经典物理中,声波和光波都遵从叠加原理.量子力学 中也存在一个类似的原理.称为态叠加原理 态叠加原理, 中也存在一个类似的原理.称为态叠加原理,是量子力学 原理的一个基本假设,适用于一切微观粒子的量子态. 原理的一个基本假设,适用于一切微观粒子的量子态.在 双缝实验中, 表示粒子穿过上缝1到达屏 的状态, 到达屏P的状态 Ψ 双缝实验中, 1 表示粒子穿过上缝 到达屏 的状态, 2 用 Ψ 表示粒子穿过下缝2到达屏 的的状态, 到达屏P的的状态 表示粒子穿过下缝 到达屏 的的状态,用 Ψ 表示粒子穿过两狭缝到达屏P的状态 的状态. 表示粒子穿过两狭缝到达屏 的状态.

量子力学第二章波函数和薛定谔方程 山东大学期末考试知识点复习

量子力学第二章波函数和薛定谔方程 山东大学期末考试知识点复习

量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习山东大学期末考试知识点述评第二章波函数和薛定谔方程1.微粒运动状态描述(1)波函数波函数ψ(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性,实际体系的波函数满足平方可积条件,即(2)波函数的意义波函数的模平方给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。

因此,标准的波函数应该是归一化的,即满足归一化条件非标准化波函数可以通过乘以标准化因子进行标准化。

(3)波函数的性质波函数ψ(r,t)满足叠加原理,如果ψi(r,t),i=1,2,…为微观粒子的可能状态,则这也是一种可能的状态。

山东大学期末考试知识点复习2.微态演化(1)薛定谔方程状态ψ(r,t)随时间演化满足薛定谔方程在…之间称为哈密顿算符,u(r,t)是势能,若已知初始状态ψ(r,0),由薛定谔方程可求出任意时刻t的状态ψ(r,t)。

(2)连续性方程由薛定谔方程可以推出连续性方程在…之间称为概率流密度,即沿着给定方向单位时间通过单位截面的概率,连续性方程是概率守恒定律的定域表现。

(3)定态薛定谔方成若体系的哈密顿不显含时间,即势场u不含t时,薛定谔方程可以分离变量,得到定态波函数解其中e是能量本征值,ψe(R)是相应的本征函数,满足稳态薛定谔方程山东大学期末考试知识点复习3.一维束缚稳态问题的描述(1)一维束缚定态问题由下面的方程和边界条件组成束缚态能量满足条件e<U(±∞). (2)束缚定态解的性质束缚定态中的能量取值不连续,形成能级,同一能级只对应一个本征函数,无简并现象,第n个能级en,n∈n对应的本征函数ψn(x)有n个内部零点(不包括边界)。

束缚态本征函数ψN(x)可以归一化,且归一化本征函数满足正交归一化本征函数集合具有完备性,任何平方可积函数ψ(x)都可以展开为归一化本征函数的线性组合,即其中膨胀系数为(3)典型实例:一维简谐振子一般的解析势阱在其极小值附近都可以近似为简谐振子势,其标准形式为在上述势场中,粒子作束缚运动,能级为山东大学期末考试知识点复习相应的本征函数为简谐振子的本征函数满足递推关系4.一维散射问题(1)问题描述以能量e>u(±∞)自左边向势场u(x)入射的粒子满足下面的方程和边界条件(2)问题的重要性(3)典型实例:粒子对方势垒的透射山东大学期末考试知识点述评能量为e的粒子入射到一个宽度为a,高度为u0的方形势垒反射系数和透射系数分别为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i En t
1 n sin ( x a)e 2a a
i En t
29
束缚态:本征能 量小于势能,即 E<U0 基态:体系能量最 低的态
本征函数的奇偶性 取决于势能函数
30
2.7 线性谐振子
在自然界中一维谐振子广泛存在,任何体系在平衡位置附
近的小振动,如分子的振动、晶格的振动、原子和表面振动以
dW ( x, y , z, t ) ( x, y , z, t ) d
几率密度为:
2
w( x, y , z, t ) ( x, y , z, t )
2
归一化条件可表示为:


( x, y, z, t ) d 1
2
那么,称为归一化波函数
归一化波函数还可以含有一个相因子 e i
2.5 定态薛定谔方程
我们讨论力场中的势能U(r)与时间无关的情况
22
2 i U (r) t 2
2
考虑一种特解
(r, t ) (r) f (t )
2
i df 1 2 [ U (r ) ] 常数=E f dt 2
Et ( r, t ) ( r )exp( i ) ( r)exp( i t )
Aei (krt )
E h p k

(2) 如果粒子受随时间或位置变化的力场的作用,可以用一个函数来描
写粒子的波,称为波函数。
(3)人们曾经错误地认为波是由它所描写的粒子组成的。
若粒子流的衍射现象是由于组成波的这些粒子相互作用而形成的,
衍射图样应该与粒子流强度有关,但实验证明它们两者却无关。
利用波函数在边界处连续,
( a ) ( a ) 0
体系的能量
E

2
2 2
8m a
n , n 1, 2, 3, ...
2
28
相应的归一化的波函数为
n 1 sin ( x a ), 2a n a 0,
定态波函数为
xa x a
n ( x, t ) n e
13
2.2 态叠加原理
一、态叠加原理 经典物理中,声波和光波都遵从叠加原理。 量子力学中的态叠加原理,是量子力学原理的一个基本假设。
c11 c2 2
c1,c2是复数
含义:当粒子处于态 1 和态 2 的线性叠加态时,粒子既处 在态 1 ,又处在态 2 。
c11 c2 2 ( c1 1 c2 2 )( c11 c2 2 )
第二章 波函数和薛定谔方程
2.1 微观态的波函数描述及其统计诠 释 2.2 态叠加原理
2.3 薛定谔方程
2.4 粒子流密度和粒子数守恒定律 2.5 定态薛定谔方程
1
经典粒子的物理描述
• • • • • 1、参照系 (坐标系) 2、坐标 r 3、速度(动量) v or (p) 4、加速度 a 5、宏观实践中结果很好
(5)波恩提出的波函数统计诠释:波函数在空间某点的强度 (振幅绝对值的平方)和在该点找到粒子的几率成比例。
描写粒子的波称为几率波
9
(6)波函数的特性
波函数可以用来描写体系的量子状态(简称态或状态)。
在经典力学中,一旦用来描写质点状态的坐标和动量确定后, 其他力学量也确定了。 在量子力学中,用来描写体系某一量子态的波函数确定后, 体系的力学量一般有许多可能取值,这些可能取值各自以一 定的几率出现。
2
二、能量和动量算符
E i t
p i
19
三、薛定谔方程
一般情况下
p E U (r ) 2
2
根据能量和动量算符
2 2 i U (r) t 2
2.4 粒子流密度和粒子数守恒定律
20
几率密度
w(r, t ) (r, t ) (r, t )
及辐射场的振动等都可以分解成若干彼此独立的简谐振动。 质量为m、频率为ω的振子的哈密顿量可表示为
2 px 1 H m 2 x 2 2m 2
定态薛定谔方程
2 d 2 1 2 2 ( x ) m x ( x ) E ( x ) 2 31 2m dx 2

m x x,
2 2 2 2 2 2 2 x y z
(2)
18
利用自由粒子
p E 2
2
和上面方程(1)、(2)
得:
2 2 i t 2
i j k x y z 1 1 er e e r r r sin 2 2 2 2 2 2 x y z
*
* w * t t t
几率密度随时间的变化率
利用薛定谔方程
2 2 i 2 U (r ) i U (r ) ; t 2 t 2 i i 2 * U (r ) * t 2 i
11
量子力学中并不排斥使用一些不能归一的理想波函数,如 描述自由粒子的平面波函数。
(r, t ) A exp[i (k r t )]
E hv
p k
例题: 求下面氢原子的1s电子的波函数的归一化系数
1s (r, , ) 1s (r ) e
r / a
(r, t ) Ae
i ( pr Et )
Ae
i ( k r t )
i E (1) t
p 2
2 2
i j k x y z 1 1 er e e r r r sin
5
2、波函数统计诠释
(1)机枪子弹的“双缝衍射”
1(x)和2(x)分别为单独开缝1或2时,靶上子弹的密度分布,
双缝齐开时,靶上子弹的密度分布1(x) +2(x)
6
(2)声波的双缝衍射
双缝齐开时,声波的强度分布不等于I1(x) +I2(x),还包括两 者的干涉项。
7
(3)电子 的双缝衍射
26
2.6 一维无限深势阱
在一维空间运动的粒子,其势场满足
0 U ( x)
x a x a
(1)阱外(xa, x -a)
因为势壁无限高,粒子不能穿透阱壁,按照波函数的统计解
释,在阱壁和阱外粒子的波函数为零。
0,
x a
27
(2)阱内(a> x > -a)
2 2 E 2 2m x
12

根据归一化的定义,我们有
2 3 2
2 r / a r / a d r dxdydz 4 r ( e ) e dr 1s 1s 0
4 r 2 e 2 r / a dr a 3
0

归一化的波函数为
~ 1s
1
a 3
e r / a
2
电子的双缝衍射实验 ——经典理解
电 子 束
3
看电子的双缝衍射实验
1、设入射 电子流很微 弱,几乎是
一个一个地
通过双缝。 图中的照片 是在不同时 间下拍的。
2、强电流
短时曝光
4
2.1 波函数的统计诠释
1、如何解释一个波所描述的一个粒子的行为?
(1)平面波可以用来描述自由粒子。
x Y A cos[2 ( t )] r n A cos[2 ( t )] A cos[ k r t ]
以En表示体系能量算符的第n个本征值, n是与En相应的波 函数,则体系的第n个定态波函数为
n (r, t ) n (r )e
iEnt
(r , t ) cnn (r , t ) cn n (r )e
n n
iEnt
25
转至第三章“一维定态问题”
• 具体阐述薛定谔方程的求解过程, • 波函数的获取方法 • 熟悉几个重要的应用过程中需要的物理 模型
E是体系处在这个波函数所描写的状态时的能量。 定态与定态波函数
23
定态薛定谔方程
2 2 U (r ) E 2
哈密顿算符
2 ˆ H U (r ) 2
2
本征值方程
ˆ E H
24
当体系处于能量本征态 n 时,粒子的能量有确定值En
式中
1 ipr / p (r) e 3/ 2 (2)
1 c(p, t ) 3/ 2 (2)
(r, t )e
i pr
dxdydz
16
1 (r, t ) 3/ 2 (2)
c(p, t )e
i pr
dpx dpy dpz
(r, t)和c(p, t)是同一种状态的两种不同的描述方式, (r, t) 是以坐标为自变量的波函数, c(p, t)是以动量为自变量的波
*
w i * * ( ) t 2

i * J ( * ) 2
21
粒子数守恒定律
高斯定理
w J 0 t
w V 诠释对波函数提出的要求: 波函数必须是有限的、连续的和单值的:标准化条件
函数。
2.3 薛定谔方程
如何获取波函数 经典力学中,决定任一时刻质点的运动方程-牛顿运动方程,
量子力学中,决定微观粒子任一时刻的状态方程-薛定谔方程 17
决定微观粒子任一时刻的状态方程必须满足两个条件:
(1)方程是线性的 (2)方程的系数不应包括状态参量。
一、描述自由粒子的状态方程
自由粒子的波函数
2
m
2E
d 2 ( ) 0 2 d
相关文档
最新文档