电磁场与电磁波第三章恒定磁场1

合集下载

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。

3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。

因为电场强度大小是该点电位的变化率。

3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。

此时该点电位可能是任一个不为零的常数。

3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。

3.5 电容是如何定义的?写出计算电容的基本步骤。

答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。

答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。

计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。

表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。

教科版高中物理必修第三册精品课件 第三章 电磁场与电磁波初步 电磁波的发现及其应用 微观世界的量子化

教科版高中物理必修第三册精品课件 第三章 电磁场与电磁波初步 电磁波的发现及其应用 微观世界的量子化

误;根据麦克斯韦电磁场理论可知,在周期性振荡的电场周围一定产生同频
率的周期性振荡的磁场,D正确。
二、电磁波和电磁波谱
1.电磁波:
(1)由变化的电场和磁场交替产生而形成的电磁场是 由近及远
传播
的,这种变化的电磁场在空间的传播称为电磁波。
(2)麦克斯韦在1865年从理论上预见了电磁波的存在,并计算出其传播速度
B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变
化的电场
C.在均匀变化的电场周围一定产生均匀变化的磁场,在均匀变化的磁场周
围一定产生均匀变化的电场
D.在周期性振荡的电场周围一定产生同频率的周期性振荡的磁场
答案 D
解析 根据麦克斯韦电磁场理论,只有变化的电场才能产生磁场,均匀变化
的电场产生恒定的磁场,非均匀变化的电场才产生变化的磁场,A、B、C错
间引起 变化的磁场 ……于是,变化的电场和变化的磁场交替产生, 形成
不可分割的统一体,称为电磁场。
不是恒定的电场和磁场的叠加
易错辨析 判一判
(1)只有均匀变化的电场(磁场)才能产生均匀变化的磁场(电场)。( × )
提示 均匀变化的电场(磁场)产生恒定的磁场(电场)。周期性变化的电场
(磁场)产生同频率的周期性变化的磁场(电场)。
等于 光速 ,由此他认为光是电磁波的一种形态。1888年,德国物理学家
赫兹 第一次用实验证实了电磁波的存在。
。如果用λ表示它的
波长,f表示它的频率,则这三个物理量间的关系是c= λf 。
(3)电磁波在真空中传播的速度c= 3.0×108 m/s
2.电磁波谱:
(1)概念:按 波长
(或频率)的顺序把所有电磁波排列起来的波谱。

恒定磁场

恒定磁场

三、恒定磁场电流或运动电荷在空间产生磁场。

不随时间变化的磁场称恒定磁场。

它是恒定电流周围空间中存在的一种特殊形态的物质。

磁场的基本特征是对置于其中的电流有力的作用。

永久磁铁的磁场也是恒定磁场。

1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。

电流元受到的安培力 B l d I f d⨯''=毕奥——萨伐尔定律 ⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。

⎰⎰⎰⨯=Vrr dV J B 24 πμ 2、磁通连续性定理磁场可以用磁力线描述。

若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。

磁场中的高斯定理 0d =⋅⎰⎰SS B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。

应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅VSdV B S B d0=⎰⎰⎰⋅∇VdV B由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。

这是磁场的基本性质之一,称为无散性。

磁场是无源场。

3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。

总的磁场由自由电流与分子电流共同产生。

永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。

磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。

磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。

n IS P m =磁场强度 M B H-=0μ 或 )(0M H B +=μ本构方程 由m H M χ=可得 H B μ=,该式称为磁媒质的成分方程或本构方程。

磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质1>>r μ。

4、安培环路定律磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。

回路的方向与电流的正向按右螺旋规则选定。

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性

电磁场与电磁波教材

电磁场与电磁波教材

电磁场与电磁波摘要:电磁场与电磁波课程与电气专业息息相关,是我们电气专业学生必须学习的,这学期我们进行了电磁场与电磁波的学习。

主要讲解了矢量分析,电磁场的基本定律,时变电磁场,简述了静态电磁场极其边值问题的解。

第一章:矢量分析是研究电磁场在空间分布和变化规律的基本数学工具之一。

第二章以大学物理(电磁学)为基础,介绍电磁场的基本物理量和基本规律,第三章分别介绍了静电场、恒定电场和恒定磁场的分析方法。

第四章主要讨论时变电磁场的普遍规律。

一、矢量分析电磁场是是分布在三维空间的矢量场,矢量分析是研究电磁场在空间的分布和变化规律的基本教学工具之一。

1:标量和矢量(1) 标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

矢量一旦被赋予“物理单位”,则成为一个具有物理意义的矢量,如:电场强度矢量E 、磁场强度矢量H 、作用力矢量F 、速度矢量v 等。

(2) 两个矢量A 与B 相加,其和是另一个矢量D 。

矢量D=A+B 可按平行四边形法则得到:从同一点画出矢量A 与B ,构成一个平行四边形,其对角线矢量即为矢量D 。

两个矢量A 与B 的点积是一个标量,定义为矢量A 与B 的与它们之间较小的夹角的余弦之积。

(3) 两个矢量A 与B 的叉积是一个矢量,它垂直于包含矢量A 和B 的平面,大小定义为矢量A 与B 的与它们之间较小的夹角的正弦之积,方向为当右手四个手指从矢量A 到B 旋转时大拇指的方向。

2:标量场的梯度(1)等值面: 标量场取得同一数值的点在空间形成的曲面,形象直观地描述了物理量在空间的分布状态。

对任意给定的常数C ,方程C z y x u ),,(就是等值方程。

(2)梯度的概念:标量场u 在点M 处的梯度是一个矢量,它的方向沿场量u 变化率最大的方向,大小等于其最大变化率,并记作grad u,即 grad u= e l |max直角坐标系中梯度的表达式为grad u=,标量场u 的梯度可用哈密顿算符表示为grad u=().u =(3)标量场的梯度具有以下特性:①标量场u 的梯度是一个矢量场,通常称▽u为标量场u 所产生的梯度场;②标量场u (M )中,再给定点沿任意方向l 的方向导数等于梯度在该方向上的投影;③标量场u (M )中每一点M 处的梯度,垂直于过该点的等值面,且指向u (M )增加的方向。

电磁场与电磁波恒定磁场ppt课件

电磁场与电磁波恒定磁场ppt课件

J
,在空间中
激励的磁感应强度为
B(r )
0
4
J (r
|
') r
(rr'
|3
r
'
)
d
'
由于
两端对场点
坐标取散度
B
0
4
[
J (r
'
)
|
r r
rr'
'
|3
]d
'
|
r r
rr'
'
|3
(
|
r
1
r
'
) |
所以
B
0
4
[( |
r
1
r
'
) |
J (r
'
)]d
'
应用矢量恒等式:
2 0I r d 0I
0 2r
2
2
0 d 0I
图4.2.4 任意闭合环路与电流的关系
若积分的闭合环路不绕过I,如图4.2.4(b)所示,则上式的积分变成
B
dl
0I
B d
c
2 A
B A
闭合回路,当绕B行一dl周后,0BI
A
B
因此
d 0
c
2 A
安培提出:磁感应强度在空间任意闭合环路上的积分(即环流)
Im dIm M dl M d S
c
s
又因为
Im Jm dS M dS
a
sin )
0 SI 4
c
os
r2
0 SI 4
( az ar r2

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

第三章 静态场及其边值问题的解 电磁场与电磁波 课件 谢处方

第三章 静态场及其边值问题的解 电磁场与电磁波 课件 谢处方

l 0 2L C ln 2 0 a
2 0
ln

王喜昌教授编写
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
标量泊松方程
15
5. 电位的微分方程 在均匀介质中,有
D E E
在无源区域,
2
5
场矢量的折射关系
1
E1
E1t / E1n 1 / D1n 1 tan 1 tan 2 E2t / E2 n 2 / D2 n 2
导体表面的边界条件
1
E2
2
2
在静电平衡的情况下,导体内部的电场为0,则导体表面的 边界条件为
en D S en E 0
所以 D1 0 最后得
S 0 (b a) C1 , D1 0 0a S 0b S 0b C2 , D2 0a 0
C2 a D2 0 C1b D1 C2b D2
S 0 ( a b) 1 ( x) x, (0 ≤ x ≤ b) 0a S 0b 2 ( x) (a x), (b ≤ x ≤ a) 0a
王喜昌教授编写
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
9
4. 电位参考点 静电位不惟一,可以相差一个常数,即
C ( C )
为使空间各点电位具有确定值,可以选定空间某一点作为参考
点,且令参考点的电位为零,由于空间各点与参考点的电位差为确 定值,所以该点的电位也就具有确定值,即 选参考点 令参考点电位为零 电位确定值(电位差)
r r r o r P r r ( P) (o) E0 gdl E0 gdr E0 gr

电磁波与电磁场(总复习).

电磁波与电磁场(总复习).
2
5.电容C
q q U 1 2 1 1 q2 2 (We qU CU ) 2 2 2C We
V
1 n 电场能量:We qii 2 i 1
1 E DdV 2
二、计算
1.基本计算:均匀媒质、2种媒质中带电体周围的 D、E、 ? 分析方法:使用高斯定律
C
0 4
B(r )
0 4

V
J ( r ') R dV ' 3 R
J mS M n
3.基本方程: H dl I H J 本构关系: B H 矢量磁位: B A 4.边界条件:B2 n B1n 5. 电感:L I M 12

一主要知识点概念主要结论第五章时变电磁场一主要知识点
第 1章
矢量分析要点
一 、概念 1.“场”:定义、分类、几何描述方法? 2. 亥姆霍兹定理? 二、标量场 G e e e
l
x
x
y
y
z
z
P0
cos cos cos G l 0 x y z
3.瞬时矢量与复矢量之间的转换规则?
( x, y, z)e jt ] E( x, y, z, t ) Re[E
波动方程的2种形式?复数波动方程的推导? 二、计算: 1.场的瞬时形式与复矢量之间的转换? 2.已知磁场,求电场: 已知电场,求磁场:
第六章
平面电磁波
一、主要知识点 均匀平面波传播特性;波的极化 1.均匀平面波定义 2.无耗介质中 E ex E0 e jkz E( z, t ) ex E0m cos(t kz 0 )
计算: ?

电磁场与电磁波_章三习题答案

电磁场与电磁波_章三习题答案

第3章 恒定磁场点评:1、3-5题2()20m z z z Az B Az =∇⨯=-⨯∇+=-⨯=J M e e e ,这里用到了恒等式,课本344页A3-6()22==()20m Az BAz B Az φφφφ∇⨯=∇⨯+∇⨯+=∇⨯=-⨯∇+=-⨯=z z z z A A AA e e e e 当,J M2、3-17题。

这是一个近似求解,题目表述不太清楚。

这里应该是l 1>>l 2,因为l 1>>l 2,因此w 1影响可以忽略不计。

1、一个半径为a 的导体球带电荷量为Q ,以匀角速度ω 绕一个直径旋转,求球心处的磁感应强度B 。

解:球面上的电荷面密度为:24s Q a ρπ= 当球体以均匀角速度ω绕一直径旋转时,球面上位置矢量r a =r e 点处的电流线密度为:sin sin 4s s s s z r s a a Q a ϕϕρρρωωρθωθπ⨯⨯=J =v =r =e e e =e ω 图3-1将球面划分为无数个宽度为dl ad θ=的细圆环,则球面上任一个宽度为dl ad θ=的细圆环的电流为sin 4s Q d dI J dl ωθθπ== 细圆环的半径为sin b a θ=,圆环平面到球心的距离|cos |d a θ=,利用电流圆环的轴线上的磁场公式可得该细圆环电流在球心处产生的磁感应强度为:2233000223/222223/2s i n s i n 2()8(s i n c o s )8z z z b d IQ a d Q d d b d a a a μμωθθμωθθπθθπ===++B e e e 故整个球面电流在球心处产生的磁感应强度为:3000sin 86z z Q d Q a aπμωθθμωππ==⎰B e e3、若无限长半径为a 的圆柱体中电流密度2(4)z r r =+J e ,r ≤a ,试求圆柱体内外的磁感应强度。

解:取圆柱坐标系,当r ≤a 时,通过半径为r 的圆柱电流为222430018(4)(4)23r i z z s s I J ds e r r e ds d r r rdr r r πφπ⎛⎫=⋅=+⋅=+=+ ⎪⎝⎭⎰⎰⎰⎰ 由 0r l B dl I μ⋅=⎰ 求得 3201443r r ϕμ⎛⎫=+⎪⎝⎭B e 当r ≥a 时 ()224300018423a I d r r rdr a a πφπ⎛⎫=+=+ ⎪⎝⎭⎰⎰ 由 00lB dl I μ⋅=⎰ 求得 4301443a a r ϕμ⎛⎫=+ ⎪⎝⎭B e 5、半径为a 的磁介质球,其磁化强度为2()z Az B =+M e ,其中A 、B 均为常数。

电磁场与电磁波习题参考答案

电磁场与电磁波习题参考答案

电磁场与电磁波习题参考答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:S VFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

( × )8、标量场梯度的旋度恒等于0。

( √ )9、习题, 。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量 B 1n -B 2n =0。

7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

电磁场与电磁波答案(无填空答案)

电磁场与电磁波答案(无填空答案)

电磁场与电磁波复习材料简答2.试写出在理想导体表面电位所满足的边界条件。

一2•答:设理想导体内部电位対机,空气媒质中电位为观。

由于理想导1■本表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有〔3分)3.试简述静电平衡状态下带电导体的性质。

答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。

(3分)4.什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。

(3分)色散将使信号产生失真,从而影响通信质量。

(2分) aB dt ,试说明其物理意义,并写出方程的积分形式。

答:意义:随时间变化的磯场可以产生电场-其和分形式为:样•必=-[理廖C 右况6.试简述唯一性定理,并说明其意义。

答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的「这一定理称为唯一性定理4(3分9它的意义:给岀了定解的充要条件:既满足方程区满足边界条件的解是正确的。

7. 什么是群速?试写出群速与相速之间的关系式。

〔写出微分形式也对)VxE=5.已知麦克斯韦第二方程为 1.简述恒定磁场的性质,并写出其两个基本方程。

1■答:恒定谢场是连续的场或无散场,即谢感应强度沿任一闭合曲面的积分等于恒定磁场的源是矢量两个基本方答:它表明时变场中的磁场是由传导电§盍丿和位移电渍该方程的积分形芒为答:电磁波包络或能量的传播速度称为群速。

群速叫与相速®的关系式为:耳=―気厂(2分)1片畑8. 写出位移电流的表达式,它的提出有何意义?告,位移电流,=®位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。

9.简述亥姆霍兹定理,并说明其意义。

答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。

《电磁场与电磁波》恒定磁场

《电磁场与电磁波》恒定磁场

分界面磁化电流: Km (M1 M2 ) en
Im
M dl
l
安培环路定理
1.真空中的安培环路定理
l B dl 0 I
真空磁场中,磁感应强度沿任意回路的 环路积分等于真空的磁导率乘以穿过该 回路所限定面的电流的代数和;
2.一般形式的安培环路定理
l B dl 0 ( I Im )
H dl H dl I
PaQ
PbQ
c
I
闭合回路PaQcP:
Q
H dl 2I PaQcP
H dl H dl 2I
PaQ
PcQ
规定:积分路径不穿过电流回路所限定的面。
2.标量磁位的边值问题 微分方程
B 0
H 0
H m
m 0
m m 0 均匀媒质:=0
2m 0 标量磁位的微分方程
Sd
(1)常磁链系统:
Wm
1 2
H BdV
V
V
B2 dV
20
B2Sd
2d
20 20S
f
Wm g
k const
2 20 S
吸力:F 2 f
3.虚位移法举例
例:分析电磁铁吸力,气隙截面积S,长d
1. 恒定磁场基本方程 恒定磁场的性质可由下面一组基本方程描述:
磁通连续性定理 SB dS 0 安培环路定理 l H dl I
各向同性线性媒质的构成方程
B 0 H J
B H
恒定磁场的性质:有旋无散。
2.分界面的衔接条件
B 的衔接条件
2
B2n B2
S h
1 B1
B1n
SB dS 0
B1nS B2nS 0 B1n B2n

谢处方《电磁场与电磁波》(第4版)章节习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)章节习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解一、判断题1.为了简化空间电位分布的表达式,总可以将电位参考点选择在无穷远处。

()【答案】×2.焦耳定律只适用于传导电流,不适应于运流电流。

()【答案】√3.绝缘介质与导体分界面上,在静电情况下导体外的电力线总是垂直于导体表面的。

()【答案】√4.位移电流的假说就是变化的磁场产生电场的假说。

()【答案】×5.任意两个带电导体之间都存在电容,对电容有影响的因素包括导体几何形状,导体上的电荷量、两导体相对位置和空间介质。

()【答案】×6.恒定电场中理想导体内的电场强度为零。

()【答案】√7.空间体积中有电流时,该空间内表面上便有面电流。

()【答案】×8.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。

()【答案】×9.一个点电荷Q放在球形高斯面中心处。

如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。

()【答案】×台10.在线性磁介质中,由的关系可知,电感系数不仅与导线的几何尺寸、材料L Iψ=特性有关,还与通过线圈的电流有关。

( )【答案】×二、填空题1.镜像法是在所求场的区域之外,用_______来代替场问题的边界。

假想电荷和场区域原有的电荷一起产生的电场必须要满足_______。

【答案】一些假想电荷;原问题的边界条件。

2.磁介质中恒定磁场的基本方程为:_______。

【答案】,;,.d 0S B S =⎰v v Ñ0B ∇⋅=v d 0CH l ⋅=⎰v v ÑH J ∇⨯=v v 3.位移电流假说的实质是_______。

【答案】变化的电场可以产生磁场4.位移电流和真实电流(如传导电流和运流电流)的区别在于_______。

【答案】位移电流不对应任何带电质点的运动,只是电场随时间的变化率5.已知磁感应强度为,则m 的值为_______。

第3章 恒定磁场

第3章 恒定磁场



B A
引申——无限长直导线通直流I
A
az
0I 2
ln
r0 r
r0 是矢量磁位 的参考0点
电磁场与电磁波
北京邮电大学
27
§3.3 偶极子
Electric Dipole 由间距“很小”的2个等量正负“点”电荷组成 •间距:l
•“点”电荷:q1=q、q2=-q
Magnetic Dipole 半径“很小”的圆电流环 a I
B

0I
Idl sin
R2 dl aR
a
线电流
4 C R2
体电流

B

0
4

V
J aR R2
dV
面电流

B

0
J S aR dS
4 S R2
电磁场与电磁波
北京邮电大学
11
4. 受

F12

0 4
C2 C1
I 2dl2
它们说明:
C

B dl 0 I
C
• 磁通连续,磁力线是无头无尾的闭合曲线;
• 恒定磁场没有散度源,但有旋度源。
电磁场与电磁波
北京邮电大学
18
例1. 电流环在轴线上的磁场
已知: 半径a和电流I
有对称性,但找不到环线使磁场 强度相等.
直接求解.

B

S
dB

(安米) S

v
电磁场与电磁波
l
北京邮电大学
vΔt
5
§3-1 恒定磁场的基本方程
本节内容
先看一些试验定律:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ev
ev
0
在 r a 处 ,介质1、2与导体表面处
v J1mS

v M1

evr
ra

I 2 (1 0 ) a0 (1 2 )
ev
evr


I 2 (1 0 ) a0 (1 2 )
1
m

0
v
vv
B 0r H H
3.3 恒定磁场的边界条件
1.磁感应强度的法向边界条件
B1n B2n
evn

v B1

evn

v B2
磁场强度法向边界条件
1H1n 2H2n
evn

v
1H1

evn

v
2 H 2
2.磁场强度的切向边界条件
H1t H2t Js 如果面电流密度为零 H1t H2t
B1t
1
B2t
2
Js
如果面电流密度为零
B1t B2t
1 2
3.磁力线在界面的折射
vv B 、 H 线在界面处会发生折射
tan1 1 tan2 2
例题3.4 如图3.6所示,通有电流为I,半径为a 的无限长直导线埋于两种磁介质的分界面处,
两种磁介质的磁导率分别为 1、2 求导线外磁
0
如何推导?
两介质中的磁化强度矢量分别为
v M1

1 0 0
v H1
v M2

2 0 0
v H2
v M1

ev
I 2 (1 0 ) r0 (1 2 )
v M2

ev
I 1(2 0 ) r0 (1 2 )
两介质中的磁化体电流密度
v J1m


v M1

evz
ห้องสมุดไป่ตู้
1 r
r
[r
I 2 (1 0 ) ] r0(1 2 )

evr
1 r
z
[r
I 2 (1 0 ) ] r0 (1 2 )

0
v
v
J2m M2

evz
1 r
r
[r
I 1(2 0 ) ] r0 (1 2 )
v
vv
(B / 0 M ) J
令磁场强度为 v v
v
H B / 0 M
vv
H J
磁场强度与磁化强度的关系
vv
磁场强度与磁化强度成正比 M mH
vv
v
vv
v
H B / 0 M
H B / 0 mH
v
v
B 0(1 m )H

r
l2
H1


I 2 r(1
2
)
B1n B2n
H1 (2 / 1)H2
H2


I 1 r(1
2
)
确定方向
v B1

v B2


I 12 r(1 2
)
ev
H1


I 2 r(1
2
)
ev
H2


I 1 r(1
2
)
ev
v M



0
v H
场分布和磁化电流。
积分路径
1
I
2
z
a
e
v
v
Jm M
v J Sm

v M

evn
ev
vv
Ñ H dl I
l
H1
H2
B1
B2
边界条件 B1n B2n
vv
Ñ H dl I
vv vv
H1 dl1 H2 dl2 I
l
l1
H1 r H2 r I
第3章 恒 定 磁 场
3.1 真空中的恒定磁场及基本规律
3.1.1 磁感应强度 电流元 Idlv'在P点产生的磁感应强度为
v dB
0
v Idl '

evR

0
v Idl '

v R
4 R2
4 R3
Ñ v
B
0
4
l
v Idl '

v R
R3
如果电流按面分布
v
电流元为
v
v JS
dS
pvm

v iS
磁化强度矢量
v
N pvm
M lim k1
V 0 V
体磁化电流密度
v
v
Jm M
面磁化电流密度
v J Sm

v M

evn
3.2.2 介质中恒定磁场的基本方程
介质中的磁感应强度
v vv
B 0 (J Jm )
vv
v
B 0(J M )
4 R3
v R

v Idl '
evrr

evz
evz
(z
Idz
z'
'
)
已知
v Idl '

evz Idz'
v R

evr
r

evz
(
z

z'
)
R r2 (z z' )2 代入下式
v dB
0 4
v Idl '

v R
R3

0 4
evz Idz' [evrr evz (z z' )] [ r2 (z z' )2 ]3

evr
1 r
z
[r
I 1(2 0 ) ] r0 (1 2 )

0
在两介质边界处
介质1表面 介质2表面
v J1mS

v M1
ev

I 2 (1 0 ) r0(1 2 )
ev
ev

0
v J 2mS

v M2
ev

I 1(2 0 ) r0(1 2 )
'
Ò v
B
0
J S RdS '
4 S' R3
电流为体分布
电流元为
v JdV
'
vv
v
B
0
4
V'
J RdV ' R3
例题3.1 如图3.2所示,求真空中长度为l,通有
I 的直导线所产生的磁感应强度。
z
zr
l/2 Idz'
v
z'
R
O x
l/2
P点 y
v dB
0
vv Idl ' R
因 evz evr ev evz evz 0 故上式为
v dB

ev
0 I 4
[r2
rdz' (z z' )2 ]3/2
v
B
ev
0 I 4
l/2
rdz'
l/2 [r2 (z z' )2 ]3/2
其他略 3.1.2 真空中恒定磁场的基本方程
磁感应强度的高斯定理为
积分形式 微分形式
vv
Ò B dS 0
Sv B 0
安培环路定理 积分形式 微分形式
vv
N
Ñ B dl 0 Ii
l
v
vi 1
B 0J 有源区
例题3.3 利用安培环路定理,求通有电流为I无限
长直导线的磁感应强度。
选择圆柱坐标系
直导线的位置
环的路径
vv
Ñ B dl 0I
l
两矢量方向一致
Ñ Bdl 0I
l
蜒 Bdl

B

dl

2
B0
rd
l
l
2
B 0
rd 0I
B 0I 2 r
B2 r 0I
v B
ev
0 I 2 r
3.2 介质的磁化与介质中恒定磁场的基本方程 3.2.1 介质的磁化
分子磁矩矢量
相关文档
最新文档