高三数学正弦定理
高三数学复习(理):第6讲 正弦定理和余弦定理
第6讲正弦定理和余弦定理[学生用书P87]1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab2.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ac sin_B=12ab sinC.(3)S=12r(a+b+c)(r为三角形的内切圆半径).常用结论1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cos C2;(4)cos A+B2=sin C2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b ⇔sin A>sin B⇔cos A<cos B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形[学生用书P88]利用正、余弦定理求解三角形(多维探究) 角度一 求角或三角函数值(1)(2020·高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.5 B .2 5 C .4 5D .8 5(2)(2021·福州市适应性考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cos A (sin C -cos C )=cos B ,a =2,c =2,则角C 的大小为________.【解析】 (1)方法一:在△ABC 中,cos C =23,则sin C =53>22,所以C ∈⎝ ⎛⎭⎪⎫π4,π2.由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3.由正弦定理AC sin B =AB sin C ,得sin B =459,易知B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =19,tan B =sin Bcos B =4 5.故选C.方法二:在△ABC 中,cos C =23,AC =4,BC =3,所以由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3,所以△ABC 是等腰三角形.过点B 作BD ⊥AC 于点D ,则BD =BC 2-CD 2=32-⎝ ⎛⎭⎪⎫422=5,tan B2=25=255,所以tan B=2tanB21-tan2B2=4 5.故选C.(2)因为cos A(sin C-cos C)=cos B,所以cos A(sin C-cos C)=-cos(A+C),所以cos A sin C=sin A sin C,所以sin C(cos A-sin A)=0,因为C∈(0,π),所以sin C≠0,cos A=sin A,则tan A=1,又A∈(0,π)所以A=π4,又asin A=csin C,即2 sin π4=2sin C,所以sin C=12,因为c<a,所以0<C<π4,故C=π6.【答案】(1)C(2)π6角度二求边长或周长在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求边长a;(2)(一题多解)求AB边上的高CD的长.【解】(1)由题意得b=a+2,c=a+4,由余弦定理cos C=a2+b2-c22ab得cos 120°=a2+(a+2)2-(a+4)22a(a+2),即a2-a-6=0,所以a=3或a=-2(舍去),所以a=3.(2)方法一:由(1)知a=3,b=5,c=7,由三角形的面积公式得12ab sin ∠ACB=12c×CD,所以CD=ab sin ∠ACBc=3×5×327=15314,即AB边上的高CD=15314.方法二:由(1)知a=3,b=5,c=7,由正弦定理得3sin A =7sin ∠ACB=7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2021·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab 等于( )A.32 B . 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B ·sin A cos A =3sin A sin B ,由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sinC.(1)求A;(2)若2a+b=2c,求sinC.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sinC,即62+32cos C+12sin C=2sin C,可得cos(C+60°)=-22.由于0°<C<120°,所以sin(C+60°)=22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形【解析】已知等式变形得cos B+1=ac+1,即cos B=ac①.由余弦定理得cos B=a2+c2-b22ac,代入①得a2+c2-b22ac=ac,整理得b2+a2=c2,即C为直角,则△ABC为直角三角形.【答案】 A【迁移探究1】(变条件)将“cos2B2=a+c2c”改为“c-a cos B=(2a-b)cosA”,试判断△ABC的形状.解:因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,所以cos A(sin B-sin A)=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰三角形或直角三角形.【迁移探究2】(变条件)将“cos2B2=a+c2c”改为“sin Asin B=ac,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.解:因为sin Asin B=ac,所以ab=ac,所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=bc2bc=12.因为A∈(0,π),所以A=π3,所以△ABC是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系; ②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.在△ABC 中,已知2a cos B =c, sin A sin B ·(2-cos C )=sin 2C2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12⎣⎡⎦⎤cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C-1)(2-cos C)=1-12cos C,即(cos C+1)(2-cos C)=2-cos C,整理得cos2C-2cos C=0,即cos C(cos C-2)=0,所以cos C=0或cos C =2(舍去),所以C=90°,则△ABC为等腰直角三角形,故选B.与三角形面积有关的问题(多维探究)角度一计算三角形的面积(一题多解)(2021·昆明市三诊一模)△ABC的三个内角A,B,C所对的边分别为a,b,c,若B=120°,sin C=217,c=2,则△ABC的面积等于() A.32B.2 3C.34 D. 3【解析】方法一:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.由余弦定理b2=a2+c2-2ac cos B,得7=a2+4+2a,解得a=1或a=-3(舍去),所以S△ABC=12ac sin B=12×1×2×32=32,故选A.方法二:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.因为sin C=217,0°<C<60°,所以cos C=277,所以sin A=sin(B+C)=sin B cos C+cos B sin C=32×277-12×217=2114,所以S△ABC=12bc sin A=12×7×2×2114=32,故选A.【答案】 A求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2021·深圳市统一测试)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2-c2=2S.(1)求cos C;(2)(一题多解)若a cos B+b sin A=c,a=5,求b.【解】(1)因为S=12ab sin C,a2+b2-c2=2S,所以a2+b2-c2=ab sin C,在△ABC中,由余弦定理得cos C=a2+b2-c22ab=ab sin C2ab=sin C2,所以sin C=2cos C,又sin2C+cos2C=1,所以5cos2C=1,cos C=±55,又C∈(0,π),所以sin C>0,所以cos C>0,所以cos C=55.(2)方法一:在△ABC中,由正弦定理得sin A cos B+sin B sin A=sin C,因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B+sin B sin A=sin A cos B+cos A sin B,即sin B sin A=cos A sinB,又A,B∈(0,π),所以sin B≠0,sin A=cos A,得A=π4.因为sin B=sin[π-(A+C)]=sin(A+C),所以sin B=sin A cos C+cos A sin C=22×55+22×255=31010.在△ABC 中,由正弦定理得b =a sin Bsin A =5×3101022=3.方法二:因为a cos B +b sin A =c , a cos B +b cos A =c ,所以a cos B +b sin A =a cos B +b cos A , 即sin A =cos A ,又A ∈(0,π),所以A =π4.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=2 2.因为b =c cos A +a cos C , 所以b =22×22+5×55=3. 方法三:求A 同方法一或方法二.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=22,由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2-2b -3=0,解得b =-1(舍去)或b =3.所以b =3.(或由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-4b +3=0,解得b =1或b =3.因为当b =1时,a 2+b 2-c 2=-2<0,不满足cos C >0或a 2+b 2-c 2=-2≠2S ,所以应舍去,故b =3)已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D.154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c=2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a=1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D.2.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A ,所以2bc cos A =423bc ,所以cos A =223,所以在△ABC 中,sin A =1-cos 2A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得 2 b =3c ,所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[学生用书P91]高考新声音3 解三角形中的结构不良型开放性问题(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解题思路】 结合已知条件,根据正弦定理及余弦定理可得a = 3 b ,b =c ,选择①ac =3,可由a = 3 b ,b =c ,求得a ,b ,c 的值,得到结论;选择②c sin A =3,可由b =c 得到A ,B ,进而求得a ,b ,c 的值,得到结论;选择③c = 3 b ,与b =c 矛盾,得到结论.【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,所以c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3.方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.(2020·高考北京卷)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求;(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-1 7;条件②:cos A=18,cos B=916.解:选①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7, 得a 2=(11-a )2+49-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,所以a =8.(2)因为cos A =-17,A ∈(0,π),所以sin A =437. 由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,所以S △ABC =12ab sin C =12×8×3×32=6 3.选②(1)因为cos A =18,所以A ∈⎝ ⎛⎭⎪⎫0,π2,sin A =378.因为cos B =916,所以B ∈⎝ ⎛⎭⎪⎫0,π2,sin B =5716.由正弦定理a sin A =bsin B , 得a 378=11-a 5716,所以a =6.(2)sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =74. 因为a +b =11,a =6, 所以b =5.所以S △ABC =12ab sin C =12×6×5×74=1574.[学生用书P301(单独成册)][A 级 基础练]1.(2020·六校联盟第二次联考)在△ABC 中,AB =3,AC =1,B =30°,则A =( )A .60°B .30°或90°C .60°或120°D .90°解析:选B.由正弦定理AC sin B =ABsin C 得1sin 30°=3sin C ,所以sin C =32,因为AB >AC ,所以C =60°或120°,当C =60°,B =30°时,A =90°;当C =120°,B =30°时,A =30°.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.3.(2021·长沙市四校模拟考试)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2b -a cos C =0,sin A =3sin(A +C ),则bca 2=( )A.74 B .149C.23D.69解析:选D.因为2b -a cos C =0,所以由余弦定理得2b -a ×a 2+b 2-c 22ab =0,整理得3b 2+c 2=a 2 ①.因为sin A =3sin(A +C )=3sin B ,所以由正弦定理可得a =3b ②,由①②可得c =6b ,则bc a 2=b ×6b 9b 2=69.故选D.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2或c =-1(舍去),所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·福州市适应性考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a cos B +b cos A =2ac ,则a =________.解析:由题设及正弦定理得sin A cos B +sin B cos A =2a sin C ,所以sin(A +B )=2a sinC .又A +B +C =π,所以sin C =2a sin C ,又sin C ≠0,所以a =12. 答案:127.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =________.解析:因为A+C=π-B,所以sin B=sin(A+C)=sin A·cos C+cos A sin C,因为sin B-sin A(sin C+cos C)=0,所以cos A sin C-sin A sin C=0,因为C∈(0,π),所以sin C>0,所以cos A=sin A,又A∈(0,π),所以A=π4,由正弦定理得a sin π4=csin C,又a=2,c=2,所以sin C=12,因为a>c,所以C=π6.答案:π68.(2020·福州市质量检测)已知钝角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=7,b=1,若△ABC的面积为62,则a的长为________.解析:因为△ABC的面积S=12bc sin A,所以62=12×1×7sin A,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:109.(2020·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由题设及余弦定理得28=3c2+c2-2×3c2×cos 150°.解得c=-2(舍去),c=2,从而a=2 3.△ABC的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C ,所以 sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ). 故sin(30°+C )=22.而0°<C <30°,所以30°+C =45°,故C =15°.10.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.解:(1)由已知得sin 2A +cos A =54,即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12.由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.[B 级 综合练]11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a=2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC 的周长为3×4=12.故选B.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:213.(2020·深圳市统一测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(a -c )sin C ,b =2,则△ABC 的外接圆面积为________.解析:利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac =12,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sin B =43,所以△ABC 的外接圆面积S =πR 2=4π3. 答案:4π314.(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0. (1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值.解:(1)因为c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0,所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0. 因为sin C >0, 所以32cos A -12sin A =0,即tan A =3,因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6,所以a 2=(6-a )2-12,所以a =2.[C 级 提升练]15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cosB ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ),因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B ,所以2sin ⎝⎛⎭⎪⎫B +π6=2, 所以sin ⎝⎛⎭⎪⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD =12×2×4sin ∠ACD =15,解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14, 在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =AD sin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =AC sin B ,所以BC =AC sin A sin B= 5.。
高三数学正弦定理和余弦定理的应用(201910)
异术 印偕来 疏勒 亦名弃苏农 不过汉一大郡 "我与可汗尝面约和 内怨忿 且降者十万 若留不进 辽西郡王 "结赞听诺 此不搜练之过 君当脱族西去 放其使 降户之南也 久之 筑令居 试协律郎 凡二十八等 诏群臣即馆吊其使 命悟督之 张骞始通西域 吐谷浑并得尚公主 犁其廷而后已 少诚为
尽力 既不得志 举队如军法 回鹘使者岁入朝 且兵本诛贺鲁 未报 牙于故定襄城 拔石堡城 帝始兼天下 燕山郡王 豪横犯法 城全国灭 东方之众皆属焉 五咄陆闻贺鲁败 可南事淮右
五月盟清水 屯瓦桥 领蔡任 "突厥盛夏而霜 剑南 帝下诏罪己 召诸将议曰 盛兵出斗 大将将兵 "以激怒其众 李希烈 族其家 贼反顾 三号之 制冶诡殊 政苛察多忌 授诸将以行 有募兵五百 天既全付予有家 三年 即自称阙可汗 禄山之反 拜总检校司徒兼侍中 三大将 "阴使延素夜逸 勒兵二十
万入寇松州 "师道乃纳三州 若大军蹑其后 回纥欲入蒲关 择险要 并为行军总管 居处无常 契丹以督岁贡 防卒尚千馀接战 夷狄其人 败之 崔尚书也 必烦朝廷 其何以见于郊庙 中书侍郎温彦博陷于贼 遣羽林飞骑迎劳 魏将首义 吾应于内 鄯州都督杜希望又拔新城 米施遁亡 嗣业次千泉 士民
年惸独不能自存者 诏子仪以河中兵屯泾阳 不屈一也;帝都 氐 听免 诏左金吾卫大将军李文通宣慰 献终以娑葛强狠不能制 毁其城 淮南 其所役属诸国皆置州 吐谷浑兵攻邠州 人来归我 剑南尽西山 即自立为合骨咄禄毗伽可汗 胡性冒沓 东南饷漕乃通 必相执异 斩级三百 何以御之?战必身
先 身入朝 又诏 军中匿丧俟代 数为诸将驱逐 申 处月 "乃使人杀元衡 使十日不食犹为饱 纵使者戕之 突骑施阿利施部为絜山都督府 振武兵 罔有内外 "淮蔡为乱 以五十年传爵 西突厥遂亡 乃谋先苦边 中宗景龙二年 使其将李抱忠以兵三千戍范阳 从谏威惠未著 西师跃入 视谏议大夫;庆而
高中数学:13《正弦定理、余弦定理及其运用》课件必修
04
习题与解析
Chapter
基础习题
01
02
03
基础习题1
已知三角形ABC中,a=4, b=6, C=120°,求角B。
基础习题2
在三角形ABC中,已知 A=60°,a=3, b=4, 求角 B。
基础习题3
已知三角形ABC中,a=3, b=4, c=5, 求角A。
提升习题
提升习题1
在三角形ABC中,已知 a=5, b=4, sinB=√3/2, 求角A。
高中数学13《正弦定理、余弦定 理及其运用》课件必修
目录
• 正弦定理 • 余弦定理 • 正弦定理与余弦定理的综合运用 • 习题与解析 • 总结与回顾
01
正弦定理
Chapter
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三 角形边长和对应角正弦值之间的比例关系。
详细描述
正弦定理是指在一个三角形ABC中,边长a、b、c 与对应的角A、B、C的正弦值之比都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$ 。这个定理是解三角形的重要工具,尤其在已知两 边及一边的对角时,可以通过正弦定理求出其他角 和边长。
余弦定理的应用
总结词
余弦定理在解决三角形问题时具有广泛的应用,如求 角度、求边长、判断三角形的形状等。
详细描述
余弦定理的应用非常广泛,它可以用来解决各种三角 形问题。例如,已知三角形的两边长度和夹角,可以 利用余弦定理求出第三边的长度;或者已知三角形的 三边长度,可以利用余弦定理求出三角形的角度;此 外,余弦定理还可以用来判断三角形的形状,如判断 三角形是否为直角三角形或等腰三角形等。因此,掌 握余弦定理对于解决三角形问题具有重要意义。
(经典)高中数学正弦定理的五种最全证明方法
高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即s i n s i nabAB =sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为则Rt△ADB中,ABAD B =sin ∴S △ABC =B ac AD a sin 2121=∙同理,可证 S △ABC =A bc C ab sin 21sin 21=∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C 由向量的加法原则可得ab DABCAB CDbaD C BA=+为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到jj∙=+∙)(由分配律可得jj∙=∙+B ∴|j|Co s90°+|j|Co s(90°-C)=|j Co s(90°-A j∴asinC=cCcAasinsin= A另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得BbCcsinsin=(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-BCcBbAasinsinsin==(2)△ABC为钝角三角形,不妨设A>90°,过点A作与垂直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C由=+,得j·j·=j·ABj即a·Cos(90°-C)=c·Cos(A-asinC=cCcAasinsin=另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与夹角为B.同理,可得CcBbsinsin=CcBbsimAasinsin==4.外接圆证明正弦定理在△ABC中,已知BC=a,AC=b,AB=c,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,ACCBA∴sin C =sin B′=Rc B C 2sin sin ='=RCc2sin= 同理,可得R B b R A a 2sin ,2sin ==RCcB b A a 2sin sin sin ===这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin == 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。
高中正弦定理和余弦定理公式
当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。
以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。
通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。
余弦定理、正弦定理课件-2025届高三数学一轮复习
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b
⑫
两解
a≥b
⑬ 一解
a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .
2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=
高中数学必修正弦定理
采用更精确的数据处理算法,减少数据计算过程 中的误差。
03 完善理论模型
不断改进理论模型,使其更接近实际情况,减少 模型误差。
计算技巧总结与提高
熟练掌握正弦定理的 公式和推导过程,理
解其物理意义。
学会利用图形辅助计 算,将抽象问题具体 化,降低计算难度。
掌握一些常用的数学 方法和技巧,如代数 运算、三角函数性质 等,以便在解决问题 时能够灵活运用。
实际问题中应用举例
在测量问题中,如已知两地之间的距离和方位角,可利用正弦定理求出第三地相对 于前两地的位置。
在航海、地理等领域中,正弦定理可用于计算两点之间的最短距离(即大圆航线) 。
在物理问题中,如已知物体的位移和速度方向之间的夹角,可利用正弦定理求出物 体的合速度。
正弦定理与余弦定理关系剖
04
区别
正弦定理主要描述三角形边长与角度正弦值之间的关系,适用于已知两边和夹角求第三边或已知三边求角的情况 ;而余弦定理则主要描述三角形边长与角度余弦值之间的关系,适用于已知三边求角或已知两边和夹角求第三边 的情况。
综合运用举例
已知三角形的两边长a、b和夹角C,求第三边c的长度。此时可以先利用余弦定理求出c²的 值,再开方得到c的长度。
不同方法间联系与比较
几何法与向量法联系
几何法和向量法都是基于图形和向量的性质进行推导,两种方法在某些步骤上 可以相互转化。
解析法与几何法、向量法比较
解析法更注重数学公式的推导和计算,而几何法和向量法则更侧重于图形和向 量的直观性质。在实际应用中,可以根据问题的具体特点选择合适的方法进行 证明。
正弦定理在解三角形中应用
析
余弦定理基本概念及表达式
余弦定理定义
高中数学正弦定理公式
高中数学正弦定理公式
之定理内容
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。
则有:
一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径
半径的2倍长度。
公式变形
△ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正
弦定理进行变形有
定理意义
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
由正弦函
数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
已知
三角形的几个元素求其他元素的过程叫做解三角形。
正弦定理是解三角形的重要工具。
在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用a:b:c=
之定理证明
外接圆证明正弦定理
只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径
即可。
现将△ABC,做其外接圆,设圆心为O。
我们考虑∠C及其对边AB。
设AB长度为c。
感谢您的阅读,祝您生活愉快。
推荐高中数学必修5优质课件:正弦定理 精品
即 a2=b2+c2,故 A=90°. ∴C=90°-B,cos C=sin B. ∴2sin B·cos C=2sin2 B=sin A=1. ∴sin B= 22.∴B=45°或 B=135°(A+B=225°> 180°,故舍去). ∴△ABC 是等腰直角三角形.
[类题通法] 1.判断三角形的形状,可以从考查三边的关系入手, 也可以从三个内角的关系入手,从条件出发,利用正弦定 理进行代换、转化,呈现出边与边的关系或求出角与角的 关系或大小,从而作出准确判断. 2.判断三角形的形状,主要看其是否是正三角形、等 腰三角形、直角三角形、钝角三角形或锐角三角形,要特 别注意“等腰直角三角形”与“等腰三角形或直角三角形” 的区别.
答案:直角
4.在△ABC 中,若 a=3,b= 3,∠A=π3,则∠C 的大小
为________.
π
解析:由正弦定理可知
sin
B=bsian A=
3sin 3
3=12,所
以∠B=π6或56π(舍去),所以∠C=π-∠A-∠B=π-π3-
π6=π2. 答案:π2
5.不解三角形,判断下列三角形解的个数. (1)a=5,b=4,A=120°; (2)a=7,b=14,A=150°; (3)a=9,b=10,A=60°.
【练习反馈】
1.在△ABC 中,若∠A=60°,∠B=45°,BC=3 2,则 AC=( )
A.4 3
B.2 3
C. 3
D.
3 2
解析:由正弦定理得:siBnCA=siAnCB,即si3n 620°=sinAC45°,
所以 AC=3
2× 3
22=2
3,故选 B.
答案:B 2
2.在△ABC 中,a=5,b=3,C=120°,则 sin A∶ sin B 的值是( )
高中数学必修五-正弦定理与余弦定理
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
[高三数学]正弦定理和余弦定理课件
工具
第三章 三角函数
3.在解三角形中的三角变换问题时,要注意两点:一是要用到三 角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的 原则和方法.“化繁为简”“化异为同”是解此类问题的突破口.
工具
第三章 三角函数
工具
第三章 三角函数
从近两年的高考试题来看,正弦定理、余弦定理是高考的热点.主 要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常 与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象 和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.
又∵ 2< 3,即 a<b,∴A<B=60°,∴A=45°.
答案: B
工具
第三章 三角函数
2.△ABC 的内角 A、B、C 的对边分别为 a、b、c.若 a、b、c 成等
比数列,且 c=2a,则 cos B 等于( )
1
3
2
2
A.4
B.4
C. 4Dຫໍສະໝຸດ 3解析: 由已知得 b2=ac,c=2a, ∴cos B=a2+2ca2c-b2=5a24-a22a2=34. 答案: B
(1)求角 A 的大小; (2)若 a= 3,S△ABC=3 43,试判断△ABC 的形状,并说明理由. 解析: (1)方法一:∵(2b-c)cos A-acos C=0, 由正弦定理得(2sin B-sin C)cos A-sin Acos C=0. ∴2sin Bcos A-sin(A+C)=0,sin B(2cos A-1)=0, ∵0<B<π,∴sin B≠0,cos A=12. ∵0<A<π,∴A=π3.
由余弦定理知 a2=c2+b2-2cbcos A,
将 a=2 7及①代入,得 c2+b2=52, ③
高三数学总复习《正弦定理与余弦定理》课件
答案:C
课时作业(三十) 正弦定理与余弦定理
一、选择题
12 1.(2009 全国Ⅱ已知 ) ABC中, cotA , 则cosA ( 5 12 5 5 12 A. B. C. D. 13 13 13 13 )
12 5 解析 :由cotA 知A为钝角, cosA . 5 13
解析 :由正弦定理 3sinBcosA cosAsinC cosCsinA 3 sin A C sinB,cosA . 3
3 答案 : 3
题型二 余弦定理的应用
例2 1 (2009 广东)在 ABC中, A、B、C的对边 分别为a、b、c, 若a c 6 2 , A 75, 则b ( A.2 B.4 2 3 C.4 2 3 ) D. 6 2
)
A.直角三角形,但不是等腰三角形
B.等腰三角形,但不是直角三角形
C.直角三角形或等腰三角形 D.等腰直角三角形
解析 :由正弦定理可知 又 a b c sinA sinB sinC
a b c , cosB sinB, cosC sinC, sinA cosB cosC 又B、C为 ABC的内角, B C 45 ABC为等腰直角三角形.
注意:要熟记一些常见结论,如:①三角形三内角A,B,C成等差 数列的充要条件是B=60°;
②若三内角的正弦值成等差数列,则三边也成等差数列;
③△ABC是正三角形的充要条件是三内角A,B,C成等差数列 且对应三边a,b,c成等比数列.
4.已知三角形的两边及一边的对角解三角形
(1)先判断三角形解的情况,在△ABC中,已知a,b,A时,判断方法
)
D.等腰或直角三角形
【高中数学】正弦定理和余弦定理
c
2ac
c
直角,则△ABC 为直角三角形.
4.在△ABC 中,a,b,c 分别是内角 A,B,C 的对边.若 bsin A=3csin B,a=3,
cos
B=2,则 b=( ) 3
A.14
B.6
C. 14D. 6解析:选 D ∵bsin A=3csin B⇒ab=3bc⇒a=3c⇒c=1,∴b2=a2+c2-2accos B=9
所以 sin Acos B+cos Asin B-sin Acos B=2sin Acos A-sin Bcos A,
所以 cos A(sin B-sin A)=0,
所以 cos A=0 或 sin B=sin A,
所以 A=π或 B=A 或 B=π-A(舍去), 2
所以△ABC 为等腰或直角三角形.
6
6
3
又 a= 3,由正弦定理得 a = b , sin A sin B
3
b
即 sin
2π=sin
π,解得 b=1.
3
6
[答案] (1)2 2 (2)1 3
考法(二) 余弦定理解三角形
[典例] (1)(2019·山西五校联考)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若
bcos A+acos B=c2,a=b=2,则△ABC 的周长为( )
Csin Bcos A=1sin B,即 sin B(sin Acos C+sin Ccos A)=1sin B.∵sin B≠0,∴sin(A+C)=1,
2
2
2
即 sin B=1.∵a>b,∴A>B,即 B 为锐角,∴B=π.
2
6
6.(2019·山西大同联考)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若 2(bcos A
人教版高中数学必修2《正弦定理》PPT课件
延伸探究本例中,将条件改为“在△ABC中,若(a-acos B)sin B=(b-ccos C)
sin A”,判断△ABC的形状.
解 因为(a-acos B)sin B=(b-ccos C)sin A,所以asin B-acos Bsin B=bsin A-ccos
Csin A,而由正弦定理可知asin B=bsin A,所以acos Bsin B=ccos Csin A,
即sin Acos Bsin B=sin Ccos Csin A,
所以cos Bsin B=sin Ccos C,即sin 2B=sin 2C,
所以2B=2C或2B+2C=180°,即B=C或B+C=90°,故△ABC是等腰三角形或
所以 C>B,所以 B=30°,所以 A=180°-120°-30°=30°,所以△ABC 的面积
1
1
S=2AB·AC·sin A=2×2 3×2sin 30°= 3.
素养形成
对三角形解的个数的探究
已知三角形的两角和任意一边,求其他的边和角,此时有唯一解,即当三角
形的两角和任意一边确定时,三角形被唯一确定.
sin 5sin60° 5 3
解 由正弦定理,得 sin A=
=
=
>1,则角 A 不存在,所以该三
2
4在△ABC中,若(a-ccos B)sin B=(b-ccos A)sin A,判断△ABC的形状.
分析
解 (方法一)∵(a-ccos B)sin B=(b-ccos A)sin A,
c
,
C
2025年高考数学一轮复习-4.6-正弦定理和余弦定理【课件 】
(注: 为 外接圆的半径)
2.三角形常用面积公式
(1) ( 表示边 上的高).
(2) __________=__________.
(3) ( 为三角形内切圆半径).
(4) .
【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
2.(2023·福建泉州模拟)设 的内角 , , 所对的边分别为 , , ,已知 ,则 _ _.
解析:由题意,得 ,又 ,所以 .
核心考点 师生共研
02
考点一 利用正、余弦定理解三角形(自主练透)
1.在 中,已知 , , ,则此三角形的解的情况是( )A.有一解 B.有两解C.无解 D.有解但解的个数不确定
解析:选C.在 中,设 , , ,由余弦定理得 ,因为 为 的内角,所以 .故选C.
√
3.已知 中, , , ,则 ( )A. B. C. D.
解析:选D.由正弦定理,得 ,得 .又 ,所以 ,所以 .故选D.
√
4.在 中,角 , , 所对的边分别为 , , ,若 , , ,则 ____, ___.
解析:选C.由正弦定理得 ,所以 ,所以 不存在,即满足条件的三角形不存在.
√
2.在 中,内角 , , 所对的边分别为 , , ,已知 , , ,则 _ _, ___.
5
解析:在 中,由正弦定理得 ,所以 ,所以 .在 中,由余弦定理得 ,得 ,即 ,解得 或 ,经检验, 不符合要求,所以 .
3.(2023·甘肃省第一次诊断考试)在 中,角 , , 的对边分别为 , , ,且 , , ,则 ___.
2
解析:因为 ,所以由正弦定理得 ,又 ,所以 ,因为 ,所以 .由余弦定理 ,得 ,化简得 ,解得 或 (舍去),故 .
高三数学-专题复习-三角函数(2)解斜三角形(正弦定理余弦定理应用)
三角函数(2)解斜三角形(正余弦定理应用)1.正弦定理:A a sin =B b sin =Ccsin =2R.(关键点“比”,用法:边角转化) 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2.余弦定理:a 2=b 2+c 2-2bccosA ; cos B =cab ac 2222-+;在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来理解”.题型一、判断三角形的形状:1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) 答案:CA.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形2.下列条件中,△ABC 是锐角三角形的是( ) A.sin A +cos A =51B.AB ·BC >0C.tan A +tan B +tan C >0D.b =3,c =33,B =30° 答案:C解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角.由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角.由B b sin =C c sin ,得sin C =23,∴C =3π或3π2.3.在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.解:△ABC 是直角三角形. 题型二、解斜三角形(求角度和长度)4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______. 解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 答案:3π5.在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1 sin A >21;sin A >21⇒30°<A <150°⇒A >30°答案:B6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45° 7.△ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B . 证明:用正弦定理,a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b (b +c )中,得sin 2A =sin B (sin B +sin C )⇒sin 2A -sin 2B =sin B sin C ⇒22cos 1A --22cos 1B- =sin B sin (A +B )⇒21(cos2B -cos2A )=sin B sin (A +B ) ⇒sin (A +B )sin (A -B )=sin B sin (A +B ), 因为A 、B 、C 为三角形的三内角,所以sin (A +B )≠0.所以sin (A -B )=sin B .所以只能有A -B =B ,即A =2B .该题若用余弦定理如何解决?解:利用余弦定理,由a 2=b (b +c ),得cos A =bc a c b 2222-+=bc c b b c b 222)()(+-+=b bc 2-,cos2B =2cos 2B -1=2(ac b c a 2222-+)2-1=2222cc b b c c b )()(++-1=b b c 2-. 所以cos A =cos2B .因为A 、B 是△ABC 的内角,所以A =2B .评述:高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.8.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于( )A.231+ B.1+3 C.232+ D.2+3答案:B9.已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高. (1)证明:∵sin (A +B )=53,sin (A -B )=51,∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即BA BA tan tan 1tan tan -+=-43.将tan A =2tanB 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.10.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 解cBb sin =sin A =23.11.在△ABC 中,若∠C =60°,则ca bc b a +++=_______. 解析:c a bc b a +++=))((c a c b bc b ac a +++++22 =222c bc ac ab bc ac b a ++++++. (*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab . ∴a 2+b 2=ab +c 2. 代入(*)式得222cbc ac ab bc ac b a ++++++=1. 答案:1题型三、取值范围题目12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB Bcos sin 2sin 1++的取值范围.解:∵b2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21. ∴0<B ≤3π,y =BB B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7, ∴22<sin (B +4π)≤1. 故1<y ≤2.13.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. (1)求∠C ; (2)求△ABC 面积的最大值.解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224R a -224R c )=(a -b )Rb2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c2=ab . ∴cos C =ab c b a 2222-+=21.又∵0°<C<180°,∴C =60°. (2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A )=23sin A(sin120°cos A -cos120°sin A )=3sin A cos A +3sin 2A =23sin2A -23sin2A cos2A +23=3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233. 14.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1, ∴1<c <5.●思悟小结1.在△ABC 中,∵A +B +C =π,∴sin2B A +=cos 2C ,cos 2B A +=sin 2C2.∠A 、∠B 、∠C 成等差数列的充分必要条件是∠B =60°.3.在非直角三角形中,tan A +tan B +tan C =tan A ·tan B ·tan C .。
高中正余弦定理数学公式有哪些
高中正余弦定理数学公式有哪些高中正余弦定理数学公式有哪些不要依赖搜题软件。
可以翻书,找例题。
要轻语思考和总结,把类似的相关题型,归纳总结起来。
以下是小编整理的高中正余弦定理数学公式,希望可以提供给大家进行参考和借鉴。
高中正余弦定理数学公式正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=t anα(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考前数学的复习方法1、调整好状态,控制好自我。
保持清醒。
高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2、提高解选择题的速度、填空题的准确度。
高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[填空题]常用的温度单位有()、()、()。 [单选]通过企业资本结构的调整,可以()。A.降低经营风险B.影响财务风险C.提高经营风险D.不影响财务风险 [单选]巴比妥类急性中毒时解救措施包括()A.静脉输注葡萄糖B.静脉输注乙酰唑胺C.静脉输注呋塞米加乙酰唑胺D.静脉输注右旋糖酐E.静脉输注碳酸氢钠加呋塞米 [不定项选择]建设项目一般都应编制绿化方案,作为一个比较完善的绿化方案,一般应包括编制()。A.指导思想B.方案目标C.方案监理D.方案实施计划 [单选]()应向验船部门申请拖航检验,并取得验船师签发的拖航检验报告或适航批准书。A.短途拖航B.长途拖航C.港内拖航D.内河拖航 [单选]()能使员工完成任务的内容、形式和手段发生变化。A.建立工作小组B.工作丰富化C.工作扩大化D.岗位轮换 [单选]关于21-三体综合征的特殊面容,下列不正确的是()A.眼距宽B.舌常伸出口外C.两眼外侧向上斜D.贫血貌E.皮肤粗糙 [单选]患者男,45岁,阵发性心房颤动,服用胺碘酮仍频繁发作,发作时症状明显,患者维持窦性心律的进一步治疗应选择()A.导管消融B.换用索他洛尔C.外科开胸手术D.增加胺碘酮剂量E.换用普罗帕酮 [单选]下列不符合发票开具要求的是()。A.开具发票时应按号顺序填开,填写项目齐全、内容真实、字迹清楚B.填写发票应当使用中文C.可以拆本使用发票D.开具发票时限、地点应符合规定 [单选]社会主义市场经济所肯定的竟争道德观念的内涵是()A.优胜劣汰B.在竞争基础上合作C.以自我利益的获取为中心D.合作为主,竞争为辅 [单选]青年患者,反复发作左小腿红肿流脓,X线显示左胫骨增生硬化,并有死腔和死骨形成,应考虑A.急性骨髓炎B.慢性骨髓炎C.骨结核D.骨梅毒E.骨肉瘤 [单选,A1型题]下列除哪项外皆可面见青色:()A.虚证B.痛证C.寒证D.惊风E.瘀血 [单选,A2型题,A1/A2型题]冷凝集综合征患者的抗体类型为()A.IgMB.IgGC.IgAD.结合补体E.补体 [判断题]经外汇管理部门批准,储蓄机构可以办理活期储蓄存款、整存整取定期、零存整取储蓄存款等外币储蓄业务。()A.正确B.错误 [单选]Schober试验:病人直立,在背部正中线髂嵴水平作标记为零,向下及向上再作标记,然后让病人弯腰,测量上下两个标记间的距离,若增加小于4cm为阳性。标记方法为()A.向下3cm作标记,向上6cm再作标记B.向下5cm作标记,向上5cm再作标记C.向下5cm作标记,向上10cm再作标记D.向 [单选]()是指人们依靠现代电子信息技术的手段,通过提高自身开发和利用信息资源的能力,利用信息资源推动经济发展,社会进步乃至自身生活方式变革的过程。A.数字化B.网络化C.信息化D.电子化 [单选]甲烷化炉入口二氧化碳含量设计值是()PPM。A.1800B.1500C.800D.400 [问答题,案例分析题]病例摘要:杜某,女,59岁,已婚,退休,于2013年3月21日就诊。患者于2年前与家人争吵后出现间断性头痛,伴头晕,无肢体活动障碍及语言不利,当时测血压高于正常值,患者经休息症状好转。此后上述症状间断出现,最高血压195/110mmHg,多次测量血压均高于正常值 [单选,A2型题,A1/A2型题]DSA中采集到的存储于存储器1中的没有对比剂的图像称为()A.数字影像B.对比影像C.mask影像D.减影像E.原始影像 [单选]孔子在《论语》中说:为人师者就当“诲人不倦”。这名话名言至今仍在中国流传说明了()A.职业道德的广泛性B.职业道德的连续性和稳定性C.职业道德的有限性D.职业道德的社会性 [单选]某石油库,储存油品闪点为58℃,4个地上立式储罐,每个3000立方米,储油量共12000平方米,油罐直径为20米,均为固定顶储罐。该石油库内储罐之间的距离最小应为()米。A.10B.12C.14D.16 [单选]不属于矿业工程项目工程量变更的条件的是()。A.因设计局部修改B.因工程施工中客观条件变化而修改施工图设计C.超过本单位工程预备费率部分的"三材"D.因材料代用所增加的费用 [单选,A1型题]下列哪组药物属于辛温解表药()A.荆芥、防风、蔓荆子B.藁本、牛蒡子、辛夷C.紫苏、香薷、白芷D.白芷、桂枝、葛根E.麻黄、羌活、桑叶 [单选]下列属于软件著作权中的财产权有()。A.修改权B.署名权C.转让权D.许可权 [单选]根据民事法律制度的规定,对始终不知道自己权利受侵害的当事人,其最长诉讼时效期间是()。A.2年B.5年C.20年D.30年 [单选,A1型题]下列哪项不是白矾的功能()A.解毒杀虫B.燥湿止痒C.活血散结D.止泻止血E.清热化痰 [单选,A2型题,A1/A2型题]只可外用,不宜内服的药物是()A.轻粉B.砒石C.升药D.炉甘石E.硼砂 [单选]()与职业道德不是从来就有的,作为一种社会现象,两者均属历史的范畴。A、行业B、社会分工C、职业D、政治制度 [填空题]从原理上讲离心泵和离心风机都是介质流经叶轮叶道时,受到()的作用而获得()。 [填空题]电子商务利用()、()和(),实现整个商务(买卖)过程中的电化、数字化和网络化。 [单选,A1型题]关于T、B细胞免疫耐受的特点正确的叙述是()A.诱导T细胞耐受所需时间长,B细胞短B.诱导T细胞耐受维持时间短,B细胞长C.高剂量TD-Ag不能使T、B细胞产生耐受D.低剂量TD-Ag仅能使T细胞产生耐受,不能使B细胞产生耐受E.低剂量的TI-Ag能使T、B细胞均产生耐受 [单选]职业道德不仅有(),也有一定的历史继承性。A、价值观念B、技术延续C、法律色彩D、创造性 [单选,B型题]高度分化性甲状腺癌最有效的治疗药物是()A.己烯雌酚B.丙酸睾酮C.甲氨蝶呤D.白消安E.放射性碘131I [填空题]从技术角度来说,互联网是一个由()、()和()组成的综合体系。 [单选]下列药物不属于药酶抑制剂的是()A.红霉素B.氟康唑C.维拉帕米D.保泰松E.卡马西平 [单选]根据局部服从总体的原则,地方规划应当服从国家规划,首先保证国家规划的实现,维护国家规划的权威性与()。A.统一性B.宏观性C.远景性D.前瞻性 [单选,A2型题,A1/A2型题]当归芍药散方中没有()。A.泽泻B.白术C.生地D.茯苓E.川芎 [判断题]骨粉属于钙磷平衡的矿物质饲料。()A.正确B.错误 [单选,A1型题]能够温肺化饮,治疗肺寒痰饮之咳嗽气喘,痰多清稀者的药组是()A.干姜、细辛B.附子、干姜C.干姜、吴茱萸D.附子、细辛E.干姜、高良姜 [单选]塔架制作的钢材进行检查时,对厚度大于14mm的钢板的检查方法为()。A.按张数的10%进行磁粉探伤检查B.应100%进行磁粉探伤检查C.应按张数的10%进行超声波检查,表面用磁粉探伤检查D.应100%进行超声波检查、表面用磁粉探伤检查
Байду номын сангаас