水泥混凝土搅拌桩沉降计算公式

合集下载

桩基沉降实用计算方法

桩基沉降实用计算方法
第 23 卷
第6期
2004 年 3 月
岩石力学与工程学报 Chinese Journal of Rock Mechanics and Engineering
23(6): 1015~1019 March,2004
桩基沉降实用计算方法
赖琼华
(广东省水利水电科学研究院 广州 510610)
摘要
利用桩侧摩阻力的发挥与桩的位移成正比的关系求桩在荷载作用下的摩阻力,桩的沉降由桩身压缩变形和
算方法计算。实际上群桩的基础沉降比较复杂,其
1


与桩所受荷载、桩长、桩距、桩数量以及桩周和桩 端各层的物理力学性质有关。 《建筑桩基技术规范》 (JGJ94-94)采用等效作用分层总和法,将 Mindlin 解 与等代实体基础布氏解之间建立关系,用等效作用 分层总和法计算群桩的沉降。这一方法所计算的沉 降 S ′ 值较大, 而桩实际沉降 S = ψψ e S ′ , 因此, ψ (桩 基沉降经验系数 ) 和 ψ e ( 桩基等效沉降系数) 的计算 结果将对桩基的实际沉降影响很大,往往很难取得 准确的ψ ,ψ e ,且计算也比较复杂繁锁。本文在桩
PRACTICAL CALCULATION PROCEDURE OF PILE-FOUNDATION SETTLEMENT
Lai Qionghua
(Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610 China)
2002 年 4 月 5 日收到初稿,2002 年 6 月 5 日收到修改稿。
作者 赖琼华 简介:男,48 岁,1982 年毕业于武汉水利电力学院农水系,现任教授级高级工程师,主要从事岩土工程、基础工程等方面的试验及研 究工作。

基础工程之桩基础沉降的计算

基础工程之桩基础沉降的计算

m
re
d n d 2 m 4
2
学习文档
群桩效应系数的计算(2)
以群桩中各桩中心为圆心,以re为半径作圆,由各园 的相交点作矩形(或以二排桩之间的中点作纵横向 中心线形成以各桩为重心的矩形),矩形面积与圆 面积之比,即负摩阻力的群桩效应系数。
n
Ar Ae
sax say
d
n m
d 4
桩基础沉降的计算
单桩沉降的组成
桩顶沉降
桩身弹性压缩引起
桩端沉降
桩侧阻力引起的桩周土中的附加应力以压力扩散 角向下传递,致使桩端下土体压缩而产生的桩端 沉降;
桩端荷载引起桩端下土体压缩所产生的桩端沉降。
2
学习文档
常用计算方法
1)荷载传递法 2)弹性理论法 3)剪切变形传递法 4)有限单元分析法 5)其他简化方法
假想实体深基础法 明德林(Mindl源自n)方法2学习文档
实体深基础法考虑扩散作用
Fk
Fk
p p (d l )
0k
k
m
d
α=
φ 4
Gk
F
d
G'
p k
k
k
qsia
A qsia
l
Gk
b0+2ltanφ4
a0
Gfk
l
A (b 2ltg )(a 2ltg );
0
0
4
a0、b0 群桩外缘长短边的长度
2
学习文档
(3) 对于桩身配筋率小于0.65%的灌注桩,取单桩水平静载试 验的临界荷载(的75%)为单桩水平承载力特征值。
(4) 当缺少单桩水平静载试验资料时,可按下列公式估算桩身 配筋率小于0.65%的灌注桩的单桩水平承载力特征值;

实际工程水泥搅拌桩(理正岩土计算书)

实际工程水泥搅拌桩(理正岩土计算书)

理正软土地基路堤设计软件计算项目: LZK82桥梁处理段(取附近最不利地层)============================================================================原始条件:计算目标: 计算沉降、承载力和稳定路堤设计高度: 1.880(m)路堤设计顶宽: 33.000(m)路堤边坡坡度: 1:1.500工后沉降基准期结束时间: 180(月) 荷载施加级数: 2序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算1 0.000 6.000 1.000 是2 7.000 12.000 0.880 是路堤土层数: 2 超载个数: 3层号层厚度(m) 重度(kN/m3) 内聚力(kPa) 内摩擦角(度)1 1.000 19.700 21.400 16.6002 0.880 25.000 40.000 45.000超载号定位距离(m) 分布宽度(m) 超载值(kPa) 沉降计算是否考虑稳定计算是否考虑1 0.000 5.000 4.000 是是2 5.000 16.000 17.628 是是3 21.000 12.000 4.000 是是地基土层数: 4 地下水埋深: 1.000(m)层号土层厚度重度饱和重度地基承载力快剪C 快剪Φ固结快剪竖向固结系数水平固结系数排水层(m) (kN/m3) (kN/m3) (kPa) (kPa) (度) Φ(度)(10^-4cm2/s) (10^-4cm2/s)1 5.600 18.100 18.670 90.000 6.100 30.100 0.000 50.00 50.00 否2 2.500 18.500 18.670 100.000 6.600 25.200 0.000 50.00 50.00 否3 5.800 17.300 17.390 60.000 7.900 5.000 5.300 50.00 50.00 否4 30.000 18.100 18.670 90.000 6.100 30.100 0.000 50.00 50.00 否层号 Es(100-200)(MPa)1 4.500002 10.000003 3.010004 4.50000加固土桩加固土桩布置形式:等边三角形加固土桩间距: 1.100(m)加固土桩的长度 17.000(m)加固土桩桩土应力比: 5.000加固土桩直径: 0.500(m)加固土桩的抗剪强度: 270.000(kPa)加固土桩布置起始坐标: 0.000(m)加固土桩布置宽度: 40.000(m)承载力计算参数:承载力验算公式: p ≤γR[fa]验算点距离中线距离: -1.000(m)承载力抗力系数γR: 1.00复合地基计算公式: fspk = mRa/Ap + β(1-m)fsk单桩承载力Ra: 88.36(kN)桩间土承载力折减系数β: 1.00桩间土承载力提高系数: 1.00承载力修正公式: [fa] = [fa0] + γ2(h-h0)基准深度h0: 0.000(m)固结度计算参数:地基土层底面: 不是排水层固结度计算采用方法: 微分方程数值解法平均固结度修正方法: 改进的太沙基法多级加荷固结度修正时的荷载增量定义为“填土高*容重”填土-时间-固结度输出位置距离中线距离: 0.000(m)填土-时间-固结度输出位置深度: 2.000(m)沉降计算参数:地基总沉降计算方法: 经验系数法主固结沉降计算方法: 压缩模量法沉降计算考虑超载超载产生的地基附加应力采用:直接法沉降修正系数: 1.500沉降计算的分层厚度: 0.500(m)分层沉降输出点距中线距离: 0.000(m)压缩层厚度判断应力比 = 15.000%基底压力计算方法:按土层平均容重计算加固区主固结沉降计算方法:复合模量Es法桩身压缩模量: 150.120(MPa)计算时考虑弥补地基沉降引起的路堤增高量工后基准期起算时间: 最后一级加载(路面施工)结束时稳定计算参数:稳定计算方法: 有效固结应力法加载与路堤竣工的间隔时间(月): 1稳定计算考虑地震力地震烈度: 7度地震作用综合系数: 0.250地震作用重要性系数: 1.300水平向Ah(g): 0.080稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)============================================================================ (一) 各级加荷的沉降计算第1级加荷,从0.0~6.0月加载开始时,路基计算高度 = 0.000(m),沉降 = 0.000(m)加载结束时,路基计算高度 = 1.005(m),沉降 = 0.005(m) 第2级加荷,从7.0~12.0月加载开始时,路基计算高度 = 1.005(m),沉降 = 0.005(m)加载结束时,路基计算高度 = 1.949(m),沉降 = 0.069(m)============================================================================ (二) 路面竣工时及以后的沉降计算基准期开始时刻: 最后一级加载(路面施工)结束时刻考虑沉降影响后,路堤的实际计算高度为 = 1.949(m)路面竣工时,地基沉降 = 0.069(m)路面竣工后,基准期内的残余沉降 = 0.057(m)基准期结束时,地基沉降 = 0.126(m)最终地基总沉降 = 1.500*0.123 = 0.185(m)路面竣工时,路基横断面各点的沉降(中线为原点)坐标当时沉降两点间沉降与路堤中心(m) (m) 差(m) 沉降差(m)-27.048 0.000 0.000 0.069-25.116 0.000 0.000 0.069-23.184 0.000 0.000 0.069-21.252 0.000 0.000 0.069-19.320 0.008 0.008 0.061-17.388 0.021 0.013 0.048-15.456 0.033 0.012 0.036-13.524 0.042 0.009 0.027-11.592 0.049 0.008 0.020-9.660 0.057 0.008 0.012-7.728 0.062 0.005 0.007-5.796 0.065 0.004 0.004-3.864 0.069 0.003 0.000-1.932 0.069 0.001 -0.000-0.000 0.069 -0.000 0.0001.932 0.068 -0.001 0.0013.864 0.066 -0.002 0.0035.796 0.061 -0.005 0.0087.728 0.055 -0.006 0.0149.660 0.050 -0.004 0.01911.592 0.042 -0.008 0.02713.524 0.036 -0.006 0.03315.456 0.028 -0.008 0.04117.388 0.017 -0.011 0.05219.320 0.005 -0.012 0.06421.252 0.000 -0.005 0.06923.184 0.000 0.000 0.06925.116 0.000 0.000 0.06927.048 0.000 0.000 0.069路堤竣工时,由于地基沉降引起路堤填筑面积增量:(1) 由各点计算沉降梯形积分方法得ΔV = 1.865(m2)(2) 按照《铁路路基手册》方法得Δs = 0.069(m) ΔV = 1.781(m2)按照《铁路路基手册》方法,路堤顶面单侧加宽量: ΔW = 0.087 ~ 0.105(m) 基准期结束时,路基横断面各点的沉降(中线为原点)坐标当时沉降两点间沉降与路堤中心(m) (m) 差(m) 沉降差(m)-27.048 0.000 0.000 0.126-25.116 0.000 0.000 0.126-23.184 0.000 0.000 0.126-21.252 0.000 0.000 0.126-19.320 0.017 0.017 0.109-17.388 0.040 0.023 0.086-15.456 0.061 0.021 0.065-13.524 0.077 0.017 0.049-11.592 0.091 0.014 0.035-9.660 0.105 0.013 0.021-7.728 0.113 0.008 0.013-5.796 0.120 0.007 0.006-3.864 0.125 0.006 0.001-1.932 0.126 0.001 -0.000-0.000 0.126 -0.000 0.0001.932 0.124 -0.002 0.0023.864 0.121 -0.003 0.0055.796 0.113 -0.008 0.0137.728 0.102 -0.011 0.0249.660 0.094 -0.008 0.03311.592 0.079 -0.015 0.04713.524 0.067 -0.012 0.05915.456 0.052 -0.015 0.07417.388 0.032 -0.020 0.09419.320 0.011 -0.022 0.11621.252 0.000 -0.011 0.12623.184 0.000 0.000 0.12625.116 0.000 0.000 0.12627.048 0.000 0.000 0.126路基横断面各点的最终沉降(中线为原点)坐标当时沉降两点间沉降与路堤中心 (m) (m) 差(m) 沉降差(m) -27.048 0.000 0.000 0.185-25.116 0.000 0.000 0.185-23.184 0.000 0.000 0.185-21.252 0.000 0.000 0.185-19.320 0.021 0.021 0.164-17.388 0.052 0.031 0.133-15.456 0.083 0.030 0.103-13.524 0.108 0.025 0.077-11.592 0.129 0.021 0.056-9.660 0.150 0.021 0.035-7.728 0.163 0.013 0.022-5.796 0.174 0.011 0.011-3.864 0.184 0.010 0.001-1.932 0.186 0.002 -0.000-0.000 0.185 -0.000 0.0001.932 0.183 -0.002 0.0023.864 0.178 -0.005 0.0075.796 0.165 -0.013 0.0207.728 0.147 -0.018 0.0389.660 0.134 -0.013 0.05111.592 0.110 -0.024 0.07513.524 0.092 -0.018 0.09415.456 0.069 -0.023 0.11617.388 0.041 -0.027 0.14419.320 0.013 -0.029 0.17321.252 0.000 -0.013 0.18523.184 0.000 -0.000 0.18525.116 0.000 -0.000 0.18527.048 0.000 -0.000 0.185路面竣工时,距路基中线0.000(m)处各层的沉降层底深层厚自重应力(kPa) 附加应力全应力(kPa) 固结度层最终层当前分层主固层累计主压缩模沉降经(m) (m) (Ecs(MPa)) (kPa ) (Ecs(MPa)) 沉降mSc(m) 沉降(m) 结沉降(m) 固结沉降(m) 量(MPa) 验系数0.500 0.500 4.5(------) 60.7 65.2(31.786) 0.9603 0.0014 0.00140.0010 0.0010 31.79 0.200(0.200)1.000 0.500 13.6(------) 60.6 74.2(31.786) 0.8809 0.0014 0.00130.0010 0.0019 31.79 0.200(0.200)1.500 0.500 20.3(------) 60.6 80.9(31.786) 0.8016 0.0014 0.0012 0.0010 0.0029 31.79 0.200(0.200)2.000 0.500 24.6(------) 60.5 85.1(31.786) 0.7222 0.0014 0.0012 0.0010 0.0038 31.79 0.200(0.200)2.500 0.500 28.9(------) 60.3 89.3(31.786) 0.6428 0.0014 0.0011 0.0009 0.0048 31.79 0.200(0.200)3.000 0.500 33.3(------) 60.1 93.4(31.786) 0.5634 0.0014 0.0010 0.0009 0.0057 31.79 0.200(0.200)3.500 0.500 37.6(------) 59.8 97.4(31.786) 0.4840 0.0014 0.0009 0.0009 0.0066 31.79 0.200(0.200)4.000 0.500 41.9(------) 59.5 101.4(31.786) 0.4047 0.0014 0.0008 0.0009 0.0076 31.79 0.200(0.200)4.500 0.500 46.3(------) 59.2 105.4(31.786) 0.3253 0.0014 0.0008 0.0009 0.0085 31.79 0.200(0.200)5.000 0.500 50.6(------) 58.8 109.4(31.786) 0.2842 0.0014 0.0007 0.0009 0.0094 31.79 0.200(0.200)5.500 0.500 54.9(------) 58.4 113.3(31.786) 0.2579 0.0014 0.0007 0.0009 0.0104 31.79 0.200(0.200)5.600 0.100 57.5(------) 58.1 115.7(31.786) 0.2421 0.0003 0.0001 0.0002 0.0105 31.79 0.200(0.200)6.100 0.500 60.1(------) 57.9 118.0(36.255) 0.2264 0.0012 0.0006 0.0008 0.0113 36.26 0.200(0.200)6.600 0.500 64.5(------) 57.4 121.9(36.255) 0.2001 0.0012 0.0006 0.0008 0.0121 36.26 0.200(0.200)7.100 0.500 68.8(------) 57.0 125.8(36.255) 0.1739 0.0012 0.0005 0.0008 0.0129 36.26 0.200(0.200)7.600 0.500 73.2(------) 56.5 129.6(36.255) 0.1476 0.0012 0.0005 0.0008 0.0137 36.26 0.200(0.200)8.100 0.500 77.5(------) 56.0 133.5(36.255) 0.1213 0.0012 0.0005 0.0008 0.0145 36.26 0.200(0.200)8.600 0.500 81.5(------) 55.5 137.0(30.575) 0.0951 0.0014 0.0005 0.0009 0.0154 30.57 0.200(0.200)9.100 0.500 85.2(------) 55.0 140.2(30.575) 0.0716 0.0013 0.0005 0.0009 0.0163 30.57 0.200(0.200)9.600 0.500 88.9(------) 54.5 143.4(30.575) 0.0650 0.0013 0.00050.0009 0.0172 30.57 0.200(0.200)10.100 0.500 92.6(------) 53.9 146.5(30.575) 0.0584 0.0013 0.0005 0.0009 0.0180 30.57 0.200(0.200)10.600 0.500 96.3(------) 53.4 149.7(30.575) 0.0518 0.0013 0.0005 0.0009 0.0189 30.57 0.200(0.200)11.100 0.500 100.0(------) 52.9 152.8(30.575) 0.0452 0.0013 0.0005 0.0009 0.0198 30.57 0.200(0.200)11.600 0.500 103.7(------) 52.3 156.0(30.575) 0.0387 0.0013 0.0005 0.0009 0.0206 30.57 0.200(0.200)12.100 0.500 107.4(------) 51.7 159.1(30.575) 0.0321 0.0013 0.0005 0.0008 0.0215 30.57 0.200(0.200)12.600 0.500 111.1(------) 51.2 162.2(30.575) 0.0255 0.0013 0.0004 0.0008 0.0223 30.57 0.200(0.200)13.100 0.500 114.8(------) 50.6 165.4(30.575) 0.0189 0.0012 0.0004 0.0008 0.0231 30.57 0.200(0.200)13.600 0.500 118.5(------) 50.0 168.5(30.575) 0.0141 0.0012 0.0004 0.0008 0.0240 30.57 0.200(0.200)13.900 0.300 121.4(------) 49.6 171.0(30.575) 0.0129 0.0007 0.0002 0.0005 0.0245 30.57 0.200(0.200)14.400 0.500 124.7(------) 49.1 173.8(31.786) 0.0117 0.0012 0.0004 0.0008 0.0252 31.79 0.200(0.200)14.900 0.500 129.0(------) 48.6 177.6(31.786) 0.0102 0.0011 0.0004 0.0008 0.0260 31.79 0.200(0.200)15.400 0.500 133.4(------) 48.0 181.3(31.786) 0.0087 0.0011 0.0004 0.0008 0.0267 31.79 0.200(0.200)15.900 0.500 137.7(------) 47.4 185.1(31.786) 0.0071 0.0011 0.0004 0.0007 0.0275 31.79 0.200(0.200)16.400 0.500 142.0(------) 46.9 188.9(31.786) 0.0056 0.0011 0.0004 0.0007 0.0282 31.79 0.200(0.200)16.900 0.500 146.4(------) 46.3 192.7(31.786) 0.0041 0.0011 0.0004 0.0007 0.0290 31.79 0.200(0.200)17.000 0.100 149.0(------) 46.0 194.9(31.786) 0.0032 0.0002 0.0001 0.0001 0.0291 31.79 0.200(0.200)层底深层厚自重应力(kPa ) 附加应力全应力(kPa) 固结度层最终层当前 (m) (m) (Es(MPa)) (kPa ) (Es(MPa)) 沉降mSc(m) 沉降(m)17.500 0.500 151.6( 4.500) 45.6 197.2( 4.500) 0.0023 0.0076 0.002518.000 0.500 155.9( 4.500) 45.1 201.0( 4.500) 0.0013 0.0075 0.002518.500 0.500 160.2( 4.500) 44.5 204.7( 4.500) 0.0011 0.0074 0.002519.000 0.500 164.6( 4.500) 44.0 208.5( 4.500) 0.0010 0.0073 0.002419.500 0.500 168.9( 4.500) 43.4 212.3( 4.500) 0.0008 0.0072 0.002420.000 0.500 173.2( 4.500) 42.9 216.1( 4.500) 0.0007 0.0071 0.002420.500 0.500 177.6( 4.500) 42.4 219.9( 4.500) 0.0005 0.0071 0.002421.000 0.500 181.9( 4.500) 41.8 223.7( 4.500) 0.0004 0.0070 0.002321.500 0.500 186.2( 4.500) 41.3 227.6( 4.500) 0.0002 0.0069 0.002322.000 0.500 190.6( 4.500) 40.8 231.4( 4.500) 0.0001 0.0068 0.002322.500 0.500 194.9( 4.500) 40.3 235.2( 4.500) 0.0000 0.0067 0.002223.000 0.500 199.2( 4.500) 39.8 239.1( 4.500) 0.0000 0.0066 0.002223.500 0.500 203.6( 4.500) 39.3 242.9( 4.500) 0.0000 0.0066 0.002224.000 0.500 207.9( 4.500) 38.8 246.8( 4.500) 0.0000 0.0065 0.002224.500 0.500 212.3( 4.500) 38.4 250.6( 4.500) 0.0000 0.0064 0.002125.000 0.500 216.6( 4.500) 37.9 254.5( 4.500) 0.0000 0.0063 0.002125.500 0.500 220.9( 4.500) 37.4 258.4( 4.500) 0.0000 0.0062 0.002126.000 0.500 225.3( 4.500) 37.0 262.3( 4.500) 0.0000 0.0062 0.002126.500 0.500 229.6( 4.500) 36.6 266.1( 4.500) 0.0000 0.0061 0.002027.000 0.500 233.9( 4.500) 36.1 270.0( 4.500) 0.0000 0.0060 0.0020 27.500 0.500 238.3( 4.500) 35.7 273.9( 4.500) 0.0000 0.0059 0.0020最下面分层附加应力与自重应力之比 = 14.977% <= 15.000%压缩模量当量值 = 10.976Mpa, 按地基规范GB50007-2011表5.3.5 的沉降计算经验系数 = 0.702(0.551)============================================================================(三) 填土--时间--沉降曲线输出位置,相对于路堤中线 0(m)(即X=19.320(m))时间(月) 设计填土高度实际填土高度当时沉降(m) (m) (m)0.00 0.000 0.000 0.0000.60 0.100 0.101 0.0001.20 0.200 0.201 0.0001.80 0.300 0.302 0.0002.40 0.400 0.402 0.0013.00 0.500 0.503 0.0013.60 0.600 0.603 0.0024.20 0.700 0.704 0.0024.80 0.800 0.804 0.0035.40 0.900 0.905 0.0046.00 1.000 1.005 0.0056.10 1.000 1.005 0.0056.20 1.000 1.005 0.0056.30 1.000 1.005 0.0056.40 1.000 1.005 0.0056.50 1.000 1.005 0.0056.60 1.000 1.005 0.0056.70 1.000 1.005 0.0056.80 1.000 1.005 0.0056.90 1.000 1.005 0.0057.00 1.000 1.005 0.0057.50 1.088 1.099 0.0068.00 1.176 1.194 0.0088.50 1.264 1.288 0.0099.00 1.352 1.383 0.0149.50 1.440 1.477 0.01810.00 1.528 1.571 0.02210.50 1.616 1.666 0.02711.00 1.704 1.760 0.03211.50 1.792 1.855 0.03612.00 1.880 1.949 0.06930.00 1.880 1.949 0.07648.00 1.880 1.949 0.08366.00 1.880 1.949 0.09184.00 1.880 1.949 0.098102.00 1.880 1.949 0.104120.00 1.880 1.949 0.110138.00 1.880 1.949 0.115156.00 1.880 1.949 0.119174.00 1.880 1.949 0.123192.00 1.880 1.949 0.126============================================================================ (四) 填土--时间--固结度曲线输出位置,相对于路堤中线 0.000(m)(即X=19.320(m))输出深度为 2.000(m)时间(月) 设计填土高度固结度(m)0.00 0.000 0.0000.60 0.100 0.0281.20 0.200 0.0561.80 0.300 0.0852.40 0.400 0.1153.00 0.500 0.1453.60 0.600 0.1764.20 0.700 0.2074.80 0.800 0.2405.40 0.900 0.2726.00 1.000 0.3056.10 1.000 0.3066.20 1.000 0.3076.30 1.000 0.3086.40 1.000 0.3096.50 1.000 0.3106.60 1.000 0.3116.70 1.000 0.3126.80 1.000 0.3136.90 1.000 0.3137.00 1.000 0.3147.50 1.088 0.3498.00 1.176 0.3848.50 1.264 0.4209.00 1.352 0.4569.50 1.440 0.49310.00 1.528 0.53010.50 1.616 0.56811.00 1.704 0.60611.50 1.792 0.64412.00 1.880 0.68230.00 1.880 0.82748.00 1.880 0.87566.00 1.880 0.90084.00 1.880 0.916102.00 1.880 0.927120.00 1.880 0.935138.00 1.880 0.942156.00 1.880 0.947174.00 1.880 0.951192.00 1.880 0.955============================================================================(五) 稳定计算(1) 第1级加荷,从0.0~6.0月,路基设计高度1.000(m), 路基计算高度(考虑沉降影响)1.005(m),加载结束时稳定结果η= 0.187 μc=2.858 μs=0.572 τc=270.000(kPa)土条起始x 土条面土条自条上荷总重αi sinαi cosαi CqiΦqi 下滑力 Qi 增大系数 yQi/R 抗滑力抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (kN) (kN) (m) WicosαitanΦq CiLi---------------------------------------------------------------------------------------------------------------------------------------------------------------------------1 0.00 0.09 1.75 0.00 1.75 5.16 0.09 1.00 21.40 16.60 0.16 0.05 1.000 0.746 0.52 3.872 0.18 0.41 8.03 0.00 8.03 50.16 0.77 0.64 21.40 16.60 6.17 0.21 1.000 0.246 1.53 29.91最不利滑动面:滑动圆心 = (0.000000,1.005008)(m)滑动半径 = 1.005008(m)滑动安全系数 = 5.589总的下滑力 = 6.412(kN)总的抗滑力 = 35.838(kN)土体部分下滑力 = 6.327(kN)土体部分抗滑力 = 35.838(kN)筋带的抗滑力 = 0.000(kN)地震作用下滑力 = 0.085(kN)(2) 第2级加荷,从7.0~12.0月,路基设计高度1.880(m), 路基计算高度(考虑沉降影响)1.949(m),加载结束时稳定结果η= 0.187 μc=2.858 μs=0.572 τc=270.000(kPa)抗滑力抗滑力抗滑力土条起始x 土条面土条自条上荷总重αi sinαi cosαi Cqi Φqi UiΦgi Woi Wli 下滑力 Qi 增大系数 yQi/R Woicosαi CiLi σiliCos编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (度) (kN) (kN) (kN) (kN) (m) tanΦqi αitanΦgi------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1 -29.77 0.30 5.42 0.00 5.42 -59.10 -0.86 0.51 6.10 30.10 0.9201 0.00 5.42 0.00 -4.65 0.14 1.000 0.504 1.61 7.11 0.002 -29.17 1.52 21.70 0.00 21.70 -56.19 -0.83 0.56 6.10 30.10 0.7328 0.00 21.70 0.00 -18.03 0.72 1.000 0.526 7.00 9.93 0.003 -28.27 2.67 31.71 0.00 31.71 -52.93 -0.80 0.60 6.10 30.10 0.5304 0.00 31.71 0.00 -25.31 1.28 1.000 0.549 11.08 9.17 0.004 -27.36 3.70 40.64 0.00 40.64 -49.91 -0.77 0.64 6.10 30.10 0.3499 0.00 40.64 0.00 -31.09 1.78 1.000 0.570 15.17 8.58 0.005 -26.46 4.63 48.69 0.00 48.69 -47.06 -0.73 0.68 6.10 30.10 0.2648 0.00 48.69 0.00 -35.64 2.23 1.000 0.588 19.23 8.11 0.006 -25.55 5.65 57.78 0.00 57.78 -44.32 -0.70 0.72 6.60 25.20 0.2153 0.00 57.78 0.00 -40.37 2.73 1.000 0.605 19.45 8.61 0.007 -24.62 6.46 64.82 0.00 64.82 -41.67 -0.66 0.75 6.60 25.20 0.1696 0.00 64.82 0.00 -43.09 3.12 1.000 0.621 22.79 8.24 0.008 -23.69 7.20 71.25 0.00 71.25 -39.12 -0.63 0.78 6.60 25.20 0.1279 0.00 71.25 0.00 -44.95 3.48 1.000 0.636 26.01 7.94 0.009 -22.75 8.42 81.93 0.00 81.93 -36.58 -0.60 0.80 7.905.00 0.0885 5.30 81.93 0.00 -48.82 4.06 1.000 0.649 5.76 9.78 0.0010 -21.76 9.12 87.11 0.00 87.11 -34.04 -0.56 0.83 7.905.00 0.0672 5.30 87.11 0.00 -48.76 4.38 1.000 0.6626.31 9.48 0.0011 -20.76 9.76 91.82 0.00 91.82 -31.58 -0.52 0.85 7.905.00 0.0588 5.30 91.82 0.00 -48.09 4.67 1.000 0.6746.84 9.22 0.0012 -19.77 10.34 96.11 0.00 96.11 -29.18 -0.49 0.87 7.905.00 0.0511 5.30 96.11 0.00 -46.86 4.93 1.000 0.6847.34 9.00 0.0013 -18.77 10.87 100.00 0.00 100.00 -26.84 -0.45 0.89 7.905.00 0.0441 5.30 100.00 0.00 -45.14 5.17 1.000 0.694 7.81 8.80 0.0014 -17.78 11.34 103.52 0.00 103.52 -24.54 -0.42 0.91 7.905.00 0.0378 5.30 103.52 0.00 -42.99 5.38 1.000 0.702 8.24 8.64 0.0015 -16.79 11.77 106.68 0.00 106.68 -22.28 -0.38 0.93 7.905.00 0.0322 5.30 106.68 0.00 -40.45 5.58 1.000 0.710 8.64 8.49 0.0016 -15.79 12.15 109.51 0.00 109.51 -20.06 -0.34 0.94 7.905.00 0.0271 5.30 109.51 0.00 -37.57 5.75 1.000 0.717 9.00 8.36 0.0017 -14.80 12.50 112.03 0.00 112.03 -17.88 -0.31 0.95 7.90 5.00 0.0226 5.30 112.03 0.00 -34.39 5.90 1.000 0.723 9.33 8.26 0.0018 -13.80 12.79 114.23 0.00 114.23 -15.72 -0.27 0.96 7.90 5.00 0.0186 5.30 114.23 0.00 -30.94 6.04 1.000 0.729 9.62 8.16 0.0019 -12.81 13.05 116.14 0.00 116.14 -13.58 -0.23 0.97 7.90 5.00 0.0152 5.30 116.14 0.00 -27.26 6.15 1.000 0.734 9.88 8.08 0.0020 -11.81 13.27 117.77 0.00 117.77 -11.46 -0.20 0.98 7.90 5.00 0.0141 5.30 117.77 0.00 -23.39 6.25 1.000 0.738 10.10 8.02 0.0021 -10.82 13.45 119.11 0.00 119.11 -9.35 -0.16 0.99 7.90 5.00 0.0136 5.30 119.11 0.00 -19.36 6.34 1.000 0.741 10.28 7.96 0.0022 -9.82 13.60 120.18 0.00 120.18 -7.26 -0.13 0.99 7.90 5.00 0.0131 5.30 120.18 0.00 -15.19 6.40 1.000 0.744 10.43 7.92 0.0023 -8.83 13.71 120.97 0.00 120.97 -5.18 -0.09 1.00 7.90 5.00 0.0128 5.30 120.97 0.00 -10.92 6.45 1.000 0.746 10.54 7.89 0.0024 -7.84 13.78 121.50 0.00 121.50 -3.11 -0.05 1.00 7.90 5.00 0.0126 5.30 121.50 0.00 -6.58 6.48 1.000 0.747 10.61 7.87 0.0025 -6.84 13.81 121.77 0.00 121.77 -1.03 -0.02 1.00 7.90 5.00 0.0125 5.30 121.77 0.00 -2.20 6.50 1.000 0.748 10.65 7.86 0.0026 -5.85 13.54 119.32 0.00 119.32 1.01 0.02 1.00 7.90 5.00 0.0125 5.30 119.32 0.00 2.11 6.37 1.000 0.748 10.44 7.70 0.0027 -4.87 13.50 119.07 0.00 119.07 3.04 0.05 1.00 7.90 5.00 0.0126 5.30 119.07 0.00 6.32 6.35 1.000 0.747 10.40 7.71 0.0028 -3.90 13.43 118.57 0.00 118.57 5.08 0.09 1.00 7.90 5.00 0.0128 5.30 118.57 0.00 10.49 6.32 1.000 0.746 10.33 7.73 0.0029 -2.92 13.33 117.83 0.00 117.83 7.11 0.12 0.99 7.90 5.00 0.0131 5.30 117.83 0.00 14.59 6.28 1.000 0.744 10.23 7.76 0.0030 -1.95 13.20 116.82 0.00 116.82 9.16 0.16 0.99 7.90 5.00 0.0135 5.30 116.82 0.00 18.60 6.22 1.000 0.741 10.09 7.80 0.0031 -0.97 13.03 115.56 0.00 115.56 11.22 0.19 0.98 7.90 5.00 0.0141 5.30 115.56 0.00 22.49 6.14 1.000 0.738 9.92 7.85 0.00土条起始x 土条面土条自条上荷总重αi sinαi cosαi li Ci Φi Φgi Ui Wli Woi 下滑力 Qi 增大系数 yQi/R 抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (m)(kPa) (kN) (kN) (kN) (kN) (m) (kN)------------------------------------------------------------------------------------------------------------------------------------转为总应力法32 0.00 10.08 91.75 0.00 91.75 13.06 0.23 0.97 0.77 7.90 5.00 5.30 0.01 3.83 87.92 20.73 4.76 1.000 0.730 50.25转为总应力法33 0.75 10.33 98.39 0.00 98.39 14.66 0.25 0.97 0.78 7.90 5.00 5.30 0.02 11.49 86.90 24.91 4.90 1.000 0.717 50.97转为总应力法34 1.50 9.29 92.76 0.00 92.76 16.19 0.28 0.96 0.69 7.90 5.00 5.30 0.02 17.24 75.52 25.86 4.44 1.000 0.705 45.52转为总应力法35 2.16 9.45 99.31 0.00 99.31 17.62 0.30 0.95 0.69 7.90 5.00 5.30 0.02 24.77 74.54 30.06 4.57 1.000 0.693 46.21转为总应力法36 2.82 13.08 141.17 0.00 141.17 19.35 0.33 0.94 0.97 7.90 5.00 5.30 0.03 39.57 101.60 46.78 6.37 1.000 0.684 64.79转为总应力法37 3.74 12.77 138.87 0.00 138.87 21.38 0.36 0.93 0.98 7.90 5.00 5.30 0.03 39.57 99.30 50.63 6.23 1.000 0.678 65.25转为总应力法38 4.65 12.42 136.32 0.00 136.32 23.44 0.40 0.92 1.00 7.90 5.00 5.30 0.04 39.57 96.74 54.23 6.07 1.000 0.671 65.78转为总应力法39 5.57 12.04 133.50 0.00 133.50 25.54 0.43 0.90 1.01 7.90 5.00 5.30 0.04 39.57 93.92 57.55 5.90 1.000 0.663 66.41转为总应力法40 6.48 11.62 130.39 0.00 130.39 27.67 0.46 0.89 1.03 7.90 5.00 5.30 0.05 39.57 90.82 60.55 5.71 1.000 0.655 67.14转为总应力法41 7.40 11.16 126.99 0.00 126.99 29.84 0.50 0.87 1.06 7.90 5.00 5.30 0.05 39.57 87.42 63.19 5.50 1.000 0.646 68.00转为总应力法42 8.31 10.66 123.28 0.00 123.28 32.06 0.53 0.85 1.08 7.90 5.00 5.30 0.06 39.57 83.71 65.44 5.27 1.000 0.636 69.02转为总应力法43 9.23 10.11 119.22 0.00 119.22 34.34 0.56 0.83 1.11 7.90 5.00 5.30 0.07 39.57 79.65 67.25 5.03 1.000 0.625 70.21转为总应力法44 10.14 9.51 114.80 0.00 114.80 36.68 0.60 0.80 1.14 7.90 5.00 5.30 0.09 39.57 75.23 68.57 4.76 1.000 0.613 71.63转为总应力法45 11.06 9.02 111.57 0.00 111.57 39.12 0.63 0.78 1.20 6.60 25.20 0.00 0.13 40.33 71.25 70.39 4.53 1.000 0.600 100.39转为总应力法46 11.99 8.28 105.15 0.00 105.15 41.67 0.66 0.75 1.25 6.60 25.20 0.00 0.17 40.33 64.82 69.90 4.17 1.000 0.586 99.92转为总应力法47 12.92 7.47 98.11 0.00 98.11 44.32 0.70 0.72 1.30 6.60 25.20 0.00 0.22 40.33 57.78 68.55 3.78 1.000 0.570 99.81转为总应力法48 13.86 6.40 87.83 0.00 87.83 47.06 0.73 0.68 1.33 6.10 30.100.00 0.26 39.15 48.69 64.30 3.25 1.000 0.553 102.04转为总应力法49 14.76 5.47 79.79 0.00 79.79 49.91 0.77 0.64 1.41 6.10 30.100.00 0.35 39.15 40.64 61.04 2.80 1.000 0.534 102.32转为总应力法50 15.67 4.44 70.86 0.00 70.86 52.93 0.80 0.60 1.50 6.10 30.100.00 0.53 39.15 31.71 56.54 2.30 1.000 0.514 103.59转为总应力法51 16.57 3.28 60.85 0.00 60.85 56.19 0.83 0.56 1.63 6.10 30.100.00 0.73 39.15 21.70 50.56 1.74 1.000 0.490 106.36转为总应力法52 17.48 1.47 31.29 0.00 31.29 59.10 0.86 0.51 1.17 6.10 30.100.00 0.92 25.88 5.42 26.85 0.81 1.000 0.469 72.32土条起始x 土条面土条自条上荷总重αi sinαi cosαi CqiΦqi 下滑力 Qi 增大系数 yQi/R 抗滑力抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (kN) (kN) (m) WicosαitanΦq CiLi---------------------------------------------------------------------------------------------------------------------------------------------------------------------------53 18.08 0.80 18.56 0.00 18.56 61.53 0.88 0.48 21.40 16.60 16.31 0.48 1.000 0.451 2.64 25.2454 18.64 0.20 5.11 0.00 5.11 63.82 0.90 0.44 40.00 45.00 4.59 0.13 1.000 0.433 2.26 40.66最不利滑动面:滑动圆心 = (-5.846784,13.642498)(m)滑动半径 = 27.541615(m)滑动安全系数 = 3.792总的下滑力 = 593.788(kN)总的抗滑力 = 2251.849(kN)土体部分下滑力 = 427.352(kN)土体部分抗滑力 = 2251.849(kN)筋带的抗滑力 = 0.000(kN)地震作用下滑力 = 166.436(kN)(3) 第13.0月施加超载,路基设计高度1.880(m), 路基计算高度(考虑沉降影响)1.949(m),加载结束时稳定结果η= 0.187 μc=2.858 μs=0.572 τc=270.000(kPa)抗滑力抗滑力抗滑力土条起始x 土条面土条自条上荷总重αi sinαi cosαi Cqi Φqi UiΦgi Woi Wli 下滑力 Qi 增大系数 yQi/R Woicosαi CiLi σiliCos编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (度) (kN) (kN) (kN) (kN) (m) tanΦqi αitanΦgi------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1 -26.06 0.26 4.64 0.00 4.64 -62.88 -0.89 0.46 6.10 30.10 0.9240 0.00 4.64 0.00 -4.13 0.12 1.000 0.446 1.22 6.85 0.002 -25.55 1.36 19.37 0.00 19.37 -59.72 -0.86 0.50 6.10 30.10 0.7439 0.00 19.37 0.00 -16.72 0.65 1.000 0.470 5.66 9.73 0.003 -24.74 2.40 28.36 0.00 28.36 -56.18 -0.83 0.56 6.10 30.10 0.5493 0.00 28.36 0.00 -23.56 1.15 1.000 0.496 9.15 8.82 0.004 -23.94 3.31 36.26 0.00 36.26 -52.94 -0.80 0.60 6.10 30.10 0.3782 0.00 36.26 0.00 -28.94 1.59 1.000 0.519 12.67 8.14 0.005 -23.13 4.12 43.31 0.00 43.31 -49.93 -0.77 0.64 6.10 30.10 0.2949 0.00 43.31 0.00 -33.14 1.99 1.000 0.539 16.16 7.62 0.006 -22.33 5.17 52.89 0.00 52.89 -47.02 -0.73 0.68 6.60 25.20 0.2416 0.00 52.89 0.00 -38.69 2.50 1.000 0.558 16.97 8.27 0.007 -21.48 5.92 59.35 0.00 59.35 -44.18 -0.70 0.72 6.60 25.20 0.1919 0.00 59.35 0.00 -41.36 2.86 1.000 0.576 20.03 7.86 0.008 -20.62 6.59 65.21 0.00 65.21 -41.47 -0.66 0.75 6.60 25.20 0.1468 0.00 65.21 0.00 -43.18 3.19 1.000 0.592 22.99 7.52 0.009 -19.77 8.43 81.92 0.00 81.92 -38.66 -0.62 0.78 7.90 5.00 0.1026 5.30 81.92 0.00 -51.18 4.06 1.000 0.608 5.60 10.04 0.0010 -18.78 9.18 87.45 0.00 87.45 -35.76 -0.58 0.81 7.90 5.00 0.0795 5.30 87.45 0.00 -51.10 4.40 1.000 0.623 6.21 9.66 0.0011 -17.78 9.85 92.42 0.00 92.42 -32.96 -0.54 0.84 7.90 5.00 0.0689 5.30 92.42 0.00 -50.29 4.71 1.000 0.637 6.78 9.34 0.0012 -16.79 10.46 96.90 0.00 96.90 -30.25 -0.50 0.86 7.90 5.00 0.0594 5.30 96.90 0.00 -48.82 4.98 1.000 0.650 7.32 9.07 0.0013 -15.80 11.00 100.92 0.00 100.92 -27.61 -0.46 0.89 7.90 5.00 0.0509 5.30 100.92 0.00 -46.78 5.23 1.000 0.661 7.82 8.84 0.0014 -14.81 11.49 104.52 0.00 104.52 -25.04 -0.42 0.91 7.90 5.00 0.0433 5.30 104.52 0.00 -44.23 5.45 1.000 0.671 8.29 8.65 0.0015 -13.82 11.92 107.73 0.00 107.73 -22.51 -0.38 0.92 7.90 5.00 0.0365 5.30 107.73 0.00 -41.25 5.64 1.000 0.680 8.71 8.48 0.0016 -12.82 12.30 110.56 0.00 110.56 -20.03 -0.34 0.94 7.90 5.00 0.0304 5.30 110.56 0.00 -37.87 5.82 1.000 0.687 9.09 8.34 0.0017 -11.83 12.64 113.04 0.00 113.04 -17.59 -0.30 0.95 7.90 5.00 0.0252 5.30 113.04 0.00 -34.17 5.97 1.000 0.694 9.43 8.22 0.0018 -10.84 12.93 115.18 0.00 115.18 -15.19 -0.26 0.97 7.90 5.00 0.0207 5.30 115.18 0.00 -30.17 6.10 1.000 0.700 9.72 8.12 0.0019 -9.85 13.17 116.99 0.00 116.99 -12.81 -0.22 0.98 7.90 5.00 0.0182 5.30 116.99 0.00 -25.93 6.21 1.000 0.705 9.98 8.04 0.0020 -8.86 13.38 118.49 0.00 118.49 -10.45 -0.18 0.98 7.90 5.00 0.0174 5.30 118.49 0.00 -21.49 6.30 1.000 0.709 10.19 7.97 0.0021 -7.87 13.54 119.67 0.00 119.67 -8.11 -0.14 0.99 7.90 5.00 0.0168 5.30 119.67 0.00 -16.88 6.37 1.000 0.713 10.37 7.92 0.0022 -6.87 13.66 120.56 0.00 120.56 -5.78 -0.10 0.99 7.90 5.00 0.0163 5.30 120.56 0.00 -12.15 6.43 1.000 0.715 10.49 7.88 0.0023 -5.88 13.74 121.15 0.00 121.15 -3.47 -0.06 1.00 7.90 5.00 0.0160 5.30 121.15 0.00 -7.32 6.46 1.000 0.717 10.58 7.85 0.0024 -4.89 13.78 121.44 0.00 121.44 -1.15 -0.02 1.00 7.90 5.00 0.0159 5.30 121.44 0.00 -2.45 6.48 1.000 0.718 10.62 7.84 0.0025 -3.90 13.53 119.31 0.00 119.31 1.13 0.02 1.00 7.90 5.00 0.0159 5.30 119.31 0.00 2.36 6.37 1.000 0.718 10.44 7.70 0.0026 -2.92 13.50 119.03 0.00 119.03 3.40 0.06 1.00 7.90 5.00 0.0160 5.30 119.03 0.00 7.07 6.35 1.000 0.717 10.40 7.71 0.0027 -1.95 13.42 118.47 0.00 118.47 5.68 0.10 1.00 7.90 5.00 0.0163 5.30 118.47 0.00 11.73 6.32 1.000 0.715 10.31 7.74 0.0028 -0.97 13.31 117.63 0.00 117.63 7.97 0.14 0.99 7.90 5.00 0.0168 5.30 117.63 0.00 16.30 6.27 1.000 0.713 10.19 7.77 0.00土条起始x 土条面土条自条上荷总重αi sinαi cosαi li Ci Φi Φgi Ui Wli Woi 下滑力 Qi 增大系数 yQi/R 抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (m)(kPa) (kN) (kN) (kN) (kN) (m) (kN)------------------------------------------------------------------------------------------------------------------------------------转为总应力法29 0.00 10.34 93.62 0.00 93.62 10.00 0.17 0.98 0.76 7.90 5.005.30 0.02 3.83 89.79 16.25 4.88 1.000 0.705 49.97转为总应力法30 0.75 10.62 100.48 0.00 100.48 11.77 0.20 0.98 0.77 7.90 5.005.30 0.02 11.49 88.99 20.50 5.03 1.000 0.691 50.67转为总应力法31 1.50 9.56 94.79 0.00 94.79 13.46 0.23 0.97 0.68 7.90 5.005.30 0.02 17.24 77.55 22.06 4.56 1.000 0.678 45.24转为总应力法32 2.16 9.75 101.50 0.00 101.50 15.04 0.26 0.97 0.68 7.90 5.005.30 0.02 24.77 76.73 26.34 4.71 1.000 0.666 45.93转为总应力法33 2.82 13.52 144.43 3.66 148.09 16.95 0.29 0.96 0.96 7.90 5.00 5.30 0.02 43.23 104.86 43.17 6.66 1.000 0.656 64.62转为总应力法34 3.74 13.25 142.41 3.66 146.07 19.19 0.33 0.94 0.97 7.90 5.00 5.30 0.03 43.23 102.84 48.02 6.54 1.000 0.650 65.06转为总应力法35 4.65 12.94 140.11 3.66 143.77 21.46 0.37 0.93 0.98 7.90 5.00 5.30 0.03 43.23 100.55 52.61 6.40 1.000 0.643 65.58转为总应力法36 5.57 12.59 137.53 3.66 141.19 23.77 0.40 0.92 1.00 7.90 5.00 5.30 0.04 43.23 97.97 56.91 6.24 1.000 0.636 66.21转为总应力法37 6.48 12.20 134.65 3.66 138.31 26.12 0.44 0.90 1.02 7.90 5.00 5.30 0.05 43.23 95.09 60.90 6.07 1.000 0.627 66.95转为总应力法38 7.40 11.77 131.45 10.36 141.81 28.52 0.48 0.88 1.04 7.90 5.00 5.30 0.05 49.92 91.89 67.71 6.04 1.000 0.617 68.25转为总应力法39 8.31 11.29 127.91 16.13 144.04 30.98 0.51 0.86 1.07 7.90 5.00 5.30 0.06 55.70 88.35 74.14 5.98 1.000 0.607 69.64转为总应力法40 9.23 10.76 124.01 16.13 140.14 33.50 0.55 0.83 1.10 7.90 5.00 5.30 0.07 55.70 84.44 77.34 5.74 1.000 0.595 70.88转为总应力法41 10.14 10.18 119.70 16.13 135.83 36.09 0.59 0.81 1.13 7.90 5.00 5.30 0.08 55.70 80.13 80.01 5.48 1.000 0.582 72.38转为总应力法42 11.06 9.53 114.96 16.13 131.09 38.77 0.63 0.78 1.17 7.90 5.00 5.30 0.10 55.70 75.39 82.10 5.19 1.000 0.568 74.20转为总应力法43 11.97 8.26 102.11 15.05 117.16 41.47 0.66 0.75 1.14 6.60 25.20 0.00 0.15 51.95 65.21 77.58 4.54 1.000 0.553 97.32转为总应力法44 12.83 7.58 96.25 15.05 111.30 44.18 0.70 0.72 1.19 6.60 25.20 0.00 0.19 51.95 59.35 77.56 4.21 1.000 0.537 97.13转为总应力法45 13.68 6.84 89.79 15.05 104.84 47.02 0.73 0.68 1.25 6.60 25.20 0.00 0.24 51.95 52.89 76.70 3.85 1.000 0.519 97.40转为总应力法46 14.53 5.69 78.09 14.18 92.27 49.93 0.77 0.64 1.25 6.10 30.10 0.00 0.29 48.96 43.31 70.61 3.26 1.000 0.500 97.41转为总应力法47 15.34 4.87 71.04 14.18 85.22 52.94 0.80 0.60 1.34 6.10 30.10 0.00 0.38 48.96 36.26 68.00 2.87 1.000 0.479 98.35转为总应力法48 16.14 3.96 63.13 14.18 77.32 56.18 0.83 0.56 1.45 6.10 30.10 0.00 0.55 48.96 28.36 64.23 2.42 1.000 0.456 100.57。

水泥土搅拌桩计算表

水泥土搅拌桩计算表

土层名称基础底标高土层底面标高Zi L Bf sp,kf akξE siE sp 'P o回填土51.49 4.3860601 2.5 2.5粉质粘土48.99 6.88606015.51 5.51淤泥质粉质黏土48.377.574601.2333333344.93333333黏土粉质粘土说明: Zi——基础底面至土底面的距离; L ——基底长边; B ——基底短边;fsp,k——复合地基承载力特征值; fak——土的承载力特征值;Esi——基础底面下第i层土的压缩模量,应在土的自重压力至土的自重压力至土的自重压力与附加压力之和的压力范围取值; E sp ——地基强度提高以后,模量相应提高后的取值;Po——对应于荷载效应准永久组合标准值时的基础底面处的附加压力。

L/BZi/B αiZi αi Ai Σ Ai Ai/Esp'ΣAi/Esp'E s ψss0.4380.240 1.051105.12042.0480.6880.211 1.45240.0487.2680.7500.2121.58613.4572.728158.625 ξ——复合地基承载力特征值与土的承载力特征值的比值1.000结论:地基加固处理后荷载作用下的地基沉降变形约为23.462mm.Es——变形计算深度范围内压缩模量的当量值;Ai——第i层土平均附加应力系数沿土层厚度的积分值;Ai=P0*(Zi*ai-Zi-1*ai-1)说明: αi——基础底面计算点至第i层土底面范围内平均附加应力系数;详GB50007-2011《建筑地基基础设计规范》附录K 为非修改区域S ——地基最终变形量(mm)。

ψs——沉降计算经验系数;详GB50007-2011《建筑地基基础设计规范》表5.3.568.69852.044 3.048 1.3201055.87沉降基本数据沉降数据计算10010。

搅拌桩计算公式

搅拌桩计算公式

搅拌桩水泥掺量计算有关水泥土搅拌桩的计算(一)搭接的水泥土搅拌桩每幅桩截面积的计算:见每幅搅拌桩的截面积计算表(SMW工法)。

(二)水泥土搅拌桩水泥用量的计算:根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。

当设计未表明被加固土体的重度时,土的重度按18KN/m3来计算水泥土搅拌桩的水泥用量。

有的围护工程设计提出土的重度按19KN/m3计算。

换算公式:1tf/m3=9.80665KN/m3≈10KN/m318KN/m3÷10KN/m3=1.8tf/m3加固土体的水泥用量=被加固土体的重度×水泥掺量如:常用的水泥掺量为13%或15%1、当水泥掺量为13%,土的重量按1.8t/m3水泥用量=1.8t/m3×13%=0.234t/m3=234kg/m3即:加固1m3土体的水泥用量为234kg2、当水泥掺量为15%,土的重量按1.8t/m3水泥掺量=1.8t/m3×15%=0.270t/m3=270kg/m3即:加固1m3土体的水泥用量为270kg(三)每幅水泥土搅拌桩每m段的水泥用量计算:根据每幅搅拌桩的截面积计算表(SMW工法),φ700mm的每幅桩截面积为0.70224549㎡,计算时按0.702㎡。

1、当水泥掺量为13%,截面积按0.702㎡每m段的水泥用量=234kg/m3×0.702㎡×1m=164.27kg2、当水泥掺量为13%,常规截面积按0.71㎡每m段的水泥用量=234kg/m3×0.71㎡×1m=166.14kg(四)水泥土搅拌桩的灰浆密度计算:水泥密度3t/m3 水的密度1t/m31、当水灰比为0.5即:1t水泥:0.5t水两体拌和后的重量为1.5t两体拌和后的体积=1/3m3+0.5/1m3=0.83m3灰浆密度=重量÷体积=1.5t÷0.83m3=1.8t/m32、当水灰比为0.55即:1t水泥:0.55t水两体拌和后的重量为1.55t两体拌和后的体积=1/3m3+0.55/1m3=0.883m3灰浆密度=重量÷体积=1.55t÷0.883m3=1.755t/m3。

桩基沉降层厚度计算公式

桩基沉降层厚度计算公式

桩基沉降层厚度计算公式引言。

在地基工程中,桩基是一种常用的地基处理方法,它可以有效地提高地基的承载能力和稳定性。

然而,桩基在使用过程中也会出现一定程度的沉降,因此需要对桩基沉降层厚度进行计算,以确保地基工程的安全和稳定。

本文将介绍桩基沉降层厚度的计算公式及其应用。

桩基沉降层厚度计算公式。

桩基沉降层厚度的计算是基于桩基的承载能力和地基的土壤特性进行的。

一般来说,桩基的沉降主要包括两部分:桩身沉降和土体沉降。

桩身沉降是指桩基在承载荷载作用下的沉降,而土体沉降是指桩基周围土体在承载荷载作用下的沉降。

因此,桩基沉降层厚度可以通过以下公式进行计算:H = H1 + H2。

其中,H代表桩基沉降层厚度,H1代表桩身沉降,H2代表土体沉降。

桩身沉降的计算公式为:H1 = (P/A) L。

其中,P代表桩基的承载力,A代表桩的横截面积,L代表桩的长度。

土体沉降的计算公式为:H2 = (q/B) L。

其中,q代表土体的承载压力,B代表土体的侧面积,L代表桩的长度。

应用举例。

为了更好地理解桩基沉降层厚度的计算方法,我们可以通过一个实际的工程案例进行说明。

假设某地基工程需要使用桩基进行地基处理,桩的直径为1m,长度为10m,地基土的承载压力为200kPa,桩的承载力为500kN。

现在我们需要计算桩基的沉降层厚度。

首先,我们可以通过桩身沉降的计算公式计算桩身沉降:H1 = (500kN / (π (1m)^2 / 4)) 10m = 1591.55mm。

然后,我们可以通过土体沉降的计算公式计算土体沉降:H2 = (200kPa / (π (1m)^2 / 4)) 10m = 6366.21mm。

最后,我们可以通过桩基沉降层厚度的计算公式计算桩基的沉降层厚度:H = H1 + H2 = 1591.55mm + 6366.21mm = 7957.76mm。

因此,桩基的沉降层厚度为7957.76mm。

结论。

通过以上计算可以看出,桩基沉降层厚度的计算是基于桩的承载能力和地基土的承载压力进行的。

混凝土搅拌密度计算公式

混凝土搅拌密度计算公式

混凝土搅拌密度计算公式在混凝土工程中,混凝土的密度是一个非常重要的参数,它直接影响着混凝土的质量和性能。

因此,准确地计算混凝土的密度对于工程质量的保障至关重要。

本文将介绍混凝土搅拌密度的计算公式,帮助工程师和施工人员准确地计算混凝土的密度,从而保证工程质量。

混凝土的密度是指单位体积内混凝土的质量,通常以千克/立方米(kg/m³)或者克/立方厘米(g/cm³)为单位。

混凝土的密度受到多种因素的影响,包括水灰比、骨料的种类和粒径、水泥的种类和用量等。

因此,计算混凝土的密度需要考虑这些因素的综合影响。

混凝土的密度可以通过实验室试验或者现场测量来获得,但是在实际工程中,通常采用计算的方法来估算混凝土的密度。

混凝土搅拌密度的计算公式如下:ρ = (1 w/c) ρc + w ρw。

其中,ρ为混凝土的密度(kg/m³),w为骨料的质量含水率,c为水泥的质量含水率,ρc为水泥的密度(kg/m³),ρw为水的密度(kg/m³)。

在这个公式中,第一项 (1 w/c) ρc 表示水泥固体部分的质量所占的比例乘以水泥的密度,这部分的质量就是混凝土的固体部分的质量。

第二项 w ρw 表示水泥中水的质量所占的比例乘以水的密度,这部分的质量就是混凝土中的水分质量。

通过这个公式,我们可以看到混凝土的密度受到水泥固体部分和水分的影响。

水泥固体部分的密度是固定的,而水分的含量会影响混凝土的密度。

含水率越高,混凝土的密度就越低。

在实际工程中,为了准确地计算混凝土的密度,需要测量骨料和水泥的含水率。

骨料的含水率可以通过干燥法或者饱和表干法来测定,而水泥的含水率可以通过烘干法或者化学分析法来测定。

通过测定含水率,就可以代入上述公式,计算出混凝土的密度。

需要注意的是,混凝土的密度并不是一个固定的数值,它受到多种因素的影响,因此在实际工程中,需要根据具体情况来计算混凝土的密度。

同时,混凝土的密度对于工程质量有着重要的影响,因此在施工过程中需要严格控制混凝土的配合比和搅拌工艺,以保证混凝土的密度符合设计要求。

水泥搅拌桩桩计算书

水泥搅拌桩桩计算书

CFG桩复合地基计算书一.设计依据1).《建筑地基处理技术规范》(JGJ79_2012)2).《建筑地基基础设计规范》(GB 50007-2011)3) .《城市桥梁设计规范》(CJJ_11-2011)二.设计参数沥青混凝土 r =23 KN/m3水稳基层 rd=24KN/m3水容重 rs=10 KN/m3填土 rt=18 KN/m3碎石垫层 r=23 KN/m3三.地质条件根据勘察报告C2钻孔的情况得出,计算桩基位置自然标高为21.6m,此位置设计标高为24.843m。

地下水位位于地面线以下1.45m,按勘察资料得出地质由上至下土层及其厚度为:地质参数表四.设计计算1、水泥搅拌桩参数根据土层分布,持力层为(2-1)粉质粘土夹粉土,有效桩长取13.5m,桩端进入持力层的最小深度为2.0m。

地面标高24.6m,水位标高22.47m。

路基填土厚度h=2.65m(其中路面厚度62cm),路基宽度20m(车行道宽12m),路面结构10cm沥青面层+32cm水稳基层+20cm厚级配碎石。

2、基底压力基础地面以上土的加权平均重度为:γm=(0.1*23+0.32*24+0.2*23+1.53*18+0.5*23)/2.65=20.23KN/m3(1)车道荷载:本道路荷载应采用城-B级:①均布荷载为qk=10.5*0.75=7.875kN/m②集中荷载=360*0.75=270kN取最大值Pk根据《建筑地基基础设计规范》(GB 50007-2011)第5.2.2条规定:轴心荷载基础底面的压力,可根据下列公式确定,得到加固地基顶面压力(地下水位为地面线以下1m)为:Pk=(Fk+Gk)/A=20.23*2.65/1+7.875/1+270/(20*1)=74.98KPa3、单桩承载力计算初步拟定桩径0.5m,桩间距1.1m。

桩周长up=1.57m,桩面积Ap=0.196m2。

根据《建筑地基处理技术规范》(JGJ79_2012)第7.3.3取桩长为13.5m,桩体伸入(2-3)黏土层2m.Ra=up×∑qsi×li+ ap×f×akAp=1.57*(0.6*8+8.9*0+2*15+2*14)+0.5*90*0.196=107.42kN(淤泥质土层由于有负侧摩擦力,侧摩擦力取0;桩端端阻力发挥系数ap=0.4~0.6,本次拟定为0.5。

第四章桩基沉降计算

第四章桩基沉降计算

第四章桩基沉降计算第四章内容为桩基沉降计算。

桩基沉降是指在桩基施工之后,由于土体的沉降而引起的桩基沉降现象。

桩基沉降的计算是土木工程中一个重要的计算问题,对工程的安全性和稳定性具有重要影响。

下面将从桩基沉降的计算方法、影响因素以及计算实例三个方面来展开阐述。

一、桩基沉降的计算方法桩基沉降的计算方法主要有经验法和理论法两种。

经验法通常是根据历史工程的经验数据和实测数据,通过统计分析得到的经验公式来进行计算。

这种方法虽然简单,但缺乏理论依据,适用范围有限。

理论法则是基于土力学和弹性力学的理论,通过计算地基土体的变形来估算桩基的沉降。

桩基沉降的计算方法一般有弹性计算方法和弹塑性计算方法两种。

弹性计算方法适用于土体的变形较小的情况下,一般认为土体的应力-应变关系服从线性弹性假设;弹塑性计算方法适用于土体的变形较大的情况下,考虑土体的弹性和塑性特性。

二、桩基沉降的影响因素桩基沉降的影响因素主要包括桩基自重、土体重应力改变、桩侧土体的变形和桩身上的加荷等。

具体而言,桩基自重是引起桩基沉降的主要因素之一,因为桩基自身的重力会导致土体的压实和沉降;土体重应力改变是指桩基施工前后由于荷载的引入或移除而导致的土体重应力的改变,也会影响桩基的沉降;桩侧土体的变形是指由于桩身的施工而引起的土体变形,也会对桩基沉降产生影响;桩身上的加荷是指桩体在使用过程中受到的荷载,也是产生桩基沉降的重要因素之一三、桩基沉降的计算实例以工程中的桩基沉降计算为例,假设桩基直径为1.2m,桩的长度为20m,桩体所在的土体为黏性土,桩侧土体的变形系数为0.3、根据经验公式得到的桩基沉降计算公式为:δ=0.047Hs,其中,δ为桩基沉降,H 为桩的长度,s为黏性土的塑性指数。

根据给定的参数,代入公式计算得到桩基沉降为:δ=0.047*20=0.94m。

即桩基沉降为0.94m。

以上就是关于第四章桩基沉降计算的内容,主要包括桩基沉降的计算方法、影响因素以及计算实例的阐述。

水泥土搅拌桩复合地基设计

水泥土搅拌桩复合地基设计

水泥土搅拌桩复合地基设计介绍——结合常州地区经验吴祖德(常州市建设工程施工图设计审查中心,江苏213002)摘要:结合常州实践经验和设计规范,介绍了水泥土搅拌桩的构造特点、施工方法、以及常用加固方法及型式,其中详细介绍了设计方法,复合地基承载力设计值和沉降量的计算,以及相应的应用软件,可提供给相关专业技术人员在工作中参考应用。

注:执行《建筑地基处理技术规范》(JGJ 79-2012)时,注意规范用词,称“水泥土搅拌桩”,不再称“深层搅拌桩”、“粉喷桩”;水泥土搅拌桩的施工工艺分为:浆液搅拌法(简称湿法);粉体搅拌法(简称干法).关键词:水泥土搅拌桩单桩承载力复合地基承载力沉降计算1深层搅拌桩在常州地区的实践1.1 常州实践常州市于1992年引进水泥土搅拌桩加固软土地基,首先采用在亚细亚傍留芳路6层住宅,淤泥质土有20m深。

至今常州仍然用得很多,其间也出现过一些问题,施工控制不好,有产生不均匀沉降、裂缝等。

上海有一段时间,因出现过问题,禁用水泥土搅拌桩,后来放宽好用了,有附加条件,要经过沉降计算,并符合要求。

在常州水泥土搅拌桩主要适用加固地耐力120KPa以下淤泥质、粉质粘土。

大于120、130、140KPa 也处理,但搅拌机械动力较困难,施工要细心。

地耐力120KPa以下的地基,处理后可达100~300KPa,含砂、粉粒的土可达大于300KPa。

一般处理后的复合地基可达200KPa以内.水泥土强度,常州在1~1.2MPa(个别有1。

4MPa),复合地基在150~180KPa.表1 常州早期深层搅拌桩典型工程介绍注:(1)早期单桩承载力设计值中,桩强度折减系数为0.2~0.5;(2)序号3,无淤泥层,上面150KPa,下面140KPa,桩打至粉质粘土;土含粉、砂粒,所以桩身强度高,且打入持力层,所以沉降量很少;(3)序号4,表层3~5m淤泥质土,下面为亚粘土;因桩尖有持力层,沉降很小.1。

2 干法湿法干法-—粉体搅拌法(喷干水泥),加固深度不宜大于15m。

沉降量计算公式

沉降量计算公式

沉降量计算公式1. 什么是沉降?沉降指的是土地表面在一段时间内的下沉或抬升,常见于建筑物或其他重型设施施工后。

沉降量的大小与地层的性质、施工方式、建筑物质量等多种因素有关。

2. 沉降量的计算公式沉降量的计算需要考虑土壤的变形及建筑物的载荷,因此计算公式也分为多种方法。

其中,比较常见的是弹性沉降和地基不均匀沉降的计算方法。

弹性沉降的计算公式为:△h=E×△b/2×[1-(1-v^2)/Epl]式中:△h为沉降量,E为弹性模量,△b/2为建筑物载荷作用面的下降值,v为泊松比,Epl为等效弹性模量。

地基不均匀沉降的计算公式为:△h=∑[Zi/Gi×(qi-△p)]×[1+∑(dZi/Di)×(qi-△p)]式中:Zi、Gi、qi、△p代表第i层的厚度、剪切模量、第i层的土层压力和建筑物自重引起的土压力,dZi、Di分别为第i层的厚度变化和刚度变化。

3. 沉降量的实际应用沉降量是设计和施工过程中需要考虑的重要因素。

在建筑物和其他重要设施的施工过程中,如果未考虑到沉降量的大小及其对工程的影响,可能会导致建筑物结构变形、裂缝等问题的出现。

沉降量的计算公式可以帮助工程师们对土层的变形及建筑物的载荷进行科学计算和合理预测,从而制定出更为准确的施工方案和使用方案。

同时,沉降量的实际检测工作也十分重要,可以为施工和使用中的管理提供数据支撑和指导。

4. 总结沉降量的计算公式有多种,需要根据实际场景和建筑物质量等条件综合考虑。

同时,实际应用中需要进行科学检测和数据记录,以确保施工和使用的安全性和持久性。

如果您需要进行相关计算和检测工作,建议咨询相关专业机构和专业人士的意见。

850三轴搅拌桩工程量计算规则

850三轴搅拌桩工程量计算规则

850三轴搅拌桩工程量计算规则下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!850三轴搅拌桩工程量计算规则一、引言850三轴搅拌桩工程量计算规则是对850三轴搅拌桩施工过程中各项工程量进行准确计算的指导性规范。

桩基沉降计算

桩基沉降计算

桩基沉降计算(13轴交L~G轴 8-CT2G)执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》-----------------------------------------------------------------------1. 设计资料1.1 桩平面布置图1.2 已知条件(1) 桩参数桩身材料与施工工艺泥浆护壁钻(冲)孔桩桩身混凝土强度等级 C30承载力性状端承摩擦桩截面形状圆形直径(mm) 1600桩长(m) 30.000(2) 计算内容参数(3) 土层参数(m)高(m)(kN/m3)(kN/m3)(MPa)征值(kPa)1.3 计算内容2 计算过程及计算结果2.1 沉降计算方法根据《桩基规范》5.5.6及5.5.14单排桩,应按明德林法计算2.2 计算附加压力(1) 承台底应力承台底面积 : A = 2.200×6.200 = 13.640(m2)承台底埋深 : h = 5.350(m)承台及承台以上土重 : G = γ×h×A = 12.000×5.350×13.640 = 875.688(kN)承台底自重应力 : σc0 = 71.955(kPa)承台底应力 : σ = (N+G)/A = (15183.000+875.688)/13.640 = 1177.323(kPa)(2) 承台底均布压力地基承载力特征值 : f ak = 300.000(kPa) (《桩基规范》5.2.5)承台底均布压力 : P c = ηc×f ak = 0.180×300.000 = 54.000(kPa)(3) 桩顶附加荷载桩身截面积 A p = 2.011(m2)承台净面积 : A净 = A - n×A p = 13.640-2×2.011 = 9.619(m2)各桩桩顶荷载 : Q i = (σ×A-P c×A净)/n = (1177.323×13.640-54.000×9.619)/2 = 7769.637(kN) 各桩桩顶附加荷载 : Q ci = Q i-σc0×A p = 7769.637-71.955×2.011 = 7624.963(kN)2.3 沉降计算(1) 沉降计算公式根据《桩基规范》5.5.15 计算桩基沉降计算深度Z n=+z zc0.20c式中:σz——计算深度处由桩引起的附加应力,按《桩基规范》附录F 采用明德林法计算σzc——计算深度处由承台土压力引起的附加应力,按《桩基规范》附录D 采用角点法计算σc——计算深度处土的自重应力根据《桩基规范》5.5.14 计算沉降(承台底土分担荷载)=∑n=i)+zi zci z iE si= zij Q j(j I p,ij(-1jl2j= zci∑u=k1kip c,ks eeQ E c式中:s ——桩基最终沉降量(mm)m ——以沉降计算点为圆心,0.6 倍桩长为半径的水平面影响范围内的基桩数n ——沉降计算深度范围内土层的计算分层数;分层数应结合土层性质,分层厚度不应超过计算深度的0.3倍σzi——水平面影响范围内各基桩对应力计算点桩端平面以下第i 层土1/2厚度处产生的附加竖向应力之和;应力计算点应取与沉降计算点最近的桩中心点Δz i——第i计算土层厚度(m)E si——第i计算土层的压缩模量(MPa),采用土的自重压力至土的自重压力加附加压力作用时的压缩模量Q j——第j桩在荷载效应准永久组合作用下(对于复合桩基应扣除承台底土分担荷载),桩顶的附加荷载(kN);当地下室埋深超过5m时,取荷载效应准永久组合作用下的总荷载为考虑回弹再压缩的等代附加荷载l j——第j桩桩长(m)A ps——桩身截面面积αj——第j桩总桩端阻力与桩顶荷载之比,近似取极限总端阻力与单桩极限承载力之比I p,ij,I s,ij——分别为第j桩的桩端阻力和桩侧阻力对计算轴线第i计算土层1/2厚度处的应力影响系数,可按《桩基规范》附录F 确定E c——桩身混凝土的弹性模量σzci——承台压力对应力计算点桩端平面以下第i计算土层1/2厚度处产生的应力;可将承台板划分为u个矩形块,可《桩基规范》附录D 采用角点法计算p c,k——第k块承台底均布压力,可按p c,k=ηc,k f ak取值,其中ηc,k为第k块承台底板的承台效应系数,按《桩基规范》表5.2.5 确定;f ak为承台底地基承载力特征值αki——第k块承台底角点处,桩端平面以下第i计算土层1/2 厚度处的附加应力系数,可按《桩基规范》附录D 确定s e——计算桩身压缩ξe——桩身压缩系数,端承型桩取1.0;摩擦型桩,当l/d≤30时,取2/3;l/d≥50时,取1/2;介于两者之间可线性插值ψ——桩基沉降计算经验系数,无当地经验时,可取1.0沉降计算点位置(x,y,z)(m) :(0.000,0.000,-36.800)沉降计算深度z n(m) :9.500沉降计算点附加应力(kPa) :78.431桩端以下各压缩土层(沉降未乘系数) :层号厚度(m) Es(Mpa) 本层沉降(mm)=============================================1 9.191 18.500 32.12 0.310 10.000 0.7=============================================∑ 9.501 32.8沉降计算点土层压缩沉降量(mm) :16.7桩身压缩s e(mm) :2.5沉降计算点最终沉降量(mm) :16.7(3) 角点沉降计算点(x,y,z) 土压缩沉降(mm) 桩身压缩(mm) 最终沉降(mm) 结论 (0.000,-2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,-2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足(0.000,0.000,-6.800) 16.72 2.53 19.25 满足(4) 沉降计算点结果简图-----------------------------------------------------------------------【理正结构设计工具箱软件6.5PB3】计算日期: 2014-11-19 11:27:47。

水泥搅拌桩沉降计算

水泥搅拌桩沉降计算

水泥搅拌桩沉降计算水泥土搅拌桩的变形计算方法很多,可以分为两类,双层地基法和三层地基法,其中主要的是双层地基法。

1、双层地基法双层地基法即将搅拌桩复合地基的变形S等于复合土层的压缩变形S1和桩端以下未处理土层的压缩变形S2。

(1)复合模量法。

将复合地基加固区增强体连同地基土看作一整体,采用置换率加权模量作为复合模量,复合模量也可以根据试验确定,并以此作为参数采用分层总和法求S1。

(2)应力修正法。

根据桩土模量比求出桩土各自分担的荷载,忽略增强体的存在,用弹性理论求出土中应力,用分层总和法求出加固区土体的变形,并以此作为S1。

(3)桩身压缩量法。

假定桩体不会产生刺入式变形,通过模量比求出桩承担的荷载,再假定桩侧摩阻力的分布形式,则可通过材料力学中求压杆变形的积分方法求出桩体的变形,将此作为S1。

(4)应变修正法。

在实际应用中,先把加固区分层,计算每层末加固时土的竖向应变εv0.及应变折减系数Rp和Rc值,然后比较Rp和Rc值,取其中大值可得到复合地基竖向应变值εv=εv0max(Rp,Rc)。

由每层的应变值可计算出每层的压缩量,累加各层的压缩量可得整个加固区的压缩量S1。

(5)经验值法。

复合土层的压缩变形值可根据上部荷载、桩长、桩身强度等按经验取10~30mm[1],或20~40mm。

(6)叠加因子法。

叠加因子方法最早由Poulos(1968年)提出,应用也较多,但传统桩间的叠加因子是运用象边界元等数值计算手段来分析两根桩间的情况而估计得到的。

根据Randolph和Wroth(1978年)对于压人土体中的柔性桩的荷载与位移关系提出桩体位移表达式,以及沉降与位移的半径关系即单桩沉降引起土体的位移场,从而得到桩间的相互叠加因子(相互作用因子)。

通过叠加桩体在自身荷载作用下的位移和其余桩体位移引起的附加位移从而计算加固区的沉降。

这种方法公式虽然比较简单,但本人认为计算比较繁琐。

S2的计算方法一般有以下几种:(1)应力扩散法。

水泥土搅拌桩复合地基沉降组成及其计算方法研究

水泥土搅拌桩复合地基沉降组成及其计算方法研究

2 8 3・
工 程 科 技
水泥土搅拌桩复合地基沉降组成及其计算方法研究
陈莉娟 靳 凯 朝
( 商丘工学院建筑工程 系, 河南 商丘 4 6 0 ) 7 00
摘 要: 水泥土搅拌桩复合地基是地基 处理 的常用方法 , 对复合 地基 沉降组成及常见的 几种 沉降方法进行 了分析 , 出了以沉 降为 提 主的设计思路 , 并为复合地基的设计和施 工提 出了建议 。 关键 词 : 水泥土搅拌桩复合地基 ; 降计算 ; 沉 方法 1水泥土搅拌桩复合地基的概念 基 的总沉降量 s可表示为两部分之和,即 s s+ : = s 至今提 出的复合 地基是承受建筑物上部荷载 的土壤层 , 当天然地基不能满足设 地基沉 降实用计算方法 中 , 下卧层压缩量 S, 对 大都采用 分层 总和 计 要 求 时需 对 地 基 进 行 处 理 形 成 人 工 地 基 。 过 处理 的人 工地 基 可 法 计 算 , 对 加 固 区范 围 内 土层 的 压 缩 量 S , 针 对 各 种 复 合 地 基 经 而 . 则 分为三类 : 均质地基 、 多层地基和复合地基 。 复合地基是 指天然地基 的特点采用一种或几种计算 方法计算 。 在地基处理过程 中部分土体得到增强或被置换 , 或在天然地基 中设 31 . 加固区土层压缩量 S 的计算方法 置加 筋材料所形成 的人 工地基 。总之 , 凡是在软土地基 中用各种手 () 1复合模量法( ) E法 段加入增 强体 , 使增强体与天然地基 共同组成 以提高地基强度 和降 将复合地基加 固区 中增强体和基体两部分视 为一 复合土体 , 采 用 复合压缩模量 E 来评 价复合土体 的压缩量 。将加 固区土层分成 低 土体压缩性 为主要 目的的人工地基 , 统称为复合 地基 。 复合地基有 两个基本特点 :加 固区是 由基体 ( a . 天然地基 土体 ) N层 ,每层复合 土体 的复合压缩模量为 E 加固区上层压缩量表达 和增 强体两部分组成 的, 具有非均质性及各 向异 性的特点 。b在结 劫 : . 构荷 载作 用下 , 基体和增强体共同承担荷载 的作用 。前一特征使 复 ( ’ 1 合地基区别于均质地基 , 后一特征使复合地基 区别 于桩地 基。从某 种意义上讲 , 复合地基介于均质地基和桩基之 间。在诸 多复合 地基 式中 : i i △P 一第 层复合地基平 均荷载密度 中, 深层水泥土搅拌桩复合地基是最典型的复合地基。 H一第 i i 层复合土层的厚度

水泥搅拌桩计算(完善版)

水泥搅拌桩计算(完善版)

水泥搅拌桩计算(完善版)黄色部分为人工输入直径d(m)0.8桩长范围土层名称土厚l i (m)桩侧土磨擦阻力特征值(q sia ) 桩端土阻力(q p ):有效桩长(m)L=91 1.27桩截面面积(m 2)Ap=d 2*3.14/40.50242312桩周长μp μp =d*3.14 2.51233.818桩间距s(m) 1.34118布桩形式(1或2)1500600参数取值::桩身强度折减系数:η(0.2~0.33)桩端天然土承载力折减系数:α(0.4-0.6),承载力高时候取低值桩间土承载力折减系数:β(0.1~0.4)桩间天然土承载力特征值f sk (Kpa)面积置换率m(0.12~0.3)桩身水泥土无侧限抗压强度标准值f cu(0.3~2MPa)养护90d 加固区面积A(m 2)0.250.50.31200.343490452100Ra=μp *∑q sia *l i +α*Ap*q p 352Ra=η*f cu *A p252取值Ra=2523.ηf spk f spk =m*Ra/Ap+β*(1-m)*f sk1969.2.5初步设计可以按照这个计算 1.3504002 当按等边三角形布桩时(布桩形式取1)1.365当按正方形布桩时(布桩形式取2)1.469m=d 2/de 20.3434904535.布桩数不小于nn=m*A/Ap 696.结论:有效桩长L=9面积置换率0.343490453单桩承载力特征值Ra=252布桩数69复合地基承载力特征值fspk=196桩身水泥土强度标准值f cu =2设计基础资料注:三角形或者正方形2.单桩承载力特征值(取小值)水泥搅拌桩计算一根桩分担的处理地基面积等效圆直径de 4.面积置换率m 取值de= 1.3651.单桩竖向承载力:设计基础资料90。

(完整版)水泥搅拌桩地基处理计算

(完整版)水泥搅拌桩地基处理计算

嘉兴宝湾物流有限公司国际物流供应链中心一期工程项目1号库和室外水泥搅拌桩地基处理计算一、项目概况嘉兴宝湾物流一期项目建设地点位于嘉兴市经济技术开发区吉祥西路与纬十路交叉口位置,由1号库、综合楼和门卫等单体构成。

1号库平面尺寸为154.0x154.0m,标准柱网11.0x26.0m,檐口标高约10.3m,单层轻型门式刚架结构(局部带夹层)。

室内士0.00标高相当于黄海高程4.60m,库房下方场地自然地面标高约2.60~3.40m。

地坪使用设计载荷3.0t/m2,地坪绝对沉降量要求不大于60mm,沉降平整度要求为<3/1000。

二、地基概况拟建场地地质构造属第四纪全新世湖湘海相沉积物,浅层全场分布有较厚软土(第1层填土和第3层淤泥质土),且厚度不均,约为3.8m~9.7m厚, 并分布有暗塘和暗浜(深约4~5m)。

软土具有蠕变性,会引发前期沉降及桩侧负摩阻力。

地下水位浅,软土均呈弱透水性。

场地土无液化问题。

三、计算依据3.1国家及地方强制性建设标准:<<建筑结构可靠度设计统一标准>> (GB50068-2001<<建筑结构荷载规范>> (GB50009-2012<<建筑地基基础设计规范>> (GB50007-2011<<建筑地基处理技术规范>> (JGJ79-2012<<复合地基技术规范>> (GB/T50783-2012<<浙江省建筑地基基础设计规范>> (DB33/T1001-2003)<<浙江省复合地基技术规程>> (DB33/T1051-2008)3.2业主提供的《岩土工程勘察报告》(浙江恒欣建筑设计股份有限公司)3.3业主库房使用要求四、计算过程4.1地坪天然地基沉降以相对不利钻孔J24孔为参数,计算天然地基在库房地坪使用荷载、地坪自重和回填土附加载荷作用下的压缩变形。

水泥搅拌桩地基下卧层沉降计算方法选择

水泥搅拌桩地基下卧层沉降计算方法选择

收稿日期:2006-03-02基金项目:建设部科学技术项目(06-K1-6)作者简介:王凤池(1970-),男,副教授,博士,主要从事地基基础研究.文章编号:1671-2021(2006)05-0705-04水泥搅拌桩地基下卧层沉降计算方法选择王凤池,朱浮声,张德海(沈阳建筑大学土木工程学院,辽宁沈阳110168)摘 要:目的为了研究水泥搅拌桩复合地基设计中的沉降计算问题,减少下卧层沉降计算值与实测值的差异.方法从水泥搅拌桩的加固机理出发,指出了水泥搅拌桩加固区与下卧层相比是一个具有强度高、压缩性小的硬壳层.考虑硬壳层的影响,在进行下卧层沉降计算时,应根据外荷载与总抗剪力的关系来选择计算方法.结果当外荷载大于总抗剪力时,采用等效实体法;反之,则考虑硬壳层效应,附加应力折减.结论硬壳层对附加应力有扩散效应,这是有时采用等效实体法计算下卧层沉降时数值过大的原因.算例表明,通过对计算方法的选择,提高了下卧层沉降的计算精度.关键词:水泥搅拌桩;复合地基;下卧层;沉降;附加应力中图分类号:TU 443 文献标识码:A作为一种人工地基,复合地基的设计不仅要保证具有足够的承载能力,也要估计在工作荷载下产生的沉降,并保证这一沉降不足以危害上部结构.在许多工程设计中,承载力已经不是复合地基的重点,而沉降控制被提到越来越重要的位置[1-4].5地基基础设计规范6(GB50007-2002)强调变形控制,因为它不但关系到工程设计的成败,而且在很大程度上决定了投资的多少.桩间土的非线性应力)应变关系和桩间土与增强体之间的相互作用的影响,导致了复合地基的沉降计算十分复杂.由于下卧层变形占总沉降的比例相当大,因此把目光过分的集中在加固区变形计算上,是不符合工程需要的.笔者根据外荷载与总抗剪力的关系,给出了计算下卧层沉降方法选择的判定条件以及相应的计算方法.1 复合地基的沉降分析复合地基的沉降包括三部分:加固区变形、下卧层变形和褥垫层变形,如图1,其沉降计算式为S =S 1+S 2+S 3(1)式中:S 1为加固区变形;S 2为下卧层变形;S 3为褥垫层变形.加固区的变形计算,目前主要采用复合模量法(E c 法)、应力修正法(E s 法)和桩身压缩量(E p 法)进行计算.对于下卧层的变形S 2,目前的计算方法是通过应力扩散法、等效实体法、改进Geddes 法等手段计算下卧层上的附加应力,采用分层总和法计算其沉降[5].随着复合地基技术的不断发展,一些新的计算方法也应运而生.下卧层的变形占结构总沉降有相当的比例,特别是/悬桩0问题,下卧层土体的性质成为对沉降影响重要因素之一.如宁通一级公路(南通段)引河大桥桥头和过渡段采用二灰土桩加固,其K102+990断面沉降实测值S 1=1517cm,S 2=3314cm [6],下卧层沉降占总沉降的68%.又如上海金达棉纺厂主厂房采用石灰桩复合地基设计[7],结构总沉降为6914mm ,而加固区沉降为914mm,仅占总沉降的1315%.鉴于上述事实,下卧层变形计算的重要性可见一斑.要准确地计算下卧层的压缩量,首先必须正确地把握下卧层中的附加应力的分布规律.如何考虑加固层和桩体对附加应力的影响是问题的关2006年09月第22卷第5期 沈阳建筑大学学报(自然科学版)Journal of Shenyang Jianzhu U niversity (N atural Science)Sep. 2006V ol 122,No 15键所在.图1 复合地基沉降分析模式2 水泥搅拌桩复合地基硬壳层效应水泥搅拌桩采用水泥作为固化剂,进行强制搅拌.水泥与软土混合后,与土中水发生水化和水解反应,首先生成能迅速溶解于水的Ca(OH)2和含水硅酸钙(CaO #SiO 2#nH 2O),使水泥颗粒表面重新露出,再与土中水发生作用形成水化物.当新生成物不能再溶解时,便悬浮形成胶体.当水泥的各种水化物形成后,胶体能与水化物中的离子进行当量吸附交换,使较小的土颗粒形成较大的土团粒.凝胶粒子的比表面积很大,具有强烈的吸附活性,能将土团粒进一步结合起来,并封闭空隙,形成坚固的联结,提高了地基强度.同时,随水泥水化反应的深入,溶液中析出大量的钙离子,并逐渐反应形成不溶于水的稳定化合物,并相互联结形成空间网状结构,使水泥土具有足够的强度和水稳性.由水泥土加固机理可以看出,与下卧层软弱土体相比,水泥搅拌桩加固区形成了具有强度高、压缩性小的硬壳层(如图2).研究表明,硬壳层对图2 硬壳层的扩散效应附加应力有明显的扩散效应,这是造成有时计算下卧层沉降时,数值过大的原因.考虑水泥搅拌桩复合地基硬壳层的影响,下卧层处附加应力应进行折减.Milovic D M 利用有限元方法研究具有硬壳层的双层地基时,考虑各向异性,通过总结得到了应力折减系数[7].水泥搅拌桩复合地基硬壳层引起的附加应力折减,可以按照Milovic 法计算,其计算公式可表示为I z =015B H 10188E s 2E s 1012(2)式中,B 为加固区宽度;H 1为加固区厚度;E s 2为下卧层的压缩模量;E s 1为加固区的压缩模量.3 选择计算方法的判定条件复合地基加固区形成了人工的硬壳层.在加固区内,增强体与土体共同工作,增强体与周围土体压缩变形协调.同时,加固区又像一个巨大的实体基础,加固区与周围土体的共同工作靠加固区与土体的抗剪切能力来维持.董建国等在研究桩箱(筏)基础沉降计算时提出了根据外荷载与总抗剪力的关系来判定桩箱(筏)基础沉降的计算模式[9].同样也可以根据外荷载Q 与总抗剪力T 的关系来选择复合地基下卧层的变形计算方法.当T >Q 时,外荷载不足以破坏加固区与周围土体之间的作用.加固体周围的土体与加固体共同抵抗外荷载.土体所受的外荷载依靠土颗粒之间的作用向下传递.复合土层压缩模量一般为软弱土层的5倍以上,因而增强体加固范围应大于基础外围轮廓.这时,硬壳效应比较明显,应采用式(2)计算附加应力折减系数,进而计算下卧层沉降.其下卧层顶的附加应力为p b =I z p 0(3)式中,p 0为基底附加应力.反之,如果T <Q ,加固区与周围土体之间的平衡被外荷载破坏,加固体周围产生了较大的剪切应变.这时,加固区的硬壳层效应消失,加固体整体下沉,产生了冲剪破坏,加固体周围的摩阻力达到极限.此时采用等效实体法计算下卧层变形比较合适(见图3).其下卧层处的附加应力计算公式为p b =DBp -TBD(4)式中:p 为复合地基上荷载集度;B 、D 分别为基706沈阳建筑大学学报(自然科学版)第22卷础宽度和长度;h 为加固区厚度.总抗剪力按下式计算:T =U QhS z dz(5)式中:U 为加固体横截面周长;h 为加固区厚度;S z 为加固体周边侧摩阻力.图3 等效实体模式由于分层土的各层土自重应力是按线性分布的特点,式(6)可以改写为[10]:T =UE ni=1(R czi (1-sin U i )tan U i +c i )h i(6)式中: R czi 为第i 层土的平均自重应力;c i ,U i 和h i 分别为第i 层土的粘聚力、内摩擦角和土层厚度.如果有实测桩侧平均摩阻力的值,则T = q s U(7)式中: q s 为实测桩侧平均摩阻力.4 算例与分析天津市东丽区6层4单元住宅楼[11],基础采用钢筋混凝土条形基础,基础宽度B 为218m.为提高地基承载力,在条形基础下采用柱状水泥深层搅拌桩来处理软弱地基.桩径为500mm ,桩长为11m,面积置换率为18%.基础底面附加压力为160kPa,加固区复合模量按面积比法计算为3911MPa.桩周土的平均摩擦力取 q s =8kPa,地质条件见表1.表1 土层地质情况土层名称厚度/m 体积质量/(g #cm -3)压缩模量/M Pa 内摩擦角/(b )黏聚力/kPa 容许承载力/kPa 黏土1~21511853178112331179100淤泥质黏土612~1015118531779185813885粉质黏土0~318119451871718511184110粉土112~217119513130221245170140基础长边方向取1个单位考虑,则根据式(7)可得T =66818kN,大于外荷载448kN,按照本文分析,应采用式(3)计算加固体下附加应力折减系数,代入数值计算得I z =01112.因此附加应力为17192kPa,按照分层总和法计算下卧层沉降为12107mm.加固区沉降按复合模量法计算为2713mm.则总沉降为39137mm.该楼沉降实测值为30mm.可见,根据外荷载与总抗剪力的关系来选择复合地基下卧层的变形计算方法,能够有效的减小下卧层沉降计算误差,使计算值更趋近于实测值.如果按照等效实体法计算附加应力,进而计算总沉降为5014mm.,为实际观测值的1168倍.分析其原因在于总抗剪力T 大于外荷载Q ,使附加应力产生了扩散效应.因此按照等效实体法计算,附加应力计算值过大,使下卧层沉降计算值偏大.笔者考虑了附加应力的扩散效应,计算较等效实体法更接近实测值,但仍有一定的误差.其原因在于加固区按复合模量法计算产生的偏差.工程实践表明,采用复合模量法计算加固区沉降计算值大于实测值[12].由式(6)可见,总抗剪力与土的性质有关,包括自重应力、粘聚力以及内摩擦角等.同时,也与加固区横截面周长有关.总抗剪力越大,硬壳层效应越明显,下卧层的沉降越小.因此,当地基土为粘性土时,复合地基易产生应力扩散效应.因此在沉降计算时,应考虑这一因素.同时,增加加固区的有效横截面周长,也是提高总抗剪力的有效方法.因此复合地基在设计施工时,应考虑增加护桩,以降低下卧层处的附加应力,减小沉降.5 结 语笔者从水泥搅拌桩的加固机理出发,论述了第22卷王凤池等:水泥搅拌桩地基下卧层沉降计算方法选择707水泥搅拌桩加固区是一个具有强度高、压缩性小的硬壳层.由于硬壳层对附加应力的扩散效应,造成了采用等效实体法计算下卧层沉降有时数值过大的现象.同时,工程实践表明有时采用等效实体法也具有较高的计算精度.笔者根据外荷载与总抗剪力的关系来选择复合地基下卧层的变形计算方法.当外荷载大于总抗剪力时,采用等效实体法;当外荷载小于总抗剪力则考虑硬壳层效应,附加应力折减.算例表明,通过对计算方法的选择,提高了下卧层沉降的计算精度.参考文献:[1]R athmayer H G,Saari K H O,Goughnour R R.Set-tlement of vertically loaded stone column in softg round[C]//Proc o f8th Eur opean Conference on SoilM echanics and Foundation Engineering:Impro vementof g round.Ro tterdam:Balkema,1983.235-240. [2]Engelhardt K,Golding H C.Field testing to evaluatestone column performance in a seismic area[J].G eotechnique,1975,25(1):61-69.[3]Bouassida M.Bearing capacit y of a foundat ion r estingon a soil reinfo rced by a gr oup of columns[J].Geotechnique,1995,45(1):25-34.[4]Randolph M F,Wroth C P.Analysi s o f deformationof vertically piles[J].J of G eotechnical Eng ineering,1978,104(2):1465-1488.[5]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002.[6]杨涛.路堤荷载下柔性悬桩复合地基的沉降分析[J].岩土工程学报,2000,22(6):741-743.[7]M ilovic D M.Stress analysis fo r layer system[C]//Proceedings of the eleventh international conferenceon soil mechanics and foundation engineer ing.Rotter-dam:Balkema,1985.591-596.[8]周建.复合地基加固区沉降计算的一种新方法[J].浙江大学学报:工学版,2000,34(1):83-87. [9]董建国,赵锡宏.桩(箱)筏基础沉降计算新方法[J].岩土工程学报,1996,18(1):80-84.[10]李小青,潘鸿宝.井场复合地基变形分析[J].地质与勘探,2000,36(6):82-84.[11]李誉.水泥深层搅拌桩的沉降分析[J].中国民航学院学报,2002,20(4):49-59.[12]王凤池,朱浮声,王晓初.复合地基复合模量的理论修正[J].东北大学学报:自然科学版,2003,24(5):491-494.Calculating Method Alternation for Substratum Settlement of Cement-Soil Mixing Piles Composite GroundWAN G Fengchi,ZH U Fusheng,ZH AN G Dehai(School of Civil Eng ineering,Shenyang Jianzhu University,Shenyang,110168,China)Abstract:In order to reduce the calculating error of substratum settlement in designing cement-soil mix ing piles composite ground,the mechanics of the soil reinforced by cement-soil mix ing piles w ere analyzed.Be-cause of high strength and low compression,the reinforced part formed a stiffer layer than the substratum. Considered the influence of stiff layer,when calculating the substratum settlement of cement-soil mix ing pile composite foundation,the m ethod must be chosen according to the relationship betw een loads and over-all shear resistances.As loads are bigger than overall shear resistances,the method of equiv alent solid mass is adopted;contraw ise,the influence of stiff layer must be considered and the additional stress should be re-duced.Because the stiff layer can diffuse the additional stress,sometimes the result is too large calculating by the method of equivalent solid mass.A calculating example shows the calculating precision of substratum settlement is improved by choice for the calculating method.Key Words:cement-soil m ix ing pile;composite ground;substratum;settlement;additional stress708沈阳建筑大学学报(自然科学版)第22卷。

水泥搅拌桩桩计算书

水泥搅拌桩桩计算书

CFG桩复合地基计算书一.设计依据1).《建筑地基处理技术规范》(JGJ79_2012)2).《建筑地基基础设计规范》(GB 50007-2011)3) .《城市桥梁设计规范》(CJJ_11-2011)二.设计参数沥青混凝土 r =23 KN/m3水稳基层 rd=24KN/m3水容重 rs=10 KN/m3填土 rt=18 KN/m3碎石垫层 r=23 KN/m3三.地质条件根据勘察报告C2钻孔的情况得出,计算桩基位置自然标高为21.6m,此位置设计标高为24.843m。

地下水位位于地面线以下1.45m,按勘察资料得出地质由上至下土层及其厚度为:地质参数表四.设计计算1、水泥搅拌桩参数根据土层分布,持力层为(2-1)粉质粘土夹粉土,有效桩长取13.5m,桩端进入持力层的最小深度为2.0m。

地面标高24.6m,水位标高22.47m。

路基填土厚度h=2.65m(其中路面厚度62cm),路基宽度20m(车行道宽12m),路面结构10cm沥青面层+32cm水稳基层+20cm厚级配碎石。

2、基底压力基础地面以上土的加权平均重度为:=(0.1*23+0.32*24+0.2*23+1.53*18+0.5*23)/2.65=20.23KN/m3γm(1)车道荷载:本道路荷载应采用城-B级:①均布荷载为qk=10.5*0.75=7.875kN/m②集中荷载=360*0.75=270kN取最大值Pk根据《建筑地基基础设计规范》(GB 50007-2011)第5.2.2条规定:轴心荷载基础底面的压力,可根据下列公式确定,得到加固地基顶面压力(地下水位为地面线以下1m)为:Pk=(Fk+Gk)/A=20.23*2.65/1+7.875/1+270/(20*1)=74.98KPa3、单桩承载力计算初步拟定桩径0.5m,桩间距1.1m。

桩周长up=1.57m,桩面积Ap=0.196m2。

根据《建筑地基处理技术规范》(JGJ79_2012)第7.3.3-3条规定,单桩竖向承载力特征值应通过现场荷载试验确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档