第六章 流体运动微分方程

合集下载

流体力学-N-S方程

流体力学-N-S方程
dvx v x v x v x v x 1 p 2 vx vx vy vz x dt t x y z dvy v y v y v y v y 1 p 2 Y vy vx vy vz y dt t x y z 1 p 2 dvz v z v z v z v z Z vz vx vy vz z dt t x y z X
实际流体的运动微分 方程
——纳维-斯托克斯方程式 (N-S方程式)
以应力表示的黏性流体运动微分方程式
• 一、作用在流体微元上的应力 在粘性不起作用的平衡流体 中,或者在没有粘性的理想运动 流体中,作用在流体微元表面上 的表面力只有与表面相垂直的压 应力,而且压应力又具有一点上 各向同性的性质。
图一
v x x v y
(6)
由式(6)可以看出,由于各个方向的直线应变速 度不见得相等,因而这种由于粘性阻碍作用所产生的 法向应力也是各向不等的,p'xxp'yyp'zz统称为一点上的 各项异性压强。 • 于是在实际流体运动时,一点上的法向应力除了由 于分子运动统计平均的各向同性压强p之外,还需加上 由于粘性影响而与直线变形有关的各向异性压强,最 后可以得到法向应力与直线应变速度之间的关系为
(9)
此式说明一点上的各向同性压强也就是不可 压缩实际流体中不同方向压强的算术平均值。这 给具体计算实际流体中的压强带来很大的方便, 我们无需进一步研究各向异性压强,只要找出各 向同性压强与其他流动参数之间的关系,则据此 算出的各向同性压强事实上也就是不可压缩实际 运动流体一点上的流体动压强。
p的含义
但是在运动着的实际流体中取出边长dx、dy、 dz的六面体微元,如右图1多示,由于粘性影响,当 微元有剪切变形时,作用在微元体ABCDEFGH上的表 面力就不仅有压应力p,而且也有切应力τ 。当微元 有直线变形时,一点上的压应力也不再具有各项同 性的性质了。

《工程流体力学》第六章 不可压缩流体平面有势流动

《工程流体力学》第六章  不可压缩流体平面有势流动

3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍

理想流体的运动微分方程

理想流体的运动微分方程
u y y
uz
uz
u x z
u y z
y
1 p
Z
z

du z dz

u z t
ux
u z x
uy
u z y
uz
u z z
写成矢量表达式为:
1 du F p dt
式中哈密顿算子:
i j k x y z
1.3.6.2 总流
对于粘性流体的总流,作稳定流动时的柏努利方程式为:
z1
p1


1 v1
2g
2
z2
p2


2v2
2g
2
hw
式中:
v1 , v 2 为截面的平均流速; 1 , 2为动能修正系数,通常由实验确定。
对于圆形管道中的稳定缓变流: 层流时 =2;
湍流时 =1.05~1.10;
由柏努利积分式:
U

1
dp
2
u
2
2


gz
1
gz
1
p
u
C
2

p
u
2
C
2
2
对于流线上任意两个质点1和2来说,有:
g z1 1

p1
u1
2
2
gz2
1

p2
u2 2
式中各项分别为单位质量的流体具有的位能,静压能及动能, J kg ( )。
1.3.5.2 理想流体稳定流动总流的柏努利方程 任何稳定流动的总流,都可以看成是无穷多微小流束 的总和。在总流中某一微小流束的不同有效截面上的物理 参数不一定相同。 (1)均匀流与缓变流 均匀流:如果有效断面或平均流速沿程不变,且流线为 平行直线这样的稳定流称为均匀流。 非均匀流:如果有效断面沿程变化,或者有效断面不变, 但各断面上速度分布改变,这种流动称为非均匀流。 缓变流:凡有效断面上流线间夹角很小,流线曲率半经 无限大,即流线趋近于平行线的流动称缓变流。

流体力学中的三大基本方程

流体力学中的三大基本方程

a 流体质点加速度 在三个坐标轴上的分量表示成:
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
d y
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
dx
dt
dxdydz
p x
dxdydz
fxdxdydz
单位体积流体的运动微分方程:
2 :单位重量流体所具有的动能;
2g
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
物理意义: 理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
②物理意义:揭示了沿某一根流线运动着 的流体质点速度,位移和压强、密度四者 之间的微分关系。
3.1 伯努利方程积分形式
1.沿流线的积分方程:
gdz 1 dp d 0
2
2
gz
dP
C
设: const
2 gz p C
2
Or
z p 2 C
r 2g
——理想流体微元流束的伯努利方程。
①适用条件:理想流体、不可压缩性流体、稳定 流动、质量力只有重力,且沿某一根流线; ②任选一根流线上的两点:

工程流体力学课件 第06章 流体流动微分方程 - 4

工程流体力学课件 第06章 流体流动微分方程 - 4
② μ和ρ随温度变化不大时,温度对流场(速度和压力)的影响很小,这
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )

第六章 理想流体不可压缩流体的定常流动

第六章 理想流体不可压缩流体的定常流动

厚度)的体积流量等于两条流线的流函数之差,
与流线形状无关。
QAB
ABVndS
dx dy
AB x
y
B d
A
B A
§4 理想不可压缩流体的平面势流
三、速度势函数
1、速度势函数 存在的条件:
在无旋流动中每一个流体微团的速度都要以下条件:
u w z x
v u x y
w v y z
u v 0 x y
u v (连续性方程) x y
udy vdx 0 (流线方程)
根据数学分析可知,不可压缩流体平面流动的连续性条件是 udy vdx 0 成
为某一函数全微分的充分和必要条件,这个函数为流函数 。
d dx dy vdx udy
x
y
u
y
v
x
§4 理想不可压缩流体的平面势流
p4 p5 m gh p3 m gh

z4 z5 h z3 h
将上两式代入(d)式可得
gz 2
p2
g(z3
h)
p3
m gh
(e)
文特里流量计:一维平均流动伯努利方程
将(c)、(e)式代入(b)式,整理后可得
V22 V12 ( m 1)gh
2
由连续性方程
V2
A1 A2
V1
由一维平均流动伯努利方程
V12 2
gz1
p1
V22 2
gz2
p2
(a)
移项可得
V22
V12 2
(gz1
p1
)
(
gz
2
p2 )
(b)
文特里流量计:一维平均流动伯努利方程

第六章理想流体不可压缩流体的定常流动

第六章理想流体不可压缩流体的定常流动
一、流体运动的基本方程回顾 动量方程: 粘性、不可压缩流体 N-S方程
(粘性系数为常数)
Du 1 p 2u 2u 2u gx Dt x x 2 y 2 z 2
Dv 1 p 2v 2v 2v gy 2 2 2 Dt y x y z
流动条件,截面为A 1、A 2,平均速度为V 1、
V 2,流体密度为ρ. 由一维平均流动伯努利方程
V12 p1 V22 p gz1 gz 2 2 2 2
移项可得
(a)
V22 V12 p p ( gz1 1 ) ( gz 2 2 ) 2
(b)
文特里流量计:一维平均流动伯努利方程 A1、A2截面上为缓变流,压强分布规律与U 形管内静止流体一样,可得
讨论: 1、上式为非定常不可压缩理想流体欧拉运动微分方程。 DV 0 上述方程变成流体静力学中的欧拉平衡微分方程。 2、 Dt 1 g p 0 V 0 此时的理想流体欧拉运动微分方程变成定常不可压缩理 3、 t 想流体欧拉运动微分方程。 1 V V g p
基本方程组:
动量方程:
u u u 1 u v fx t x y v v v 1 u v fy t x y
p x p y
V 1 V V g p t
定常
连续性方程:
V 不考虑重力 0 t u v w D 0 Dt x y z u v 0 x y v u 0 x y
ρ,U 形管中液体密度ρm .
求:
用液位差Δh表示流速v
毕托测速管 解: 设流动符合不可压缩无粘性流体 定常流动条件。 AOB线是一条流线(常称为零流线), 沿

运动微分方程-理想流体流动资料

运动微分方程-理想流体流动资料
式中 u 1 和 u2—分别为总流1和2两个有效截面上的平均流速。 对不可压缩均质流体,ρ为常数,则:
uA1 uA2
说明:一维总流在恒定流动时,体积流量为 常数,平均流速与有效截面面积成反比。
9
10
【例】 假设有一不可压缩流体三维流动,其速度
分布规律为)ux=3(x+y3), uy =4y+z2, uz =x+y+2z。试
分析该流动是否连续。 【解】 根据连续性方程:
ux 3 uy 4 uz 2
x
y
z
所以 ux uy uz 9 0 x y z
故此流动不连续。不满足连续性方程的流动是不存在的
11
【例】 有一不可压缩流体平面流动,其速度分布 规律为ux=x2siny,uY=2xcosy,试分析该流动是否连续。
Pxyu y
Px zu z
)
y
( Py xu x
Pyyu y
Py zu z
)
z
( Pzx u x
Pzyu y
Pzzuz )]dxdydz Nhomakorabea(3)借助于热传导和对流传递的热量(从环境输入的热量速率)
热传导过程服从傅里叶定律。
从环境输入控制微元体的净热量速率为:
从环境传入 控制体流体
体能量的累 = 体的净能 + 控制体的热 - 对环境做功
计速率
量速率
量速率
的速率
(1)流动输入净能量速率
单位质量流体所具有的能量包括内能、动能两部分。
Et
e
u2 2
流入微元控制体的净能量速率为:
[ (Et ux ) (Et uy ) (Et uz ) ]dxdydz
x

A4流体的运动微分方程

A4流体的运动微分方程

(2)遵循的规律
牛顿第二定律
(3)对于理想流体,因没有黏性,故作用于流体的表面力 只有压应力,即动水压强。
p = p ( x,y,z,t )
(4)实际流体运动微分方程;伯努利方程;动量方程。
基本思路:(1)取微元体 (4)得出结论
(2)受力分析 (3)导出关系
1.取微元体
在某一瞬时在运动无黏性流体中 取出棱边为dx,dy,dz的一微小 平行六面体。
2.受力分析
作用在流体上力:(1) 表面力;(2) 质量力 (1)表面力(以X方向为例) 包括压应力和剪应力 左表面 右表面
(2)质量力 X、Y、Z表示流体单位质量力在坐标轴上的分量。这个微元体的
质量为ρdxdydz ,质量力在各个在坐标轴上的分量分别为:
Xρdxdydz 、Yρdxdydz 、Zρdxdydz
(1)、切应力的特性:
yx
xy
( u y
x
ux ) y
式4-3
yz
zy
( uz
y
u y z
)
zx
xz
( uz
x
u x z
)
实际流体切 应力普遍表达 式,也称广义 的牛顿内摩擦
定律。
(2)、压应力的特性和大小:
p ——平均压应力
px= p+ px’ p y= p+ py’ pz= p+ pz’
三、毕托管
测量点流速的仪器
原理:利用无粘性元流流体伯努利方程。
图:
uA
h
A
h
uA
A
BA Z
V Z
图 4-17 皮托管测速原理
公式:
z
pB
g
u2 2g

流体力学复习要点(计算公式)

流体力学复习要点(计算公式)

第一章 绪论单位质量力:mF f B m= 密度值:3mkg 1000=水ρ,3mkg13600=水银ρ,3mkg29.1=空气ρ牛顿内摩擦定律:剪切力:dy du μτ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ=完全气体状态方程:RT P =ρ压缩系数:dpd 1dp dV 1ρρκ=-=V (Nm 2) 膨胀系数:TTV V V d d 1d d 1ρρα-==(1/C ︒或1/K)第二章 流体静力学+流体平衡微分方程:01;01;01=∂∂-=∂∂-=∂∂-zp z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ液体静力学基本方程:C =++=gp z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012===m m N at 2/1013251m N atm = 注:hgP P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a =平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=αsin 1)()2(32121h h h h L e ++=若01=h ,则压强为三角形分布,32L e y D==注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图,且用相对压强绘制。

(2)解析法A gh A p P c c ρ== 作用点Ay I y yC xc C D+= 矩形123bL Ixc= 圆形644d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力zx P P P += 与水平面的夹角xzP P arct an=θ潜体和浮体的总压力:0=xP 排浮gV F P z ρ==第三章 流体动力学基础质点加速度的表达式⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a zz z y z x z z y z y y y x y y x z x y x x x x AQV Q Q Q Q Q G A====⎰断面平均流速重量流量质量流量体积流量g udAm ρρ流体的运动微分方程:tz t y t x d du z p z d du y p Y d du x p X =∂∂-=∂∂-=∂∂-ρρρ1;1;1不可压缩流体的连续性微分方程 :0zu yu xu z y x=∂∂+∂∂+∂∂恒定元流的连续性方程:dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν无粘性流体元流伯努利方程:g 2ug p z g 2u g p z 22222111++=++ρρ 粘性流体元流伯努利方程:w 22222111'h g2u g p z g 2u g p z +++=++ρρ恒定总流的伯努利方程:w 2222221111h g2g p z g 2g p z +++=++ναρναρ 气流伯努利方程:w 22212211P 2)()(2++=--++ρνρρρνP z z g Pa 有能量输入或输出的伯努力方程w 2222221111h g2g p z g 2g p z +++=±++ναρναρm H 总流的动量方程:()∑-=1122Q F νβνβρ 投影式⎪⎩⎪⎨⎧-=-=-=∑∑∑)()()(112211221122z z zy y y x x x v v Q F v V Q F v v Q F ββρββρββρ动能修正系数α:11.105.1A v dAu 33=-==⎰ααα,一般,较均匀流动A动量修正系数β:105.102.1Av dAu 22=-==⎰βββ,一般,较均匀流动A水力坡度dldh dl dH J w =-= 测压管水头线坡度dl dh dl dH J w p=-= 第四章 流动阻力和水头损失圆管沿程水头损失:gv d l h f22λ= ⎪⎭⎫ ⎝⎛==2g 8Re64C λλ;紊流层流 局部水头损失:gvh j22ξ=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧==-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-==-==0.15.015.0v v g 2v v h 1g 2v h 1g 2v h 12221j 2122222j 2211211j出入;管道出口注:管道入口)(用细管流速(突缩管—其余管用断面平均流速—弯管)()(,)(,突然扩大管ζζζζζζζA A A A A A 雷诺数:⎪⎪⎩⎪⎪⎨⎧======575R e e 2300d e d e c cR R c c υνυνυνυνR R R R R ,非圆管,圆管 流态判别⎪⎩⎪⎨⎧=><,流动为临界流为紊流,为层流,cc c Re Re 流动Re e 流动Re e R R 谢才公式:RJ C V = 谢才系数:λg C 8= ; 曼宁公式:611R nC =均匀流动方程式:l h gR gRJ f 0ρρτ== 圆管过流断面上剪应力分布:00ττr r =圆管层流:(1)流速分布式)r (r 4g u 220-=μρJ (2)最大流速20max r 4g u μρJ =(3)断面平均流速:2u v max = (4)Re 64=λ 紊流剪应力包括:粘性剪应力和附加剪应力,即21τττ+=,dyu d x1μτ=,y x 2''-=ρτ 紊流流速分布一般表达式:C +=Iny k1u*ν 非圆管当量直径:)4Re ;2(42υυλR v vd gv d l h R d e e fe ==== 绕流阻力: A U C D D 220ρ=第五章 孔口、管嘴出流和有压管流薄壁小孔口恒定出流: 02gH v ϕ=2gH A Q μ= 97.0=ϕ 62.0==ϕεμ AA c =ε-0H 作用水头,自由出流gv H H 22000α+=,若00≈v ,H H =0;淹没出流g v g v H H H 22222211210αα-+-=,若021≈≈v v ,H H H H =-=210孔口变水头出流:)(2221H H gA Ft -=μ,若02=H ,放空时间max1222Q V gA H Ft ==μ 圆柱形外管嘴恒定出流:02gH v n ϕ=;2gH A Q n μ=; 82.0==n n μϕ;μμ32.1=n ;075.0H gP v=ρ 简单管道:5228,d g a a alQ h H f πλ=-==比阻,(62/m s )串联管道:ii ni i i ni i i i ni fi l a S Q S Q l a h H i ====∑∑∑===阻抗,12121并联管道:233322222111321,Q l a Q l a Q l a h h h f f f ==== 注:串联、并联管道有时需结合节点流量方程求解。

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。

流体力学第六章 边界层理论

流体力学第六章 边界层理论
v ? y
流体力学第六章
流体力学第六章
Q
v
uv
u dy
udy U
y x 0 0 x
x 0

0
uK1
v y
dy
0
uK1
u x
dy
1 K
2
0
x
uK2dy
1 K
2
x
0
uK2dy
U K2
于是第二个积分
vuKudy
v
0
y K10 y
uK1
dyK1(x10u(dyU uK2)U dyK1UK2)
流体力学第六章
u
u x
v
u y
p x
2u y 2
已知普朗特方程组
p y
0
u x
v y
0
0
uk 1
udy x
0
ukv
udy y
p x
0
uk dy
0
uk
2u y2 dy
积分一
积分二
积分三
其中 (x)
(6 2 1)
流体力学第六章
b(x) a(x)
ddxx(x)dx
x 0
0
uk1
u y
2
dy
uk2dy Uk1
udy
k 1 x 0
k 1 x 0
p x
0
uk
dy
k
0
uk1
u y
2 dy
(6-2-3)
流体力学第六章
uk2dyUk1 udy
k1 x 0
k1x0
px0ukdyk0uk1uy2dy
(6-2-3)
上式为哥路别夫积分方程。

《流体力学》第六章_粘性流体绕物体的流动

《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2

2 y
p
2
、 2

流体运动微分方程

流体运动微分方程

du du d 牛顿内摩擦定律 ,且 dy dy dt
d dt
流体为团运动时的角变形速度是纯剪切变形速度的两倍,顾有:
u y u x d 2 xy dt x y
则 xy yx
u y u x d ( ) dt x y
法向应力与线变形速度的关系
u x p xx p 2 x u y p yy p 2 y u z p zz p 2 z
d ux u 1 u x u x p u y u x u X [ ( ) ( ) ( x z )] dt x x x x y x y z z x
, p zz -p pzz
对于不可压缩均值流体,附加法向应力等于流体动力粘度与两倍的线变形速度 的乘积,即
u x p 2 xx 2 x u y , p yy 2 yy 2 y u z , p zz 2 zz 2 z
, xx
pxx pyy pzz
可以用任意一点三个相互垂直方 向上的 法向应力的平均值p的负 值作为黏性流体在该店的压强 黏性流体哥哥方向的法向应力等于 这个平均值加以个附加法向应力
1 p ( p xx p yy p zz ) 3
, p xx -p pxx
p yy -p p,yy
因此,切应力方向分量与角变形速度的关系
xy zy xz
粘性流体运动时存在切应力,所以法向 应力的大小与其作用面的方向有关,三个 相互垂直的法向应力大小一般不相等,即
u x u y yx ( ) 2 xy y x u y u yz ( z ) 2 zy y z u u zx ( x z ) 2 xz z x

流体力学第6章流体运动微分方程

流体力学第6章流体运动微分方程
代入式(5)可得
b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。

第6章-流体流动微分方程-例题

第6章-流体流动微分方程-例题

0 0 0
θ:
2 v ∂v v v ∂vθ ∂v ⎡ ∂ ⎛1 ∂ 1 1 ∂p ⎞ 1 ∂ vθ 2 ∂vr ⎤ + ν ⎢ ⎜ (rvθ) + + vr θ + θ θ + r θ = fθ − + ⎟ 2 ρ r ∂θ r r ∂θ r
∂r ⎝ r ∂r ∂t ∂r ∂θ 2 r 2 ∂θ ⎥ ⎠ ⎣ ⎦
工程流体力学——第六章 流体流动微分方程——例题
CH6-5
r:
2 ⎡ ∂ ⎛1 ∂ ∂vr ∂v v ∂v v 2 1 ∂p ⎞ 1 ∂ vr 2 ∂vθ ⎤ + vr r + θ r − θ = f r − + − 2 + ν ⎢ ⎜ (rvr) ⎥ ⎟ 2 2 r r ∂ r ∂θ ⎦ θ r N ρ ∂r ∂t ∂ ∂r ⎝ r ∂r ⎠ r ∂θ ⎣
∂vz dv =μ z ∂r dr
由此可知:(a)不可压缩一维稳态层流每点各方向正应力=-p,因此分析 相应问题时微元体表面正应力可直接以压力标注;(b)管内流体既有沿 z 方向 的切应力,同时也伴随有 r 方向的切应力。 ⑤ 因 ∂p*/ ∂z = ∂p / ∂z =const 且 vz =vz (r ) ,故 z 方向运动方程为常微分方程, 其边界条件为 vz r = R = 0 、 (dvz /dr ) r =0 = 0 ;积分运动方程并以 −Δp /L 替代 ∂p / ∂z 可得 速度分布,进而得到切应力分布,其结果为:
CH6-7
对于内筒转动外筒固定的情况, 由于离心 力与压差力均指向外壁, 两者都促使流体向外 层运动, 故流体沿切向的层流流动难以保持稳 定。该条件下,雷诺数定义及过渡雷诺数分别 为:

第六章 粘性流体动力学基础(Y)

第六章 粘性流体动力学基础(Y)

x轴方向受到的表面压力: 轴方向受到的表面压力: 轴方向受到的表面压力
∂p dx ∂p dx ∂p p − ⋅ dydz − p + ⋅ dydz = − dxdydz ∂x 2 ∂x 2 ∂x
流体微团所受到的质量力为: 流体微团所受到的质量力为:

f = fx i + f y j+ fz k
(1)通过对欧拉运动微分方程进行积分 通过对欧拉运动微分方程进行积分 ——推导恒定元流的伯努利方程 推导恒定元流的伯努利方程 推导 ①定常流动; 定常流动; ②沿流线积分; 沿流线积分; ③质量力只有重力; 质量力只有重力; ④不可压流体。 不可压流体。
粘性流体的运动微分方程: 粘性流体的运动微分方程:
粘性流体的运动方程 粘性流体的能量方程 流体运动的两种流态及其能量损失 流体运动的两种流态及其能量损失
主要内容
均匀流的沿程水头损失 圆管中的层流运动 明渠中的层流运动 紊流基本理论 圆管紊流运动中沿程阻力系数的确定 局部阻力系数的确定
粘性流体:实际流体都具有粘性。既有粘性切应力 又有法向压应力。 粘性切应力, 粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。 µ≠0 理想流体:理想流体可忽略粘性 粘性。 无粘性切应力,只有法向压应力。 理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。 µ =0
∂uy ∂uy ∂ux ∂ux ∂ux ∂uz ∂uz 右边 = ux + uy + uz + uy − uy + uz −uz ∂x ∂y ∂z ∂x ∂x ∂x ∂x
2 2 2 ∂ux ∂uy ∂ ux ∂ uy ∂ uz ∂u ∂u + uz x − z = + + + uy − ∂y ∂x ∂x 2 ∂x 2 ∂x 2 ∂z ∂x

流体力学第6章(1-6节)

流体力学第6章(1-6节)
x y z
全微分的充分必要条件。

d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。

d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
dz
ρvx
ρvy
v y
(vy
y
)
dy
vx
(
vx
x
)
dx
ρvz
y
x
4
可得输入微元体的质量流量:
vxdydz vydxdz vzdxdy
输出微元体的质量流量为:
(vx
(vx
x
)
dx)dydz
(vy
(vy
y
)
dy)dxdz
(vz
(vz
z
)
dz)dxdy
5
则输出与输入之差为:
( (vx ) (vy ) (vz ) )dxdydz
行六面体流体微团,作用在流体微元上的各法 向应力和切向应力如图所示。
16
σyy+
әσyy
әy
dy
әyx yx+ әy dy
dy y
yz+
әyz
әy dy
zx
σzz
σxx xz
zy+
әzy
әz dz
xy
fy
zy
fz fx
σzz+
әσzz
әz
zx+
әzx
әz dz
yz
dz yx σyy
xy+
әxy
әx dx
vx vx0 (x, y, z)
vy vz
v v
y0 z0
( x, ( x,
y, y,
z)
z)
p p0 (x, y, z)
显然,对于定 常流动,不需 要初始条件。
28
2.边界条件
所谓边界条件,是包围流场每一条边界上的流场 数值。不同种类的流动,边界条件也不相同。流体流 动分析中最常遇到的三类边界条件如下:
σxx+
xz+
әxz
әx dx
dz
әσxx
әx
dx
dx zx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
f x dxdydz
xxdydz
(
xx
xx
x
dx)dydz
yxdzdx
(
yx
yx
y
dy)dzdx
zx dxdy
( zx
zx
z
dz)dxdy
dxdydz
Dvx Dt
18
化简后得
fx
1
(
xx
x
yx
y
zx
z
)
Dv x Dt
同理得
fy
1
(
yy
y
zy
z
xy
x
)
Dvy Dt
fz
1
(
zz
z
xz
x
yz
y
)
Dvz Dt
——以应力表示的运动方程 19
将切应力和法向应力的关系式
xy
( vx
y
v y x
)
yz
( vz
y
vy z
)
zx
( vx
z
vz x
)
xx
p
2
vx x
6 流体流动微分方程
基本内容:
掌握连续性方程及其推导 熟悉Navier-Stokes方程 了解Euler方程
1
控制体分析
最大优点在于对定常流动,当已知控制面 上流动的有关信息后,就能求出总力的分量和 平均速度,而不必深究控制体内各处流动的详 细情况,给一些工程问题的求解带来方便。
缺点是不能得到控制体内各处流动的细节, 而这对深入研究流体运动是非常重要的。
故有 f ( y) 0
所以
vx (1 2 y)x x 2xy
12
例题:不可压缩流体的速度分布为
u=Ax+By, v=Cx+Dy, w=0
若此流场满足连续性方程和无旋条件,试求 A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
这一章中我们将推导微分形式的守恒方程。
2
流体流动微分方程包括: 连续性方程 运动方程
连续性方程是流动流体质量守恒的数学描 述。运动方程则是流动流体动量守恒的数学 描述。二者都是基于流场中的点建立的微分 方程。
3
6.1 连续性方程
连续性方程反映流动过程遵循质量守恒。 现取微元体如图。
z
vz
(vz
z
Dt t
——不可压缩粘性流体的运动微分方程,也
叫Navier-Stokes方程,简称N-S方程。
21
N-S方程
理想流体 欧拉运动 微分方程
欧拉平衡 微分方程
23
N-S方程的矢量形式为
v
( v )
v
f
1
p
2
v
t





各项意义为:①非定常项; ②对流项; ③单位质量流体的体积力; ④单位质量流体的压力差; ⑤扩散项或粘性力项
25
由于引入了广义牛顿剪切定律,故N-S方 程只适用于牛顿流体,处理非牛顿流体问题 时可用以应力表示的运动方程。
Navier-Stokes方程是不可压流体理论中 最根本的非线性偏微分方程组,是描述不可 压缩粘性流体运动最完整的方程,是现代流 体力学的主干方程 。
26
6.3基本微分方程组的定解条件
x
y
z
微元体内质量变化率为:
dxdydz
t
6
根据质量守恒原理有:
(vx ) (vy ) (vz ) 0
x
y
z t

( v)
0
t
该式即为直角坐标系下的连续性方程。由于
未作任何假设,该方程适用于层流和湍流、
牛顿和非牛顿流体。 7
对不可压缩流体,ρ=常数,有әρ/әt=0,则 连续性方程为
yy
p
2
vy y
zz
p
2
vz z
代入上式的第一式并整理得:
20
Dvx Dt
fx
1vx z 2
)
同 理
Dvy Dt
fy
1
p y
(
2vy x 2
2vy y 2
2vy z 2
)

Dvz Dt
fz
1
p z
(
2vz x 2
2vz y 2
2vz z 2
)
Dv
v
(v) v
vy y2 y x
试求x方向的速度分量,假定x=0时,vx=0。
10
解:不可压缩流体的平面运动满足连续性方程
vx v y 0 vy=y2-y-x x y
由已知条件得
vx 2 y 1 0 x
积分得 vx (1 2 y)x f ( y)
11
根据边界条件x=0时vx=0代入上式得
0 (1 2y) 0 f ( y)
v 0
不可压缩流体的连续性方程不仅形式简单,而 且应用广泛,很多可压缩流体的流动也可按常 密度流动处理。
8
在直角坐标系中可表示为
vx vy vz 0 x y z
(柱坐标和球坐标下的连续性方程自学。) 对平面流动
vx vy 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为
则有
A D 0
又由于流动无旋,则有
u v y x
则有 B C 0
14
练习:
有一个三维不可压流场,已知其x向和y向的分 速度为
vx x2 y2z3
vy (xy yz zx)
求其z向的分速度的表达式。当x=0,z=0时,
vz=2y。
答案:
vz
z2 2
zx
2y
15
6.2不可压缩粘性流体运动微分方程 在运动着的不可压缩粘性流体中取微元平
N-S方程有四个未知数,vx、vy、vz和p,将 N-S方程和不可压缩流体的连续性方程联立,理 论上可通过积分求解,得到四个未知量。一般 而言,通过积分得到的是微分方程的通解,再 结合基本微分方程组的定解条件,即初始条件 和边界条件,确定积分常数,才能得到具体流 动问题的特解。
27
1.初始条件
对非定常流动,要求给定变量初始时刻t=t0 的空间分布
相关文档
最新文档