14经典数学名题欣赏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四节 经典数学名题(2课时)
第1课时
1. 鸡兔同笼。今有鸡兔同笼,上有35个头,下有94只脚。鸡兔各几只?
解:设鸡有x 只,则免有(35)x -只,依题意得:
24(35)94x x +-=
解之得:23x =
则:3512x -=
答:鸡有23只,则免有12只.
2.求碗问题。我国古代《孙子算经》中有一道著名的“河上荡杯”题(注:荡杯即洗碗)。题目意思是:一位农妇在河边洗碗。邻居问:“你家里来了多少客人,要用这么多碗?”她答道:“客人每两位合用一只饭碗,每三位合用一只汤碗,每四位合用一只菜碗,共享65只碗。”她家里究竟来了多少位客人?
解:设客人是x 人,依题意得:
11165234
x x x ++= 解之得:60x = 答:她家来了60位客人
3.有女善织。有一位善于织布的妇女,每天织的布都比上一天翻一番。五天共织了5丈(50尺)布,她每天各织布多少尺?
想:若把第一天织的布看作1份,可知她第二、三、四、五织的布分别是2、4、8、16份。根据织布的总尺数和总份数,能先求出第一天织的尺数,再求出以后几天织布的尺数。
解:设第一天织x 尺,则第二天织2x 尺,第三天织4x 尺,第四天织8x 尺,第五天织16x 尺,依题意得:
2481650x x x x x ++++= 解之得:5031
x =
则:100231x =,200431x =,400831x =,8001631
x = 答:第一天织5031尺,第二天织10031尺,第三天织20031尺,第四天织40031尺,第五天织80031尺。 4.托尔斯泰问题。俄国大文学家托尔斯泰对数学很感兴趣,曾经编过这样一道题:一组割草人要把两块草地的草割掉,大的一块草地比小的一块大一倍。全体组员用半天时间割大的一块,下午他们便对半分开,一半组员仍留在大块草地上,到傍晚时把草割完了。另外一半组员到小草地上割草,到傍晚时还剩下一块,这块由一个割草人又用了一天时间才割完。假若每人割草的进度都相同,这组割草人共有多少? 解:设这组割草人共有x 人,每人每天割草量为a ,依题意得:
111112()22222
ax a x a x a +⨯=⨯+ 解之得:8x =
答:这组割草人共有8人。
5.苏步青爷爷做过的题目。甲和乙分别从东西两地同时出发,相对而行,两地相距100里,甲每小时走6里,乙每小时走4里。如果甲带一只狗,和甲同时出发,狗以每小时10里的速度向乙奔去,遇到乙后即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲乙两人相遇时狗才停住。这只狗共跑了多少里路? 想:只从狗本身考虑,光知道速度,无法确定跑的时间。但转个角度,狗在甲乙之间来回奔跑,狗从开始到停止跑的时间与甲乙二人相遇时间相同。由此便能求出答案。
解:设相遇的时间为t 小时,依题意得:
64100t t +=
解之得:10t =,
所以,狗从开始到停止跑的时间10小时,狗在甲乙之间来回奔跑的路程为:1010100⨯=(里) 答:这只狗共跑了100里路.
第2课时
6.巧分银子。10个兄弟分100两银子,从小到大,每两人相差的数量都一样。又知第八个兄弟分到6两银子,每两个人相差的银子是多少?
想:因为每两个人相差的数量相等,第一与第十、第二与第九、第三与第八,……每两个兄弟分到银子的数量和都是20两,这样可求出第三个兄弟分到银子的数量。又可推想出,从第三个兄弟到第八个兄弟包含5个两人的差。由此便可求出两人相差的银子是多少。
解:设第十个兄弟分得x 两银子,从小到大,每两人相差y 两银子,依题意得:
26x y += 解之得: 2.8x =
100(9)5
x x y ++= 1.6y = 答:每两人相差的银子是1.6两
7.牛顿问题。英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?
想:这片草地天天以同样的速度生长是分析问题的难点。把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:原有草可供1头牛吃x 天,每天新长的草可供1头牛吃y 天,依题意得:
221022x y +=⨯
解之得:110x =
101610x y +=⨯ 5y =
设25头牛可以吃z 天,则:110525z z +=,解之得 5.5z =天
答:供25头牛可以吃5.5天
8.韩信点兵。今有物,不知其数。三三数之剩二,五五数之剩三,七七数之剩二。问物几何。 这是我国古代名著《孙子算经》中的一道题。意思是:一个数除以3余2,除以5余3,除以7余2。求适合这些条件的最小自然数。
9.三女归家。今有三女,长女五日一归,中女四日一归,少女三日一归。问三女何日相会?这道题也是我国古代名著《孙子算经》中为计算最小公倍数而设计的题目。意思是:一家有三个女儿都已出嫁。大女儿五天回一次娘家,二女儿四天回一次娘家,小女儿三天回一次娘家。三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?
想:从刚相会到最近的再一次相会的天数,是三个女儿间隔回家天数的最小公倍数。
10.兔子问题。十三世纪,意大利数学家伦纳德提出下面一道有趣的问题:如果每对大兔每月生一对小兔,而每对小兔生长一个月就成为大兔,并且所有的兔子全部存活,那么有人养了初生的一对小兔,一年后共有多少对兔子?
想:第一个月初,有1对兔子;第二个月初,仍有一对兔子;第三个月初,有2对兔子;第四个月初,有3对兔子;第五个月初,有5对兔子;第六个月初,有8对兔子……。把这此对数顺序排列起来,可得到下面的数列: 1,1,2,3,5,8,13,……
观察这一数列,可以看出:从第三个月起,每月兔子的对数都等于前两个月对数的和。根据这个规律,推算出第十三个月初的兔子对数,也就是一年后养兔人有兔子的总对数。
11.泊松问题。法国数学家泊松少年时被一道数学题深深地吸引住了,从此便迷上了数学。这道题是:某人有8公升酒,想把一半赠给别人,但没有4公升的容器,只有一个3公升和一个5公升的容器。利用这两个容器,怎样才能用最少的次数把8公升酒分成相等的两份?
想:利用两次小容器盛酒比大容器多1公升,和本身盛3公升的关系,可以
凑出4公升的酒。
12.五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?