平面几何定理公理总结

合集下载

欧几里得几何中的定理与公式

欧几里得几何中的定理与公式

欧几里得几何中的定理与公式欧几里得几何是古希腊著名的数学系统,被认为是西方数学的基础。

欧几里得几何的基本定律和公式是众所周知的,其中包括勾股定理、平行线公理等。

欧几里得几何不仅仅是数学领域内的一个理论框架,其思想在物理、工程、艺术等领域都发挥了重要作用。

勾股定理是欧几里得几何中最著名的定理之一。

它表明,在直角三角形中,斜边的平方等于两条直角边的平方之和。

该定理是应用广泛的,已经成为世界性的数学名词。

勾股定理最早是在《六经注》中出现的。

在《六经注》中勾股定理的证明方法是通过平方和的差得到的。

后来,勾股定理被申时中证明成一条几何定理。

这个定理非常重要,不仅是欧几里得几何常见的定理,而且在许多科学领域中也有着广泛的应用。

平行线公理是欧几里得几何的基本公理之一。

它表明,如果两条直线在某一点处与另一条直线的所形成的两个内角之和小于两个直角,那么这两条直线将会相遇,并且在相遇处的几何对象将会形成对称形状。

这个定理在欧几里得几何的基础中起着重要的作用,因为它大量应用于平面几何的分析、测量以及建构过程中。

三角函数是欧几里得几何面积算法的基础。

它为求解三角形的面积和角度提供了宝贵的工具。

三角函数远不止于此,过去和现在它一直被应用于工程、科学、物理和数学等方面。

三角函数中有三角正弦函数,三角余弦函数以及三角切函数等等。

这些函数是用来求解三角形的面积、角度以及距离,是欧几里得几何研究中非常重要的部分。

欧几里得几何中的另一个重要公式是勒布朗定理。

它是将微积分中的极限概念引入几何研究的一种方法。

勒布朗定理是处理平面曲线问题中的一个方法,可以用来求解曲线的长度,面积和弧度。

它在工业和科学的现实应用中也得到广泛的应用。

总之,欧几里得几何中的定理和公式为我们提供了丰富的思想和方法,直接促进了人类科技和文化的发展。

在今天的科学、技术、工程和数学中,欧几里得几何的基本概念和原理仍然是非常重要的,对人类生活和发展起着重要的作用。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。

在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。

以下是初中几何中常用的公理和定理。

一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。

2.同位角公理:同位角互等。

3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。

4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。

二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。

2.三角形内角和定理:三角形内角的和为180°。

3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。

4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。

5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。

6.等边三角形定理:等边三角形的三条边相等。

7.三角形外角定理:三角形外角等于其对应内角的和。

8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。

10.等周定理:等周的两角相等,反之亦成立。

11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。

12.周长定理:四边形周长等于各边长的和。

13.三角形周长定理:三角形的周长等于三边长的和。

14.三角形中线定理:三角形中线等分中位线,且平分第三边。

15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。

16.五边形内角和定理:五边形的内角和是540°。

17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。

18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。

19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。

20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。

立体几何知识点总结(少三垂线定理)

立体几何知识点总结(少三垂线定理)
线面垂直 的定义 线面垂直 的判定定 理 面面垂直 的性质定 理
如果一条直线和一个平面内的 都垂直,我们就说直 线和平面互相垂直. 一条直线与一个平面内的两条 直线都垂直,则该直线与此 平面平行. 两个平面垂直,则一个平面内垂直于 的直线与另一个平面垂直.
图形
符号语言 a ⊥ b , b => a ⊥ ( b 为任意的)
图形
符号语言
二面角 => ⊥
a
是直二面角
Hale Waihona Puke 面面垂直的 判定定理 判定方法(文字叙述)
空间两条直线所成的角为 。
一个平面过另一个平面 的 , 则这两个平面垂直.
六、空间两条直线垂直的判定方法
名称 空间两条 直线垂直 的定义 图形 异面 符号语言 a, b 是异面直线 a // a, b // b
如果两个平面平行, 那么其中一个平 面内的 一个平面 直线必 于另
五、空间两平面平行的判定方法
名称 面面平行 的定义 面面平行 的判定定 理 面面平行 的判定定 理的推论 课本例题 定理 判定方法(文字叙述)
空间两平面没有公共点
图形
符号语言
线面垂直 的性质
如果两条平行直线中的一条垂直于一个 平面,则另一条 这平个面.
直线 直线 不在 平面内 ( a ) 直 线 与 平 面 平 行 与平面 相交 线与面垂直 线与面斜交
图示
表示方法
交点个数
线面平行 的定义 线面平行 的判定定 理 面面平行 的性质
a 与
无公共点
a
a A
一条直线与此 行.

一条直线平行, 则该直线与此平面平
a ⊥ a A a //
a b o , a 与 b 所 成 角 是

平面几何五大公理

平面几何五大公理

平面几何五大公理所谓公理:1)经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理。

2)某个演绎系统的初始命题。

这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推岀该系统内其他命题的基本命题欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理。

其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5 :整体大于局部等)他给岀的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理。

分别是:1、五大公设:公设1 从任意的一个点到另外一个点作一条直线是可能的。

公设2 把有限的直线不断循直线延长是可能的。

公设3 以任一点为圆心和任一距离为半径作一圆是可能的。

公设4 所有的直角都相等。

公设5 如果一直线与两线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

2、五大公理公理1 与同一件东西相等的一些东西,它们彼此也是相等的。

公理2 等量加等量,总量仍相等。

公理3 等量减等量,余量仍相等。

公理4 彼此重合的东西彼此是相等的。

公理5 整体大于部分。

今天我们常说的平面几何五大公理,就是指五大公设。

在这五个公设(理)里,欧几里德并没有幼稚地假定定义的存在和彼此相容。

亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明。

事实上欧几里德用这种构造法证明很多命题。

第五个公设非常罗嗦,没有前四个简洁好懂。

声明的也不是存在的东西,而是欧几里德自己想的东西。

这就足以说明他的天才。

从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀。

很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设。

第五公设称为平行公理,引导岀千年来数学上和哲学上最大的难题之一。

1.立体几何中基本概念、公理、定理、推论

1.立体几何中基本概念、公理、定理、推论

立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。

平面几何的基本概念和定理

平面几何的基本概念和定理

平面几何的基本概念和定理1. 基本概念1.1 点平面几何的研究对象是由点、线、面组成的。

点是几何图形的基本元素,用来表示位置。

在平面几何中,点没有大小和形状,只有位置。

我们通常用大写字母来表示点,如A、B、C等。

1.2 直线直线是由无数个点连成的,它在平面内延伸无穷远。

我们通常用一个小写字母加上箭头表示直线,如直线AB、CD等。

直线上的点可以用小写字母表示,如点P、Q、R等。

1.3 射线射线是由一个起点开始,延伸到一个方向上的直线。

我们通常用一个小写字母加上箭头表示射线,如射线AB、CD等。

射线上的点可以用小写字母表示,如点P、Q、R等。

1.4 线段线段是由两个端点确定的直线部分,具有有限的长度。

我们通常用两个端点的大写字母表示线段,如线段AB、CD等。

1.5 平面平面是由无数个点组成的二维空间。

在平面几何中,我们通常用大写字母I表示平面,如平面ABCD等。

1.6 角角是由两条射线的公共端点和这两条射线的延伸部分组成的图形。

我们通常用一个小写字母表示角的顶点,如角A、B、C等。

角的度量单位是度(°),用符号°表示。

1.7 三角形三角形是由三条线段组成的平面图形,具有三个顶点和三个内角。

我们通常用三个顶点的大写字母表示三角形,如三角形ABC等。

1.8 四边形四边形是由四条线段组成的平面图形,具有四个顶点和四个内角。

我们通常用四个顶点的大写字母表示四边形,如四边形ABCD等。

1.9 圆圆是由平面上所有与给定点(圆心)距离相等的点组成的图形。

我们通常用圆心和半径的大写字母表示圆,如圆O(半径为r)。

2. 基本定理2.1 欧几里得几何公理欧几里得几何公理是平面几何的基础,包括以下五个公理:1.任意两点之间存在唯一的直线。

2.直线上的点可以按任意顺序排列。

3.任意两点确定一条直线。

4.直线上的点与直线外的点确定一条直线。

5.平面上任意一点到平面上任意一点的直线是唯一的。

2.2 平行线公理平行线公理是指:如果两条直线在平面内不相交,那么这两条直线是平行的。

立体几何8个定理

立体几何8个定理

立体几何定理1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭2、直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

l l l m m αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:AP ∥GH .3、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面. a m a n m n A a m n ααα⊥⎫⎪⊥⎪⎪⋂=⇒⊥⎬⎪⊂⎪⊂⎪⎭4、直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行。

a ab b αα⊥⎫⇒⎬⊥⎭证明过程:书本P375、两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a b a b A a b ββαβαα⎫⎪⎪⎪⋂=⇒⎬⎪⊂⎪⊂⎪⎭ 6、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。

a ab b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭7、平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.l l ααββ⊥⎫⇒⊥⎬⊂⎭8、平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. l AB AB AB l αβαβαβ⊥⎫⎪⋂=⎪⇒⊥⎬⊂⎪⎪⊥⎭在三棱锥P-ABC 中,PA ⊥面ABC,平面PAB ⊥平面PBC求证:BC ⊥AB公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

中考数学之平面几何最全总结+经典习题

中考数学之平面几何最全总结+经典习题

平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线.2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线”。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

角1.同角或等角的余角相等。

2.同角或等角的补角相等.3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等.定理2:到一个角的两边距离相等的点,在这个角的平分线上.三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。

【平行线】平行线性质1:两直线平行,同位角相等。

平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

平行线判定1:同位角相等,两直线平行。

平行线判定2:内错角相等,两直线平行。

平行线判定3:同旁内角互补,两直线平行。

平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

平面几何知识要点(二)【三角形】面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24(a 为边长正三角形)3.已知三角形三边a ,b,c ,则S =(海伦公式) 其中:()2a b c p ++= (周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =. 5.设三角形三边分别为a 、b 、c,内切圆半径为r ,则()2a b c r S ++= 6.设三角形三边分别为a 、b 、c,外接圆半径为R ,则4abc S R =记住★:已知正三角形边长为a ,其外接圆半径为R ,内切圆半径为r ,则有:R = ,r = , 2R r = 内角和定理:三角形三个内角的和等于180°推论1 :直角三角形的两个锐角互余推论2 :三角形的一个外角等于和它不相邻的两个内角的和推论3 :三角形的一个外角大于任何一个和它不相邻的内角全等三角形性质:如果两三角形全等,那么其对应边,对应角相等.其中对应边除了三角形的边长外,还包括对应高,对应中线,对角平分线.全等三角形判定定理:边边边公理:有三边对应相等的两个三角形全等.(SSS )边角边公理:有两边和它们的夹角对应相等的两个三角形全等。

平面四大公理

平面四大公理

平面四大公理平面四大公理是欧几里得几何学的基础,它们是几何学中最基本的原理。

这四条公理被认为是自然、正确和不可证明的。

本文将详细介绍平面四大公理的内容和应用。

第一条公理:任意两点之间都可以画一条直线这条公理表明,平面上的任意两点之间都可以用一条直线相连。

这个公理看起来很简单,但它却是几何学中最基本的原理之一。

这条公理让我们可以在平面上画出各种形状和图形。

第二条公理:有限直线段可以无限延伸这条公理表明,一条有限的直线段可以延伸到任意长度。

这个公理也很容易理解,因为我们可以用一条尺子或者直尺来测量直线段的长度。

这条公理还表明了平面的无限性质,因为我们可以无限延伸直线段。

第三条公理:任意角度都可以构成这条公理表明,任意两条直线可以相交,并且相交的角度可以构成任意大小的角。

这个公理是几何学中最有争议的,因为它有时被看作是一个定理而不是一个公理。

但是,欧几里得认为这是一个基本的原理,因为我们可以通过它来定义角度的概念。

第四条公理:存在一条平行于给定直线的直线这条公理表明,如果给定一条直线和一点,那么存在一条通过这个点的直线,它与给定直线平行。

这个公理是几何学中最重要的原理之一,因为它让我们可以定义平行线的概念,从而可以进行各种几何证明。

除了这四条公理之外,欧几里得还提出了一些公理,例如角的和等于直角,以及两个直线平行的情况下,它们与第三条公理等价。

这些公理和定理在几何学中都有很重要的应用。

应用:平面四大公理在几何学中有广泛的应用,包括:1.在欧几里得几何学中,这些公理是证明各种定理的基础。

例如,我们可以用这些公理证明勾股定理。

2.这些公理也可以用于建立几何模型,例如建立建筑物、桥梁和运动场等。

3.这些公理还可以用于计算机图形学中,用于建立3D模型和计算机动画。

总结:平面四大公理是几何学中最基本的原理之一。

这些公理让我们可以在平面上进行各种形状和图形的构造和证明。

这些公理在数学、物理、计算机图形学等领域都有广泛的应用。

高中数学几何证明公式定理

高中数学几何证明公式定理

高中数学几何证明相关定理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。

(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。

(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。

推论3:经过两条平行线,有且仅有一个平面。

立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。

初中平面几何公式大全

初中平面几何公式大全

几何要想取得好成绩,几何公式一定要烂熟于胸。

几何公式是做好几何题的根基,因此同学们一定要在几何公式上多下功夫。

本文总结了初中几何公式140条。

初中几何公式:线1过两点有且只有一条直线2 两点之间线段最短3同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14两直线平行,同旁内角互补初中几何公式:三角形15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3 三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r)外公切线长= d-(R+r)。

平面几何五大公理

平面几何五大公理

平面几何五大‎公理所谓公理:1) 经过人类长期‎反复的实践检‎验是真实的,不需要由其他‎判断加以证明‎的命题和原理‎。

2) 某个演绎系统‎的初始命题。

这样的命题在‎该系统内是不‎需要其他命题‎加以证明的,并且它们是推‎出该系统内其‎他命题的基本‎命题欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地‎给出了23个‎定义,5个公设,5个公理。

其实他说的公‎社就是我们后‎来所说的公理‎,他的公理是一‎些计算和证明‎用到的方法(如公理1:等于同一个量‎的量相等,公理5:整体大于局部‎等)他给出的5个‎公设倒是和几‎何学非常紧密‎的,也就是后来我‎们教科书中的‎公理。

分别是:1、五大公设:公设1从任意的一个‎点到另外一个‎点作一条直线‎是可能的。

公设2把有限的直线‎不断循直线延‎长是可能的。

公设3以任一点为圆‎心和任一距离‎为半径作一圆‎是可能的。

公设4所有的直角都‎相等。

公设5如果一直线与‎两线相交,且同侧所交两‎内角之和小于‎两直角,则两直线无限延长后必‎相交于该侧的‎一点。

2、五大公理公理1与同一件东西‎相等的一些东‎西,它们彼此也是‎相等的。

公理2等量加等量,总量仍相等。

公理3等量减等量,余量仍相等。

公理4彼此重合的东‎西彼此是相等‎的。

公理5整体大于部分‎。

今天我们常说‎的平面几何五‎大公理,就是指五大公‎设。

在这五个公设‎(理)里,欧几里德并没有幼稚地‎假定定义的存‎在和彼此相容‎。

亚里士多德就‎指出,头三个公设说‎的是可以构造‎线和圆,所以他是对两‎件东西顿在性‎的声明。

事实上欧几里‎德用这种构造‎法证明很多命‎题。

第五个公设非‎常罗嗦,没有前四个简‎洁好懂。

声明的也不是‎存在的东西,而是欧几里德‎自己想的东西‎。

这就足以说明‎他的天才。

从欧几里德提‎出这个公理到‎1800年这‎大约2100‎年的时间里虽‎然人们没有怀‎疑整个体系的‎正确性,但是对这个第‎五公设却一直‎耿耿于怀。

很多数学家想‎把这个公设从‎这个体系中去‎掉,但是几经努力‎而无果,无法从其他公‎设中推到处第‎五公设。

平面几何五大公理

平面几何五大公理

平面几何五大公理一、直线公理:通过两个不同点,可以画出一条直线。

直线是平面几何中最基本的概念之一。

根据直线公理,我们可以通过连接两个不同点来得到一条直线。

直线可以看作是无限延伸的,没有宽度和厚度。

直线可以用两个不同的点来确定,其中一个点是直线上的任意一点,另一个点可以在直线上也可以在直线外。

二、点线公理:通过两个不同点,只能画出一条直线。

点线公理是指通过两个不同点只能画出一条直线。

这个公理保证了直线的唯一性。

如果通过两个不同的点可以画出两条不同的直线,那么它们就不再是直线,而是两条不相交的曲线或者折线。

三、平行线公理:通过一点,在平面外只能有一条直线与已知直线平行。

平行线公理是指通过一点,在平面外只能有一条直线与已知直线平行。

这个公理保证了平行线的唯一性。

如果通过一点可以有两条或多条直线与已知直线平行,那么这些直线就不再是平行线,而是相交或重合的直线。

四、垂直公理:如果两条直线与一条直线相交,且两条直线的内部角相等,那么这两条直线是垂直的。

垂直公理是指如果两条直线与一条直线相交,且两条直线的内部角相等,那么这两条直线是垂直的。

垂直是指两条直线相互间的角度为90度。

垂直的直线在数学和几何中有着重要的应用,例如垂直线可以用来构造垂直平分线、垂直角等。

五、同位角公理:如果两条直线被一条直线截断,那么同位角相等。

同位角公理是指如果两条直线被一条直线截断,那么同位角相等。

同位角是指位于两条相交直线的同一侧,并且分别位于两条直线之间的角。

同位角公理是平面几何中关于角度相等的重要性质之一。

通过同位角公理,我们可以推导出许多与角度有关的性质,例如相应角、内错角等。

总结起来,平面几何五大公理是直线公理、点线公理、平行线公理、垂直公理和同位角公理。

这些公理是平面几何中最基本的原理,它们构成了平面几何的基础。

通过这些公理,我们可以推导出许多与直线、角度、平行等概念有关的性质和定理。

这些公理和定理的应用广泛,不仅在数学中有重要意义,还在物理、工程、建筑等领域中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何定理公理总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT平面几何定理公理总结一、线与角1.两点之间,线段最短。

线段的长叫两点间的距离。

2.直线外一点到直线,垂线段最短,垂线段的长叫该点到直线的距离。

3.一组平行线中,一条直线上一点到另一条直线的距离,叫两条平行线间的距离。

4.经过两点有且只有一条直线,即两点确定一条直线。

5.不在同一直线上的三点确定一个角。

6.两直线相交,对顶角相等。

7.同角(或等角)的余角相等;同角(或等角)的补角相等。

8.经过直线外一点,有且只有一条直线与已知直线平行。

9.经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

10.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。

11.如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补。

12.平行线(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(2)平行线的判定方法:(3)①两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(4)②两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(5)③如果两条直线都和第三条直线平行,那么这两条直线平行。

(6)④如果两条直线都和第三条直线垂直,那么这两条直线平行。

(7)平行线的性质:(8)①两条平行线被第三条直线所截,同位角相等。

(9)②两条平行线被第三条直线所截,内错角相等。

(10)③两条平行线被第三条直线所截,同旁内角互补。

(11)④如果一条直线和两条平行线中的一条平行,那么这条直线也和另一条平行。

(12)⑤如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条垂直。

(13)⑥平行线间的距离处处相等;夹在两条平行线间的平行线段相等。

13.平行线等分线段定理:(1)定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

(2)推论1:经过三角形一边的中点,且与另一边平行的直线必等分第三边。

(3)推论2:经过梯形一腰的中点,且与底边平行的直线必等分另一腰。

14.平行线分线段成比例定理:(1)定理:三条平行线截两条直线,所得的对应线段成比例。

(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)成比例。

15.线段的垂直平分线:(1)性质:线段垂直平分线上的点和这条线段两个端点的距离相等。

(2)判定:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

16.角平分线:(1)性质:在角的平分线上的点到这个角的两边的距离相等。

(2)判定:在角的内部,且到此角的两边的距离相等的点,在这个角的平分线上。

二、三角形及多边形1.三角形的任何两边的和大于第三边,任何两边的差小于第三边。

2.三角形内角和定理:三角形三个内角的和等于180°。

3.四边形内角和定理:四边形内角和等于360°。

4.多边形内角和定理:n边形的内角和等于(n-2)×180°。

5.多边形外角和定理:任意多边形的外角和等于360°。

6.三角形外角性质:(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

7.三角形中位线定理:三角形两边中点的连线叫做三角形的中位线。

三角形的中位线平行于第三边,并且等于第三边的一半。

8.等腰三角形的相关公理、定理:(1)等腰三角形的两个底角相等(“等边对等角”)。

(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(“等角对等边”)。

(3)等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(“三线合一”)。

9.等边三角形的公理、定理:(1)三个边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形。

(2)有一个角为60°的等腰三角形是等边三角形;有两个角为60°的三角形是等边三角形(3)等边三角形的三边相等;等边三角形的三角相等,且都等于60°。

(4)等边三角形三条角平分线、三条中线、三条高均交于同一点,该点是等边三角形的中心。

10.直角三角形的公理、定理:(1)直角三角形的两锐角互余。

(2)直角三角形斜边上的中线等于斜边的一半;(斜边是其外接圆直径,斜边上的中点是其外接圆圆心)。

(3)若三角形一边的中线等于这边的一半,那此三角形为直角三角形。

(4)直角三角形中,30°锐角所对的直角边等于斜边的一半;(5)直角三角形中,如果一条直角边等于斜边的一半,那它所对的角等于30°。

(6)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(7)勾股定理的逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形。

11.三角形全等:(1)性质:全等三角形的对应边相等、对应角相等。

(2)判定:(3)①有三边对应相等的两个三角形全等(SSS);(4)②两边及其夹角对应相等的两个三角形全等(SAS);(5)③两角及其夹边对应相等的两个三角形全等(ASA);(6)④两角和其中一角的对边对应相等的两个三角形全等(AAS);(7)⑤直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等(HL)。

12.相似三角形的判定:(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形对应边的比例叫做相似比(或相似系数)。

(2)预备定理:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形于原三角形相似。

(3)判定:(4)①两角对应相等,两三角形相似。

(5)②两边对应成比例且夹角相等,两三角形相似。

(6)③三边对应成比例,两三角形相似。

(7)引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(8)直角三角形相似的判定:(9)①如果两个直角三角形有一个锐角对应相等,两三角形相似。

(10)②如果两个直角三角形的两条直角边对应成比例,那么两三角形相似。

(11)③如果两个直角三角形的斜边和一条直角边于另一个三角形的斜边和一条直角边成比例,那么两三角形相似。

13.相似三角形的性质定理:(1)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

(2)相似三角形周长的比等于相似比。

(3)相似三角形面积比等于相似比的平方。

(4)相似三角形的外接圆、内切圆的直径比、周长比等于相似比,外接圆、内切圆的面积比等于相似比的平方。

14.直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它在斜边上的射影于斜边的比例中项。

15.也可表述为:直角三角形的直角顶点,到斜边端点和斜边上高的垂足三点中其中一点的距离(线段),是该点到其它两点的距离(线段)的比例中项。

16.三角形垂直平分线的性质:三角形三条边的垂直平分线相交于一点,且这点到三个顶点距离相等,这点为三角形外接圆的圆心(简称“外心”)。

17.三角形角平分线的性质:三角形三条角平分线相交于一点,且这点到三边距离相等,这点为三角形内切圆的圆心(简称“内心”)。

18.三角形中线的性质:三角形的三条中线交于一点,该点叫做三角形的重心。

19.三角形高的性质:三角形的三条高交于一点,该点叫做三角形的垂心。

三、多边形20.四边形内角和定理:四边形内角和等于360°。

21.多边形内角和定理:n边形的内角和等于(n-2)×180°。

22.多边形外角和定理:任意多边形的外角和等于360°。

23.如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分。

四、特殊四边形1.平行四边形的性质:(1)平行四边形的对角相等。

(2)平行四边形的对边相等。

(3)平行四边形的对角线互相平分。

2.平行四边形的判定:(1)两组对边分别相等的四边形是平行四边形。

(2)两组对边分别平行的四边形是平行四边形。

(3)一组对边平行且相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)两组邻角分别互补的四边形是平行四边形。

(6)对角线互相平分的四边形是平行四边形。

3.矩形的性质:(1)矩形的四个角都是直角。

(2)矩形的对角线相等。

4.矩形的判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等且互相平分的四边形是矩形。

(3)有一个角是直角的平行四边形是矩形。

(4)对角线相等的平行四边形是矩形。

5.菱形的性质:(1)菱形的四条边相等。

(2)菱形的对角线互相垂直,并且每一组对角线平分一组对角。

6.菱形的判定:(1)四边都相等的四边形是菱形。

(2)对角线互相垂直平分的四边形是菱形。

(3)邻边相等的平行四边形是菱形。

(4)对角线互相垂直的平行四边形是菱形;(5)两条对角线分别平分两组对角的四边形是菱形。

(6)有一条对角线平分一个内角的平行四边形是菱形。

7.正方形的性质:(1)正方形的四个角都是直角,四条边都相等(2)邻边相等且垂直的是正方形;对角线垂直且相等的平(3)正方形的两条对角线相等,且互相垂直平分,每条对角线平分一组对角。

8.正方形的判定:(1)邻边相等的矩形是正方形。

(2)对角线互相垂直的矩形是正方形。

(3)有一个角是直角的菱形是正方形;(4)对角线相等的菱形是正方形。

(5)邻边相等且垂直的是平行四边形正方形。

(6)对角线垂直且相等的平行四边形是正方形。

(7)对角线互相垂直平分且相等的四边形是正方形。

9.等腰梯形的性质:(1)等腰梯形在同一底上的两个角相等;(2)等腰梯形的两对角线相等;10.等腰梯形的判定:(2)对角线相等的梯形是等腰梯形。

(1)在同一底上的两个角相等的梯形是等腰梯形;11.梯形的中位线定理:梯形两腰中点的连线叫做梯形的中位线。

梯形的中位线平行于梯形的两底边,并且等于两底和的一半。

五、圆1.在同一平面内,到定点的距离等于定长的点的轨迹(集合),是以定点为圆心,定长为半径的圆。

2.不在同一条直线上的三个点确定一个圆。

3.有关圆周角、圆心角的定理和性质:(1)圆心角定理:圆心角的度数等于它所对的弧的度数。

(2)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半。

(3)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

(4)推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等。

(5)统一推论:在同圆或等圆中,两个圆心角(圆周角)、两条弧、两条弦、两个弦的弦心距,只要有一组量相等,那么其余对应的各组量均相等。

(6)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径,所对的弧是半圆。

相关文档
最新文档