大学物理练习册(上册)答案

合集下载

四川大学大学物理学练习册上册习题答案

四川大学大学物理学练习册上册习题答案

,m/s 6/(1):−==t x v ΔΔ解质点运动学(1)——答案一、选择题1.D2.B3.D4.D5.D 二、填空题 1. 23 m/s2. ()[]t t A t ωβωωωββsin 2cos e 22 +−−; ()ωπ/1221+n (n = 0, 1, 2,…) 3. 0.1 m/s 24. bt +0v ; 2402/)(b R bt ++v5. −g /2; ()g 3/322v 三、计算题1.2.3.(1)t A y tA x ωωsin cos 21==,消去t 得轨道方程为1222212=+A y A x (椭圆)(2)r j t A i t A dtvd j t A i t A dtrd 2221221sin cos a cos sin v ωωωωωωωωω−=−−==+−==a 与反向,故a 恒指向椭圆中心。

(3)当t=0时,x=A 1,y=0,质点位于ωπ2=t 时,2212sin,02cosA A y A x ====ππ。

质点位于图中的Q 点。

显然质点在椭圆形轨,910(2)2t t dx/dt v −==,/16(2)s v −=,1810t −=dt dv a /(3)=s2(2)m/26−=a vx 处的速度为解:设质点在dt dx dx dv dt dv a ⋅==dxdv v =x 263+=,)63(002dx x vdv v x∫∫+=)4(631/2x x v +=道上沿反时针方向运动。

在M 点,加速度a 的切向分量t a 如图所示。

可见在该点切向加速度t 的方向与速度v 的方向相反。

所以,质点在通过M 点速率减小。

4.5.所以质点的运动方程为:解:先求质点的位置,s 2=t 225220×+×=s )(m)(60在大圆=dt ds v /=,1020t +=m/s40(2)=v 时s 2=t dt dv a t /=m/s10=R va n/2=。

大学物理课后习题答案(上册)

大学物理课后习题答案(上册)
解:假设墙壁对小球的压力为N1,木板对小球的压力为N2。
由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .

《大学物理习题集》(上)习题解答

《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。

【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。

3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。

5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。

设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。

6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。

当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。

大学物理上册课后习题集答案解析

大学物理上册课后习题集答案解析

习题解答 习题一1-1 |r D |与r D 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r D 是位移的模,D r 是位矢的模的增量,即r D 12r r -=,12r r r-=D ;(2)t d d r 是速度的模,即t d d r ==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r += 式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量. ∵有t t(v =v 表轨道节线方向单位矢),所以t vt v t v d d d d d d tt += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd t 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分v =22d d d d ÷øöçèæ+÷øöçèæt y t x 及a =222222d d d d ÷÷øöççèæ+÷÷øöççèæt y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jt y i t xt r a j t y i t x t r v222222d d d d d d dd d d d d +==+==\ 故它们的模即为22222222222222d d d d d d d d ÷øöçèæ+÷øöçèæ=+=÷øöçèæ+÷øöçèæ=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

(完整word版)大学物理(机械工业出版社)上册 课后练习答案

(完整word版)大学物理(机械工业出版社)上册 课后练习答案

第一章 质点的运动1-1 已知质点的运动方程为:23010t t x +-=,22015t t y -=。

式中x 、y 的单位为m ,t 的单位为s。

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t tyy 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a xx v , 2s m 40d d -⋅-==ta y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv 得石子速度 )1(Bte B A --=v由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BAy tBt yd )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bte B A t B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - k v 2,k 为常数。

《大学物理C1(上、下)》练习册及答案

《大学物理C1(上、下)》练习册及答案

大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。

[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

大学物理学上册习题解答完整版

大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

《大学物理学》第二版上册习题解答

《大学物理学》第二版上册习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆有区别吗?0dv dt = 和0d v dt= 各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理习题集(上,含解答)

大学物理习题集(上,含解答)

大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

大学物理练习册习题解答(1-22上)

大学物理练习册习题解答(1-22上)

练习一 运动的描述 (一)1.(D )2.(D ) 3.217,5s m sm 4.mmπ5,105.(1)s m t x V 5.0-=∆∆= (2)()s m v t t dt dx v 62,692-=-==(3)()()()()质点反向运动时,,05.125.25.1215.1===⨯-⨯+⨯-⨯=v s t m S6.答:矢径是从坐标原点至质点所在位置的有向线段。

位移是由前一时刻质点所在位置引向后一时刻质点所在位置的有向线段,它们的一般关系为0r r r -=∆ 若把坐标原点选在质点的初始位置,则00=r,任意时刻质点对此位置的位移为r r =∆,即此时r既是矢径也是位移。

练习二 运动的描述 (一)1.()()s m t t s radtt 612,34223-- 2.(c ) 3.三 , 三至六 4.s m s m s m 20,3103.17=5.1032,224,432102+===∴===⎰⎰⎰⎰t x dt t dx tv tdt dv t dt dv a txvt6.根据已知条件确定常量K 222224,4,4RtR v t s d ra Rtv tk ======ωωω22222228.3532168841sm a a a sm R v a s m Rt dt v d a sm Rtv s t n n =+=========ττ时,练习三 运动定律与力学中的守恒定律(一)1.(D ) 2. (C )3.4.5.因绳子质量不计,所以环受到的摩擦力在数值上等于张力T ,设2m 对地加速度为/2a ,取向上为正;1m 对地加速度为1a (亦即绳子的加速度)向下为正,⎪⎩⎪⎨⎧-==-=-21/2/222111aa a a m g m T a m T g m()()()212121/22121221222112m m a m g m m a m m m m a g T m m a m g m m a +--=+-=++-=解得:6.(1)子弹进入沙土后受力为-kv,由牛顿定律有mt k vv tev v v dv dt mk vdv dt mk dtdv mkv -=∴=-=-∴=-⎰⎰00,,(2)求最大深度()()kv mv x ev k m x dtev dx dt dx v mkt mkt 00max 00,1,=-=∴=∴=--练习四 运动定律与力学中的守恒定律(二)1.(C )2.(B ) 3.s m S N 24,140⋅()()sm m mv I v mv mv I sN dtt dt F I t t 24,14040301212221=+=∴-=⋅=+==⎰⎰4.2221221,m t F m m t F m m t F ∆++∆+∆5.(1)系统在水平方向动量守恒。

最新大学物理练习册(上)答案PPT课件

最新大学物理练习册(上)答案PPT课件

(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.
(D) 总动量在任何方向的分量均不守恒.
[C ]
二、填空题 3.一吊车底板上放一质量为10 kg的物体,若吊车底板加速上升, 加速度大小为a=3+5t (SI),则2秒内吊车底板给物体的冲量大 小I=_3_5_6__N_·_s__;2秒内物体动量的增量大小P =__1_6_0__N_·_s___.
(B) A的动量增量的绝对值比B的大.
(C) A、B的动量增量相等. (D) A、B的速度增量相等.
[C ]
2. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上) 方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰
面摩擦力及空气阻 (A) 总动量守恒.
(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.
F cosθ-f =0
f
F
F sinθ+N-Mg=0
f=μN
得 F Mg cossin
P Mg

dF M( g sinco )s d (cossin )2 0


tg0.6
35 0 736
d 2F

0 d 2

l=h / sinθ=2.92 m时,最省力.
绳子通过两个定滑轮,右端挂质量为m的小球,左端挂有两个质
(C) 角速度从大到小,角加速度从大到小.
(D) 角速度从大到小,角加速度从小到大 [ A ]
2.关于刚体对轴的转动惯量,下列说法中正确的是 (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B)取决于刚体的质量和质量的空间分布,与轴的位置无关. (C)取决于刚体的质量、质量的空间分布和轴的位置. (D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

大学物理第一学期练习册答案

大学物理第一学期练习册答案

练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。

4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆✉ (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2-=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。

如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。

✉ 选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分 dt dx x dt dl l=,dt dl V 0-=,dtdx V = 022V xh x V +-=方向沿着X 轴的负方向。

方程两边对时间微分:xa V V 220+=,xV V a 220-=5图3220xh V a -=,方向沿着X 轴的负方向。

3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。

如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。

✉ 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5c o s 50i t 5sin 50v+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。

大学物理上册课后习题答案(第三版_修订版)

大学物理上册课后习题答案(第三版_修订版)

因此, A 对地的速度为
v A地
u
v
' A
(u 2gh cos )i ( 2gh sin ) j
题▲图
1-14 一船以速率 v1 = 30km2 h-1沿直线向东行驶,另一小艇在其前方以速率
v2 = 40km2
-1
h
沿直线向北行驶,问在船上看小艇的速度为何 ?在艇上看船的速度又为何 ?
解: (1) 大船看小艇,则有 v21 v2 v1 ,依题意作速度矢量图如题 1-13 图 (a)
R 2 sin t
dvx dt
ay
R 2 cos t
dvy dt

以初速度
v0 = 20 m
s
1
抛出一小球,抛出方向与水平面成幔
60 °的夹角,
求: (1) 球轨道最高点的曲率半径 R1 ; (2) 落地处的曲率半径 R2 .
( 提示:利用曲率半径与法向加速度之间的关系
)
解:设小球所作抛物线轨道如题 1-10 图所示.
习题解答 (注:无选择题,书本已给出)
习题一
1-6 | r |与 r 有无不同 ? dr 和 dr 有无不同 ? d v 和 dv 有无不同 ?其不同在哪里 ?
dt dt
dt d t
试举例说明.
解: ( 1) r 是位移的模, r 是位矢的模的增量,即
r r2 r1 , r r2 r1 ;
(2) dr 是速度的模,即 dr
a
a
2 n
a2
(0.064) 2 (0.08) 2 0.102 m s 2
▲ 如题 1-12 图,物体 A 以相对 B 的速度 v = 2gy 沿斜面滑动, y 为纵坐标,开始时 A

大学物理上册习题答案.docx

大学物理上册习题答案.docx

习题一1. 2 解:(1)最初2s 内的位移为为:Zkx = x(2)-x(0) = 0-0 = 0(m/5)最初2s内的平均速度为:v ave = — = —= 0(m / s) At 2__ dxT时刻的瞬时速度为:v(0 = — = 4 —4tdt2s末的瞬时速度为:u(2) = 4 —4x2 = —4%/s(2) Is末到3s末的平均加速度为:%e = 空=讯3)—V。

)= 皂也"“ A? 2 2⑶3s末的瞬时加速度为:a = d=d(4_40 = _4(”〃$2)。

dt dt1. 3解:由题意知,加速度和时间的关系为bQ = --- 1T利用dv = adt,并取积分得b V b 2C L Q H—t dv , V — CL^t -\ - 1T ) I T再利用dx = vdt,并取积分[设t = 0时兀o = 0 ]得\dx — ivdt f — _ af------ 尸J o 2 6厂r(t) = r(0) + f 0(/)力=”'+ *尸](1) 当4 —八=0,即/ = 2s时,到达x轴。

(2) t = 2s时到达x轴的位矢为:r(2) = 12i即质点到达兀轴时的位置为x = 12m, y = 0o1・4解: v(?) = v(0 > [刁⑴力1. 5解:按题意d2xdt2=—G^X-4m/ s12 d 1 2x dv dv dx dv -co x = —— = — = = v —, dt dt dx dt dx/ 、2v = +co\lA 2 —x~ , A 2= — + X QW 丿1. 6解:(1)速度和加速度分别为:v= — = (8t)j+k , dt (2)令r(?) = xi + yj + zk ,与所给条件比较可知x = l, y = 4r 2, z = t所以轨迹方程为:x = l, 丁 = 4于。

1. 7解:在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运4 4动出现往返。

大学物理(上册)参考答案

大学物理(上册)参考答案

大学物理(上册)参考答案第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x,a 的单位为2sm -?,x 的单位为 m. 质点在x =0处,速度为101s m -?,试求质点在任何坐标处的速度值.解:∵x v v t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-?++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -?,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+?+?=?=?+=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-?=??==βτR a2222s m 1296)29(1-?=??==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==?na aτ即βωR R =2 亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=?+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1)bt v t sv -==0d dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctan bt v Rba a n --==τ?(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-?-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解:2s m 83166-?===m f a x x 2s m 167-?-==m f a y y(1)--?-=?-=+=?-=?+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-?--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=?-+??+?-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ??-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有∞-=='00d k m v t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-?-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=?由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -??=+==,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--??=?=?=?=? 若物体原来具有6-1s m -?初速,则+-=+-=-=t t tF v m t m F v m p v m p 000000d )d (,于是 ??==-=?t p t F p p p 0102d, 同理, 12v v=?,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=?=ω2.15 一颗子弹由枪口射出时速率为10s m -?v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50 kg ,2m =200 kg,M =15 kg, r =0.1 m 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =-③又,βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-?=++?=++=M m m g m a题2-27(a)图题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg=∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mvI mv +=ω②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212?-=lMg I ω ③由③式得2121)231(3)30cos 1(?-=-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为-=?=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=?glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-?的小球与轻弹簧组成的系统,按)SI () 328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又πω8.0==A v m 1s m -? 51.2=1s m -?2.632==A a m ω2s m -?(2) N 63.0==m m a FJ 1016.32122-?==m mv E J 1058.1212-?===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ?= ∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=?t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 -==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=?=-T A∴ 1s rad 5.02-?==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-?=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=?=-t x πN102.417.0)2(10103232--?-=-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向.(2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且∴ s 322/3==?=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--?====πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-?==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又ππωφ253511=+?= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ?+++++=g m M kh t M m k gM m khk m g x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) +=+=cm )373cos(5cm )33cos(521ππt x t x (2)??+=+=cm)343cos(5cm )33cos(521ππt x t x解:(1)∵ ,233712πππφφφ=-=-=? ∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=? ∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大学物理课后习题答案(上)

大学物理课后习题答案(上)

练习一 质点运动学1、26t dt d +==,61+= ,tv 261331+=-=-∆ , a 24131331=--=-2、0202212110v Kt v Ktdt v dv t Kv dt dv t v v +=⇒-⎰=⎰⇒-= 所以选(C ) 3、因为位移00==v r ∆,又因为,0≠∆0≠a 。

所以选(B )4、选(C )5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,⎰⎰=vtmvdv Pdt 0积分得:mPtv 2=(2)因为m Pt dtdx v 2==,即:dt m Ptdx tx ⎰⎰=002,有:2398t mP x = `练习二 质点运动学 (二)1、平抛的运动方程为2021gt y tv x ==,两边求导数有:gtv v v y x ==0,那么2220t g v v +=,222022t g v tg dt dv a t +==,=-=22tn a g a 22200tg v gv +。

2、 2241442s /m .a ;s /m .a n n ==3、(B ) 4、(A )练习三 质点运动学1、0232332223x kt x ;tk )t (a ;)k s (t +=== 2、0321`=++ 3、(B )4、(C )、练习四 质点动力学(一)1、m x ;912==2、(A )3、(C )4、(A )练习五 质点动力学(二) 1、m'm muv )m 'm (v V +-+-=002、(A )3、(B )4、(C ) (5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 17621212024=-=练习六、质点动力学(三)1、J 9002、)R R R R (m Gm A E 2121-=3、(B )4、(D )5、)(21222B A m -ω练习七 质点动力学(四)1、)m m (l Gm v 212212+=;2、动量、动能、功3、(B )4、(B )练习八 刚体绕定轴的转动(一)1、πωω806000.,.解:(1)摩擦力矩为恒力矩,轮子作匀变速转动 因为00120180ωωωββωω..t -=-=⇒+=;同理有00260ωβωω.t =+=。

大学物理(上册)课后习题及答案

大学物理(上册)课后习题及答案
式中 t 以 s计,x , y 以m计。⑴以时间 t 为变量,写出质点位置矢量的表示式;
⑵求出 t =1 s 时刻和 t =2s 时刻的位置矢量,计算这 1秒内质点的位移;⑶
计算 t = 0 s时刻到 t = 4s时刻内的平均速度; ⑷求出质点速度矢量表示式, 计
算 t = 4 s 时质点的速度; (5)计算 t = 0s 到 t = 4s 内质点的平均加速度; (6)
an R 2 1 (9 2 2 ) 2 1296 m s 2
∴ 当加速度方向与半径成 45 ο角时,有: tan 45 a an 1
即: R 2 R ,亦即 (9t 2 ) 2 18t ,解得: t 3 2 9
则角位移为:
2 3t 3
2 23
2.67rad
9
1.13 一质点在半径为 0.4m 的圆形轨道上自静止开始作匀角加速度转动, 其角
时间内经过的距离为
k
x =(
mv 0
)[ 1- e
( )t
m ];⑶停止运动前经过的距离为
k
v 0( m ) ;⑷当 t k
m
时速度减至
k
v 0 的 1 ,式中 m为质点的质量。 e
解: f kv , a f m kv m
∴ 由 a dv 得: dv adt dt
kv dt m
分离变量得: dv v
k dt ,即 v dv
m
v0 v
t kdt , 0m
因此有:
v ln
v0
kt
ln e m ,
∴ v
vek m
t
0
∴ 由 v
dx 得: dx dt
v dt
v 0e
k m
t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s )2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdv v dt dx dx dv x dt dv a ==+==262 分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθs i n c o sr y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-== 加速度为)s i n (c o s 2j t i t r dt vd a ωωω+-== (3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-== 由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

4、解:(1)由dtvd a =, ⎰⎰=t v dt a v d 00解得j t s m i t s m v)/4()/6(+=由dtrd v =, ⎰⎰=t r r dt v r d 00解得j t s m i m t s m r 2222)/2()]10()/3[(++=(2)由位矢的表达式可得分量形式222103ty t x =+=消去参数t 得到轨迹方程为 2032=-y x m 。

练习二(第一章 质点运动学) 一、选择题 1、(C )2、(D )3、(B )4、(D )5、(A ) 二、填空题1、bt v +0;2240)(b Rbt v ++ 2、c a t -=;R ct b a n 2)(-= 3、331)(ct t S =; ct a t 2=; Rt c a n 42=4、2/8.4s m a t =;rad )3322(+=θ(或3.15rad ) 5、gv 0220cos θ三、计算1、解:在船上观察到的烟囱冒出的烟缕的飘向为南偏东3002、解:刚抛出球时,球相对车的速度大小为0v ' ,车的运动速度大小为0v,抛射过程中,车的位移为20121at t v x +=∆球在水平和竖直方向上的位移分别为t v v x )s i n (002θ'+=∆2221)c o s (gt t v y -'=∆θ 由题意有21x x ∆=∆,02=∆y . 由以上关系可以得出θs i n 210v at '=,θcos 210v gt '= 由此得出g a /tan =θ.3、解:设雨滴相对于地面的速度为1v ,相对于火车的速度为1v ',火车相对地面的速度为2v,由题意,可作图为由几何关系可得01=x v ,s m v v x /1021=='. s m v v /3.1730cot 021==,s m v v /20221=='. 1v 2v4、解:雨滴相对地面的速度为v ,火车的速度为0v,雨滴相对火车的速度为v ' ,由题意三者的矢量关系图为:由几何关系可以得出下式v v v 21230-=. 解得s m s m v v /55.25/3573.0)13(0=⨯=-=. 5、解:(1)由圆周运动规律2r k t r v ==ω. 得22/2/5.0/4/4s rad s rad k ==.该轮在s t 5.0=时的角速度为s rad s rad /5.0/5.022=⨯=ω,速度为s m r v /25.0==ω.切向加速度为2/12s m rkt a t ==.法向加速度为22/125.0s m rv a n ==. 总加速度为2222/01.1/865s m s m a a a nt ==+=. (2)该质点在2.0s 内所转过的角度为r a d dt kt dt 31620220===⎰⎰ωθ.练习三 (第二章 牛顿定律) 一、选择题 1、(B )2、(A )3、(B )4、(B )5、(B )6、(B ) 二、填空题1、(1)80N , 向右;(2)100N (或98N ),向左2、2%3、s g a μ/=. 三、计算题1、解:(1)子弹受到的阻力为Kv f -=,由牛顿第二定律dtdv m Kv =- 积分⎰⎰-=t vv dt K vdv00,得速度随时间变化的函数式为m Kt e v v /0-=(2)由m Kt e v dtdxv /0-==积分⎰⎰-=t m Kt xdt e v dx 0/00,得)1(/0m Kt e kmv x --=∞→t 时,km v x 0=为子弹进入沙土的最大深度。

2、解:对人和底板整体受力分析,由牛顿第二定律有 a m m g m m T )()(421212+=+-解得 N g a m m T 5.2474/))((212=++= 3、解:(1)对小球受力分析,水平方向上θωθθs i n c o s s i n2l m N T =- mg N T =+θθsin cos 联立解得θθωs i n )c o s (2l g m N -=)s i n c o s (22θωθl g m T +=(2)0=N 时,θωcos 2l g =,解得)cos /(θωl g c = 此时,θθωθcos /)sin cos (22mg l g m T c =+=练习四 (第三章 动量守恒定律和能量守恒定律) 一、选择题 1、(C )2、(B )3、(B ) 二、填空题1、1m/s; 0.5m/s2、bt P B =1;02P bt P B -=.三、计算题 1、解:(1)对A 和B 组成的系统受力分析,由牛顿第二定律有Mg Ma =2,得2/g a =B 的位移为0.4m 时C 开始运动,即m at 4.02/2=,解得s t 4.0=. (2)C 开始运动时速度的大小是v ,由动量守恒定律 Mv Mat 32=,解得s m s m at v /33.1/3432===. 2、解:M 下滑过程中经过路程为l 时,获得的速度为θsin 2gl v M =在沿着斜面方向上,碰撞的过程中动量守恒,v M m Mv mv M '+=+-)(cos θ 解得Mm mv gl M v +-='θθcos sin 2即为子弹射中木块后,子弹与木块的共同速度.练习五 (第三章 动量守恒定律和能量守恒定律) 一、选择题 1、(C )2、(C )3、(C ) 二、填空题1、αsin 20mgx2、12J3、4000J 三、计算题1、解:当系统所受合外力为0时, kx F = 由动能定理,2/)(2/2212v m m kx Fx +=- 对1m 有2/2/212v m kx W T =- 解得拉力T 对1m 所作的功为km m F m m W T )(2)2(21221++=恒力F 对2m 所作的功为k F W F /2=.练习六 (第三章 动量守恒定律和能量守恒定律) 一、选择题 1、(D )2、(C ) 二、填空题1、),[1+∞x ,0U .2、)6,2(;)2,4(-或)8,6(;62或=x三、计算题1、解:对物体受力分析,当物体刚刚开始运动时有 0)s i n (c o s 00=+-mg F F θμθ, 其中00kt F =,物体运动以后,由牛顿第二定律有dtdvm mg F F =+-)sin (cos θμθ其中kt F =, 由此积分⎰⎰+-=t t v dt mmg F F dv 0)sin (cos 0θμθ 解得)s i n (c o s 2)()(2020θμθμ--+--=mt t k t t g v )s i n (c o s 0θμθμ-=k mgt代入数据得s m v /73.28=.2、解:(1)子弹穿过物体的过程中,水平方向动量守恒,有 10Mv mv mv +=,子弹穿出时,物体在最低端作圆周运动,有 l Mv Mg T /21=- 以上两方程联立得Mlv v m Mg T 202)(-+=代入数据得N T 5.26=(2)由动量定理子弹在穿透过程中所受的冲量的大小为 s N v v m I ⋅=-=7.4)(0练习七 (第四章 刚体的转动) 一、选择题 1、(B )2、(C )3、(B )4、(C )5、(C )6、(B ) 二、填空题1、20圈2、4rad3、2/mgl μ4、)9/(20J k ωα=,)/(20ωk J t =三、计算题1、解:由转动定律有dt d JFr ω=,kt F = 积分⎰⎰=ttdt J kr d 00ωω,解得22t Jkr =ω,代入数据得s rad /25=ω. 2、解:人相对于绳匀速向上爬时,人和绳的加速度相同, 故有 Ma T Mg A =- Ma Mg T B 2121=-αJ T T A B =- R a α=以上方程联立解得加速度为g M g R M g R M g R MR J MgR a 72623222222=+=+= 3、解:由牛顿第二定律和转动定律有 ma mg T =-1 a m T g m ''=-'2 r T Tr J 11-=αr T T J 2)(22⋅-='α绳是不可伸长的,故绳上各点及物块A 、B 的加速度大小是一样的,所以 a a '=转动中线量与角量的关系为, 1αr a =22αr a ='由以上方程联立可以解得,两滑轮之间绳中的张力为mg T 34=质量为m 的小滑轮的角加速度为rg921=α质量为m '的大滑轮的角加速度为rg92=α练习八 (第四章 刚体的转动) 一、选择题 1、(B )2、(C )3、(C )4、(D )5、(D )6、(A )7、(B ) 二、填空题 1、220436mlMl mv +=ω 2、角动量 系统的合外力矩为0 机械能 3、2mRJ mRvJ +-='ωω 4、(1)W ;(2)θcos kl ;(3)θsin 2kl W = 三、计算题1、解:碰撞时间极短,故碰撞过程角动量守恒2212v lm J v lm -=ω细棒转动过程中所受摩擦力的力矩为gl m dx l x g m gxdm M l 10121μμμ-=-=-=⎰⎰由转动定律,有dtd J M ω=其中3/21l m J =, 由以上式子联立可以得到⎰⎰=-t dt d g 032ωωμ 积分得碰撞后从细棒开始转动到停止转动的过程所需的时间为gm v v m t 1212)(2μ+=2、解:两人与圆台组成的系统角动量守恒,有4)22(2)()8/2/(022mRv R mR R v J mR mR J -+++=++ωωωω 2/2mR J =代入后得到,圆台的角速度为0ωω=.3、解:小球到达B 点时,环的角速度为B ω,小球相对于环的速度为B v ; 由角动量守恒和机械能守恒有 B mR J J ωω)(2000+= 202220021)(212121B B B J R m mv J mgR ωωω++=+以上两个方程联立可以解得2000mR J J B +=ωω,2022002m R J R J gR v B++=ω 小球到达C 点时,环的角速度为C ω,小球相对于环的速度为C v ; 由角动量守恒和机械能守恒有 C J J ωω000= 2022002121212C C J mv J mgR ωω+=+以上方程联立解得0ωω=C ,gR v C 2=4、解:子弹射入杆的过程子弹与杆组成的系统角动量守恒,有ω)31(22ma l m amv +'=子弹进入杆后系统机械能守恒,有θθωs i n s i n2)31(21222m g a lg m ma l m +'=+' 由以上方程联立解得m ag m a l m m a l m v θsin )2)(31(222+'+'=练习十二 (第八章 静电场) 一、选择题 1、(C )2、(D )3、(D )4、(D )5、(A ) 二、填空题1、3/200E ε-,3/400E ε.2、)24/(0εq3、01/εq ;021/)(εq q + 三、计算题1、解:在半圆上取一段小弧元θRd ds =,这段小弧元可以看成点电荷,x 轴上半部分带电量为 正,电荷线密度为)/(2R Q πσ=+,上半部分的弧元对应在圆心O 处的电场强度为)c o s (s i n 4120j i R Rd E d θθθσπε-=+x 轴下半部分带电量为负,电荷线密度为)/(2R Q πσ-=-,下半部分的弧元对应在圆心O 处的电场强度为)cos (sin 4120j i RRd E d θθθσπε-=- 由对称性分析可得0=x E ,2022/02022/2022/0202cos 2cos 2cos RQd R Q d R Q d R Q E y επθεπθθεπθθεπθππππ-=-=+-=⎰⎰⎰故球心O 处的电场强度为j R QE202επ-= 。

相关文档
最新文档