华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

合集下载

华中师范大学2010年数学分析考研真题

华中师范大学2010年数学分析考研真题

华中师范大学二〇一〇年研究生入学考试试题考试科目:数学分析一、(30分)计算题1、设函数)(x f 定义在),(+∞−∞上,满足x x f x f cos )()2(=,1)0()(lim 0==→f x f x ,求)(x f ;2、设dx x a n n ∫=40tan π,求)(121+∞=+∑n n n a a n 的值.3/求曲线积分∫−+−+−Ldz y x dy x z dx z y )()()(,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从Z 轴正向看是逆时针.二、(12分)设0,)(>=ααx x f ,证明:当10≤≤α时,)(x f 在),0(+∞上一致连续;当1>α时,)(x f 在),0(+∞上不一致连续.三、(12分)证明含参量x 的反常积分dy yxy ∫+∞0sin 在),[+∞δ上一致收敛(其中0>δ),但在),0(+∞内不一致收敛.四、(20分)设函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于))(,(c f c ,其中b c a <<,证明:存在),(b a ∈ξ,使得0)(''=ξf .五、(20分)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈,存在x 的领域)(x U ,使得)}({'x f n 在],[)(b a x U ∩上一致有界,证明:1、)}({'x f n 在],[b a 上一致有界;2、)}({x f n 在],[b a 上一致收敛.六、(20分)设⎩⎨⎧=+≠++=0,00),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导数的存在性以及可微性.七、(20分)已知)(x f 是),0[+∞上的正值连续函数,且+∞<∫+∞dx x f 0)(1,证明:1、存在数列),0[+∞∈n x ,...)2,1(=n 满足:}{n x 严格单调递增,+∞=∞→n n x lim ,+∞=∞→)(lim n n x f ;2、−∞=∫+∞→x x dt t f x 02)(1lim 八、(16分)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记222222zy x ∂∂+∂∂+∂∂=∆,,,(z y x ∂∂∂∂∂∂=∇.1、证明:dxdydz f g dS n f gdxdydz f g VS V ∫∫∫∫∫∫∫∫∆−∂∂=∇∇)()·(,其中n 表示S 的外法线方向,S 为球面1222=++z y x ;2,若222z y x f ++=∆,试计算:dxdydz z f z y x z y f z y x y x f z y x x I V ∫∫∫∂∂+++∂∂+++∂∂++=(222222222。

2009年华中师范大学数学分析考研试题

2009年华中师范大学数学分析考研试题
(a, b) 内有界。
x→a+
f ( x) 和 lim− f ( x) 也存在,则 f ( x) 在开区间
x →b
三、 (12 分)证明含参量反常积分

+∞
0
xe− xy dy
在 [δ , +∞ ) 上一致收敛(其中 (δ > 0 ) ) ,在 ( 0, +∞ ) 上不一致收敛。 四、 (20 分) 设函数 f ( x) 在 [ 0,1] 上连续, 在 ( 0,1) 内可微, 且存在 M 使得 ∀x ∈ ( 0,1) , xf ' ( x) − f ( x) (1)
2.计算二重积分 ∫ ∫
D
s in y d xd y y
x = 0 所围成的区域。
3.求曲线积分n ∫C
( x − 1)dy − ( y − 2)dx ,其中 C 是平面内任意 4( x − 1) 2 + ( y − 2) 2
一条不过点 (1, 2) 的正向简单光滑封闭曲线。 二、 (12 分)设函数 f ( x) 定义在开区间 (a, b) 内,若对任意 c ∈ (a, b) , 都有 lim f ( x) 存在,且 lim x →c
< xM 2 ,证明:
>0,
f ( x) 在 ( 0,1) 内一致连续; x
(2) lim f ' ( x) 存在。
x → 0+
五、 (20 分)证明下面的结论: (1)若 f ( x) 在 [ 0,1] 上连续,则 l im n→ ∞

Hale Waihona Puke 1 0xn
f ( x )dx = 0

您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问

武汉大学《数学分析》《高等代数》历年考研真题(2009-2018汇总)

武汉大学《数学分析》《高等代数》历年考研真题(2009-2018汇总)

4
8! ( K 14 ©) lim an = +∞, y²:
n→∞
Ô! ( K 14 ©) ¼ê
1n
lim n→∞ n
ak = +∞.
k=1
(x2 + y2) sin f (x, y) =
0,
1 , x2 + y2 = 0; x2 + y2
x2 + y2 = 0.
1. ¦ fx(0, 0), fy(0, 0); 2. y²: fx(0, 0), fy(0, 0) 3 (0, 0) ØëY; 3. y²: f (x, y) 3 (0, 0) Œ‡, ¿¦ df (0, 0).
l! ( K 15 ©) z(x, y) ëY
Œ‡, 釩•§
1
∂2z
∂2z ∂2z
1
∂z ∂z
(x2 + y2)2
∂x2
+
2 ∂x∂y
+
∂y2
− (x2 + y2)3
+ ∂x ∂y
= 0.
ŠCþ“† u = xy, v = x − y. 1. ¦“† •§; 2. •ÑCþ“†” :8, ¿`²”
4. OŽ F (α), Ù¥:

x+3α
F (α) = dx
f (x, y)dδ.
D
¦ f (x, y).
Ê! ( K 14 ©) f (x) ´ {(x, y)|x2 + y2 1} þ gëYŒ‡¼ê, …÷v
∂2f ∂x2
+
∂2f ∂y2
= (x2 + y2)2,
Á¦È©
x2+y2 1
x ∂f

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
x →+∞
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0

华中师范大学数学分析历年考研真题

华中师范大学数学分析历年考研真题

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==b a ni n dx x f n a b n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11lim 123n n →∞+++1…+n (3)74444lim (112)x x x x x →∞++-- (4)1limsin (sin)2n n k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值. 2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++ (10分) (2)135(21)lim 2462n n n n →∞- (10分) (3)1326lim[().1]2x x x x x e x →+∞-+-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x →++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰. 4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+ 证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n x e n n ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析 1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx x x ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin )1(),(2-+=,求)1,(x f x '.(5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =. 2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

华中师大04年数学分析

华中师大04年数学分析

华 中 师 范 大 学2004年研究生入学考试试题(数学分析)一、 求下列极限(共50分,第1、2小题各10分,第3、4小题各15分)1、21sin 0lim(cos )x x x →;2、lim n →∞; 3、74lim x x →∞+-; 4、1lim sin (sin)2n n k k n nππ→∞=∑。

二、(15)设f(x),g(x)在[a,b]上连续,在(a,b)内可导,若12,x x 是f(x)在区间[a,b]上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()f fg ξξξ+=三、(15)设f(x)在[a,b](b>a>0)上连续,在(a,b)内可导,证明:在(a,b )内存在,ξη 使 2.'()'().f f a b ηηξ=四、(15)设f(x)在[a,b]上黎曼可积,证明:()f x e在[a,b]上也是黎曼可积的。

五、(15)设'()(1,2,3,n f x n =…)在[a,b]上连续,函数g(x)在[a,b]上也连续,且对[a,b]中任意的12,x x 和正整数n 有1212|()()|||n n M f x f x x x n-≤- (M>0为常数) 证明:lim ().'()0b n n a g x f x dx →+∞=⎰六、(15)设()n f x (n=1,2,3…)在[a,b]上连续,且{()}n f x 在[a,b]上一致收敛与f(x)。

证明:1)存在M>0,使对任何自然数n 有|()|,|()|n f x M f x M ≤≤及2)若F(x)为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于F(f(x)).七、(10)设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且 f(-1)=0,f(1)=1,f '(0)=0,证明在(-1,1)内至少存在一点ξ 使得(3)()3fξ=。

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(一(1212分)设f(x)f(x)是区间是区间I 上的连续函数。

证明:若f(x)f(x)为一一映射,则为一一映射,则f(x)在区间I 上严格单调。

二(二(1212分)设1,()0x D x x ì=íî为有理数,为无理数证明:若f(x), D(x)f(x) f(x), D(x)f(x) 在点在点x=0处都可导,且f(0)=0,f(0)=0,则则'(0)0f =三(三(1616分)考察函数f(x)=xlnx f(x)=xlnx 的凸性,并由此证明不等式:的凸性,并由此证明不等式:2()(0,0)a b a ba b ab a b +³>>四(四(1616分)设级数1nn an ¥=å收敛,试就1n n d ¥=å为正项级数和一般项级数两种情况分别证明1nn an n¥=+å也收敛。

五(五(2020分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)y=f(x)。

又设。

又设(,)Fx y 具有连续的二阶偏导数。

(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)f(x)的一个极值,试证明:的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。

(3) 对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(的极值,并用(22)的结论判别极大或极小。

六(六(1212分)改变累次积分4204842(4)x x xI dxy dy --=-òò的积分次序,并求其值。

(完整word版)2004-2010华中师范大学数学分析考研真题

(完整word版)2004-2010华中师范大学数学分析考研真题

2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sinlim(cos )xx x →(2)n(3)74lim x x →∞- (4)1lim sin(sin)2nn k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++(10分) (2)lim 62n n→∞(10分)(3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x nn x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛.6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3)dx xx ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x af a f x f x ++→∞→=存在,但不一定存在.(3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

云南大学《高等代数》《数学分析》考研真题汇编(2009-2017年汇总)

云南大学《高等代数》《数学分析》考研真题汇编(2009-2017年汇总)

ห้องสมุดไป่ตู้28
3
1. 2009年 HŒÆ《高等代数》ïÄ)\Æ•ÁÁK
˜! W˜K( 6 K, zK 5 ©, 30 ©)
1. A ´ s • , |A| = m, B • t • , |B| = n, C = 0 A , K |C| =
.
B0
2. g. f (x1, x2, x3) = x21 + 2x22 + 3x23 − 4x1x2 − 4x2x3 IO/´
22
13 HŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û
23
14 HŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
24
15 HŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
25
16 HŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
26
17 HŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û
27
18 HŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û
考试复习重点资料(最新版)
资料见第三页


第1页
温馨提示
提示:本套资料经过精心编排,前 2 页是封面和提示部分,后面是资 料试题部分。资料涵盖了考试的重点知识和题型,可以很好的帮助你 复习备考。资料不在多而在精,一套系统的涵盖考试重点的资料,能 够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯 定能取得理想的成绩。 寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就 要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然 会得到回报。 1. 一份合理科学的学习计划是你备考的领航灯。要有总体的时间规划, 也要有精细到每天的计划,不打无准备的仗。 2. 资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复 刻意练习的结果。公众号:第七代师兄,学习也是一样的,手里的资料, 一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应 对。 3. 态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了, 才能平底起高楼,才能将各类知识点运用自如。 4. 坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。 切记心浮气躁,半途而废。 5. 希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试复习重点资料(最新版)
资料见第三页


第1页
温馨提示
提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。

资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。

资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。

寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。

1.一份合理科学的学习计划是你备考的领航灯。

要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。

2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。

公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。

3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。

4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。

切记心浮气躁,半途而废。

5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。

第2页
目录
1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析33
1.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇ
ˇˇˇˇˇˇˇˇˇˇˇˇ
111¨¨¨1
x a1a2¨¨¨a n
x2a2
1
a2
2
¨¨¨a2n
..
.
..
.
..
.
..
.
x n a n
1
a n
2
¨¨¨a n n
ˇˇ
ˇˇ
ˇˇ
ˇˇ
ˇˇ
ˇˇ
ˇ
“0.
2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:
(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不
是f1p x q的根).
(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.
3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X
是变元x1,¨¨¨,x n的列向量.证明:
(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.
(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.
4.(30分)设A,B,C都是n阶方阵,令˜
A B
C0
¸
是分块构成的2n阶方阵,其中右下块0表示n阶
零方阵.
(1)证明:
rank ˜
A B
C0
¸
ěrank p B q`rank p C q.
这里rank p B q表示矩阵B的秩.
(2)举例说明:p1q中的等号和不等号都可能成立.
5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.
(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.
(2)证明关于和子空间的维数公式.
6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.
(1)证明:1
2
p A`A1q的特征根都是实数,令µ1﨨¨ďµn是
1
2
p A`A1q的全部特征根.
(2)证明:µ1ďrďµn.
(3)你有类似的估计s的办法吗?
1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.
2.(20分)
(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当
rank p A q`rank p A´kE q“n.
(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.
3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,
定义V上的线性变换A:VÑV为
A p
B q“AB´BA,对任意的B P M3p R q.

AҬ
˚
˝
000
010
002
˛

‚.
求A的特征值和相应的特征子空间;并求此时A的极小多项式.
4.(30分)设有三元实二次型
f p x,y,z q“x2`3y2`z2`4xz.
并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.
5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数
乘函数的运算下是一个向量空间.
(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.
(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.
(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.
6.(30分)
(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.
(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.
(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。

相关文档
最新文档