中心对称图形教案设计
中心对称图形教案
中心对称图形教案第一章:中心对称图形的概念与性质1.1 引入中心对称图形的概念利用实物或图片引导学生观察和感知中心对称现象。
向学生介绍中心对称图形的定义:在同一平面内,如果一个图形能够绕某一点旋转180度后与原来的图形完全重合,这个图形就叫做中心对称图形。
1.2 探索中心对称图形的性质引导学生通过实际操作,探究中心对称图形的性质。
学生总结出中心对称图形的性质:(1)对称中心是图形的旋转中心;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
1.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第二章:中心对称图形的绘制与识别2.1 学习中心对称图形的绘制方法引导学生学习如何绘制中心对称图形。
学生通过实际操作,学会利用直尺和圆规绘制中心对称图形。
2.2 提高中心对称图形的识别能力提供一些图形,让学生判断它们是否为中心对称图形。
引导学生学会如何找出中心对称图形的重心。
2.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形,并找出它们的重心。
让学生自己找出一些中心对称图形,并画出它们的对称中心。
第三章:中心对称图形与坐标系3.1 引入坐标系的概念向学生介绍坐标系的定义和作用。
利用实际例子,让学生理解坐标系中点的表示方法。
3.2 学习中心对称图形在坐标系中的性质引导学生学习中心对称图形在坐标系中的性质。
学生总结出中心对称图形在坐标系中的性质:(1)对称中心的坐标为(h, k),其中h为对称中心在x轴上的坐标,k为对称中心在y轴上的坐标;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。
3.3 练习与巩固提供一些图形,让学生在坐标系中判断它们是否为中心对称图形。
让学生自己在坐标系中找出一些中心对称图形,并画出它们的对称中心。
人教版九年级数学上册23.2.2:中心对称图形(教案)
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。
《中心对称》教案
《中心对称》教案1教学目标:知识与技能:(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.过程与方法:利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.情感、态度与价值观:经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.教学重点难点:重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.教学方法:(一)创设情境导入新课:导语一在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二观察图中三个图形旋转的角度,发现哪个图形与其他二个不同?(二)合作交流解读探究:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现可以证明如下.(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段AA'上,且OA=OA',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.探索:下图中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.例1如图4-31,已知四边形ABCD和点O,画出四边形A′B′C′D′,使它与四边形AB CD关于点O成中心对称.解:(1)连接AO,BO,CO,DO;(2)分别延长AO到A′,BO到B′,CO到C′,DO到D′,使OA′=OA,OB′=OB,O C′=OC,OD′=OD;(3)顺次连接点A′,B′,C′,D′.(如图4-32)四边形A′B′C′D′就是所求的四边形.议一议:中心对称与轴对称有什么区别?又有什么联系?《中心对称》教案2教学目标:教学知识点:1.熟记中心对称图形的有关概念.2.叙述并应用中心对称图形的基本性质.过程与方法:1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.掌握中心对称图形及其基本性质,掌握平行四边形是中心对称图形.情感、态度与价值观:通过师生的共同活动,使学生体会积累一定的审美体验.教学重、难点:教学重点:中心对称图形的定义及其性质.教学难点:中心对称图形的定义.教学过程:Ⅰ.巧设情景问题,引入课题[师]同学们,平行四边形纸板准备好了吗?好,我们现在来做一做如下图所示,在一个平行四边形纸板上,连结两条对角线,得到交点O,用图钉过点O 将纸板固定在一张纸上,并描下此时四边形ABCD的轮廓.绕点O旋转平行四边形纸板,使得点A移动到点C的位置.(1)此时的纸板与原来的位置是否重合?(2)指出旋转中心,求出旋转角的度数.(3)根据上面的过程,你能验证平行四边形的哪些性质?与同伴交流.(学生动手做、讨论、总结)[生1]把平行四边形纸板绕对角线的交点O旋转,使点A移动到点C的位置时,纸板与描下的轮廓重合.平行四边形旋转的中心是对角线的交点O,由于点A和点C在一条直线上,所以旋转的角度为180°.[师]这位同学分析得很正确:下面来看第(3)个问题,大家互相交流交流.[生2]从刚才旋转的过程中,验证了平行四边形的对边相等,对角相等,对角线互相平分等性质.[师]很好,我们来看(演示刚才学生旋转的过程),这个平行四边形绕它的对角线的交点O旋转180°,它与原图重合,我们把这样的图形,称为中心对称图形.这节课我们就来探讨中心对称图形.Ⅱ.讲授新课[师]我们再来看这根木条(出示教具),它绕着这一点(指出木条的中点)旋转180°时,也和原图重合.即与它本身重合,这样的图形叫中心对称图形.大家来总结归纳:什么是中心对称图形?[生]把一个图形绕它的某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形.[师]很好,在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形(centralsymmetryfigure).这个点叫做它的对称中心.想一想,平行四边形的对称中心是什么?[生]平行四边形的对称中心是对角线的交点.[师]对,大家再想一想:我们学过的哪些图形是中心对称图形.[生]线段、平行四边形、矩形、菱形、正方形.[师]很好,它们的对称中心各是什么?[生]线段的对称中心是线段的中点.平行四边形的对称中心是对角线的交点,因为矩形、菱形、正方形是特殊的平行四边形,所以它们的对称中心都是对角线的交点.[师]这位同学回答得真棒.假设点A是某个中心对称图形上的一点,绕O点旋转180°后,它变成了点C,点A和点C 就是一对对应点,而且O是AC的中点.(如图)再看平行四边形是中心对称图形,点B绕O点旋转180°后,它与点D重合,点B和点D就是一对对应点,从平行四边形的性质也可知:O是BD的中点.由此大家能否总结出中心对称图形的性质吗?[生]中心对称图形上的每一对对应点所连成的线段的中点都是对称中心.[师]同学们总结得很好,这就是中心对称图形的性质.中心对称图形上的每一对对应点所连成的线段都被对称中心平分.中心对称图形在日常生活和生产中有广泛的应用,请你举出所看到的中心对称图形的实例.[生甲]家庭装饰中的各种图案、竹签做的玩具小飞机、纸做的小风车.[生乙]飞机的双叶螺丝桨、风车的风轮.[生丙]水泵叶轮……[师]很好,大家举出这么多中心对称图形的例子.你能说说中心对称图形在欣赏和实用方面的价值吗?(出示一些中心对称图形的图片).[生1]中心对称图形的形状匀称、美观,所以在很多建筑物和工艺品上常用这种图形作装饰图案.[生2]由于中心对称图形绕中心旋转180°,后与原来的图形重合.所以具有中心对称图形的物体,在平面内能绕对称中心平稳地旋转.这种特性在生活和生产中都有应用.[师]同学们回答得真棒.下面大家拿出扑克牌,看看这些牌的牌面哪些是中心对称图形?[生1]红桃2、方块2、黑桃2、黑桃10、方块J、梅花10、方块K、黑桃4.[生2]红桃4、红桃K、梅花Q.[生3]方块中除7不是,其余的都是中心对称图形.[师]很好,从大家回答中知道同学们基本掌握了中心对称图形的概念.下面大家来“想一想”.除了平行四边形,你还能找到哪些多边形是中心对称图形?[生1]正六边形、正八边形、正十边形.[生2]这样的多边形很多,在正多边形中,只要边数为偶数,那它就是中心对称图形.[师]很好,下面我们来做练习,以巩固中心对称图形的定义及性质.Ⅲ.练习1.正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗?答案:正方形是中心对称图形,它绕两条对角线的交点旋转90°或其整数倍,都能与原来的图形重合.由此,可以验证正方形的四条边相等,四个角是直角,对角线互相垂直平分等性质.2.下图中,哪个“风车”是中心对称图形?(1) (2) (3)答案:(1)(3)是中心对称图形.3.如图,点O是正六边形ABCDEF的中心.(1)找出这个轴对称图形的对称轴.(2)这个正六边形绕点O旋转多少度后能和原来的图形重合.(3)如果换成其他的正多边形呢?能得到一般的结论吗?答案:(1)直线AD、CF、BE以及AB、BC、CD的垂直平分线都是这个正六边形的对称轴.(2)这个正六边形绕O点旋转60°或其整数倍的度数后能与原来的图形重合.(3)一般地,绕正n边形的中心旋转n360或其整数倍,都能与原来的图形重合.Ⅳ.课时小结本节课我们学习了中心对称图形的有关概念和它的基本性质.能判定一个图形是否是中心对称图形.。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
通过一系列的教学活动和实例,学生将能够掌握中心对称图形的性质和特点,并能够运用这些知识解决实际问题。
教学目标:1. 了解中心对称图形的定义和性质。
2. 能够识别和绘制中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学内容:第一章:中心对称图形的定义1.1 引入中心对称图形的概念。
1.2 解释中心对称图形的定义。
1.3 举例说明中心对称图形的特征。
第二章:中心对称图形的性质2.1 介绍中心对称图形的基本性质。
2.2 通过实例演示中心对称图形的性质。
第三章:识别中心对称图形3.1 教授如何识别中心对称图形。
3.2 提供练习题,让学生练习识别中心对称图形。
3.3 给予反馈和指导。
第四章:绘制中心对称图形4.1 教授如何绘制中心对称图形。
4.2 提供练习题,让学生练习绘制中心对称图形。
4.3 给予反馈和指导。
第五章:中心对称图形在实际问题中的应用5.1 介绍中心对称图形在实际问题中的应用。
5.2 提供实际问题,让学生运用中心对称图形的知识解决。
5.3 给予反馈和指导。
教学方法:1. 采用直观演示法,通过实物和图形进行展示和讲解。
2. 采用问题解决法,提供实际问题,让学生运用中心对称图形的知识解决。
3. 采用分组讨论法,让学生分组讨论和交流,促进学生的思维和合作能力。
评价方法:1. 课堂练习题,评估学生对中心对称图形的理解和掌握程度。
2. 实际问题解决,评估学生运用中心对称图形知识解决实际问题的能力。
3. 学生分组讨论和交流,评估学生的合作和思维能力。
教学资源:1. 中心对称图形的实物和图形展示。
2. 练习题和实际问题。
3. 分组讨论和交流的指导。
教学时间:1. 第一章:2课时2. 第二章:2课时3. 第三章:1课时4. 第四章:1课时5. 第五章:1课时通过本教案的学习和实践,学生将能够理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会如何判断一个图形是否为中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学重点:1. 中心对称图形的定义和性质。
2. 判断一个图形是否为中心对称图形的方法。
教学难点:1. 理解中心对称图形的性质并运用解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 中心对称图形的示例图形。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。
2. 向学生展示一些中心对称图形的示例。
二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。
2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。
3. 引导学生通过推理和交流,总结中心对称图形的性质。
三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。
2. 让学生谈谈自己在练习中遇到的问题和解决方法。
五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。
在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。
要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
人教版九年级数学上册《中心对称图形》教学设计
《中心对称图形》教学设计《中心对称图形》是初中几何第二册第四章的内容,在初中三年级上学期讲授。
下面我说明一下我是怎样组织第二课时《中心对称图形》这堂课的教学以及这样做的理由。
一.教材分析(一)教材的地位和作用中心对称包含在《四边形》一章中,是这章的难点之一。
困难的原因有两点:一是中心对称图形渗透了旋转变换思想,学生学习静态图形已成习惯,对运动变化不适应。
二是轴对称图形的干扰。
由于学习了轴对称图形,学生对“对称”概念形成定势,只承认轴对称为“对称”,不习惯中心对称。
虽然,义务教育初中数学教学大纲中只要求了解这一节的概念,并不要求运用本节定理证明问题。
但是,这一节的作用却不可小觑。
因为中心对称向学生渗透了旋转变换的思想方法。
学生掌握了这种思想,就会用动的观点研究问题,使学生的思维更加活跃,处理问题更加灵活(二)教学目标1.知识目标:(1)了解中心对称图形的概念(2)能找出线段、平行四边形的对称中心,能判断某一个图形是否是中心对称图形。
(3)明确哪些图形是轴对称图形,哪些图形是中心对称图形。
2.能力目标:通过猜想、实验、搜集分析、合作交流等一系列活动,培养学生的观察、推理、动手操作能力以及有条理的表达能力。
3.情感目标:通过本节的学习,让学生积累一定的审美体验,养成观察,探究事物的习惯。
(三)教学重点和难点教学重点:中心对称图形的概念教学难点:正确识别一个图形是否是中心对称图形,以及这些内容所渗透的变换思想。
(四)在教学中如何突破这个重点和难点为了突出重点,我利用课件连续三次播放动画,让学生通过观察“线段”和“平行四边形”分别绕某一点旋转180°后能与原图形重合的动画,进行深入的思考并最终引导学生自己归纳得出中心对称图形及对称中心的概念。
为了有效的突破难点,我指导学生采用了实践交流的学习方法。
由学生拿出课前准备好的几何图形,通过实践和互相的交流来研究它们是否为中心对称图形。
这里教师强调:射线,等边三角形,正五边形不是中心对称图形。
中心对称图形导教学教案
中心对称图形导教学教案第一章:中心对称图形的概念引入1.1 教学目标:让学生了解中心对称图形的定义。
培养学生识别中心对称图形的能力。
引导学生通过实际操作探索中心对称图形的性质。
1.2 教学重点:中心对称图形的定义。
中心对称图形的性质。
1.3 教学难点:理解并应用中心对称图形的性质。
1.4 教学准备:准备一些中心对称图形的实物或图片,如矩形、正方形、圆等。
准备一张大白纸和一些彩色笔,用于学生实际操作。
1.5 教学过程:1.5.1 导入:向学生介绍中心对称图形的概念,引导学生思考他们是否曾经见过类似的图形。
展示一些中心对称图形的实物或图片,让学生尝试识别它们。
1.5.2 新课导入:向学生解释中心对称图形的定义,即存在一个点作为中心,将图形上的任意一点关于这个中心进行对称,得到的图形与原图形完全重合。
举例说明一些常见的中心对称图形,如矩形、正方形、圆等。
1.5.3 实践操作:让学生分组,每组领取一张大白纸和一些彩色笔。
要求学生各自在白纸上画出一个自己设计的中心对称图形。
学生完成绘制后,让他们互相交换图形,并尝试找出中心对称点,将图形折叠或旋转,验证是否完全重合。
1.5.4 性质探索:引导学生小组合作,探索中心对称图形的性质。
学生可以通过实际操作,观察中心对称图形的特点,如对称轴的数量、对称点到图形的距离等。
教师进行点评和补充。
1.6 作业布置:让学生回家后,找一些生活中的中心对称图形,拍照或画出来,并在下一堂课上进行分享。
第二章:中心对称图形的基本性质2.1 教学目标:让学生掌握中心对称图形的基本性质。
培养学生通过实际操作验证中心对称图形性质的能力。
2.2 教学重点:中心对称图形的基本性质。
2.3 教学难点:理解和应用中心对称图形的基本性质。
2.4 教学准备:准备一些中心对称图形的实物或图片。
准备一张大白纸和一些彩色笔。
2.5 教学过程:2.5.1 复习导入:复习上节课学习的中心对称图形的定义。
让学生展示他们回家找到的中心对称图形,并进行分享。
中心对称图形导教学教案
中心对称图形导教学教案一、教学目标知识与技能:1. 学生能够理解中心对称图形的概念。
2. 学生能够识别生活中的中心对称图形。
3. 学生能够运用中心对称性质进行图形的变换。
过程与方法:1. 学生通过观察、操作、思考,培养观察能力和空间想象力。
2. 学生通过合作交流,提高解决问题的能力。
情感态度价值观:1. 学生培养对几何图形的兴趣,激发学习热情。
2. 学生在解决实际问题中,体会数学与生活的联系。
二、教学重点与难点重点:1. 中心对称图形的概念。
2. 中心对称图形的性质。
难点:1. 理解中心对称图形与轴对称图形的区别。
2. 运用中心对称性质进行图形变换。
三、教学准备教师准备:1. 中心对称图形的图片素材。
2. 教学PPT或黑板。
3. 剪刀、彩纸等教具。
学生准备:1. 课本及相关学习资料。
2. 笔记本、彩笔等学习用品。
四、教学过程1. 导入新课:教师展示一些生活中的图形,如剪纸、图案等,引导学生观察。
提问:这些图形有什么特点?学生可能回答出“对称”、“漂亮”等词语。
教师总结:这些图形都是中心对称图形,今天我们就来学习中心对称图形的知识。
2. 自主学习:学生阅读课本,了解中心对称图形的概念和性质。
教师巡视课堂,解答学生疑问。
3. 课堂讲解:教师结合PPT或黑板,讲解中心对称图形的概念和性质。
讲解过程中,引导学生参与互动,如举例、提问等。
4. 动手实践:教师发放剪刀、彩纸等教具,学生动手制作中心对称图形。
教师巡回指导,解答学生疑问。
5. 成果展示:学生将自己的作品展示给大家,分享制作过程中的心得体会。
教师点评,给予鼓励和指导。
6. 课堂小结:教师引导学生总结本节课的中心对称图形的概念、性质和运用。
五、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的中心对称图形,拍下照片或手绘图形,下节课分享。
3. 思考如何运用中心对称性质解决实际问题,下节课交流。
六、教学反思1. 学生对中心对称图形的理解和掌握程度如何?2. 教学过程中是否有不足之处,如何改进?3. 学生参与度和积极性如何,有哪些方法可以提高?4. 如何针对不同学生的学习情况,进行针对性的辅导?七、评价与反馈1. 教师通过对学生的课堂表现、作业完成情况进行评价,了解学生对中心对称图形的掌握程度。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质进行相关问题的解答。
通过实例讲解、练习题和小组讨论等形式,使学生能够熟练掌握中心对称图形的特征及其在实际问题中的应用。
一、教学目标1. 了解中心对称图形的定义及性质。
2. 能够识别和判断生活中的中心对称图形。
3. 学会运用中心对称图形的性质解决实际问题。
二、教学内容1. 中心对称图形的定义2. 中心对称图形的性质3. 中心对称图形在实际问题中的应用三、教学重点与难点1. 重点:中心对称图形的定义及其性质。
2. 难点:如何运用中心对称图形的性质解决实际问题。
四、教学方法1. 实例讲解:通过生活中的实例,让学生直观地理解中心对称图形的概念。
2. 小组讨论:引导学生分组讨论,发现中心对称图形的性质。
3. 练习题:巩固所学知识,提高解题能力。
4. 案例分析:分析实际问题,运用中心对称图形的性质进行解答。
五、教学过程1. 导入:通过展示一些生活中的对称图形,引导学生发现其中的规律,激发学习兴趣。
2. 讲解中心对称图形的定义:结合实例,讲解中心对称图形的概念。
3. 探索中心对称图形的性质:引导学生分组讨论,发现中心对称图形的性质。
4. 练习:解答相关练习题,巩固所学知识。
5. 案例分析:分析实际问题,运用中心对称图形的性质进行解答。
6. 总结:对本节课的内容进行总结,强调中心对称图形的性质及应用。
7. 作业布置:布置练习题,巩固所学知识。
教学反思:在教学过程中,要注意通过实例讲解和小组讨论,让学生充分理解中心对称图形的概念和性质。
通过案例分析,让学生学会运用中心对称图形的性质解决实际问题。
在讲解过程中,要关注学生的学习反馈,及时解答疑问,提高教学效果。
六、教学评估1. 课堂练习:实时监控学生的学习进度和理解程度,通过练习题检验学生对中心对称图形的概念和性质的掌握。
2. 小组讨论:评估学生在小组讨论中的参与程度和合作能力,以及他们能否运用所学知识分析问题。
中心对称图形导教学教案
中心对称图形导教学教案一、教学目标1. 让学生理解中心对称图形的概念。
2. 培养学生识别和绘制中心对称图形的能力。
3. 引导学生发现中心对称图形在实际生活中的应用。
二、教学重点与难点1. 教学重点:中心对称图形的概念及性质。
2. 教学难点:中心对称图形的绘制和应用。
三、教学准备1. 课件或黑板。
2. 练习纸。
3. 剪刀、胶水等手工工具。
四、教学过程1. 导入:通过展示一些生活中的对称图形,如剪纸、建筑等,引导学生关注对称美。
2. 讲解:介绍中心对称图形的概念,解释中心对称图形的性质。
3. 示范:在黑板上画出一个中心对称图形,并解释其对称性。
4. 练习:让学生分组合作,绘制一些中心对称图形,并互相评价。
5. 拓展:引导学生思考中心对称图形在实际生活中的应用,如设计、建筑等。
五、课后作业1. 绘制一个中心对称图形,并写一篇短文介绍其对称性和应用。
2. 收集生活中的中心对称图形,拍照或画图,下一堂课分享。
1. 采用问题驱动的教学方法,引导学生主动探究中心对称图形的性质。
2. 利用多媒体课件,展示中心对称图形的动态变化,增强直观感受。
3. 设计具有层次性的练习题,逐步提高学生的绘制和应用能力。
七、评价方法1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习作品:评价学生绘制的中心对称图形的准确性、创意性以及对称性。
3. 课后作业:通过学生的课后作业,检查学生对中心对称图形概念的理解和应用能力。
八、教学进度安排1. 第一课时:介绍中心对称图形的概念及性质。
2. 第二课时:练习绘制中心对称图形,发现生活中的中心对称图形。
3. 第三课时:拓展中心对称图形在实际生活中的应用。
九、教学反思1. 总结本节课学生的学习情况,分析教学过程中的优点和不足。
2. 根据学生的反馈,调整教学策略,提高教学效果。
3. 关注学生在课后作业中的表现,针对性地进行辅导。
十、教学延伸1. 调查中心对称图形在艺术、设计等领域的应用,举办一次主题展览。
人教版九年级数学上册23.2.2.2《中心对称图形》教学设计
人教版九年级数学上册23.2.2.2《中心对称图形》教学设计一. 教材分析《中心对称图形》是人教版九年级数学上册第23章《几何变换》中的一个知识点。
本节课主要让学生了解中心对称图形的概念,理解中心对称图形与轴对称图形的区别,学会用旋转的方法来判断两个图形是否为中心对称图形,并能运用中心对称图形的性质解决一些简单问题。
二. 学情分析九年级的学生已经学习了轴对称图形和几何变换的相关知识,他们对几何图形的变换有一定的认识。
但中心对称图形与轴对称图形在概念上容易混淆,需要通过实例来加深理解。
此外,学生对旋转操作的熟练程度不同,需要在教学中关注学生的个体差异。
三. 教学目标1.知识与技能:让学生掌握中心对称图形的概念,了解中心对称图形与轴对称图形的区别,学会用旋转的方法判断两个图形是否为中心对称图形。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感、态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:中心对称图形的概念及性质。
2.难点:中心对称图形与轴对称图形的区别,以及如何运用中心对称图形的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生主动探究、积极交流,提高学生的数学素养。
六. 教学准备1.教学课件:制作中心对称图形的相关课件,包括图片、动画等。
2.教学素材:准备一些中心对称图形的实例,如圆、正方形等。
3.练习题:设计一些有关中心对称图形的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的中心对称图形,如圆、手表等,引导学生观察并提问:“这些图形有什么特点?你们能找出它们的共同点吗?”让学生初步感受中心对称图形的美观和实际应用。
2.呈现(10分钟)介绍中心对称图形的定义,并用课件展示中心对称图形的性质。
通过实例讲解,让学生了解中心对称图形与轴对称图形的区别。
2024年冀教版八年级上册教学设计第十六章16.4 中心对称图形
课时目标1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.学习重点理解中心对称的基本性质,并会利用性质作图.学习难点辨析中心对称图形和两个图形成中心对称.课时活动设计情境引入观察这些图片,回忆轴对称图形的特点,它们是轴对称图形吗?如果不是,它们的共同特征是什么?设计意图:回顾旧知识,联系生活中的情景,合理设置悬念,激发学生的学习兴趣.探究新知探究1中心对称图形学生观察下列图片,小组合作,交流探讨,教师巡视,适当给予指导.1.观察这些图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?2.如图,已知线段AB和它的中点O,当线段AB绕点O旋转180°后,这条线段能不能与它自身重合?3.你还能找到具有问题1,2中图形的特征的图形吗?观察发现,问题1,2中的图形分别绕各自的“中心点”(或中点)旋转180°后,都能与它们自身重合.定义:像这样,如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心,其中对称的点叫做对应点.线段是中心对称图形,线段的中点是它的对称中心,两个端点为一对对应点.探究2成中心对称中心对称图形是指一个图形的中心对称性,那么两个图形之间是否也具备这样的关系呢?观察△ABC和△DEF,你发现了什么?学生观察思考,小组合作,交流探讨,教师巡视,适当给予指导.△ABC和△DEF的顶点A,C,F,D在同一条直线上,O为线段CF的中点,AC=DF,BC=EF,△ACB=△DFE.将△ABC绕点O旋转180°后,它能与△DEF重合.定义:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.探究3中心对称图形和成中心对称的性质我们已经学过图形的旋转,我们知道“一个图形和它旋转后所得到的图形,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等”,那么中心对称图形(如图)又有怎样的性质呢?师生讨论交流并进行总结归纳.总结:在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.设计意图:通过问题情境,以现实生活中的实例为素材,让学生体会和认识生活中的中心对称图形.学生概括定义,培养归纳概括能力,学生通过观察、分析、操作、猜想、验证等活动,小组交流合作,教师适时指导,得到两个图形成中心对称的概念.通过猜想、测量、验证等探究活动,形成对中心对称图形和成中心对称的深刻认识,在活动中学生充分研讨,得到中心对称图形和成中心对称的性质.典例精讲例1如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.例2如图,四边形ABCD与四边形A'B'C'D'是成中心对称的两个图形,请你试着确定其对称中心的位置.解:如图,连接AA',DD',交点O即为所求.设计意图:通过例题,巩固本节课所学内容,帮助学生熟练掌握和运用新知识.巩固训练1.下列英文大写正体字母中,有中心对称图形吗?若有,哪些字母是中心对称图形?A B C D E F G H I J K L MN O P Q R S T U V W X Y Z解:有.H,I,N,O,S,X,Z是中心对称图形.2.如图1,把4张扑克牌放在桌子上,不让别人看见,将其中某些牌旋转(不能看到旋转过程)180°,旋转后看到的扑克牌如图2.你能很快确定哪张牌一定被旋转过吗?哪张牌可能被旋转过?解:黑桃9、黑桃8和梅花3这3张牌一定被旋转过,方块J可能被旋转过.3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.证明:△△ABO 与△CDO 关于点O 成中心对称,△AB =CD ,△A =△C.△AF =CE ,△AF +FE =CE +FE ,即AE =CF .在△ABE 和△CDF 中,{AB =CE,∠A =∠C,AE =CF,△△ABE △△CDF (SAS).△FD =BE.设计意图:进一步巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.什么样的图形是中心对称图形?什么样的图形是成中心对称图形?2.成中心对称的性质有哪些?设计意图:以提问的形式总结回顾本节课学习的重点内容,帮助学生巩固课堂知识.课堂8分钟.1.教材第127页习题A 组第2,3,4题,习题B 组第1,2题.2.七彩作业.16.4中心对称图形在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.教学反思。
《中心对称图形》精品教学方案
第二十三章旋转23.2.2中心对称图形一、教学目标1.了解中心对称图形的概念,能够判断一个图形是否为中心对称图形.2.能够判断出中心对称图形的对称中心,能够区分中心对称图形和中心对称.3.通过观察、交流等活动,培养学生的概括能力和实践能力.4.经历观察生活中的中心对称图形,让学生感受现实生活中数学的美,激发学生学习数学的兴趣,培养学生热爱生活的情操.二、教学重难点重点:中心对称图形的概念和性质.难点:中心对称与中心对称图形的区别与联系.三、教学用具多媒体等.四、教学过程设计【回顾旧知】教师活动:引领学生们一起识别中心对称和轴对称(使学生关注是两个图形);通过复习轴对称图形(使学生关注到是一个图形),创设疑问,中心对称图形是什么呢?.回答:左图中△ABC与△A′B′C′关于点O对称(中心对称).右图中△ABC与△A′B′C′关于直线l对称(成轴对称).【思考】教师活动:教师依次提出两个问题,动画演示操作,引导学生观察、思考.并引导学生说出它们的共同点.思考(1) :如图,将线段AB绕它的中点旋转180°,你有什么发现?回答:将线段AB绕它的中点旋转180°,与它本身重合.思考(2) : 如图,将□ABCD绕它的两条对角线的交点O旋转180°,你有什么发现?回答:将□ABCD绕它的两条对角线的交点O旋转180°,与它本身重合.思考(3) : 能说出这两个图形的共同点吗?回答:绕着某一个点旋转180°,与原图形重合.【归纳】定义:像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.互相重合的点叫做对称点.教师活动:分析概念要素,帮助学生理解.线段AB是中心对称图形.对称中心是点O.A、B为对称点.平行四边形ABCD是中心对称图形.对称中心是点O.A、C 为对称点;B、D为对称点.【想一想】教师活动:引领同学分小组讨论作答,下面8个图形,哪些是中心对称图形,并引导学生观察、思考、归纳、总结正多边形为中心对称图形与边数的关系.问题:下面8个图形,哪些是中心对称图形?回答:追问1:根据表格第二行的图形的情况,观察总结正多边形的边数是多少时,正多边形是中心对称图形?回答:边数为偶数的正多边形是中心对称图形.追问2:能找到线段、圆、平行四边形、长方形、正方形的对称中心吗?教师活动:带领学生们找到对称中心,并总结这些图形对称中心的位置.同时发现中心对称图形的性质并填空.回答:线段的对称中心为线段的中点;圆的对称中心为圆心;平行四边形、长方形、正方形的对称中心为对角线的交点.中心对称图形的性质:对称点连线都经过对称中心且被对中心平分.【交流】说说生活中常见到的中心对称图形.教师活动:智慧课堂操作,让学生发表看法.【做一做】1. 判断下列图形是不是中心对称图形?答案:不是、是、是.2. 下列图形是中心对称图形吗?如果是,请指出对称中心.教师活动:找到对称中心,且教师播放动画,使学生感受事实,且让学生感受中心对称图形顺时针、逆时针旋转180°都重合.回答:都是中心对称图形.【归纳】教师活动:教师带领学生以填空的方式归纳中心对称与中心对称图形的区别与联系;中心对称图形与轴对称图形的区别与联系.【典型例题】例:将两个大小相等的圆部分重合,其中重叠的部分(如下图的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1) 以上5个图形中是轴对称图形的有_____________,是中心对称图形的有_______;(分别用图形的代号A、B、C、D、E填空).(2) 若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律:______________________________________________回答:【随堂练习】练习1判断下列说法是否正确.(1)轴对称图形也是中心对称图形.()(2)旋转对称图形也是中心对称图形.()(3)平行四边形、长方形和正方形都是中心对称图形,对角线的交点是它们的对称中心.()(4)角是轴对称图形也是中心对称图形.()(5)在成中心对称的两个图形中,对应线段平行(或在同一直线上)且相等. ()答案:××√×√练习2选择题:下列多边形中,是中心对称图形而不是轴对称图形的是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:A练习3下面的扑克牌中,哪些牌面是中心对称图形?答案:练习4在26个英文大写正体字母中,哪些字母是中心对称图形?A B C D E F G H I J K L MN O P Q R S T U V W X Y Z答案: H I N O S X Z以思维导图的形式呈现本节课所讲解的内容.巩固例题练习。
《中心对称图形》教案
《中心对称图形》教案《中心对称图形》教案《中心对称图形》教案1一、学习目标1、理解圆的描述定义,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重难点会确定点和圆的位置关系.二、知识准备:1、说出几个与圆有关的成语和生活中与圆有关的物体。
思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?三、知识梳理:本节你有何收获?四、达标检测1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在2、⊙O的半径6cm,当OP=6时,点A在;当OP 时点P在圆内;当OP 时,点P不在圆外。
3、到点P的距离等于6厘米的点的集合是________________________________________4、已知AB为⊙O的直径P为⊙O 上任意一点,则点关于AB的对称点P′与⊙O的位置为( ) (A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不能确定5、如图已知矩形ABCD的边AB=3厘米,AD=4厘米(直接写出答案)(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?6如图,在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。
以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。
7已知:如图,BD、CE是△ABC的高,为BC的中点.试说明点B、C、D、E在以点为圆心的同一个圆上.《中心对称图形》教案2(一)教学内容分析1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)2.本课教学内容的地位、作用,知识的前后联系《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。
《23.2.1 中心对称》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
《中心对称》教学设计方案(第一课时)一、教学目标1. 理解中心对称的概念,掌握其定义和性质。
2. 能够识别中心对称图形,并确定其对称中心。
3. 通过观察、分析和讨论,培养学生的观察能力和抽象思维能力。
二、教学重难点1. 教学重点:理解中心对称的概念,掌握其定义和性质。
2. 教学难点:能够识别中心对称图形,并确定其对称中心。
三、教学准备1. 准备教学PPT,包含图片、动画和相关概念的解释。
2. 准备中心对称的实例,如钟表、风扇、旋转门等。
3. 准备小组讨论的材料,以便学生交流和讨论。
4. 准备练习题,用于学生巩固所学知识。
四、教学过程:(一)课前准备1. 学生复习相关知识,为新课学习做好准备。
2. 教师准备教学用具,如黑板、白板、中心对称图形等。
(二)导入新课1. 提问学生:大家还记得我们之前学过的图形对称吗?你能举出一些例子吗?2. 引导学生回顾轴对称图形,并让学生讨论和总结轴对称和中心对称的区别。
3. 教师解释中心对称的概念,并引导学生了解中心对称在实际生活中的应用。
(三)探究学习1. 教师出示一些中心对称图形,如正方形、矩形、平行四边形等,让学生观察它们的特征,并讨论它们如何通过旋转和反射实现中心对称。
2. 教师引导学生探究中心对称图形的性质,如对应点连线交于对称中心,图形沿对称中心翻折180度后能够完全重合等。
3. 学生分组讨论和总结中心对称的性质,教师给予指导和帮助。
(四)课堂活动1. 完成课后习题和相关练习题,巩固学生对中心对称知识的掌握。
2. 进行小组讨论和展示,让学生分享自己的学习成果和经验,教师给予评价和反馈。
3. 引导学生运用中心对称知识解决实际问题,如设计图案、测量实物等。
(五)小结作业1. 教师总结本节课的重点和难点,强调中心对称的性质和应用。
2. 布置与中心对称相关的作业,让学生回家后继续思考和实践。
希望中心对称的性质:1. 中心对称的两个图形,交换对称点,可以重合。
2. 中心对称不改变图形的形状和大小。
图形的中心对称教案
《中心对称图形》一、教学目标:1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:理解中心对称图形的概念及其基本性质。
三、教学过程:(一)创设问题情境1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
师重复以上活动2次后提问:(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。
在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。
23.2.2中心对称图形教案
23.2.2中心对称图形教案篇一:23.2.2中心对称图形教案九年级数学23.2.2中心对称图形教案设计篇二:23.2.2中心对称图形教案23.2.2中心对称图形篇三:23.2中心对称图形公开课教案23.2中心对称图形教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段ao关于o点的对称图形,如图所示.o(2)作出三角形aoB关于o点的对称图形,如图所示.aoB(2)延长ao使oc=ao,延长Bo使od=Bo,连结cd则△cod为所求的,如图所示.adc.cn二、探索新知从另一个角度看,上面的(1)题就是将线段aB绕它的中点旋转180°,因为oa=?oB,所以,就是线段aB绕它的中点旋转180°后与它重合.上面的(2)题,连结ad、Bc,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ao=oc,Bo=od,∠aoB=∠cod∴△aoB≌△cod∴aB=cdadoB也就是,aBcd绕它的两条对角线交点o旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.aodB分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,o是四边形aBcd的对称中心,根据中心对称性质,线段ac、?Bd必过点o,且ao=co,Bo=do,即四边形aBcd的对角线互相平分,因此,?四边形aBcd是平行四边形.三、巩固练习教材P72练习.四、应用拓展例4.如图,矩形aBcd中,aB=3,Bc=4,若将矩形折叠,使c点和a点重合,?求折痕EF的长.分析:将矩形折叠,使c点和a点重合,折痕为EF,就是a、c两点关于o点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接aF,∵点c与点a重合,折痕为EF,即EF垂直平分ac.∴aF=cF,ao=co,∠Foc=90°,又四边形aBcd为矩形,∠B=90°,aB=cd=3,ad=?Bc=4设cF=x,则aF=x,BF=4-x,由勾股定理,得ac=Bc+aB=5222215∴ac=5,oc=ac=22∵aB+BF=aF∴3+(4-x)=2=x∴x=22222aoBFEd258222∵∠Foc=90°∴oF=Fc-oc=(.cn2525215215)-()=()oF=28881515同理oE=,即EF=oE+oF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74综合运用5P75拓广探索8、9篇四:23.2.2中心对称图形教案23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习, 丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
通过一系列的讲解、示例和练习,学生将能够掌握中心对称图形的性质和判定方法。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会判定一个图形是否为中心对称图形。
3. 能够运用中心对称图形解决实际问题。
教学内容:一、中心对称图形的定义1. 引入中心对称图形的概念。
2. 通过示例解释中心对称图形的定义。
二、中心对称图形的性质1. 介绍中心对称图形的基本性质。
2. 通过示例展示中心对称图形的性质。
三、中心对称图形的判定1. 引导学生思考如何判定一个图形是否为中心对称图形。
2. 给出判定方法并示例讲解。
四、中心对称图形在实际问题中的应用1. 提供一些实际问题,让学生运用中心对称图形解决。
2. 引导学生思考中心对称图形在实际生活中的应用。
五、巩固练习1. 提供一些练习题,让学生巩固中心对称图形的知识和判定方法。
2. 解答学生的问题,给予指导和帮助。
教学资源:1. 中心对称图形的示例图形。
2. 判定中心对称图形的练习题。
教学步骤:1. 引入中心对称图形的概念,让学生初步了解。
2. 通过示例解释中心对称图形的定义,让学生直观感受。
3. 介绍中心对称图形的基本性质,让学生理解并记住。
4. 给出判定中心对称图形的方法,让学生学会判断。
5. 提供实际问题,让学生运用中心对称图形解决,加深理解。
6. 通过巩固练习,让学生巩固中心对称图形的知识和判定方法。
教学评价:通过课堂讲解、示例和练习,观察学生对中心对称图形的理解和掌握程度。
在练习题的解答过程中,观察学生是否能正确运用中心对称图形的性质和判定方法。
在实际问题中,观察学生是否能运用中心对称图形解决问题。
根据学生的表现,给予相应的评价和指导。
本教案可根据学生的实际情况进行调整和修改,以满足具体教学需求。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.8中心对称图形教案设计
●○教学目标
→知识与技能
(1)了解中心对称图形及其基本性质;
(2)掌握平行四边形是中心对称图形。
→教学思考
通过经历观察、发现、探索中心对称图形的有关概念和基本性质的过程发展学生的抽象概括能力、识图能力及解决问题能力。
→解决问题
(1)应用中心对称图形的概念猜测并验证某些图形是否为中心对称图形;
(2)利用中心对称图形的基本性质验证图形的性质。
→情感态度与价值观
通过观察发现、动手操作、大胆猜想、自主探索、合作交流,体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
●○重点和难点
→重点
中心对称图形的有关概念和基本性质。
→难点
(1)中心对称图形和轴对称图形的区别;
(2)利用中心对称图形的有关概念和基本性质解决问题。
●○课前准备
教具:多媒体课件、几张扑克牌。
学具:用硬纸板制作的风车和平行四边形、细线一根及大头针等。
教学过程设计:
一、创设情景,欣赏美
请同学欣赏一组含有轴对称与中心对称的汽车标志图片,让同学欣赏设计
精美。
并思考为什么这些图片会给人以美的感受。
二、提出问题,美的比较。
请同学欣赏其中的轴对称图片
问题:这一组图片具有什么共同的特点?可称之为什么图形?
估计同学会很快回答:这些图形都具有:将图形的一部分沿着某一直线翻折能与另一部分重合的特点,是轴对称图形。
具体分析这一组图片中的一幅----圆,在圆中加一条线段后提出问题:这幅图片是轴对称图形吗?再加一条S线后,仍然问这个问题。
估计学生通过教师的引导和自己的观察会得出它不是轴对称图形的结论。
接着提出问题:这幅图片是否能够通过某种图形运动与自身重合呢?
设计意图:一连提出几个问题,使学生产生认知冲突,激发学生解决问题的欲望。
在学生学过轴对称图形的基础上,让学生用运动的观点来思考问题,这样易于引起学生的联想,便于新知识的理解和掌握。
三、探究讨论,发现新的美。
(建立中心对称图形的概念)
1.动手操作。
请每位学生拿出事先准备好的一张半透明的薄纸和一张白纸,两张纸上已画有形状、大小相同的图形(如图1),把两张纸上的图形重合,用一枚图钉在点O 处穿过,然后将薄纸绕点O 旋转180度。
(从上面的操作可以看到,旋转后的两张纸上的图形 仍然是重合的。
)
2、引出概念。
师生共同分析从图形旋转到重合的过程,找出其中的本质特征进行描述,再进行归纳和概括,得到中心对称图形的概念。
把一个图形绕着某一点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
设计意图:根据学生的年龄特点,及实验几何的要求,期望让每位学生通过自己动手操作直观得出中心对称图形的概念,并加深对概念的理解。
3、提出问题。
我们平时见过的几何图形中,有哪些是中心对称图形?并指出它们的对称中心?
(如线段、矩形、平行四边形、圆、…,并指出线段的对称中心是线段的中点;矩形和平行四边形的对称中心是对角线的交点;圆的对称中心是圆心。
)
O
图
3
在回答这个问题时,可能会有学生回答等边三角形是中心对称图形,并指出中线的交点是对称中心。
若没有学生提到,就由教师提出这个问题,引起学生思考。
通过几何画板演示,我们发现等边三角形绕中线的交点O旋转180度后与原图不重合。
接着再追问:那么等边三角形通过旋转能与自身重合吗?估计学生通过思考后会回答,旋转120度,240度,360度等能与自身重合。
设计意图:通过以上操作帮助学生加深对中心对称图形概念两个要素(绕某一点旋转180度、旋转后与原图重合)的理解。
4、再次欣赏图片。
展示一组来自生活实际的中心对称图片,让学生观察、欣赏,并关注他们对中心对称图形的感受。
设计意图:通过一组图片,欣赏中心对称图形的美,体验中心对称图形在实际生活中的应用,以及准确把握中心对称图形的概念。
5、对比轴对称图形与中心对称图形:(列出表格,加深印象)
轴对称图形
中心对称图形
有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O 对折后与原图形重合旋转后与原图形重合
四、巩固知识,形成中心对称的美:
下面哪个图形是中心对称图形?
1、探讨研究中心对称图形的的性质:
在轴对称中,如等腰梯形ABCD中,OP为对称轴,
则点A与点D是一对对应点,那么A、D两点
连线与对称轴的关系为:被对称轴垂直且平分
提出问题:
右图是一幅中心对称图形,请你找出点A绕点O旋转180°后的对应点B,点C的对应点D呢?你是怎么找的?
现在你能很快地找到点E的对应点F吗?
A
B C
D
O
P
A
O
B
C
D
E
F
从上面的操作过程,你能发现中心对称图形上的一对对应点
与对称中心的关系吗?
即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
2、做一做(提出问题)
(1)猜想:平行四边形是中心对称图形吗?
如果是,对称中心是什么?(引导学生思考、猜想结论)
演示动画。
巩固学生对平行四边形中心对称性的理解。
得出结论:平行四边形是中心对称图形,它的对称中心是对角线的交点。
(1)中心对称图形出发,研究平行四边形的性质。
得到平行四边形对边相等、对角相等、对角线互相平分等。
巩固知识:正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗?
3、想一想(再次深入研究讨论。
)
(1)三角形是中心对称图形吗?
(2)正五边形是中心对称图形吗?
(3)正六边形是中心对称图形吗?
(4)除了平行四边形,你还能找到哪些多边形是中心对称图形?
归纳:中心对称的图形很多,如边数为偶数的正多边形都是中心对称图形。
4、数学源于生活,服务于生活,那么在生活中有那些中心对称图形的例子?
(1)学生举例说明
(2)在一次游戏当中,小明将下面左图的四张扑克牌中的一张旋转180O后,得到右图,小亮看完,很快知道小明转动了哪一张扑克,你知道为什么吗?
5、随堂练习:
(1)在数字0至9中,哪些是中心对称图形?
(2)世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性。
请问以下三个图形中是轴对称图形的有,是中心对称图形的有。
一石激起千层浪方向盘铜钱
(3)请你用若干根长度相等的火柴棒摆成一个中心对称图形,并说明你所摆出的图案的含义。
五、总结反思美:
1、回顾本节课的活动过程:观察——分析——探索——概括——应用。
2、本节课学到了哪些知识?
(1)中心对称图形的定义;
(2)中心对称图形的性质;
(3)我们所学过的多边形中有哪些是中心对称图形;
中心对称图形的应用。
设计意图:体现教学的民主性,同时培养学生归纳、概括问题的能力,有助于学生理清知识脉络,引导学生反思学习过程,帮助学生认识自我,增强信心,提高兴趣。
六、开拓创新,创造美。
1、已知,图A、图B分别是正方形网格上的两个中心对称图形,网格中最小的
正方形面积为一个平方单位,则图A的面积为
,图B的面积
为;你能在图C的网格上画出一个面积为8个平方单位的中心对称图形吗?
图A 图B 图C
2、拓展题:运用所学的知识帮助我们的班级设计一个班徽。
(一周后交)
设计意图:为了适应各层次学生的需要,进行分层作业,让学生带着数学问题走出课堂,从而把学生的思维引向一个更加广阔的空间。
同时设计“长作业”,让学生在课外运用所学的知识进行实践、探究。
七、作业:1、P:118习题4.13第1、2大题
2、作业本(2)26页习题。