运筹学 工作指派问题

合集下载

运筹学指派问题

运筹学指派问题

n
n
总成本最小
每项任务由一人完成 每人只承担一项任务
解矩阵的特征
• 全部元素仅取0或1 • 每行有且仅有一个1 • 每列有且仅有一个1
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
例如,n=5时, X xij
数学模型 : m in z cij xij j 1 i 1
n xij 1, j 1,2 ,...,n i 1 n s .t . xij 1, i 1,2 ,...,n j 1 x 0 ,1 i , j 1,2 ,...,n ij
在C中找出最多独立0的步骤
• 设Wi表示第i行0的数目,Lj表示第i列0的数目.
• 1.统计Wi和Lj(i,j=1,2,…n).
• 2.按W1,W2,…,Wn,L1,L2,…,Ln顺序找出 第一个最小正数,选中该行(列)首个0. • 3.删除该0所在的行与列,对应的Wi=0,Lj=0. • 4.重复步骤1~3,直到全部Wi=0为止.
0
0
这样就找到 4个独立0
如果按自上而下从左到右顺序找
0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• 这样,4条线就覆盖了全部0
0 0 0 0 0 0
0
0 0
0 0 0 0

运筹学课件ch5指派问题[全文]

运筹学课件ch5指派问题[全文]

运筹学课件ch5指派问题[全文] 指派问题assignment problem 运筹学课件一种特殊的线性规划问题,我们也经常遇到指派人员做某项工作的情况。

指派问题的许多应用都用来帮助管理人员解决如何为一项将要开展进行的工作指派人员的问题。

其他的一些应用如为一项任务指派机器、设备或者是工厂。

指派问题运筹学课件指派问题的形式表述:给定了一系列所要完成的任务(tasks)以及一系列完成任务的被指派者(assignees),所需要解决的问题就是要确定出哪一个人被指派进行哪一项任务。

指派问题模型运筹学课件指派问题的假设:被指派者的数量和任务的数量是相同的每一个被指派者只完成一项任务每一项任务只能由一个被指派者来完成每个被指派者和每项任务的组合有一个相关成本目标是要确定怎样进行指派才能使得总成本最小指派问题模型运筹学课件指派问题assignment problem 【例51></a>.14】人事部门欲安排四人到四个不同的岗位工作,每个岗位一个人(经考核四人在不同岗位的成绩(百分制)如表5-34所示,如何安排他们的工作使总成绩最好。

88809086丁90798382丙95788795乙90739285甲DCBA工作人员表5-34【解】设1 数学模型运筹学课件数学模型为:甲乙丙丁ABCD图5. 3指派问题assignment problem运筹学课件假设m个人恰好做m项工作,第i个人做第j项工作的效率为cij?0,效率矩阵为[cij](如表5-34),如何分配工作使效率最佳(min或max)的数学模型为指派问题assignment problem运筹学课件2 解指派问题的匈牙利算法匈牙利法的条件是:问题求最小值、人数与工作数相等及效率非负【定理5.1】如果从分配问题效率矩阵[cij]的每一行元素中分别减去(或加上)一个常数ui(被称为该行的位势),从每一列分别减去(或加上)一个常数vj(称为该列的位势),得到一个新的效率矩阵[bij],其中bij=cij,ui,vj,则[bij]的最优解等价于[cij]的最优解,这里cij、bij均非负(指派问题assignment problem【证】运筹学课件【定理5.2】若矩阵A的元素可分成“0”与非“0”两部分,则覆盖“0”元素的最少直线数等于位于不同行不同列的“0”元素(称为独立元素)的最大个数( 如果最少直线数等于m,则存在m个独立的“0”元素,令这些零元素对应的xij等于1,其余变量等于0,这时目标函数值等于零,得到最优解(两个目标函数相差一个常数 u+v,约束条件不变,因此最优解不变。

运筹学课件1.8工作指派问题

运筹学课件1.8工作指派问题

c1n c2 n cnn
关于模型的讨论
指派问题是运输问题的特殊情况 当n=m时,平衡指派问题 当 n m 时,不平衡指派问题,此时, 可设置虚工作或虚工作人员,将其化为 平衡指派问题。 对指派矩阵C,任意行(列)减去它的最 小元素后,所构成的指派问题最优解与 原指派问题相同。

45 0 40 65 45 55 55 0 0 5 0 45 0 55 60 55 45 45 0 45

0 20 40 60 95
45 0 40 65 45 55 55 0 0 5 0 45 0 55 60 55 45 45 0 45
回到第一步:圈零得新最优解
4 0 2 0 2 2 0 0 0 1 2 1 0 0 0 1 0 1 ( xij ) 0 0 0 0 0 1 1 0 0 0 0 0 1 0
最小的总工作时间:z=7+5+5+3=20。该问 题有多个最优解,请求出其它的最优解。
第八节 工作指派问题
工作指派问题及其数学模型 求解工作指派问题的匈牙利法 工作指派问题的应用举例
工作指派问题的数学模型
•例1-12
•指派问题数学模型 •指派矩阵 •对数学模型的讨论
匈牙利法
•匈牙利法的基本原理
•匈牙利法的计算步骤
•减数得零—求最优匹配
•圈零划线—查是否最大匹配
•找数调整—求新的最优匹配
ห้องสมุดไป่ตู้
指派问题一般模型
min z cij xij
j 1 i 1 n n
n xij 1, j 1,2, , n i n1 s.t. xij 1, i 1,2, , n j 1 xij 0,1

运筹学运输问题和指派问题

运筹学运输问题和指派问题

A1 A2 A3 销量
B1
B2
B3
B4
1
32
11 4 3
3 10
3 1 3 9 1 2 -1 8
4
7
6 4 12 10 3 5
3
6
5
6
产量
7 4 9 20
检验数<0表示:例如(A2,B4)如果增加A2到B4的1单 位产品,将会降低1单位的运费,所以,该解不是最优解。
解的改进
(1)以 xij 为换入变量,找出它在运输表中的闭回路;
工厂1 工厂2 工厂3 需求量
产品产1品1 41 41 40 40 37 37 20 20
单位成本
产品产2品2 27 27
产品产3品3 28 28
29 29
30 30
27 27
30 30
30 30
产品产4品4 24 24 23 23 21 21 40 40
生产能力
75 75 75 75 45 45
问题分析
第四章 运输问题和指派问题
运输问题
提到运输问题,想到什么? 实际生活中有哪些方面涉及运输问题
快递业的运输问题 服装专卖店的转运问题等
运输问题的提出
某公司经销甲产品,它下设三个工厂和四个销售点。各工厂每日的产 量和各销售点每日的销量,以及从各工厂到销售点的单位产品运价如下表。 问该公司应如何调运产品,在满足各销售点的需求量的前提下,使总运费 为最小。
总运费 =4*3+3*10+ 3*1+1*2+6*4+3*5=86(元)
最优解的检验——闭回路法
要判定运输问题的某个解是否为最优解,可仿照一般单纯 形法,检验这个解的各非基变量(对应于运输表格中的空 格)的检验数,若有某空格 (Ai, B的j ) 检验数为负,则说明将 变为xi j 基变量将使运费减少,故当前这个解不是最优解;若 所有空格的检验数全非负,则不管怎样变换解均不能使运 输费用减少,即为最优解。

三类指派问题

三类指派问题

三类指派问题1. 简介三类指派问题是运筹学中的一类经典问题,它的目标是找到一种最优分配方案,将若干个任务分配给若干个执行者,使得总体成本或效益达到最小或最大。

这类问题通常可以用线性规划模型来描述和求解。

三类指派问题包括: - 任务分配问题:将若干个任务分配给若干个执行者,使得总体成本最小或效益最大。

- 作业调度问题:将若干个作业安排在若干台机器上进行处理,使得总体完成时间最短或机器利用率最高。

- 设备调度问题:将若干个任务安排在若干台设备上进行处理,使得总体完成时间最短或设备利用率最高。

2. 任务分配问题2.1 模型描述假设有n个任务和n个执行者,每个任务只能由一个执行者完成,并且每个执行者只能处理一个任务。

每个任务与每个执行者之间都有一个成本或效益值。

我们的目标是找到一种分配方案,使得总体成本最小或效益最大。

可以使用二维数组C表示各任务与各执行者之间的成本或效益值,其中C[i][j]表示第i个任务分配给第j个执行者的成本或效益值。

定义一个二进制变量X[i][j],如果第i个任务分配给第j个执行者,则X[i][j]=1,否则X[i][j]=0。

任务分配问题可以用下面的线性规划模型来描述:minimize ∑(i=1 to n)∑(j=1 to n) C[i][j] * X[i][j]subject to∑(i=1 to n) X[i][j] = 1, for j = 1,2,...,n∑(j=1 to n) X[i][j] = 1, for i = 1,2,...,nX[i][j] ∈ {0, 1}, for i,j = 1,2,...,n2.2 求解方法常用的求解任务分配问题的方法有匈牙利算法和线性规划方法。

匈牙利算法是一种经典的图论算法,它通过构建增广路径来找到最优分配方案。

该算法的时间复杂度为O(n^3),适用于小规模问题。

线性规划方法则通过将任务分配问题转化为线性规划模型,并利用线性规划求解器进行求解。

运筹学课堂PPT5.4指派问题

运筹学课堂PPT5.4指派问题

A
BCD
甲 85 92 73 90
效率表 乙 95 87 78 95
丙 82 83 79 90
丁 86 90 80 88
例5-15 人事部门欲安排四人到四个不同的岗位工作, 每个岗位一个人。经考核四人在不同岗位的成绩(百 分制)如下表所示,问如何安排他们的工作使总成绩 最好。
➢这个问题的求解可以采用枚举法。将所有分配方案 求出,总分最大的方案就是最优解。本例的方案有 4×3×2×1 = 24 种。
(0) 6 17 17 (0) 6 17 17
x22 x32
x23 x33
x24 x34
1 1
x41 x42 x43 x44 1
A 甲 x11 乙 x21
丙 x31 丁 x41
1
BCD 1 x12 x13 x14 1 x22 x23 x24 1 x32 x33 x34 1 x42 x43 x44
111
x11 x21 x31 x41 1
27 0 45 45
27
0
40
40
27
0
40
40
由于最少直线数 3 m 4 ,因此修改矩阵:
(1)从矩阵未被直线覆盖的数字中找出一个最小数5, 并且减去5; (2)直线相交处的元素加上5,被直线覆盖而没有相交 的元素不变。
重复步骤3,直到最少直线数=4。
3.用最少的直线覆盖所有0,最少直线数= 4。
第五章 运输与指派问题
5.1 运输问题的数学模型及其特征 5.2 运输单纯形法 5.3 运输模型的应用 5.4 指派问题
5.4 指派问题
指派问题也称为分配或配置问题。是资源合理配 置或最优匹配问题。
5.4.1 数学模型
例5-15 人事部门欲安排四人到四个不同的岗位工作, 每个岗位一个人。经考核四人在不同岗位的成绩(百 分制)如下表所示,问如何安排他们的工作使总成绩 最好。

运筹学__指派问题

运筹学__指派问题
(i 1, ,4; j 1, ,4)
则该指派问题的数学模型为:
min z 2x11 15x12 13x13 4x14 L 11x43 9x44
4
xij
1
(i 1,L
, 4)
∑xij=1 (i=1,2,3,4) 表示第i人只能完成一项任务
j1
s.t.
4
xij
1
( j 1,L
, 4)
i1
xij=1 (j=1,2,3,4) 表示第0或1
(i,j 1,L
, 4)
满足约束条件的解称为可行解, 可写成矩阵形式,叫作解矩阵。
如本例的一个可行解矩阵(但不一定是最优解)
0 1 0 0
xij
0 1
0 0
1 0
0 0
0 0 0 1
指派问题的解矩阵应具有如下特点:
在实际中经常会遇到这样的问题,
有n 项不同的任务, 需要n 个人分别完成其中的一项,
但由于任务的性质和各人的专长不同, 因此各人去完成不同的任务的效率 (或花费的时间或费用)也就不同。 于是产生了一个问题: 应指派哪个人去完成哪项任务,
使完成 n 项任务的总效率最高(或所需时间最少),
这类问题称为指派问题或分派问题。
二 匈牙利算法
思路 算法原理 算法步骤
(一) 思路
匈牙利法基于这样一个明显的事实: 如果在m阶效率矩阵中,所有元素cij≥0, 而其中有m个位于不同行不同列的一组0元素, 则在解矩阵中,只要令对应于这些0元素位置的 xij=1,其余的xij=0,就得到最优解。 此时的最优解为0
•如效率矩阵为 •恰有4个不同行 不同列的0系数
2. 指派问题数学模型—一般形式
设[cij]表示指派问题的效率矩阵,令

运筹学 工作指派问题

运筹学 工作指派问题

n
n
n
n
ij
) xij
n n
= M ∑∑ xij − ∑∑ cij xij = nM − ∑∑ cij xij
i =1 j =1
14
1 甲 乙 丙 丁 10 5 5 2 2 9 8 4 3 3 7 7 6 4 4 8 7 5 5
12
例1-15 求最大效率问题
上海港务局装卸队安排五个班组进行五条作 业线的配工,以往各班组完成某项作业的实 际效率的具体数据如下表所示。
项目 班组 甲 乙 丙 丁 戊 400 435 505 495 450 315 295 370 310 320 220 240 320 250 310 120 220 200 180 190 145 160 165 135 100 13 1 2 3 4 5
9
(4)画0元素的最少覆盖线:要用最少的覆盖线将矩 阵表格中的所有0元素都覆盖住。如果覆盖线的条 数少于矩阵的阶数,说明找不到最优解,要转下 步(继续变换矩阵,使0元素增加)。如果覆盖线 的条数等于矩阵的阶数,则说明可以从矩阵表格 的0元素中找出最优解。 画最少覆盖线的具体方法: ①对没有◎的行打√; ②对打√的行中,所有有0元素的列打√; ③对打√的列中,对有◎的行打√; ④重复②、③步直到得不出新的打√的行和列; ⑤对没有打√的行画横线,对打√的列画纵线,这 些横线和纵线就是能把全部0元素都覆盖的最少覆 盖线。
第一章 线性规划的基本 理论及其应用
1
第九节
工作指派问题
工作指派问题是这样一类问题: 有n个人和n件事,已知第i个人做第j件事的 费用为 cij (i, j = 1, 2, , n),要求确定人和事之间的 一一对应的指派方案,使完成这n件事的总 费用最少。

运筹学-指派问题

运筹学-指派问题

人 甲
9
4
3
7
人 乙 人 丙
4 5
6 4
5 7
6 5
人 丁
7
5
2
3
人 戊
10
6
7
4
虚拟一个工作E,每个人完成E 时间为0,用匈牙利方法求解
事A 事B 事C 事D 事E
最优解: 甲 乙 丙 丁 C A B D E
人 甲
人 乙 人 丙 人 丁 人 戊
9
4
370Fra bibliotek4 5
6 4
5 7
6 5
0 0
7 10
5 6






表 示 “ 确 定 ”
的列 表示下岗工人善长作的事情
事A 事B 5 0第2步(1) 2 第2列仅1个 零,划甲B 3 10 0
第五章:0 -1整数规划
表示“不考虑”
事D 事E 事C
第三步(5) 对没有 的行划线

人 甲
0
2
对有 的1 列划线 这样覆盖了 所有的零元 素

第三步:对没有 画圈 的第5行 加 ;对已加 的行中的零元素 所在第1列加


表示戊适合作这 列确定的事A 对加 的列中有 颜色 的元素所 在第3行加 表 示
人 丁
0第二步 (4)第3 列仅2个 零,划丁C 3
0
4


人 戊
0
6
6
5
A事所确定的人
丙只合适一件事情 A,确定 丙A
事情B 只合适一个 人甲,确定甲B
人 丁
9
人 戊
0
6没有覆盖
6没有覆盖

运筹学指派问题实验报告

运筹学指派问题实验报告

运筹学实践报告指派问题第一部分问题背景泰泽公司(Tazer)是一家制药公司。

它进入医药市场已经有12年的历史了,并且推出了6种新药。

这6种新药中5种是市场上已经存在药物的同类产品,所以销售的情况并不是很乐观。

然而,主治高血压的第6种药物却获得了巨大的成功。

由于泰泽公司拥有生产治疗高血压药物的专利权,所以公司并没有遇到什么竞争对手。

仅仅从第6种药物中所获得的利润就可以使泰泽公司正常运营下去。

在过去的12年中,泰泽公司不断地进行适量的研究和发展工作,但是却并没有发现有哪一种药物能够获得像高血压药物一样的成功。

一个原因是公司没有大量投资进行创新研究开发的动力。

公司依赖高血压药物,觉得没有必要花费大量的资源寻找新药物的突破。

但是现在泰泽公司不得不面对竞争的压力了。

高血压药物的专利保护期还有5年1。

泰泽公司知道只要专利期限一到,大量药品制造公司就会像秃鹰一样涌进市场。

历史数据表明普通药物会降低品牌药物75%的销售量。

今年泰泽公司投入大量的资金进行研究和开发工作以求能够取得突破,给公司带来像高血压药物一样的巨大成功。

泰泽公司相信如果现在就开始进行大量的研究和开发工作,在高血压药物专利到期之后能够发明一种成功药物的概率是很高的。

作为泰泽公司研究和开发的负责人,你将负责选择项目并为每一个项目指派项目负责人。

在研究了市场的需要,分析了当前药物的不足并且拜会了大量在有良好前景的医药领域进行研究的科学家之后,你决定你的部门进行五个项目,如下所示:Up项目:开发一种更加有效的抗忧郁剂,这种新药并不会带来使用者情绪的急剧变化。

Stable项目:开发一种治疗躁狂抑郁病的新药。

Choice项目:为女性开发一种副作用更小的节育方法。

Hope项目:开发一种预防HIV的疫苗。

Release项目:开发一种更有效的降压药。

对于这5个项目之中的任何一个来说,由于在进行研究之前你并不知道使用的配方以及哪种配方是有效的,所以你只能明确研究所要解决的疾病。

物流运筹学运输问题及指派问题

物流运筹学运输问题及指派问题

物流运筹学运输问题及指派问题第 3 章运输和指派问题本章知识结构本章教学目标与要求掌握产销平衡运输问题的数学模型及其特点; 掌握运输问题的表上作业法,包括初始调运方案的确定、检验数的计算、运输方案的调整方法; 掌握产销不平衡运输问题转化为产销平衡问题的处理办法;掌握运输问题在实践中的典型应用; 掌握标准指派问题的求解方法,会将各种非标准指派问题转化为标准指派问题。

导入案例运储物流的运输问题运输成本占物流总成本的35,-50,左右,占商品价格的4,-10,,运输对物流总成本的节约具有举足轻重的作用。

运储物流在物流运输管理中要着重考虑:运输方式的选择,运输路线的选择,编制运输计划等问题。

运输方式合适与否决定了运输时间的长短,决定了成本的高低,各种运输工具都有其使用的优势领域,对运输工具进行优化选择,按运输工具特点进行装卸运输作业,最大限度地发挥所用运输工具的作用;选择运输路线要与交通运输工具结合起来,尽量安排直达运输,以减少运输装卸、转运环节,缩短运输时间;编制运输计划还要从全局出发,深入调查研究,综合平衡,积极组织计划运输、合理运输、直达运输、均衡运输,按照成本最低的原则来制定合理的计划。

3.1 运输问题概述运输问题的典型提法是将某种物质从若干个产地调运到若干个销地,已知每个产地的产量和每个销地的销量,如何在许多可行调运方案中选择一个总运费最少的调运方案。

根据总产量与总销量是否相等的数量关系,运输问题通常可划分为产销平衡(相等)和产销不平衡(不相等)两大类别。

产销平衡的运输问题主要在这一节介绍,产销不平衡的运输问题将在后面节中讨论。

3.1.1 运输问题的引入在生产、交换活动中,不可避免地要进行物资调运工作。

某时期内将生产基地的煤、钢铁、粮食、矿砂、木材等各类物资,分别运送到需要这些物资的地区。

3.1 运输问题概述【例3.1】某物流公司从两个产地A1 内蒙、A2 山西将煤炭运往三个销地B1 北京、B2 山东、B3上海,各产地的产量、各销地的销量、各产地运往各销地的每单位煤炭运费数据见下表,问:应如何调运煤炭可使总运输费用最小, 销地产地 B1 B2 B3 产量 6 4 6 A1 200 x11x12 x13 6 5 5 A2 300 x21 x22 x23 销量 150 150 200 500 解: 此为产销平衡的运输问题(总产量总销设量)。

3.4指派问题(经典运筹学)

3.4指派问题(经典运筹学)

n
ci1 xi1
ci 2 xi 2
cin xin
cn1xn1 cn2 xn2 cnn xnn b
cc1211
c12 c22
c1n c2n
C
ci1 cn1
ci2 cn2
cin
-b
cnn
min Z Z b
c11 c21
x11 x21
c12 x12 c22 x22
i=1,2, …,n; j=1,2, …,n
Z表示总费用
12…j …n
1 c11 c12 c1 j c1n 2 c21 c22 c2 j c2n … i ci1 ci2 cij cin …
n cn1 cn2 cnj cnn
指派问题模型:
min Z
cij xij
c11 c21
c12 c22
c1n c2n
C
ci1 cn1
b
ci2 b cn2
cin b cnn
min Z
c11x11 c21x21
ccZ1222xx1222bcc12nnxx1n2
n
ci1xi1
ci 2
xi 2
cin
xin
cn1xn1 cn2 xn2 cnn xnn b
xi1 xi2 xij xin 1
s.tLeabharlann x1jx2j
xij
i=1,2, …,n
xnj 1
j=1,2, …,n
xij 0,1 i 1,2,, n; j 1,2,, n
cc1211
c12 c22
c1n c2n
C
ci1 cn1
ci 2 cn2
cin
-b
cnn

运筹学:指派问题

运筹学:指派问题
求佳产品公司问 题指派问题变形 的电子表格模型
Designing School Attendance Zones 设计学生入学区域
米德尔城学区问 题指派问题变形 的电子表格模型
小结
Session Summary 本讲小结
运输问题考虑(确实的或是比喻的)从出发地运送货物到目 的地。每一个出发地都有一个固定的供应量,每一个目的地 都有一个固定的需求量
指派问就要处理应当将哪一项任务指派给哪一个被指派者, 才能使完成这些任务的总达到最小
把可能会面临的问题描述为一个运输问题或者指派问题或者 它们的变形并进行分析
案例
Case Study
案例研究
案例3:富而克消费用品公司
作业: 第五章奇数习题
西北新闻纸公司(See the Course Package)
▪每一个被指派者只完成一项任务 ▪每一项任务只能由一个被指派者来完成
▪每个被指派者和每项任务的组合有一个相关成本 ▪目标是要确定怎样进行指派才能使得总成本最小
Variants of Assignment Problem 指派问题的变形
指派问题的变形: ▪有一些被指派者并不能进行某一些的任务 ▪任务比被指派者多 ▪被指派者比要完成的任务多 ▪每个被指派者可以同时被指派给多于一个的任务 ▪每一项任务都可以由多个被指派者共同完成
下一讲:网络最优化问题
阅读:Text1,Chapter6 和课件及课程网页相关内容

The End of Session 4
The Assignment Problem 指派问题
现实生活之中,我们也经常遇到指派人员做某项工 作的情况。指派问题的许多应用都用来帮助管理人 员解决如何为一项将要开展进行的工作指派人员的 问题。其他的一些应用如为一项任务指派机器、设 备或者是工厂

运筹学_指派问题

运筹学_指派问题

(xij)是n×n矩阵,对应于效率矩阵(cij).
工作
x11 人 x i1 xn1
x1n xij xin xnj xnn x1 j
可行解矩阵
x
i 1
n
ij
1,
j 1, 2, , n ②
指派问题的最优解有这样性质,若从效率矩 阵(cij)的一行(列)各元素中分别减去该行(列)的 最小元素,得到新矩阵(bij),那么以(bij)为效率 矩阵求得的最优解和用原效率矩阵求得的最优解 相同 。即 定理2 设给定了以C = (cij)为效率矩阵指派问题G, 现将C的元素cij 改变为 bij cij i j , i 与 j 为常数 则以B= ( bij )为效率矩阵指派问题G’与G有相同的最 优解。
第四节 指 派 问 题
assignment problem
在生活中经常遇到这样的问题,某 单位需完成n项任务,恰好有n个人可承 担这些任务。由于每人的专长不同,各 人完成任务不同(或所费时间),效率也 不同。于是产生应指派哪个人去完成哪 项任务,使完成n项任务的总效率最高 (或所需总时间最小)。这类问题称为指 派问题或分派问题。
行列都有 零元素
7 6 3 0*
0 * 9 (b ) ij 2 0
0 0 最优解为 ( xij ) 1 0
0 1 0 0
0 0 0 1
1 0 0 0
定理3 若矩阵C可分成”0”与非”0”两部分,则覆 盖”0”元素的最少直线等于位于不同行不同列的”0” 元素的最大个数.

5 0* 2 0 2 2 3 0* 0 0 0* 10 5 7 2 -2 9 8 0 0* 4 0 6 3 6 5 -2 5 0* 2 0 2 2 3 0* 0 0 2 8 3 5 0 9 8 0 0* 4 2 4 1 4 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
n
n
n
ij
) xij
n n
= M ∑∑ xij − ∑∑ cij xij = nM − ∑∑ cij xij
i =1 j =1
14
1 甲 乙 丙 丁 10 5 5 2 2 9 8 4 3 3 7 7 6 4 4 8 7 5 5
12
例1-15 求最大效率问题
上海港务局装卸队安排五个班组进行五条作 业线的配工,以往各班组完成某项作业的实 际效率的具体数据如下表所示。
项目 班组 甲 乙 丙 丁 戊 400 435 505 495 450 315 295 370 310 320 220 240 320 250 310 120 220 200 180 190 145 160 165 135 100 13 1 2 3 4 5
10
(5)变换矩阵,增加0元素。具体方法是: ①在没被直线覆盖的元素中找出最小元素; ②对没被直线覆盖的各元素减去这个最小元素; ③被两条直线覆盖的各元素都加上这个最小元素。 (6)重复第(3)步找最优解,如能找到则结束;否则 重复(4)-(5)步。
11
【例1-14】有四项任务,分别由四个人去 完成。他们每个人完成不同的工作所需时 间如表所示,求使总工作时间最少的任务 安排。
地点 机器 1 2 3 4 需求量 1 10 3 2 4 1 2 9 4 1 3 1 3 8 5 1 5 1 4 7 6 2 6 1 机器 总数 1 1xij = ⎨ ⎩0,如果机器i没有安装在地点j
cij 是机器i安装在地点j所需要的费用
数学模型:
min z =
6
关于模型的讨论
指派问题是运输问题的特殊情况 当n=m时,平衡指派问题 当n ≠ m 时,不平衡指派问题,此时,可 设置虚工作或虚工作人员,将其化为平 衡指派问题。 对指派矩阵C,任意行(列)减去它的最 小元素后,所构成的指派问题最优解与 原指派问题相同。
7
二、 求解工作指派问题的匈牙利法
匈牙利数学家克尼格利用指派问题的特 点,给出了一种更为简便的方法,俗称 匈牙利法。 1.匈牙利法的基本原理 对指派矩阵C,任意行(列)减去它的最 小元素后,所构成的指派问题最优解与原 指派问题相同。因为指派矩阵的这种变化 并不影响数学模型的约束方程组,而只是 使目标函数值减少了某些数值。
9
(4)画0元素的最少覆盖线:要用最少的覆盖线将矩 阵表格中的所有0元素都覆盖住。如果覆盖线的条 数少于矩阵的阶数,说明找不到最优解,要转下 步(继续变换矩阵,使0元素增加)。如果覆盖线 的条数等于矩阵的阶数,则说明可以从矩阵表格 的0元素中找出最优解。 画最少覆盖线的具体方法: ①对没有◎的行打√; ②对打√的行中,所有有0元素的列打√; ③对打√的列中,对有◎的行打√; ④重复②、③步直到得不出新的打√的行和列; ⑤对没有打√的行画横线,对打√的列画纵线,这 些横线和纵线就是能把全部0元素都覆盖的最少覆 盖线。
第一章 线性规划的基本 理论及其应用
1
第九节
工作指派问题
工作指派问题是这样一类问题: 有n个人和n件事,已知第i个人做第j件事的 费用为 cij (i, j = 1, 2, , n),要求确定人和事之间的 一一对应的指派方案,使完成这n件事的总 费用最少。
2
一、工作指派的数学模型
【例1-13】机器安装选址问题:某工厂买了四台不 同类型的新机器,可以把它们安装在四个不同的地 点。不同的机器安装在不同地点的费用是不同的, 具体费用见下表。(费用单位:元)
首先将效率最大问题转化为时间最短问 题:用一个不比指派矩阵中最大元素小 的数减去指派矩阵的所有元素。即令
M ≥ max( c ij ), b ij = M − c ij
则有
∑∑ b x = ∑∑ (M − c
i =1 j =1 ij ij n i =1 j =1 n n n i =1 j =1 i =1 j =1
8
2.匈牙利法的计算步骤
(1)如有n项任务,则列出一个n阶矩阵表格。 (2)变换矩阵:先对各行元素分别减去本行中的最小 元素,再对各列元素分别减去本列中最小元素, 使得每一行和每一列都出现0元素。 (3)在变换矩阵中找最优解:在矩阵中寻找n个位于 不同行不同列的0元素。找最优解的具体方法:由 有0元素最少的行(或列)开始,圈出一个0元 素,用◎表示,然后划去同行同列的其他元素。 如能找到n个位于不同行不同列的0元素,则得到了 最优解;若找不到,则转下步。
⎧ n ⎪ ∑ xij = 1, j = 1, 2, ⎪ i =1 ⎪ n s.t . ⎨ ∑ xij = 1, i = 1, 2, ⎪ j =1 ⎪ xij = 0或1 ⎪ ⎩
,n ,n
5
指派矩阵
⎡ c11 c12 ⎢c c22 21 C=⎢ ⎢ ⎢ ⎣cn1 cn 2 c1n ⎤ ⎥ c2 n ⎥ ⎥ ⎥ cnn ⎦
∑∑c
j =1 i = 1
4
4
ij
xij
⎧ 4 ⎪ ∑ xij = 1, j = 1, 2, 3, 4 ⎪ i =1 ⎪ 4 s.t . ⎨ ∑ xij = 1, i = 1, 2, 3, 4 ⎪ j =1 ⎪ xij = 0或1 ⎪ ⎩
4
指派问题的一般模型
min z = ∑ ∑ cij xij
j =1 i =1 n n
相关文档
最新文档