动态规划算法分析实验报告.docx

合集下载

实验6 动态规划

实验6 动态规划
3.1.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.1.3实验结论
要有截图,验证最后结果(图片分布要合理)。
输入/输出应与TEST文件夹测试用例一致。
3.1.4心得体会
xxxxxxxxxxxxxxxxxxxxxxxx
输入/输出应与TEST文件夹测试用例一致。
3.2.4心得体会
xxxxxxxxxxxxxxxx
4.教师批改意见
签字:
日期:
成绩
3.2最少硬币问题
3.2.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明
3.2.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.2.3实验结论
要有截图,验证最后结果(图片分布要合理)。
算法设计与分析实验报告
学号
姓名
班级
上课地点
教师
庄蔚蔚
上课时间
实验6动态规划
1.实验目的
1.1.理解动态规划算法的主要设计思想;
1.2.掌握用动态VC6.0
2.2 Window XP
3.实验内容
3.1石子合并问题
3.1.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明

动态规划实验报告

动态规划实验报告

动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。

本实验旨在通过实际案例,探究动态规划算法的原理和应用。

二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。

它通常适用于具有重叠子问题和最优子结构性质的问题。

三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。

四、实验过程本实验选择了经典的背包问题作为案例进行分析。

背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。

1. 确定状态在动态规划算法中,状态是问题的关键。

对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。

2. 确定状态转移方程状态转移方程是动态规划算法的核心。

对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。

则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。

对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。

4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。

具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。

五、实验结果与分析通过实验,我们得到了背包问题的最优解。

同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。

这为我们提供了在实际问题中应用动态规划算法的思路。

六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

算法分析与设计实验报告--动态规划

算法分析与设计实验报告--动态规划

算法分析与设计实验报告--动态规划《算法分析与设计》实验报告完成⽇期:20011.11.241、实验⽬的(1)掌握动态规划⽅法贪⼼算法思想(2)掌握最优⼦结构原理(3)了解动态规划⼀般问题2、实验内容(1)编写⼀个简单的程序,解决0-1背包问题。

设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}(2)合唱队形安排。

【问题描述】N位同学站成⼀排,⾳乐⽼师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。

合唱队形是指这样的⼀种队形:设K 位同学从左到右依次编号为1,2…,K,他们的⾝⾼分别为T1,T2,…,TK,则他们的⾝⾼满⾜T1<...Ti+1>…>TK(1<=i<=K)。

已知所有N位同学的⾝⾼,计算最少需要⼏位同学出列,可以使得剩下的同学排成合唱队形。

3、实验要求(1)写出源程序,并编译运⾏(2)详细记录程序调试及运⾏结果4、算法思想:利⽤动态规划的思想,解决诸如0—1背包问题,最⼤合唱队形问题等问题的最优解,能在最短的时间内,找到最好的解决⽅案的⼀种算法。

5、实验过程:1、0—1背包问题:源代码如下:#include#includeusing namespace std;#define N 5#define c 10int w[N+1]={0,2,2,6,5,4},v[N+1]={0,6,3,5,4,6};int m[N+1][c+1];int min(int x,int y){if(x<=y)return x;else return y;}int max(int x,int y){if(x>=y) return x;else return y;}void KnapSack(int v[],int w[]){int jMax=min(w[1],c);for (int j=1;j<=jMax;j++) //当0=m[1][j]=0;for (j=w[1];j<=c;j++) // 当j>=w[n]时, m(n,j)=v[n]m[1][j]=v[1];for (int i=2;i<=N;i++) //DP{ int jMax=min(w[i],c);for (j=1;jfor (j=jMax;j<=c;j++) //m(n,j)=v[n] 当j>=w[n] m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]); }}void main(){KnapSack(v,w);for(int i=1;i<=N;i++){for(int j=0;j<=c;j++)cout<cout<}}运⾏截图如下:合唱队形问题:代码如下:#include#includeusing namespace std;#define MAXN 200void main(){int n, a[MAXN], b[MAXN], c[MAXN], i, j, max,lab,pre[MAXN]; cout<<"输⼊数据个数:"; cin>>n;cout<<"\n输⼊"<for (i = 1; i <= n; i++) //O(n)cin>> a[i];memset(b, 0, sizeof(a));memset(c, 0, sizeof(c));b[1] = 1;pre[i]=0; //i=1->nfor (i = 2; i <= n; i++){max = 0;for (j = i - 1; j >= 1; j--) {if (a[j]max) {max = b[j];pre[i]=j;}}b[i] = max + 1;}//lab:max所对应a数组元素下标O(n)max = b[1];for (i = 2; i <= n; i++){ if (b[i] > max){max = b[i];lab=i;}}cout<<"Longest Increasing Subsequence is:"<i = lab;int num=max;j=max;while( num>0 ){c[j--]=a[i];i=pre[i];num--;}//输出数列O(n)for(i=1;i<=max;i++)cout<cout<}截图如下:6.实验过程分析本次实验做的是01背包和合唱队形,之前01背包也⽤贪⼼算法讨论过,但得不到最优解,这次实验⽤动态规划实现的,涉及到剪枝函数部分要考虑清楚,实验过程中通过画图,对理解有很⼤帮助;第⼆个实验其实是利⽤了两次LIS问题,再综合⼀下,总的来说,本次实验还是⽐较成功,对动态规划算法的思想理解得挺透彻的。

南京邮电大学算法设计实验报告——动态规划法

南京邮电大学算法设计实验报告——动态规划法
for(int j=1;j<=n;j++) {
if(a[i]==b[j]) {
c[i][j]=c[i-1][j-1]+1; s[i][j]=1; } else if(c[i-1][j]>=c[i][j-1]) { c[i][j]=c[i-1][j]; s[i][j]=2; } else { c[i][j]=c[i][j-1]; s[i][j]=3; } } } return c[m][n]; //返回最优解值 }
算法分析与设计 A
动态规划法
2009
年 11 月 20 日
计算机学院软件工程系
张怡婷
学生姓名 学院(系)
丁力琪 班级学号 计算机学院 专 业
B07030907 软件工程
实验报告
实验名称
动态规划法
指导教师 张怡婷
实验类型
验证
实验学时 2×2 实验时间 2009-11-20
一、 实验目的和任务
目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态
6
8、输入序列 X={x1,x2,……,xm}={a,b,c,b,d,a,b}和 Y={y1,y2,……,yn}={b,d,c,a,b,a}作为测 试数据,测试程序是否能够正确运行?输出结果是什么? 运行正确,实验结果显示:4
bcba
9、分析该动态规划算法的两个主要成员函数 int LCSLength()和 void CLCS()的时间复杂 性。
#include<iostream> #include<string> using namespace std; #define maxlength 11 class LCS { public:

动态规划问题实验报告(3篇)

动态规划问题实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生理解动态规划算法的基本概念,掌握动态规划解决问题的基本思想和步骤,并能运用动态规划算法解决实际问题。

通过实验,学生应能够:1. 理解动态规划算法的概念及其应用领域。

2. 掌握动态规划的基本思想和解决问题的基本步骤。

3. 学习动态规划算法设计策略,并能够运用到实际问题中。

4. 通过实际编程,提高编程能力和问题解决能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm三、实验内容本次实验选择了三个典型的动态规划问题进行实践:1. 最长公共子序列问题2. 矩阵连乘问题3. 剪绳子问题四、实验步骤1. 最长公共子序列问题(1)问题描述:给定两个序列X和Y,找出X和Y的最长公共子序列。

(2)算法设计:- 使用二维数组dp[i][j]表示X的前i个字符和Y的前j个字符的最长公共子序列的长度。

- 初始化dp[0][j] = 0和dp[i][0] = 0。

- 对于i > 0和j > 0,如果X[i-1] == Y[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

(3)代码实现:```pythondef longest_common_subsequence(X, Y):m, n = len(X), len(Y)dp = [[0] (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if X[i - 1] == Y[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]```2. 矩阵连乘问题(1)问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的,i = 1, 2, ..., n-1。

动态规划算法实验报告

动态规划算法实验报告

南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。

通过本次实验掌握动态规划算法。

通过矩阵连乘问题和0-1背包问题实现动态规划算法。

学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。

2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。

令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。

最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。

为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。

上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。

因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。

对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。

求这些物品中最有价值的一个子集,并且要能装到背包中。

设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。

则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。

递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。

故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。

动态规划实验报告摘要(3篇)

动态规划实验报告摘要(3篇)

第1篇本实验报告针对动态规划算法进行深入研究和实践,旨在通过一系列实验,加深对动态规划思想、基本原理及实际应用的理解。

实验内容涵盖了动态规划算法的多个经典问题,包括找零钱问题、独立任务最优调度问题、最长公共子序列问题、矩阵连乘问题、剪绳子问题以及0-1背包问题等。

一、实验目的1. 理解动态规划算法的概念,掌握动态规划的基本思想和解决问题的基本步骤。

2. 学习动态规划算法设计策略,提高算法设计能力。

3. 通过实际案例,体会动态规划算法在解决实际问题中的应用价值。

二、实验内容与步骤1. 找零钱问题实验要求设计一个动态规划算法,对给定面值的硬币组合,计算出所有可能找零方式的硬币个数。

通过实验,掌握了动态规划算法的基本原理,并熟悉了动态规划在解决组合优化问题中的应用。

2. 独立任务最优调度问题实验要求设计一个动态规划算法,使得两台处理机处理完n个作业的时间最短。

通过实验,了解了动态规划在解决调度问题中的应用,并掌握了多阶段决策问题的求解方法。

3. 最长公共子序列问题实验要求找出两个序列的最长公共子序列。

通过实验,学习了动态规划在解决序列匹配问题中的应用,并掌握了如何通过动态规划算法优化问题求解过程。

4. 矩阵连乘问题实验要求确定计算矩阵连乘积的计算次序,使得所需数乘次数最少。

通过实验,了解了动态规划在解决矩阵连乘问题中的应用,并掌握了如何通过动态规划算法优化计算过程。

5. 剪绳子问题实验要求将一根绳子剪成m段,使得各段乘积最大。

通过实验,掌握了动态规划在解决资源分配问题中的应用,并学会了如何通过动态规划算法找到最优解。

6. 0-1背包问题实验要求用动态规划算法解决0-1背包问题。

通过实验,了解了动态规划在解决背包问题中的应用,并掌握了如何通过动态规划算法优化问题求解过程。

三、实验结果与分析通过对以上问题的动态规划算法实现,实验结果表明:1. 动态规划算法能够有效地解决组合优化问题、调度问题、序列匹配问题、矩阵连乘问题、资源分配问题以及背包问题等。

实验三动态规划算法实验

实验三动态规划算法实验

实验三动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。

2.熟练掌握分阶段的和递推的最优子结构分析方法。

3.学会利用动态规划算法解决实际问题。

二、实验内容1.问题描述:题目一:数塔问题给定一个数塔,其存储形式为如下所示的下三角矩阵。

在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。

请找出一条路径,使路径上的数值和最大。

输入样例(数塔):912 1510 6 82 18 9 519 7 10 4 16输出样例(最大路径和):59题目二:最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。

题目三:Common SubsequenceA subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.输入样例abcfbc abfcabprogramming contestabcd mnp输出样例42题目四 0-1背包问题给定n种物品和一个背包。

动态规划实验报告

动态规划实验报告

动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。

本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。

首先,我们来了解一下动态规划的基本原理。

动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。

动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。

为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。

接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。

假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。

这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。

2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。

3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。

4. 求解最优解:最终的最优解即为dp数组中的最大值。

通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。

这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。

综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。

通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。

希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。

动态规划算法实验报告

动态规划算法实验报告

实验标题1、矩阵连乘2、最长公共子序列3、最大子段和4、凸多边形最优三角剖分5、流水作业调度6、0-1背包问题7、最优二叉搜索树实验目的掌握动态规划法的基本思想和算法设计的基本步骤。

实验内容与源码1、矩阵连乘#include<iostream>#include<cstdlib>using namespace std;const int size=4;//ra,ca和rb,cb分别表示矩阵A和B的行数和列数void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) {if(ca!=rb) cerr<<"矩阵不可乘";for(int i=0;i<ra;i++)for(int j=0;j<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<ca;k++)sum+=a[i][k]*b[k][j];c[i][j]=sum;}}void MatrixChain(int *p,int n,int m[][4],int s[][4]){for(int i=1;i<=n;i++) m[i][i]=0;//对角线for(int r=2;r<=n;r++)//外维for(int i=1;i<=n-r+1;i++)//上三角{int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}void Traceback(int i,int j,int s[][4]){if(i == j){cout<<"A"<<i;}else if(i+1 == j){cout<<"(A"<<i<<"A"<<j<<")";}else{cout<<"(";Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<")";}}int main(){int w;cout<<"矩阵个数:";cin>>w;int p[w],s[w][w];cout<<"输入矩阵A1维数:";cin>>p[0]>>p[1];for(int i=2 ; i<=w ; i++){int m = p[i-1];cout<<"输入矩阵A"<<i<<"维数:";cin>>p[i-1]>>p[i];if(p[i-1] != m){cout<<endl<<"维数不对,矩阵不可乘!"<<endl;exit(1);}}Traceback(1,w,s);return 0;}运行结果2、最长公共子序列#include<cstring>#include<iostream>#define N 100using namespace std;//str1存储字符串x,str2存储字符串ychar str1[N],str2[N];//lcs存储最长公共子序列char lcs[N];//c[i][j]存储str1[1...i]与str2[1...j]的最长公共子序列的长度int c[N][N];//flag[i][j]==0为str1[i]==str2[j]//flag[i][j]==1为c[i-1][j]>=s[i][j-1]//flag[i][j]==-1为c[i-1][j]<s[i][j-1]int flag[N][N];//求长度int LCSLength(char *x, char *y){int i,j;//分别取得x,y的长度int m = strlen(x);int n = strlen(y);for(i=1;i<=m;i++)c[i][0] = 0;for(i=0;i<=n;i++)c[0][i] = 0;for(i=1;i<=m;i++)for(j=1;j<=n;j++){if(x[i-1]==y[j-1]){c[i][j] = c[i-1][j-1] +1;flag[i][j] = 0;}else if(c[i-1][j]>=c[i][j-1]){c[i][j] = c[i-1][j];flag[i][j] = 1;}else{c[i][j] = c[i][j-1];flag[i][j] = -1;}}return c[m][n];}//求出最长公共子序列char* getLCS(char *x, char *y,int len,char *lcs) {int i = strlen(x);int j = strlen(y);while(i&&j){if(flag[i][j]==0){lcs[--len] = x[i-1];i--;j--;}else if(flag[i][j]==1)i--;elsej--;}return lcs;}int main(){int i;cout<<"请输入字符串x:"<<endl;cin>>str1;cout<<"请输入字符串y:"<<endl;cin>>str2;int lcsLen = LCSLength(str1,str2);cout<<"最长公共子序列长度:"<<lcsLen<<endl;char *p = getLCS(str1,str2,lcsLen,lcs);cout<<"最长公共子序列为:";for(i=0;i<lcsLen;i++)cout<<lcs[i]<<" ";return 0;}运行结果3、最大子段和//分治法求最大子段和#include<iostream>using namespace std;int MaxSubSum(int *a,int left,int right){int sum=0;if(left==right) sum=a[left]>0?a[left]:0;else{int center = (left+right)/2;//最大子段和在左边int leftsum=MaxSubSum(a,left,center);//最大子段和在右边int rightsum=MaxSubSum(a,center+1,right);//最大子段和在中间int s1=0;int lefts=0;for(int i=center;i>=left;i--){lefts+=a[i];if(lefts>s1) s1=lefts;}int s2=0;int rights=0;for(int i=center+1;i<=right;i++){rights+=a[i];if(rights>s2) s2=rights;}sum=s1+s2;//前后子段和相加//判断最大子段和if(sum>leftsum)sum=leftsum;if(sum>rightsum) sum=rightsum;}return sum;}int MaxSum(int *a,int n){return MaxSubSum(a,1,n-1);}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}//动态规划法#include<iostream>using namespace std;int MaxSum(int *a,int n){int sum=0,b=0;for(int i=1;i<n;i++)//此处不能=n,{if(b>0) b+=a[i];else b=a[i];if(b>sum) sum=b;}return sum;}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}运行结果4、凸多边形最优三角剖分#include<iostream>#include<cmath>#include<cstdlib>#define N 50using namespace std;struct point{int x;int y;};int distance(point X, point Y)//两点距离{int dis = (Y.x-X.x)*(Y.x-X.x) + (Y.y-X.y)*(Y.y-X.y);return (int)sqrt(dis);}int w(point a, point b, point c)//权值{return distance(a,b) + distance(b,c) + distance(a,c);}bool JudgeInput()//判断是否能构成凸多边形{point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int m,a,b,c;cout<<"请输入凸多边形顶点个数:";cin>>m;int M = m-1;for(int i=0 ; i<m ; i++){cout<<"输入顶点v"<<i<<"的坐标:";cin>>v[i].x>>v[i].y;}//根据顶点坐标判断是否能构成一个凸多边形for(int j=0 ; j<m ; j++){int p = 0;int q = 0;if(m-1 == j){a = v[m-1].y - v[0].y;b = v[m-1].x - v[0].y;c = b * v[m-1].y - a * v[m-1].x;}else{a = v[j].y - v[j+1].y;b = v[j].x - v[j+1].x;c = b * v[j].y - a * v[j].x;}for(int k=0 ; k<m ; k++){total[k] = a * v[k].x - b * v[k].y + c;if(total[k] > 0){p = p+1;}else if(total[k] < 0){q = q+1;}}if((p>0 && q>0) || (p==0 && q==0)){cout<<"无法构成凸多边形!"<<endl;exit(1);}}}bool minWeightTriangulation()//计算最优值算法{int M;int **t, **s;point *v;for(int i=1 ; i<=M ; i++)t[i][i] = 0;for(int r=2 ; r<=M ; r++)for(int i=1 ; i<=M-r+1 ; i++){int j = i+r-1;t[i][j] = t[i+1][j] + w(v[i-1],v[i],v[j]);s[i][j] = i;for(int k=i+1 ; k<i+r-1 ; k++){int u = t[i][k] + t[k+1][j] + w(v[i-1],v[k],v[j]);if(u < t[i][j]){t[i][j] = u;s[i][j] = k;}}}return true;}void Traceback(int i, int j, int **s){if(i == j)return;Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<"三角形:v"<<i-1<<"v"<<s[i][j]<<"v"<<j<<endl;}int main(){int **s; //记录最优三角剖分中所有三角形信息int **t; //记录最优三角剖分所对应的权函数值point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int M=0;t = new int *[N];s = new int *[N];for(int i=0 ; i<N ; i++){t[i] = new int[N];s[i] = new int[N];}v = new point[N];total = new int[N];if(JudgeInput()){if(minWeightTriangulation()){Traceback(1,M,s);cout<<endl;cout<<"最优权值之和为:"<<t[1][M]<<endl;}}return 0;}运行结果:5、流水作业调度#include<iostream>#define N 100using namespace std;class Jobtype{public:/* int operator<=(Jobtype a)const{return(key<=a.key);}*/int key;int index;bool job;};void sort(Jobtype *d,int n){int i,j;Jobtype temp;bool exchange; //交换标志for(i = 0;i < n;i ++){ //最多做n-1趟排序exchange = false; //本趟排序开始前,交换标志应为假for(j = n - 1;j >= i;j --)if(d[j+1].key < d[j].key){temp = d[j+1];d[j+1] = d[j];d[j] = temp;exchange=true; //发生了交换,故将交换标志置为真}if(!exchange) //本趟排序未发生交换,提前终止算法return;}}int FlowShop(int n,int *a,int *b,int *c){Jobtype *d = new Jobtype[n];for(int i=0;i<n;i++)//初始化{d[i].key=a[i]>b[i]?b[i]:a[i];// 执行时间d[i].job=a[i]<=b[i];// 作业组d[i].index=i;//作业序号}sort(d,n);;int j=0;int k=n-1;for(int i=0;i<n;i++)//最优调度{if(d[i].job){c[j++]=d[i].index;}else{c[k--]=d[i].index;}}j=a[c[0]];k=j+b[c[0]];for(int i=1;i<n;i++){j+=a[c[i]];k=j<k?k+b[c[i]]:j+b[c[i]];}delete d;//回收空间return k;//返回调度时间}int main(){int n,*a,*b,*c;cout<<"作业数:";cin>>n;Jobtype *d = new Jobtype[N];a=new int[N];b=new int[N];c=new int[N];cout<<"请输入作业号和时间:";for(int i=0;i<n;i++){cin>>d[i].index>>d[i].key;}cout << endl;int k=FlowShop(n,a,b,c);cout<<"\n调度时间:"<<k<<endl;cout<<"最优调度序列:";for (int i = 0; i < n; i++) // 输出最优调度序列{cout << c[i] << " ";}return 0;}运行结果:6、0-1背包问题#include <iostream>#include <iomanip>using namespace std;const int C=10;//容量const int N=5;//个数int max(const int a,const int b){return a>b?a:b;}int min(const int a,const int b){return a<b?a:b;}/*m为记录数组m[i][j]代表在剩有j容量的条件下,从i开始往后的物品中可以取得的最大价值w为重量数组,v为价值数组n为物品个数,c为开始容量则m[1][c]即此背包能剩下的最大价值*/void knapsack(int **m,int n, int c,int *w, int *v){int jMax = min(w[n]-1,c);//前n-1个物品for(int j=0;j<=jMax;j++)m[n][j]=0;for(int j=w[n];j<=c;j++)m[n][j]=v[n];for(int i=n-1;i>1;i--){jMax=min(w[i]-1,c);for(int j=0;j<=jMax;j++)m[i][j] = m[i+1][j];for(int j=w[i];j<=c;j++)m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}//找出最优解,0表示不能装,1表示能装void traceback(int **m,int n,int c,int *x,int *w){for(int i=1;i<n;i++){if(m[i][c]==m[i+1][c]) x[i]=0;else{x[i]=1;c-=w[i];}}x[n]=(m[n][c]==0)?0:1;}int main(){int *v=new int[N+1];int *w=new int[N+1];int **m=new int* [N+1];int *x=new int [N+1];for(int i=0;i<N+1;i++){m[i]=new int[C+1];}cout<<"输入重量序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>w[i];cout<<"输入价值序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>v[i];knapsack(m,N,C,w,v);traceback(m,N,C,x,w);cout<<"最优值:"<<m[1][C]<<endl;cout<<"是否装入背包的情况:";for(int i=1;i<=N;i++){cout<<x[i];}for(int i=0;i<N+1;i++){delete m[i];}delete []m;return 0;}运行结果7、最优二叉搜索树#include<iostream>#include<cmath>#include<limits>#define N 100using namespace std;const double MAX = numeric_limits<double>::max(); //double的最大值//a[i]为结点i被访问的概率//b[i]为“虚结点”i被访问的概率//m[i][j]用来存放子树(i,j)的期望代价//w[i][j]用来存放子树(i,j)的所有结点(包括虚结点)的a,b概率之和//s[i][j]用来跟踪root的void OptimalBinarySearchTree(double *a,double *b,int n){int s[N][N];double m[N][N];double w[N][N];int i,j,l,r;for(i=1; i<=n+1; i++){m[i][i-1] = b[i-1];w[i][i-1] = b[i-1];}for(l=1; l<=n; l++){for(i=1; i<=n-l+1; i++){j = l+i-1;m[i][j] = MAX;w[i][j] = w[i][j-1] + a[j] +b[j];for(r=i; r<=j; r++){double k = m[i][r-1] + w[i][j] + m[r+1][j];if(k<m[i][j]){m[i][j] = k;s[i][j] = k;}}}}cout<<m[1][n];}int main(){double a[N],b[N];int n;double sum = 0;int i,j,l;cout<<"请输入关键字的个数:"<<endl;cin>>n;cout<<"请输入每个关键字的概率:"<<endl;for(i=1; i<=n; i++){cin>>a[i];sum += a[i];}cout<<"请输入每个虚拟键的概率:"<<endl;for(i=0; i<=n; i++){cin>>b[i];sum += b[i];}if(abs(sum-1)>0.01){cout<<"输入的概率和不为1,请重新输入"<<endl;}cout<<"最优二叉查找树的期望搜索代价为:";OptimalBinarySearchTree(a,b,n);return 0;}运行结果:实验总结通过实现动态规划的这个题目,对动态规划算法有了进一步的了解。

动态规划实验报告

动态规划实验报告

实验课程:算法分析与设计实验名称:实验3 动态规划算法(综合性/设计性)实验目标:1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;实验任务:若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。

给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X 和Y的公共子序列。

给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

实验设备及环境:PC;C/C++的编程环境Visual C++。

实验主要步骤:(1)明确实验目标和具体任务;(2)理解实验所涉及的动态规划算法;(3)编写程序并实现动态规划算法;(4)设计实验数据并运行程序、记录运行的结果;实验数据及运行结果、实验结果分析及结论:(学生填写)#include <stdio.h>#include <string.h>void LcsLength(char *x,char *y,int m,int n,int c[][100],int b[][100]){puts(x);puts(y);int i,j;for(i=0;i<=m;i++)c[i][0]=0;for(j=1;i<=n;j++)c[0][j]=0;for(i=1;i<=m;i++)for(j=1;j<=n;j++) {if(x[i-1]==y[j-1]) {c[i][j]=c[i-1][j-1]+1;b[i][j]=0;}else if(c[i-1][j]>=c[i][j-1]) {c[i][j]=c[i-1][j];b[i][j]=1;}else {c[i][j]=c[i][j-1]; b[i][j]=-1;}}}void PrintLCS(int b[][100], char *x, int i, int j){ if(i==0 || j==0)return;if(b[i][j]==0) {PrintLCS(b,x,i-1,j-1);printf("%c",x[i-1]);}else if(b[i][j]==1)PrintLCS(b,x,i-1,j);elsePrintLCS(b,x,i,j-1);}void main(){char x[100]={"ABCBDAB"};char y[100]={"BDCABA"};int c[100][100];int b[100][100];int m,n;m=strlen(x);n=strlen(y);LcsLength(x,y,m,n,c,b); printf("最长子序列为:");PrintLCS(b,x,m,n); printf("\n");printf("最长子序列长度为:%d\n",c[m][n]);}实验结果:结果分析:在写规划方程时,只要对两条路径走到同一个点的情况稍微处理一下,减少可选的决策个数:从这个例子中可以总结出设计动态规划算法的一个技巧:状态转移一般。

《动态规划算法实验》实验报告

《动态规划算法实验》实验报告

实验3、《动态规划算法实验》一、实验目的1. 掌握动态规划方法贪心算法思想2. 掌握最优子结构原理3. 了解动态规划一般问题二、实验内容1. 编写一个简单的程序,解决0-1背包问题。

设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}2. 合唱队形安排问题【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。

已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

三、算法思想分析1.0-1背包采用动规算法主要是动规方程的思考,之后就是确定边界条件即可。

2.合唱队形问题应用了分治与动态规划的算法,先将所有队员依次做中间最高的同学,将问题分为左右来做,接下来只需要求得左边的最长上升子序列数、右边的最长下降子序列数即可。

四、实验过程分析1.0-1背包问题是背包问题的进一步条件限制,考虑清楚动规方程就不难,编程中对于m(i,j)的含义要清楚,搞混了就容易出错。

2.合唱队形问题的思想并不复杂,特别是如果已经掌握了最长上升子序列数的算法,在分别处理左右最长子序列时需要特别注意数组下标,一开始我用是i,j直接从0到左右的数据长度,但是一直出错,后来发现队员身高数组并不能完全用这些下标,特别是右边的函数,数组起始下标不是0,需要利用函数传递起始下标才能调用对应的数据段。

五、算法源代码及用户屏幕1.(1)算法源码/********************************0-1背包问题。

codeblocks C++2018.11.2********************************/#include <iostream>#include <iomanip>using namespace std;void knapSnack(int v[], int w[], int c, int n, int m[][11]);int main(){int v[] = {6, 3, 5, 4, 6};int w[] = {2, 2 ,6, 5, 4};int c = 10;int n = 5;int m[5][11];//初始化数组for(int i=0; i<5; i++){for(int j=0; j<11; j++){m[i][j] = 0;}}knapSnack(v, w, c, n, m);//输出结果cout<<setw(3)<<" ";for(int i=0; i<11; i++){cout<<setw(3)<<i;}cout<<endl;for(int i=0; i<5; i++){//输出行号cout<<setw(3)<<i+1;for(int j=0; j<11; j++){cout<<setw(3)<<m[i][j];}cout<<endl;}return 0;}void knapSnack(int v[], int w[], int c, int n, int m[][11]){ for(int i=0; i<n; i++){for(int j=0; j<11; j++){//边界条件if(i == 0){if(w[i] > j)m[i][j] = 0;elsem[i][j] = v[i];}/*动规方程j>w[i]m(i,j) = max{m(i-1,j), m(i-1,j-w[i])+v[i]}0<=j<w[i]m(i,j) = m(i-1,j)*/else{if(w[i] > j)m[i][j] = m[i-1][j];else{if(m[i-1][j] > (m[i-1][j-w[i]]+v[i]))m[i][j] = m[i-1][j];elsem[i][j] = m[i-1][j-w[i]]+v[i];}}}//控制列数的for循环}//控制行数的for循环}(2)用户屏幕2.(1)算法源码/***************************************************合唱队形问题codeblocks C++2018.11.2***************************************************/#include <iostream>#include <string.h>using namespace std;//计算左端合唱队人数int leftQueue(int a[], int _start, int _end);//计算右端合唱队人数int rightQueue(int a[], int _start2, int _end2);int main(){cout<<"Please enter total number:";int number;cin>>number;cout<<"Please input the height of each person (cm):"<<endl;int a[number]; //记录每个人身高//b数组分别记录当第n个人为合唱队中间人时,合唱队的总人数int b[number];int rightNumber[number]; //记录左端合唱队人数int leftNumber[number]; //记录右端合唱队人数for(int i=0; i<number; i++)b[i] = 0;for(int i=0; i<number; i++)cin>>a[i];int mostQueueNumber = b[0];for(int i=0; i<number; i++){//设置a[i]为最高的同学leftNumber[i] = leftQueue(a,0,i);rightNumber[i] = rightQueue(a,i,number-1);//计算合唱队总人数b[i] = leftNumber[i] + rightNumber[i] - 1;//计算合唱队最多的总人数if(mostQueueNumber < b[i])mostQueueNumber = b[i];}//计算最少出队人数int leastDequeueNumber = number - mostQueueNumber;cout<<"Minimum number of people out: "<<leastDequeueNumber<<endl;return 0;}int leftQueue(int a[], int _start, int _end){int leftMostNumber = 0;int n = _end-_start+1;//c数组记录i时的最长上升子序列数int c[n];int maxN;//初始化最长上升子序列数为1for(int i=0; i<n; i++){c[i] = 1;}for(int i=_start; i<_end+1; i++){maxN = 0;for(int j=i-1; j>=_start; j--){if(a[j]<a[i] && c[j]>maxN)maxN = c[j];c[i] = maxN + 1;}}leftMostNumber = c[n-1];return leftMostNumber;}int rightQueue(int a[], int _start2, int _end2){ int rightMostNumber = 0;int n2 = _end2-_start2+1;//c2数组记录i时的最长下降子序列数int c2[n2];int maxN2;//初始化最长下降子序列数为1for(int i=0; i<n2; i++){c2[i] = 1;}for(int i=_end2; i>=_start2; i--){maxN2 = 0;for(int j=i+1; j<=_end2; j++){if(a[j]<a[i] && c2[j-_start2]>maxN2)maxN2 = c2[j-_start2];c2[i-_start2] = maxN2 + 1;}}rightMostNumber = c2[0];return rightMostNumber; }(2)用户屏幕。

动态规划分析检验实习报告

动态规划分析检验实习报告

一、实习背景与目的随着科技的飞速发展,算法在各个领域中的应用越来越广泛,动态规划作为一种重要的算法设计策略,在解决最优化问题中起着关键作用。

为了更好地将所学理论知识与实践相结合,提高实际工作能力和分析解决问题的能力,我参加了为期一个月的动态规划分析检验实习。

本次实习的主要目的是掌握动态规划算法的基本原理和思想,分析动态规划算法在不同情况下的时间复杂度,以及运用动态规划解决实际问题。

二、实习内容与过程1. 学习动态规划算法的基本思想在实习的第一周,我系统地学习了动态规划算法的基本思想。

动态规划是一种每个决策都依赖于当前状态并导致状态转移的过程。

它通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。

与分治法相似,动态规划也将大问题拆分成小问题,依次解决子阶段。

在求解子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解。

2. 分析动态规划算法的时间复杂度在实习的第二周,我分析了动态规划算法在不同的情况下的时间复杂度。

通过学习经典的动态规划算法,如斐波那契数列、最长公共子序列等,我了解了动态规划算法在不同问题中的运用,并掌握了计算时间复杂度的方法。

3. 运用动态规划解决实际问题在实习的第三周和第四周,我运用动态规划算法解决了一些实际问题。

我参与了团队项目,与团队成员一起探讨并解决了城市规划、资源分配等问题。

通过实际操作,我更加深入地理解了动态规划算法的应用,并提高了运用动态规划解决实际问题的能力。

三、实习收获与反思通过本次实习,我对动态规划算法有了更加深入的了解,掌握了动态规划算法的基本原理和思想,分析了动态规划算法在不同情况下的时间复杂度。

同时,我也学会了如何运用动态规划解决实际问题。

然而,实习过程中我也发现了自己在算法理解和应用方面的不足,需要在今后的学习和实践中不断努力提高。

总之,本次动态规划分析检验实习使我受益匪浅。

通过实习,我将所学理论知识与实践相结合,提高了实际工作能力和分析解决问题的能力。

动态规划算法分析与设计实验报告(矩阵连乘)

动态规划算法分析与设计实验报告(矩阵连乘)

算法分析与设计实验报告实验题目:动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。

2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数和第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1.动态规划算法"<<endl; cout<<"2.直接递归算法"<<endl; cout<<"3.备忘录算法"<<endl;cout<<"0.退出..."<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。

算法分析动态规划实验报告

算法分析动态规划实验报告

重庆大学实验报告实验题目:动态规划的应用学院:计算机学院专业班级:信息安全1班年级:2011级姓名:******学号:2011****完成时间:2013 年 6 月 1 日指导教师:**重庆大学教务处制重庆大学本科学生实验项目任务书说明:学院、专业、年级均填全称,如:计算机学院、计算机科学与技术、2011。

实验报告正文主要内容包括:1 算法思想(a), 使用动态规划自下而上方法,定义数组gem[i][j]表示第i排第j列木桩上的宝石数,数组maxb[i][j]表示从第i排第j列木桩到最后一排木桩所获得的最大宝石数。

公式为:maxb[i][j]=max{gem[i][j]+maxb[i+1][j-1],gem[i][j]+maxb[i+1][j], gem[i][j]+maxb[i+1][j+1] }其中i从n取到1求maxb的伪代码如下:Dynamic-Bottom-To-Up(maxb,gem,row,line)for(int i=1;i<=row;i++)maxb[line][i]=gem[line][i]; //初始化maxbfor(int i=line-1;i=>1;i--)for(int j=row;j>=1;j--)maxb[i][j]=max{gem[i][j]+maxb[i+1][j-1],gem[i][j]+maxb[i+1][j], gem[i][j]+maxb[i+1][j+1] }由上述代码可知,最多两个for循环,所以,时间复杂度为O(n2).(b), 用数组path[]记录获得最大价值的路径,思想是自上而下比较每排的maxb最大值,将位置赋给数组path[],然后再判断该最大值的下排与之相邻的三个maxb值,而后重复上面的操作,直到最后一排。

求path的伪代码如下:path[1]=1 //因为每次都是从第一排的第一桩开始,所以,path[1]=1 n=1;for(int i=2;i<=line;i++)max{ maxb[i][n-1], maxb[i][n], maxb[i][n+1]}path[i]=n; //如果maxb[i][n]最大,则n=n-1;由该代码可知,求path的时间复杂度为O(n)。

动态规划算法分析与设计实验报告

动态规划算法分析与设计实验报告

算法分析与设计实验报告实验题目: 动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。

2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1就是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数与第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1、动态规划算法"<<endl; cout<<"2、直接递归算法"<<endl; cout<<"3、备忘录算法"<<endl;cout<<"0、退出、、、"<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;cout<<"最优计算次序为:";Traceback(1,n);cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 3: Look(1,n); cout<<"备忘录算法解决矩阵连乘问题:"<<endl;cout<<"最优计算次序为:";Traceback(1,n);cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 0:q=0; break; }cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1、动态规划算法"<<endl; cout<<"2、直接递归算法"<<endl; cout<<"3、备忘录算法"<<endl;cout<<"0、退出、、、"<<endl;cout<<"请选择算法:";cin>>q;cout<<endl; }cout<<endl; }5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。

(完整word版)动态规划算法设计与应用

(完整word版)动态规划算法设计与应用

实验报告课程算法设计与分析实验实验名称动态规划算法设计与应用第 1 页一、实验目的1.加深对动态规划算法的基本原理的理解,掌握用动态规划方法求解最优化问题的方法步骤及应用;2.用动态规划设计整数序列的最长递增子序列问题的算法,分析其复杂性,并实现;3.用动态规划设计求凸多边形的三角剖分问题的算法,分析其复杂性,并实现。

4.选做题:用动态规划设计求解0/1背包问题的算法,分析其复杂性,并实现。

二、实验内容(一) 最长递增子序列问题1.问题描述求一个由n个整数组成的整数序列的最长递增子序列。

一个整数序列的递增子序列可以是序列中非连续的数按照原序列顺序排列而成的。

最长递增子序列是其递增子序列中长度最长的。

2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1700题输入:输入的第一行是一个正整数n,表示测试例个数。

接下来几行是n个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数k(k<=500),表示整数序列的长度,第二行给出整数序列,整数之间用一个空格隔开。

(设给出的每个整数序列的最长递增子序列都是唯一的。

)输出:对于每个测试例输出两行,第一行为最长递增子序列的长度,第二行为最长递增子序列,整数之间用一个空格隔开。

两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。

3. 测试数据输入:353 14 2 361 3 9 52 6201 2 7 13 3 5 10 24 12 4 9 16 53 6 83 8 23 11 31 47输出:31 2 341 3 5 6101 2 3 5 10 12 16 23 31 474. 设计与实现的提示(1) 寻找最优子结构、写出递归方程是问题的关键。

(2) 以Ai为末元素的最长递增子序列(记为S(i)),等于以使S(j), (j=1~i), 最大的那个Aj 为末元素的递增子序列最末再加上Ai;如果这样的元素不存在,那么Ai 自身构成一个长度为1的以Ai为末元素的递增子序列。

动态规划模型实验报告

动态规划模型实验报告

一、实验目的本次实验旨在通过动态规划模型的应用,深入理解动态规划的基本概念、解题步骤以及在实际问题中的应用。

通过实验,掌握动态规划模型的设计、求解和优化方法,提高解决复杂问题的能力。

二、实验内容1. 实验背景动态规划(Dynamic Programming,DP)是一种求解多阶段决策过程最优化的数学方法。

它适用于具有多阶段特性问题的求解,如背包问题、最长公共子序列问题、最短路径问题等。

动态规划的核心思想是将复杂问题分解为相互重叠的子问题,通过子问题的最优解构造原问题的最优解。

2. 实验步骤(1)选择实验题目本次实验选择背包问题作为实验题目。

背包问题是一个经典的动态规划问题,其目标是求在给定的物品重量和总重量限制下,如何选择物品使得背包内物品的总价值最大。

(2)建立动态规划模型根据背包问题的特点,我们可以将问题分解为以下子问题:- 子问题1:对于每个物品,选择放入背包或不放入背包。

- 子问题2:在物品已确定的情况下,计算当前背包的总价值。

状态表示:令dp[i][j]表示前i个物品放入容量为j的背包所能获得的最大价值。

状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

初始化:dp[0][j] = 0,表示不放入任何物品时的最大价值为0。

填表顺序:按照物品的顺序填表,从左到右,从上到下。

返回值:dp[n][m],其中n表示物品数量,m表示背包容量。

(3)编程实现使用Python编程语言实现背包问题的动态规划模型。

(4)实验结果与分析通过实验,我们可以得到以下结果:- 在给定的物品重量和总重量限制下,背包内物品的总价值最大为V。

- 在物品已确定的情况下,可以得到每个物品是否放入背包的决策。

(5)优化与改进- 使用滚动数组优化空间复杂度,减少存储空间。

- 优化状态转移方程,提高计算效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
void init(int cost[])
{
int i,j;
for(i=0;i<13;i++)
{
for(j=0;j<13;j++)
{c[i][j]=MAX;
}
}
c[1][2]=9; c[1][3]=7;c[1][4]=3; c[1][5]=2;
c[2][6]=4; c[2][7]=2; c[2][8]=1;
{
if(c[j][r]!=MAX)
c[3][6]=2; c[3][7]=7;
c[4][8]=11;
c[5][7]=11;c[5][8]=8;
c[6][9]=6; c[6][10]=5;
c[7][9]=4; c[7][10]=3;
c[8][10]=5;c[8][11]=6;
c[9][12]=4;
c[10][12]=2;
c[11][12]=5;
cost[j]=0;ห้องสมุดไป่ตู้
for(j=n_1;j>=1;j__)
{ temp=0;
mi n=c[j][temp]+cost[temp];//初始化最小值
for(r=0;r<=n ;r++)
{ if(c[j][r]!=MAX)
{ if((c[j][r]+cost[r])<mi n)〃找到最小的r
{min=c[j][r]+cost[r];
void fgraph(int cost [ ],int path[ ],int d[])向前递推算法求最短路径
void bgraph(int bcost[ ],int path1[ ],int d[])向后递推算法求最短路径
向前递推算法实现:
{int r,j,temp, min;
for(j=0;j<=n ;j++)
}
void fgraph(int cost[],int path[],int d[])
{
int r,j,temp,min;
for(j=0;j<=n;j++)
cost[j]=0;
for(j=n-1;j>=1;j--)
{
temp=0; min=c[j][temp]+cost[temp]; for(r=0;r<=n;r++)
三、实验分析与设计
采用动态规划算法的两个基本要素:
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题的重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计
算多次。
实验定义:
#define n 12/*定义顶点数*/
#define k 5/*定义段数*/
void init(int cost [ ]) //初始化图
temp=r;
}
}
}
cost[j]=c[j][temp]+cost[temp];
d[j]=temp;
}
path[1]=1;
path[k]=n;
for(j=2;j<k;j++)
path[j]=d[path[j-1]];
}
后递推算法与前递推算法类似
四、实验结果显示
五、实验总结
通过理解最优子结构的性质和子问题重叠性质,在VC++6.0环境下实现动态 规划算法。动态规划算法是由单阶段的决策最优逐步转化为多阶段的决策最优,最
动态规划算法设计
、实验内容
编程实现图示多段图的最短路径问题的动态规划算法。(源代码见附录A)
、实验目的及环境
实验目的:
1理解动态规划算法的概念;
2、掌握动态规划算法的基本要素;
3、掌握设计动态规划算法的步骤;
4、通过应用范例学习动态规划算法的设计技巧与策略。
实验环境:
WIN7系统下VC++6.0环境
后构造一个最优解。经过反复的调试操作,程序运行才得出结果。
六、
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <iostream.h>
#define MAX 100
#define n 12
#define k 5
int c[n][n];
相关文档
最新文档