3.2.1对数及其运算2教案教师版
3.2.1对数——对数的概念课件(苏教版)
课
主
时
导
作
学
业
课 堂 互 动 探 究
教 师 备 课 资 源
菜单
SJ ·数学 必修1
教
学
思
教
想
法 分
●教学建议
方 法
析
技
教
1.对数概念的引入
能
学 方
建议教师先让学生阅读教材中的实例,体会数学概念源
当 堂
案
双
设 于生活,再复习指数式,引入对数概念,便于学生接受. 基
计
达
课
2.关于指数式与对数式互化的教学
析
法 技
能
教
学
当
方
堂
案
双
设
基
计
达
标
课
前
自
课
主
时
导
作
学
【思路探究】 根据对数的定义 ab=N(a>0,且 a≠1)⇔ 业
课 堂 互 动 探 究
logaN=b(a>0 且 a≠1)进行互化,要分清各字母分别在指数式 和对数式中的位置.
教 师 备 课 资 源
菜单
SJ ·数学 必修1
教
学
思
教
想
法 分 析
【自主解答】 (1)①由 3-3=217,得 log3217=-3.
菜单
SJ ·数学 必修1
思 想 方 法 技 能
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
SJ ·数学 必修1
思 想 方 法 技 能
高中数学人教新课标必修一B版教案3.2.1对数及其运算
3.2.1对数及其运算(第一课时)一、教学目标:二、教学重点:1重点是对数定义的理解2在指数知识的基础之上,利用类比联想,互动探究的方式来引出对数定义。
鼓励学生利用网络查找知识背景,从学生的角度来提问题并在解决问题的过程中加深对知识的理解。
引导学生初步认识数学是一门严谨的科学并进一步理解数学中规定的合理性三、教学方法:1充分利用信息技术和网络资源来学习知识2学生在一定的情境背景下,借助老师和学习伙伴的帮助下,利用必要的学习资料等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的3 教学方法与学习指导策略建议对学生的学法指导:联想类比。
数学是一门基础学科,数学的概念、性质抽象严谨,因此在学习过程中引导学生借鉴已有知识和经验,通过观察、分析、类比发现新的知识,这有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。
鼓励学生自主学习和协作学习。
学生是在特定的学习环境进行学习。
“水涨船高”,通过小组协商、讨论;使原来相互矛盾的意见、模糊不清的知识逐渐变得明朗、一致,使问题顺利解决。
鼓励学生利用网络查询有关对数的相关信息。
对数的应用学生感到数学是有用的有趣的整合各学科知识为今后的学习做准备。
四、教学过程:引入新课[仿照初中如何引入根式定义的方式来导入]资料:布尔基与耐普尔数学史册上的对数发明者是两个人:英国的约翰·耐普尔(Joh n Na ei p r,1550-1617)和瑞士的乔伯斯特·布尔基(Jo b st Bürgi,1552-1632).布尔基原是个钟表技师,1603年被选为布拉格宫庭技师后,开始与著名的天文学家开普勒接触,了解到天文学计算的一些具体情况.他体察天文学家的辛劳,并决定为他们提供简便的计算方法.布尔基所提出的简便计算方法就是一张实用的对数表.从原则上说,史提非已经解决了将乘(除)运算转为加(减)运算的途径.但是史提非所给出的两个数列中的数字十分有限,它不能付之于实用,实用的对数表必须包括所有要乘的数在内.耐普尔原是苏格兰的贵族.生于苏格兰的爱丁堡,十二岁进入圣安德鲁斯大学的斯帕希杰尔学院学习.十六岁大学尚未毕业时又到欧洲大陆旅行和游学,丰富了自己的学识.耐普尔虽不是专业数学家,但酷爱数学,他在一个需要改革计算技术的时代里尽心尽力.正如他所说:“我总是尽量使自己的精力和才能去摆脱麻烦而单调的计算,因为这种令人厌烦的计算常使学习者望而生畏.”耐普尔一生先后为改进计算得出了球面三角中的“耐普尔比拟式”、“耐普尔圆部法则”以及作乘除用的“耐普尔算筹”,而为制作对数表他花了整整20年时间.对数产生于17世纪初叶,为了适应航海事业的发展,需要确定航程和船舶的位置,为了适应天文事业的发展,需要处理观测行星运动的数据,就是为了解决很多位数的数字繁杂的计算而产生了对数恩格斯曾把对数的发明与解析几何学的产生、微积分学的创始并称为17世纪数学的三大成就,给予很高的评价3.2.1对数及其运算(二)一、教学目标:1、知识与技能(1)理解对数的运算性质,掌握对数的运算法则(2)掌握对数的加、减、乘、除运算法则(3)知道对数运算性质的实质:把乘、除、乘方、开方的运算转化为对数的加、减、乘运算,从而降低了运算难度,加快了运算速度,简化了计算方法.2、过程与方法(1)通过学习对数运算性质和法则,再次强调真数大于零(2)学会借助实例分析、探究数学问题3、情感、态度与价值观通过对数运算性质的研究,增强学生对数学美的体验,培养乐于求索的精神,形成科学、严谨的研究态度。
高中数学 第三章 基本初等函数(Ⅰ)3.2.1 对数及其运算 第2课时 积、商、幂的对数与换底公式
4.3log72-log79+2log7
2
3 2
=
.
解析:原式=log78-log79+log7 9 8
=log7 8 +log7 9
9
8
=log7
8 9
9 8
=log71=0.
答案:0
课堂探究·素养提升
类型一 对数运算性质的应用
【例 1】 计算下列各式的值.
(1) 1 lg 32 - 4 lg 8 +lg 245 ; 2 49 3
=(lg 5)2+(1-lg 5)(1+lg 5)=(lg 5)2+1-(lg 5)2=1.
类型二 换底公式 【例2】 计算:(log2125+log425+log85)·(log52+log254+log1258).
思路点拨:由于所给对数的底数不同,无法直接进行计算,可利用换底公 式计算. 解:法一
原式=(log253+ log2 25 + log2 5 )(log52+ log5 4 + log5 8 )
log2 4 log2 8
log5 25 log5125
=(3log25+ 2 log2 5 + log2 5 )(log52+ 2 log5 2 + 3log5 2 )
2 log2 2 3log2 2
=
lg1.8
=1 .
lg1.8
2lg1.8 2 lg1.8 2
方法技巧 利用对数的运算法则解答问题一般有两种思路: (1)正用公式:将式中真数的积、商、幂、方根运用对数的运算法则化为对 数的和、差、积、商,然后化简求值. (2)逆用公式:将式中对数的和、差、积、商运用对数的运算法则化为真数 的积、商、幂、方根,然后化简求值.
对数的概念教学设计(江苏南京师大附中张萍)
课题:3.2.1对数的概念(第1课时)授课教师:师大学附属中学萍教材:教版高中数学必修1一. 教材分析对数这节课是教版必修1第3章对数函数第1课时.学习对数的概念是对指数概念和指数函数的回顾与深化,是学习对数函数的基础.二. 学情分析高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程.对数的概念对学生来说,是全新的,需要教师引导学生利用指数与指数函数的相关知识理解对数的概念.在教学过程中,力求让学生体会运用从特殊到一般,类比等数学方法来理解对数式与指数式之间的在联系,将对数这一新知纳入已有的知识结构中.三. 教学目标1. 理解对数的概念,会熟练地进行指数式与对数式的互化.2. 学生在解决具体问题中体会引入对数的必要性,在举例过程中理解对数.3. 学生在学习过程中感受化归与转化、数形结合、特殊到一般的数学思想,学会用相互联系的观点辩证地看问题.四. 重点与难点1. 重点:(1)对数的概念;(2)对数式与指数式的互化.2. 难点:对数概念的理解.五. 教学方法与教学手段问题教学法,启发式教学.六.教学过程1. 创设情境 建构概念某种放射性物质不断变化为其他物质,每经过1年,这种物质剩留的质量是原来的84%.(设该物质最初的质量为1)【问题1】你能就此情境提出一个问题吗?[设计意图]通过学生熟悉的问题情境,让学生自主地提出问题,引发思考,体会这些问题之间的关联是指数式a b =N 中已知两个量求第三个量.[教学过程]师:写好的同学请和同桌交流一下.师:你提的是什么问题呢?生:经过5年,这种物质的剩留量为原来的多少?师:是多少呢?生:0.845=N.师:有不同的问题吗?生:经过多少年,这种物质的剩留量为原来的一半?师:这个问题怎么解决呢? 0.84x=12. 师:同学们提出了很好的问题,这两个问题实际上都与我们学过的指数函数y=0.84x 有关.第一个问题是已知指数x 求幂y ;第二个问题是已知幂y 求指数x .如果底数是未知的,那么,我们还可以解决已知指数x 和幂y 求底数a 的问题.[阶段小结]这些问题实际就是在研究a b=N (其中a >0且a ≠1)中已知两个量求第三个量.我们可以研究以下三类问题:设a b=N.(1)已知a,b,求N;比如32=9,53=125,……(2)已知b,N,求a;比如a5=32⇒a=2,a3=5⇒a=35,……(3)已知a,N,求b.2b=2⇔b=1,2b=4⇔b=2,【问题2】2b=3,这样的指数b有没有呢?[设计意图]利用具体的问题引发学生的认知冲突,引导学生运用数形结合的方法探索指数b是存在的,并且只有一个,进而想办法用数学符号表示指数b.[教学过程]生:2b=3这个问题和指数函数y=2x有关,我们可以作出它的图象来观察.师:作出2x=3与y=3的图象,发现它们有交点,而且只有一个,那么指数b 在哪里呢?生:交点的横坐标就是指数b.师:看来满足2b=3的指数b可由“2和3”唯一确定,但它究竟是个什么数呢?现在用我们学过的数又不能把它写出来,怎么办呢?生:用一个新的符号来表示它.师:是的,数学家也是这么想的,他们解决这种问题的办法就是引进一个新的符号,比如这里的a3=5,a等于什么呢?数学家就用a=35来表示,a是由3和5确定的,将3和5写在相应的位置.师:现在如何表示这里的指数b 呢?指数b 由2和3确定,数学家用log 23来表示,读作以2为底3的对数,其中2为底数,写在下方,3叫真数.师:有了这个符号,就可以解决我们刚才的问题了,0.84x=12⇔ x =log 0.8412. 师:你能再举一些这样的对数吗?生:3b =10⇔ b =log 310;4b =5⇔ b =log 45;2b =7⇔ b =log 27;……师:这里的1能用对数表示吗?生:1= log 22.师:同样这里的2也可以表示为log 24. 对数b 其实就是一个数.思考:根据这些具体的例子,你能得到一般情况下,对数是怎么表示的吗? 对数的概念:如果a 的b 次幂等于N (其中a >0,a ≠1),即a b =N ,那么就称b 是以 a 为底 N 的对数,记作log a N =b .其中,a 叫做对数的底数,N 叫做真数.数学史简介:对数是由17世纪格兰数学家纳皮尔发明的,有兴趣的同学可以查阅相关的数学史资料.师:根据对数的概念,我们不难发现,对数来源于指数,这两个等式表示的是a ,b ,N 三个量之间的同一个关系,只是表现形式不同而已,比如在a b =N 中,a >0,a ≠1,a 叫底数,b 叫指数,N 叫幂,当变为对数式时,a 的围不变,a 还叫底数,指数b 现在叫对数,幂N 现在叫真数.2.具体实例 理解概念[学生活动]请每位同学写出2—3个对数,与同桌交流.[设计意图]深入理解对数.第一阶段,让学生体会对数可以转化为指数,对数式和指数式是等价的;第二阶段,认识特殊的对数,明确对数式中a ,b ,N 的围.[教学过程]师:大家都在积极地认识对数这个新朋友.我们一起来看看,有同学写了这样一个对数log 327. 你知道它是个什么样的数吗?师:为什么等于3呢?生:因为33 =27.师:还有同学写了log 139,这是个什么数啊?生:-2.师:为什么?生:因为(13)-2 =9. 师:想认识对数只要将它转化为相应的指数式就容易理解了.师:我也写一个log 926,这是个什么数呢?师:你知道它大概是多大吗?生:1到2之间.师:你怎么知道的呢?生:因为91=9,92=81,26在9和81之间.师:你是将问题转化为指数问题来考虑的.我们知道对数就是一个数,可以设它为b,转化为9b=26就好理解了.[阶段小结]其实想要认识同学写的对数,只要将它转化为相应的指数式就明白了,指数式和对数式是可以等价转化的.师:看大家写的对数有大于0的,有小于0的,有没有等于0的对数呢?生:log21=0.师:还有吗?生:只要底数取a>0,a≠1,真数为1的对数都等于0.师:怎么表示呢?生:log a1=0(a>0,a≠1).师:为什么?生:因为a0=1(a>0,a≠1) .师:a0=1是个特殊的指数式,还有其他特殊的指数式吗?生:a1=a.师:由这个我们又能得到什么样的对数式呢?生:log a a=1(a>0,a≠1) .师:对数可正可负可为0,那对数是否能取到所有的实数呢?师:你怎么知道的呢?生:从指数式a b=N(其中a>0且a≠1)中我们可以知道.师:对数b可以取到一切实数,底数a>0,a≠1,真数N应满足什么要求呢?生:大于0.生:在a>0且a≠1时,a b=N,根据指数函数的值域可知N只能取大于0的数.[阶段小结]通过讨论,我们认识了一些特殊的对数,知道对数b可以取到一切实数,但是真数N必须大于0. 在认识对数的过程中,我们运用了对数式与指数式之间的等价转化.3.概念应用方法总结练习求下列各式的值:(1)log264;(2)log101100;(3)log927.[设计意图](1)理解对数是个数,对数问题可以转化为指数问题来解决.(2)反思解题过程,从中得到两个对数性质log a a b=b,a log a N=N (a>0且a≠1),为对数求值提供新的方法.(3)激起学生进一步探索对数相关结论的兴趣.(4)介绍常用对数和自然对数.[教学过程]师:回头看第1个问题的解决过程,log226=6,log1010-2=-2你有什么发现?师:一般情况下log a a b=b对吗?生:对,因为a b= a b.师:在log a a b=b这个式子中,真数N变成了a b,相当于将指数式a b=N带入对数式log a N=b,消去N.现在如果将对数式log a N=b带入指数式a b=N消去b,会得到什么呢?生:a log a N=N (a>0且a≠1).师:从第3小题中,你又会有什么发现呢?对数还有很多有趣的性质,有兴趣的同学可以继续研究.师:大家看第2小题底数是10,我们通常将以10为底的对数叫常用对数,简记为log10 N=lg N.以后在高等数学和物理学中还会经常用到以e为底的对数,叫做自然对数,loge N=ln N.比如,lg2,ln3.【问题3】什么是对数?研究对数的基本方法是什么?[设计意图]回顾反思本节课学习的知识和方法.主要让学生体会研究一个新的数学对象的一般方法,即生:对数就是一个数.遇到对数问题转化为指数问题来解决.师:很好,我们通过一些具体的例子得到了对数的概念,又通过举例和练习进一步认识了对数,在认识的过程中,发现遇到对数的问题可以转化为指数问题来解决.这两个式子是等价的,表示的是a,b,N这三个量之间的同一种关系.师:既然对数就是一个数,你觉得下面我们可以研究什么?生:对数的运算.师:那如何研究对数的运算性质呢?请同学们先回去思考,我们下节课再研究.4. 课堂小结布置作业(1)课本P74 练习第1、3、4、5题.(2)探究对数的运算性质.[设计意图]布置作业的面向全体学生,旨在掌握对数的概念,熟练对数式与指数式的互化.探究对数的运算性质给学生提供进一步自主研究对数的机会.七. 教学设计说明对数概念对于高一的同学来讲是一个全新的概念。
教学设计3:3.2.1 对数及其运算
3.2.1对数及其运算一、教学内容解析本节课是人教B版第三章第二节对数与对数函数中第一小节对数及其运算的第一课时。
对数对学生来说是一个全新的概念,学习起来略显困难,不过在此之前,学生已学习了指数和指数函数的有关知识,这为过渡到本节的学习起着铺垫的作用;本章后面的对数函数对于学生来说是一个全新的函数模型,而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。
本节内容的学习主要是为让学生理解对数的概念,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化,数形结合的思想,培养学生的逻辑思维能力都具有重要的意义。
二、教学目标设置通过对本节课教材的分析,考虑到学生已有的认知结构和心理特征,依据新课标制定出如下三个方面的教学目标:1、知识与技能目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
2、过程与方法目标:通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
小组交流对对数的理解和认识,培养学生合作学习的能力,使学生经历认知逐渐深入的过程。
3、情感态度与价值观:积极引导学生主动参与学习的过程,激发他们研究数学问题的兴趣,形成主动学习的态度,培养学生自主探究以及合作交流的能力。
三、学生学情分析我校在营口市学生层次较好,我所授课的班级是我校的实验班,学生数学能力很强,思维较活跃。
我校的教学模式为小组合作交流学习模式,学生已经养成了小组合作学习的习惯。
即学生通过预习,结合学案,自主学习、探究的模式。
前面学生已经学习了指数和指数函数的有关知识。
在对教材和教学目标及学情分析后,我确定出本节课的教学重点是:重点:对数的概念,对数式与指数式的相互转化。
难点:对数概念的理解,对数性质的理解。
四、教学策略分析为了最大程度发挥学生的主观能动性,实践人本教育,我校采用“主动、合作、交流”学习方法学习,把学生分成四人小组,分工合作,进行讨论探究逐渐培养学生“会观察”、 “会分析”、“会论证” 、“会合作”的能力。
3.2.1(二)对数及其运算教案
3.2.1 对数及其运算(二)【学习要求】1.加深对数的概念;2.了解对数运算性质的推导过程,掌握对数的运算性质、换底公式;3.能熟练运用对数的运算性质进行化简求值.【学法指导】通过对数运算性质的推导及对数式的运算、求值、化简,培养分析问题、解决问题的能力及数学应用的意识和科学分析问题的精神和态度.填一填:知识要点、记下疑难点1.对数运算法则:log a (MN)= log a M + log a N ,log a M N= log a M - log a N , log a M n = nlog a M .2.log b N =log a N log a b 叫做换底公式,log a m b n =n m log a b,log a b =1log b a(或 log a b·log b a =1 ). 研一研:问题探究、课堂更高效[问题情境]我们已经知道,实数有加、减、乘、除、乘方、开方运算,集合有交、并、补运算,指数也有三种运算,那么,对数有怎样的运算?探究点一 积、商、幂的对数问题1 指数的运算法则有哪些?答:a m ·a n =a m +n ;a m ÷a n =a m -n ;(a m )n =a mn ;m a n =a n m. 问题2 你能写出指数式与对数式的互化公式吗?答:指数式与对数式的互化公式为:a b =N ⇔log a N =b.问题3 根据对数的定义及对数与指数的关系你能解答下列问题吗?(1)设log a 2=m,log a 3=n,求a m +n ;(2)设log a M =m,log a N =n,试利用m 、n 表示log a (MN).解:(1)由log a 2=m,得a m =2,由log a 3=n,得a n =3,所以a m ·a n =a m +n =2×3=6,即a m +n =6.(2)由log a M =m,得a m =M,由log a N =n,得a n =N.所以a m ·a n =a m +n =M×N,把指数式化为对数式得:log a (MN)=m +n.小结:在问题3中的第(2)题中,我们得到log a (MN)=m +n,又由log a M =m,log a N =n,进行m,n 的代换后就得到对数的一条运算性质,即:log a (MN)=log a M +log a N.因为同底数幂相乘,不论有多少因数,都是把指数相加,所以这个性质可推广到若干个正因数的积:log a (N 1N 2…N k )=log a N 1+log a N 2+…+log a N k .问题4同样地,由a m ÷a n =a m -n 和(a m )n =a mn ,也得到对数运算的其他性质:log a M N=log a M -log a N;log a M n =nlog a M(n ∈R) (a>0,且a≠1,M>0,N>0).你能不能推导出呢?答:令M =a m ,N =a n ,则M N=a m ÷a n =a m -n , ∴m -n =log a M N.又由M =a m ,N =a n , ∴m =log a M,n =log a N,即:log a M -log a N =m -n =log a M N; 当n≠0时,令log a M =p,由对数定义可以得M =a p ,∴M n =(a p )n =a np ,∴log a M n =np,将log a M =p 代入,即证得log a M n =nlog a M.当n =0时,显然成立.∴log a M n =nlog a M.小结:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.对数运算性质可以用简易语言表达:“积的对数=对数的和”,“商的对数=对数的差”,“正数的n 次方的对数=正数的对数的n 倍”.有时用逆向运算性质:如log 105+log 102=log 1010=1.例1 用log a x,log a y,log a z 表示下列各式:(1)log a xy z ; (2)log a (x 3y 5); (3)log a x yz ; (4)log a x 2y 3z . 解:(1)log a xy z=log a (xy)-log a z =log a x +log a y -log a z;(2)log a (x 3y 5)=log a x 3+log a y 5=3log a x +5log a y;(3)log a x yz =log a x -log a (yz)=log a x -(log a y +log a z)=12log a x -log a y -log a z; (4)log a x 2y 3z =log a (x 2y)-log a 3z =log a x 2+log a y -log a z =2log a x +12log a y -13log a z. 小结:真数的取值范围是(0,+∞),log 2(-3)(-5)=log 2(-3)+log 2(-5)不成立,log 10(-10)2=2log 10(-10)也不成立.要特别注意log a (MN)≠log a M·log a N,log a (M±N)≠log a M±log a N.跟踪训练1计算:(1)lg 5100; (2)log 2(47×25); (3)lg 4+lg 25; (4)(lg 2)2+lg 20×lg 5.解:(1)lg 5100=15lg 102=25lg 10=25; (2)log 2(47×25)=log 247+log 225=log 222×7+log 225=2×7+5=19;(3)lg 4+lg 25=lg(4×25)=lg 100=2;(4)(lg 2)2+lg 20×lg 5=(lg 2)2+(1+lg 2)(1-lg 2)=(lg 2)2+1-(lg 2)2=1.探究点二 换底公式与自然对数导引 在实际应用中,常常碰到底数不为10的对数,如何求这类对数呢?如何求log 35?问题1:假设log 25log 23=x,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可得到什么结论? 答:把3x =5化为对数式为:log 35=x,又因x =log 25log 23,所以得出log 35=log 25log 23的结论. 问题2 如果a>0,且a≠1;c>0,且c≠1;b>0,那么log c b log c a与哪个对数相等?如何证明这个结论? 答:结论为log c b log c a=log a b. 证明如下:令log c b log c a =x ⇒log c b =xlog c a ⇒log c b =log c a x ⇒b =a x ⇒x =log a b ⇒log c b log c a=log a b. 小结:(1)log a b =log c b log c a(a>0,且a≠1;c>0,且c≠1;b>0)叫做换底公式. (2)由换底公式可得两个结论:①log a b n =n m log a b; ②log a b =1log b a(或log a b·log b a =1). 问题3:什么叫做自然对数?自然对数如何表示?答:以e =2.718 28…为底的对数叫做自然对数.记作ln N. 例2 已知log 23=a,log 37=b,用a,b 表示log 4256.解:因为log 23=a,则1a=log 32, 又∵log 37=b,∴log 4256=log 356log 342=log 37+3·log 32log 37+log 32+1=ab +3ab +a +1. 小结:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底. 跟踪训练2 求log 89·log 2732的值. 解:log 89·log 2732=lg 9lg 8×lg 32lg 27=2lg 33lg 2×5lg 23lg 3=23×53=109. 例3 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2. 解:(1)方法一原式=12(lg 25-lg 72)-43lg 2+lg(72×5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12.方法二:原式=lg 427-lg 4+lg 75=lg 42×757×4=lg(2×5)=12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.小结:这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂,然后化简求值. 跟踪训练3 (1)已知lg 2=0.301 0,lg 3=0.477 1,求lg 45;(2)已知lg x =2lg a +3lg b -5lg c,求x.解: (1)lg 45=12 lg 45=12lg 902=12[lg 9+lg 10-lg 2]=12[2lg 3+1-lg 2]=lg 3+12-12lg 2=0.477 1+0.5-0.150 5=0.826 6;(2)由已知得:lg x =lg a 2+lg b 3-lg c 5=lg a 2b 3c 5,∴x =a 2b 3c 5.练一练:当堂检测、目标达成落实处1.下列式子中成立的是(假定各式均有意义)( ) A.log a x·log a y =log a (x +y)B.(log a x)n =nlog a xC .log a x n =log a nxD.log a xlog a y =log a x -log a y解析:因log a x n =1n log a x =log a x =log a nx,所以选C.2.log 327+lg 25+lg 4+7+(-9.8)0=__________.解析:原式=12log 333+lg(25×4)+2+1=32+2+3=132.3.求证:(1)log x ylog y z =log x z;(2)log a b n =log a b.证明:(1)因为log x ylog y z =log x y log xzlog x y =log x z,所以log x ylog y z =log x z.(2)log a b n =log a b n log a a n =nlog a bnlog a a =log a b.课堂小结:1.对数的运算法则:如果a>0,a≠1,M>0,N>0有:(1)log a (MN)=log a M +log a N(2)log a M N =log a M -log a N(3)log a M n =nlog a M (n ∈R)2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c blog c a (a>0且a≠1,c>0且c≠1,b>0).。
高中数学人教新课标必修一B版教案3.2.1对数及其运算(两课时)
课题 §3.2.1 对数及其运算(一) (一)学习目标知识与技能:理解对数的概念,能根据对数概念进行指数与对数之间的互化;理解对数恒等式及对数性质;熟练运用计算器求一个正实数的常用对数。
过程与方法:通过对数概念的学习,培养学生从特殊到一般的概括思维能力,渗透化归的思想。
情感、态度与价值观:通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想。
(二)重点难点 重点:对数的定义难点:对数的概念、对数的符号表示(三)教学内容安排1.复习引入细胞分裂x 次后,细胞个数为2x y =;给定分裂次数x ,可求出细胞分裂后的个数y ,实际问题中,常需要由细胞分裂后的个数y ,计算分裂的次数x ,又如指数式9x y =中,已知底数9和幂y 的值,求指数x ,怎样求呢?2.新授内容在指数函数x y a =()0,1a a >≠中,对实数集R 内的每一个值x ,在正实数集内都有唯一的值y 和它对应;反之,对正实数集内的每一个确定的值y ,在R 内都有唯一的值x 和它对应;我们把幂指数x 叫做以a 为底 y 的对数。
定义:一般地,对于指数式 N a b = ()0,1a a >≠,我们把数 b 叫做以a 为底 N 的对数,记作 log a b N =,读作“数 b 等于以a 为底 N 的对数”,a 叫做对数的底数,N 叫做真数。
学生举例例如:1642= ⇔ 216log 4= ; 100102=⇔2100log 10=2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-= 探究:⑴负数与零没有对数(∵在指数式中 N > 0 )⑵01log =a ,1log =a a∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a ⑶对数恒等式如果把 N a b = 中的 b 写成 N a log , 则有 N a N a =log ⑷底数的取值范围),1()1,0(+∞ ;真数的取值范围范围),0(+∞。
高中数学3.2.1对数的概念教案(新人教B版必修1)
通过小结使 学生加深对 学生总结,师 知识的记忆、 生共同点评. 理解,养成总 结的习惯.
w w w . k s 5 u . c o m 来 源 : 高 考 资 源 网
高 考 资 源 网 ( w w w . k s 5 u . c o m )
1 2
教师点拨,学 加深定义 生 发 现 、 归 的理解. 纳、回答.
பைடு நூலகம்
② 8.80 1 ⑤ log4 64 3
③ log3 3 1 ⑥ log1 16
8
5 5
2 3
学生练习,师 加 深 定 义 的 生共同总结. 理解与应用.
巩固 练习
(2)计算: ① log6 36 ⑤ log2 4 8 ② log4 8 ③ log1 9
课 题 授课人
教学 目标
重点 难点 教学 环节
对数及其运算(第一课时) 课型 新授课 大连育明高中 常爱华 1.知识与技能: (1) 掌握对数的定义及性质; (2) 能利用对数定义解决简单的对数计算; (3) 初步理解对数的运算性质. 2.过程与方法: (1) 在解决问题的过程中,掌握对数的定义; (2) 通过对数运算性质的探索及推导过程,培养学生“合情推理”的能力和“演 绎归纳”的数学思想方法. 3.情感、态度与价值观: (1) 通过对数在历史上发明的交流,了解对数在人类文明发展中的作用,提高学 生对数学文化价值的认识; (2) 通过“合情推理”和“演绎归纳”的数学思想方法的运用,培养学生大胆探 索、实事求是的科学精神. 对数的定义及对数的运算性质 对数运算性质的发现及推导 教学过程 教学内容 师生活动 设计意图 引出课题,交 代对数运算 (1) 已知 a、 b ,求 N ; 教师提出问 学习的必要 (2) 已知 b、N ,求 a ; 题,学生思考 性. (3) 已知 a、N ,求 b ----为解决这类计算,引入新的 回答. 概念“对数” . 通过对数历 史发明的交 流,了解对数 2.对数的发明与功绩. 学生交流. 在人类文明 发展中的作 用,提高学生 对数学文化 价值的认识. 3.对数的定义: 1.在指数式 a b N 中,可以 定义:对于指数式 a b N ,我们把“以 a 为底 N 的
高中数学苏教版必修一学案:3.2.1 第2课时 对数的运算及换底公式
第2课时对数的运算及换底公式学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件(重、难点);2.掌握换底公式及其推论(难点);3.能熟练运用对数的运算性质进行化简求值(重点).预习教材P75-78,完成下面问题:知识点一对数运算性质一般地,如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N;(2)log a MN=log a M-log a N.【预习评价】1.有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的结论,使我们不必把对数式还原成指数式就能计算?提示有.例如,设log a M=m,log a N=n,则a m=M,a n=N,∴MN=a m·a n=a m+n,∴log a(MN)=m+n=log a M+log a N,得到的结论log a(MN)=log a M+log a N 可以当公式直接进行对数运算.2.log24,log28,log232之间存在什么关系?提示log24+log28=log232=log2(4×8),log2328=log24=log232-log28,log2324=log28=log232-log24.知识点二换底公式一般地,对数换底公式log a b=log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1);特别地:log a b·log b a=1(a>0,且a≠1,b>0,且b≠1).【预习评价】思考假设log25log23=x,则log25=x log23,即log25=log23x,从而有3x=5,再化为对数式可得到什么结论?提示把3x=5化为对数式为:log35=x,又因为x=log25log23,所以得出log35=log25log23的结论.知识点三常用结论由换底公式可以得到以下常用结论:(1)log a b=1log b a;(2)log a b·log b c·log c a=1;(3) =log a b;(4)=mn log a b;(5)=-log a b. 【预习评价】判断log9(x+5)=12log3(x+5).()提示√题型一积商幂的对数运算【例1】化简log a x2y 3z.解∵x2y3z>0且x2>0,y>0,∴y>0,z>0.log a x2y3z=log a(x2y)-log a3z=log a x2+log a y-log a 3 z=2log a|x|+12log a y-13log a z.规律方法使用公式要注意成立条件,log2(-3)(-5)=log2(-3)+log2(-5)是不成立的.log10(-10)2=2log10(-10)是不成立的.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log a N .【训练1】 已知y >0,化简log a x yz . 解 ∵x yz >0,y >0,∴x >0,z >0.∴log a x yz =log a x -log a (yz )=12log a x -log a y -log a z .题型二 利用换底公式化简、求值【例2】 计算:(1)lg 20+log 10025;(2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52).解 (1)lg 20+log 10025=1+lg 2+lg 25lg 100=1+lg 2+lg 5=2.(2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52)=(log 253+log 2252+log 235)·=(3+1+13)log 25·(1+1+1)log 52=133·3=13.规律方法 (1)在化简带有对数的表达式时,若对数的底不同,需利用换底公式.(2)常用的公式有:log a b ·log b a =1,=m n log a b ,log a b =1log b a 等. 【训练2】 (1)(log 29)·(log 34)=________.(2)log 2125·log 318·log 519=________.解析 (1)(log 29)·(log 34)=(log 232)·(log 322)=2log 23·(2log 32)=4log 23·log 32=4.(2)原式=lg 125lg 2·lg 18lg 3·lg 19lg 5=(-2lg 5)·(-3lg 2)·(-2lg 3)lg 2lg 3lg 5=-12. ★★答案★★ (1)4 (2)-12互动 题型三 换底公式、对数运算性质综合运用【探究1836解 ∵log 189=a,18b =5,∴log 185=b .于是log 3645=log 1845log 1836=log 18(5×9)log 18(18×2)=log 189+log 1851+log 182 =a +b 1+log 18189=a +b 2-a .【探究2】 设3a =4b =36,求2a +1b 的值.解 由3a =4b =36,得a =log 336,b =log 436,由换底公式得1a =log 363,1b =log 364,∴2a +1b =2log 363+log 364=log 3636=1.【探究3】 已知2x =3y =5z,且1x +1y +1z =1,求x ,y ,z . 解 令2x =3y =5z =k (k >0),∴x =log 2k ,y =log 3k ,z =log 5k ,∴1x =log k 2,1y =log k 3,1z =log k 5,由1x +1y +1z =1,得log k 2+log k 3+log k 5=log k 30=1,∴k =30,∴x =log 230=1+log 215,y =log 330=1+log 310,z =log 530=1+log 56.【探究4】 已知lg x +lg y =2lg(x -2y ),求log 2x y 的值.解 由lg x +lg y =2lg(x -2y ),得xy =(x -2y )2,即x 2-5xy +4y 2=0,化为(x y )2-5x y +4=0,解得x y =1或x y =4.又x >0,y >0,x -2y >0,∴x y >2,∴x y =4,∴log 2x y =log 24=log 216=4.规律方法 (1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化.(2)对于这类连等式可令其等于k (k >0),然后将指数式用对数式表示,再由换底公式就可将指数的倒数化为同底的对数,从而使问题得解.课堂达标1.lg 8+3lg 5的值为________.解析 lg 8+3lg 5=lg 8+lg 53=lg 8+lg 125=lg (8×125)=lg 1 000=3.★★答案★★ 32.已知lg a ,lg b 是方程2x 2-4x +1=0的两根,则(lg a b )2的值是________.解析 lg a +lg b =2,lg a ·lg b =12,(lg a b )2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b=22-4×12=2.★★答案★★ 23.若log a b ·log 3a =4,则b 的值为________.解析 log a b ·log 3a =lg b lg a ·lg a lg 3=lg b lg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81.★★答案★★ 814.已知2m =5n =10,则1m +1n =________.解析 因为m =log 210,n =log 510,所以1m +1n =log 102+log 105=lg 10=1.★★答案★★ 15.计算:(1)lg 14-2lg 73+lg 7-lg 18;(2)lg 27+lg 8-31g 10lg 1.2.解(1)方法一lg 14-2lg 7 3+lg 7-lg 18=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.方法二lg 14-2lg73+lg 7-lg 18=lg 14-lg(73)2+lg 7-lg 18=lg14×7(73)2×18=lg 1=0.(2)lg 27+lg 8-3lg 10lg 1.2=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32.课堂小结1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n=(log a N)n,②log a(MN)=log a M·log a N,③log a M±log a N=log a(M±N).。
3.2.1 对数及其运算(二) 学案(人教B版必修1)
3.2.1 对数及其运算(二)自主学习学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么,(1)log a (MN )=________________;(2)log a M N=________; (3)log a M n =________(n ∈R ).2.对数换底公式:________________.3.自然对数(1)以________________为底的对数叫做自然对数,log e N 通常记作________.(2)自然对数与常用对数的关系:ln N ≈____________.对点讲练知识点一 正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x +log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y .A .0B .1C .2D .3规律方法 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.使用运算性质时,应牢记公式的形式及公式成立的条件.变式迁移1 (1)若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x(2)对于a >0且a ≠1,下列说法中正确的是( )①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②③④知识点二 对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8; (2)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.规律方法 (1)对于同底的对数的化简常用方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成对数的和(差).(2)对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.(3)对于含有多重对数符号的对数的化简,应从内向外逐层化简求值.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.知识点三 换底公式的应用例3 设3x =4y =36,求2x +1y的值.规律方法 换底公式的本质是化同底,这是解决对数问题的基本方法.解题过程中换什么样的底应结合题目条件,并非一定用常用对数、自然对数.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ;(2)已知log 142=a ,用a 表示log 27.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.5.两个常用的推论:(1)log a b ·log b a =1;(2)log am b n =n mlog a b (a 、b >0且均不为1).课时作业一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .3 2.已知lg 2=a ,lg 3=b ,则log 36等于( )A.a +b aB.a +b bC.a a +bD.b a +b3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg a b 2的值等于( ) A .2 B.12 C .4 D.144.若2.5x =1 000,0.25y =1 000,则1x -1y等于( ) A.13 B .3 C .-13D .-3 5.计算2log 525+3log 264-8log 71的值为( )A .14B .8C .22D .27二、填空题6.设lg 2=a ,lg 3=b ,那么lg 1.8=__________.7.已知log 63=0.613 1,log 6x =0.386 9,则x =__________.三、解答题8.求下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2.9.已知log 189=a,18b =5,试用a ,b 表示log 365.3.2.1 对数及其运算(二)答案自学导引1.(1)log a M +log a N (2)log a M -log a N(3)n log a M2.log a b =log c b log c a3.(1)无理数e =2.718 28… ln N(2)2.302 6lg N对点讲练例1 A [对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.]变式迁移1 (1)A(2)C [在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立.]例2 解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2=lg 2(lg 2+lg 5)+1-lg 2=lg 2+1-lg 2=1.变式迁移2 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7) =1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=(lg 5)2+lg 2·(lg 2+2lg 5)=(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1.例3 解 由已知分别求出x 和y .∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.变式迁移3 解 (1)利用换底公式,得lg 4lg 3·lg 8lg 4·lg m lg 8=2, ∴lg m =2lg 3,于是m =9.(2)由对数换底公式,得log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22) =2(1a -1)=2(1-a )a. 课时作业1.D [lg 8+3lg 5=lg 8+lg 53=lg 1 000=3.]2.B [log 36=lg 6lg 3=lg 2+lg 3lg 3=a +b b.] 3.A [由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.] 4.A [由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y=log 1 0002.5-log 1 0000.25=log 1 00010 =13.] 5.C6.a +2b -12解析 lg 1.8=12lg 1.8 =12lg 1810=12lg 2×910=12(lg 2+lg 9-1)=12(a +2b -1). 7.2解析 由log 63+log 6x =0.613 1+0.386 9=1.得log 6(3x )=1.故3x =6,x =2.8.解 (1)方法一 原式=12(5 lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5 =12(lg 2+lg 5) =12lg 10=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg 42×757×4=lg(2·5)=lg 10=12. (2)方法一 原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10·lg 52+lg 4=lg ⎝⎛⎭⎫52×4=lg 10=1. 方法二 原式=(lg 10-lg 2)2+2lg 2-lg 22=1-2lg 2+lg 22+2lg 2-lg 22=1.9.解 ∵18b =5,∴log 185=b, 又∵log 189=a ,∴log 365=log 185lg 1836=b log 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b 2-a.。
2020-2021学年苏教版必修1 3.2.1 第2课时 对数的运算性质及换底公式 学案
第2课时 对数的运算性质及换底公式1.了解对数的换底公式.2.理解对数的运算性质.3.掌握用对数的运算性质进行化简与证明.[学生用书P49]1.如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.换底公式一般地,称log a N =log c Nlog c a(a >0且a ≠1,c >0且c ≠1,N >0)为对数的换底公式.1.判断(正确的打“√”,错误的打“×”)(1)两个正数的积、商的对数可以化为这两个正数的对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log 2(-5)2=2log 2(-5).( ) (4)由换底公式可得log a b =log (-2)blog (-2)a .( )答案:(1)√ (2)× (3)× (4)×2.已知a >0且a ≠1,则log a 2+log a 12=( )A .0B .12C .1D .2答案:A3.(1)lg 10=________;(2)已知ln a =0.2,则ln ea =________.答案:(1)12 (2)0.84.log 29log 23=________.答案:2对数的运算性质及应用[学生用书P49]计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg 2+lg 31+12lg 0.36+13lg 8;(3)lg 25+23lg 8+lg 5lg 20+(lg 2)2.【解】 (1)原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. (2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg (10×0.6×2)=lg 12lg 12=1.(3)原式=2lg 5+2lg 2+(1-lg 2)(1+lg 2)+(lg 2)2 =2(lg 5+lg 2)+1-(lg 2)2+(lg 2)2=2+1=3.(1)对于同底的对数的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数(逆用运算性质); ②“拆”,将积(商)的对数拆成对数的和(差)(正用运算性质).(2)对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.1.计算下列各式:(1)12lg 25+lg 2+lg 10+lg(0.01)-1; (2)2log 32-log 3329+log 38-3log 55.解:(1)法一:原式=lg[2512×2×1012×(10-2)-1] =lg(5×2×1012×102)=lg 1072=72.法二:原式=12lg 52+lg 2+12lg 10-lg 10-2=(lg 5+lg 2)+12-(-2)=lg 10+12+2=1+12+2=72.(2)法一:原式=log 322+log 3(32×2-5)+log 323-3 =log 3(22×32×2-5×23)-3 =log 332-3 =2-3=-1.法二:原式=2log 32-()5log 32-2+3log 32-3 =2-3=-1.换底公式的应用[学生用书P50](1)计算:(log 2125+log 425+log 85)·(log 52+log 254+log 1258); (2)已知log 189=a ,18b =5,求log 3645(用a ,b 表示). 【解】 (1)法一:原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 法二:原式=⎝⎛⎭⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝⎛⎭⎫lg 2lg 5+lg 4lg 25+lg 8lg 125 =⎝⎛⎭⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝⎛⎭⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5 =⎝⎛⎭⎫13lg 53lg 2⎝⎛⎭⎫3lg 2lg 5=13.(2)法一:因为18b =5,所以log 185=b , 又log 189=a ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .法二:因为log 189=a ,18b =5,所以lg 9=a lg 18,lg 5=b lg 18,所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.法三:因为log 189=a ,所以18a =9.又因为18b =5,所以45=5×9=18b ·18a =18a +b . 令log 3645=x ,则36x =45=18a +b , 即36x=⎝⎛⎭⎫183·183x=18a +b . 所以⎝⎛⎭⎫1829x=18a +b,所以x log 181829=a +b , 所以x =a +b log 18182-log 189=a +b 2-a ,即log 3645=a +b 2-a.(1)具有换底功能的另两个结论:①log a c ·log c a =1,②log an b n =log a b .(a >0且a ≠1,b >0,c >0且c ≠1)(2)求条件对数式的值,可从条件入手,从条件中分化出要求的对数式,进行求值;也可以从结论入手,转化成能使用条件的形式;还可同时化简条件和结论,直至找到它们之间的联系.(3)本题主要考查已知一些指数值或对数值,利用这些条件来表示所要求的式子,解决该类问题必须熟练掌握所学性质和法则,并学会运用整体思想.2.(1)计算:(log 43+log 83)log 32=________.(2)计算:log22+log 279=________.解析:(1)原式=⎝⎛⎭⎫1log 34+1log 38log 32 =⎝⎛⎭⎫12log 32+13log 32log 32=12+13=56. (2)原式=log 22log 2212+log 332log 333=112+23=2+23=83. 答案:(1)56 (2)83对数的综合应用[学生用书P50]若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 【解】 原方程可化为2(lg x )2-4lg x +1=0, 设t =lg x ,则原方程可化为2t 2-4t +1=0.所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根,则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12,所以lg(ab )·(log a b +log b a ) =(lg a +lg b )⎝⎛⎭⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.即lg(ab )·(log a b +log b a )=12.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,a ≠1)的方程时,常借助对数函数的定义等价转化为f (x )=a b 求解.(2)转化法:形如log a f (x )=log a g (x )(a >0,a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎪⎨⎪⎧f (x )>0,g (x )>0求解. (3)换元法:适用于f (log a x )=0(a >0,a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解.3.(1)方程log 4(3x -1)=log 4(x -1)+log 4(x +3)的解为________.(2)已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求xy 的值.解:(1)原方程可化为3x -1=(x -1)(x +3), 即x 2-x -2=0, 解得x =2或x =-1,而x =-1使真数3x -1和x -1小于0, 故方程的解是x =2.故填x =2. (2)由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y >0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,所以x -2y =0,所以x y=2.1.对对数的运算性质的理解(1)利用对数的运算性质可以把求正数的乘、除、乘方的对数的运算转化为这些正数的对数的加、减、乘运算,反之亦然.但两个正数的和或差的对数没有运算性质.(2)对于每一条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立. (3)能用语言准确叙述对数的运算性质log a (M ·N )=log a M +log a N →积的对数等于对数的和. log a MN=log a M -log a N →商的对数等于对数的差.log a M n =n log a M (n ∈R )→真数的n 次幂的对数等于对数的n 倍. 2.关于换底公式的两点说明(1)换底公式成立的条件是公式中的每一个对数式都有意义.(2)利用换底公式,可以“随意”地改变对数的底,应注意选择适当的底数,一般转化为常用对数或自然对数,化简和证明中常常用到换底公式.已知lg a +lg b =2lg(a -2b ),求log 2ab 的值.[解] 因为lg a +lg b =2lg(a -2b ), 所以lg ab =lg(a -2b )2,ab =(a -2b )2,a 2-5ab +4b 2=0, 即(a -b )(a -4b )=0, 所以a =b 或a =4b . 又因为a -2b >0,所以a =4b ,log 2ab=log 24=2.(1)错因:易忽视真数大于0的限制,导致出现增解. (2)防范:将对数化简、变形,不能忘记真数大于0的限制.1.化简12log 612-2log 62的结果为( )A .62B .12 2C .log 6 3D .12解析:选C.原式=log 612-log 62=log 6122=log 6 3. 2.已知a =log 32,那么log 38-2log 36用a 表示是( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2解析:选A.log 38-2log 36=3log 32-2(log 32+1)=log 32-2=a -2. 3.(1)log 52·log 79log 513·log 734=________.(2)log 2()3+5- 3-5=________.解析:(1)原式=log 132·log 349=12lg 2-lg 3·2lg 323lg 2=-32.(2)原式=12log 2(3+5-3-5)2=12log 2[](3+5)+(3-5)-2(3+5)(3-5) =12log 2(6-4) =12log 22=12. 答案:(1)-32 (2)124.用lg x ,lg y ,lg z 表示下列各式: (1)lg(xyz ); (2)lg xy 2z ;(3)lg xy 3z; (4)lg x y 2z .解:(1)lg(xyz )=lg x +lg y +lg z ;(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z ;(3)lg xy 3z =lg(xy 3)-lg z=lg x +3lg y -12lg z ;(4)lgxy 2z =lg x -lg(y 2z )=12lg x -2lg y -lg z .[学生用书P111(单独成册)])[A 基础达标]1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1D .3解析:选D.lg 8+3lg 5=lg 8+lg125=lg1 000=3. 2.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12 B .9 C .18D .27解析:选B.由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=log 416=log 442=2, 所以lg m lg 3=2,即lg m =2lg 3=lg 9. 所以m =9,选B.3.若lg x =m ,lg y =n ,则lg x -lg ⎝⎛⎭⎫y 102的值为( ) A.12m -2n -2 B .12m -2n -1C.12m -2n +1 D .12m -2n +2解析:选D.因为lg x =m ,lg y =n ,所以lg x -lg ⎝⎛⎭⎫y 102=12lg x -2lg y +2=12m -2n +2.故选D. 4.设lg 2=a ,lg 3=b ,则log 512等于( )A.2a +b 1+a B .a +2b1+aC.2a +b 1-aD .a +2b 1-a解析:选C.log 512=lg 12lg 5=lg (22×3)lg (10÷2)=lg 22+lg 3lg 10-lg 2=2lg 2+lg 31-lg 2=2a +b1-a.故选C.5.已知2x =3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:选A.因为2x =3,所以x =log 23. 又log 483=y ,所以x +2y =log 23+2log 483=log 23+2(log 48-log 43) =log 23+2⎝⎛⎭⎫32log 22-12log 23 =log 23+3-log 23=3.故选A.6.已知m >0,且10x =lg(10m )+lg 1m ,则x =________.解析:lg(10m )+lg 1m =lg 10+lg m +lg 1m =1,所以10x =1=100.所以x =0. 答案:07.方程log 3(x 2-10)=1+log 3x 的解是________.解析:原方程可化为log 3(x 2-10)=log 3(3x ),所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.答案:x =58.已知2m =3n =36,则1m +1n =________.解析:m =log 236,n =log 336,所以1m =log 362,1n =log 363,所以1m +1n =log 366=12.答案:129.计算下列各式:(1)lg 8+log 39+lg 125+log 319;(2)[log 2(log 216)](2log 36-log 34);(3)⎝ ⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11. 解:(1)原式=lg 8+lg 125+log 39+log 319=lg(8×125)+log 3⎝⎛⎭⎫9×19=lg 1 000+log 31=3+0=3. (2)原式=(log 24)(log 336-log 34)=2log 3364=2log 39=4.(3)原式=⎝ ⎛⎭⎪⎫lg 460lg 153-210×2-11=⎝⎛⎭⎫-lg 15lg 153-2-1=-1-12=-32.10.解下列关于x 的方程: (1)lg x -1=lg(x -1);(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).解:(1)原方程等价于⎩⎨⎧x -1=x -1,x -1>0.解之得x =2.经检验x =2是原方程的解,所以原方程的解为x =2.(2)原方程可化为log 4(3-x )-log 4(3+x )=log 4(1-x )-log 4(2x +1).即log 43-x3+x=log 41-x2x +1. 整理得3-x x +3=1-x 2x +1,解之得x =7或x =0.当x =7时,3-x <0,不满足真数大于0的条件,故舍去.x =0满足,所以原方程的解为x =0.[B 能力提升]1.若log 513·log 36·log 6x =2,则x 等于________.解析:由换底公式,得-lg 3lg 5·lg 6lg 3·lg xlg 6=2,lg x =-2lg 5,x =5-2=125.答案:1252.计算log 8(log 242)的值为________.解析:log 8(log 242)=log 814=-2log 82=-23. 答案:-233.若log a b +3log b a =132,则用a 表示b 的式子是________. 解析:原式可化为1log b a +3log b a =132, 整理得3(log b a )2+1-132log b a =0, 即6(log b a )2-13log b a +2=0;解得log b a =2或log b a =16, 所以b 2=a 或b 16=a ,即b =a 或b =a 6.答案: b =a 或b =a 64.(选做题)已知地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).若A 地地震级别为9.0级,B 地地震级别为8.0级,求A 地地震释放的能量是B 地地震释放的能量的多少倍.解:由R =23(lg E -11.4), 得32R +11.4=lg E , 故E =10(32R +11.4).设A 地和B 地地震释放的能量分别为E 1,E 2,则E 1E 2=10(32×9.0+11.4)10(32×8.0+11.4)=1010, 即A 地地震释放的能量是B 地地震释放的能量的1010倍.。
课件4:3.2.1 对数及其运算 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修1
已知 2lg(3x-2)=lgx+lg(3x+2),
求 logx 2 2 2的值. [解析] 由 2lg(3x-2)=lgx+lg(3x+2),得 lg(3x-2)2
=lg[x(3x+2)],∴(3x-2)2=x(3x+2),即 3x2-7x+2=0,
解得 x=13或 x=2.
当 x=13,3x-2<0(舍去),∴x=2.
故 logx
2
2
7
2=log228
=78log22=78.
第三章 基本初等函数(Ⅰ)
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修1
本节内容结束 更多精彩内容请登录:
第三章 基本初等函数(Ⅰ)
数学表达式
自然语言
loga(MN)=__l_o_g_aM__+__l_o_g_aN_
loga(N1·N2·…·Nk) =
正因数积的对数等于同一底
l_o_g_a_N_1_+__lo_g_a_N_2_+__…__+__l_o_g_a_Nk 数的各因数__的__对__数__的__和____
(Ni>0,i=1,2,…k)
第三章 基本初等函数(Ⅰ)
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修1
即 lga+lgb=2,lga·lgb=12. ∴(lga+lgb)·(llggba+llggab) =lga+lgblg[al·glgab2+lgb2] =(lga+lgb)lga+lglgba2·-lgb2lga·lgb =2×22-12×12=12.
logaMN =__l_o_g_aM__-__l_o_g_aN__
高中数学第3章3.2.1对数第2课时对数的运算性质讲义必修
第2课时 对数的运算性质学 习 目 标核 心素 养1.掌握对数的运算性质,并能运用运算性质进行对数的有关运算.(重点)2.了解换底公式.3.能用换底公式将一般对数化成自然对数或常用对数解题.(难点)通过学习本节内容,提升学生的数学运算和数学建模的数学核心素养.1.符号表示如果a >0,a ≠1,M >0,N >0,则 (1)log a (MN )=log a M +log a N ; (2)log a M n=n log a M (n ∈R ); (3)log a M N=log a M -log a N . 2.文字表述(1)两正数的积的对数等于这两个正数的对数的和; (2)两正数的商的对数等于被除数的对数减去除数的对数; (3)一个正数的n 次幂的对数等于n 倍的该数的对数. 3.换底公式一般地,我们有log a N =log c Nlog c a ,(其中a >0,a ≠1,N >0,c >0,c ≠1),这个公式称为对数的换底公式.4.与换底公式有关的几个结论(1)log a b ·log b a =1(a ,b >0且a ,b ≠1); (2)log am b n =n mlog a b (a ,b >0且a ,b ≠1,m ≠0).1.思考辨析(正确的打“√”,错误的打“×”) (1)积、商的对数可以直接化为对数的和、差. ( ) (2)log a x ·log a y =log a (x +y ). ( ) (3)log a (-2)4=4log a (-2). ( )『答案』 (1)× (2)× (3)×『提示』根据对数的运算性质,只有正数积、商的对数才可以直接化为对数的和、差,(1)错误,(2)错误,(3)中-2不能作真数.2.(1)log2 25-log2254=________;(2)log2 8=________.(1)2(2)3『(1)log2 25-log2254=log225×425=log2 4=log2 22=2log2 2=2.(2)log2 8=log2 23=3log2 2=3.』3.若lg 5=a,lg 7=b,用a,b表示log75=________.ab『log75=lg 5lg 7=ab.』对数运算性质的应用(1)lg 2+lg 5;(2)log535+2log122-log5150-log514;(3)『(1-log63)2+log62·log6 18』÷log6 4.思路点拨:根据对数的运算性质,先将式子转化为只含有一种或几种真数的形式再进行计算.『解』(1)lg 2+lg 5=lg (2×5)=lg 10=1.(2)原式=log535×5014+2log12212=log5 53-1=2.(3)原式=『(log6 6-log6 3)2+log62·log6(2·32)』÷log6 4=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫log6632+log6 2(log6 2+log6 32)÷log6 22=『(log6 2)2+(log6 2)2+2log62·log6 3』÷2log6 2=log6 2+log6 3=log6(2·3)=1.1.对于同底的对数的化简要用的方法(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.注意对数的性质的应用,如log a 1=0,log a a=1,a log a N=N.3.化简的式子中有多重对数符号时,应自内向外逐层化简求值.1.计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2;(3)2log 3 2-log 3 329+log 3 8-5log 5 3.『解』 (1)法一:原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 法二:原式=lg 427-lg 4+lg 7 5=lg 42×757×4=lg (2·5)=lg 10=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.(3)原式=2log 3 2-(log 3 32-log 3 9)+3log 3 2-3=2log 3 2-5log 3 2+2+3log 3 2-3=-1.『例2』 化简:(1)log 2(28×82);(2)用lg 2和lg 3表示lg 24; (3)用log a x ,log a y ,log a z 表示log a (xy 2z -12).思路点拨:将需表示式子中的真数用已知的式子中的真数表示出来. 『解』 (1)log 2(28×82)=log 2『28×(23)2』=log 2(28+3×2)=log 2 214=14.(2)lg 24=lg (3×8)=lg 3+lg 8=lg 3+3lg 2.(3)log a (xy 2z -12)=log a x +log a y 2+log a z -12=log a x +2log a y -12log a z .这类问题一般有两种处理方法一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log aN.2.化简:(1)log 2(45×82);(2)log 1327-log 139;(3)用lg x ,lg y ,lg z 表示lgx 2y3z.『解』 (1)log 2(45×82)=log 2 (210×26)=log 2 216=16log 2 2=16×2=32. (2)log 1327-log 139=log 13279=log 133=-1.(3)lgx 2y3z=lg x 2+lg y -lg 3z =2lg x +12lg y -13lg z .换底公式及其应用『例3』 (1)已知3a =5b=c ,且a +b=2,则c 的值为________. (2)已知x ,y ,z 为正数,3x=4y=6z,2x =py . ①求p ;②证明:1z -1x =12y.思路点拨:用换底公式统一底数再求解.(1)15 『由3a =5b=c ,得a =log 3c ,b =log 5c ,所以1a =log c 3,1b =log c 5.又1a +1b=2,所以log c 3+log c 5=2,即log c 15=2,c =15.』(2)『解』 ①设3x=4y=6z=k (k >1),则x =log 3k ,y =log 4k ,z =log 6k ,由2x =py ,得2log 3k =p log 4k ,解得p =2log 34=4log 32.②证明:1z -1x =1log 6k -1log 3k=log k 6-log k 3=log k 2, 而12y =12log 4k =12log k 4=log k 2. 故1z -1x =12y.1.换底公式即将底数不同的对数转化成底数相同的对数,从而进行化简、计算或证明.换底公式应用时,一般换成以10为底的常用对数,或以e 为底的自然对数,但也应该结合已知条件来确定.2.换底公式推导出的两个恒等式: (1)log am N n=nmlog a N ;(2)log a b ·log b a =1,要注意熟练应用.3.计算:(log 2 125+log 4 25+log 8 5)(log 5 2+log 25 4+log 125 8).对数运算在实际问题中的应用我国国民生产总值是2015年的2倍?(已知lg 2≈0.301 0,lg 3≈0.477 1,lg 1.08≈0.033 4,精确到1年)思路点拨:认真分析题意,找出其中各量之间的关系,列出式子,并利用对数运算求解. 『解』 设经过x 年,我国国民生产总值是2015年的2倍. 经过1年,总产值为a (1+8%), 经过2年,总产值为a (1+8%)2, ……经过x 年,总产值为a (1+8%)x. 由题意得a (1+8%)x=2a ,即1.08x =2, 两边取常用对数,得lg 1.08x=lg 2, 则x =lg 2lg 1.08≈0.301 00.033 4≈9(年).答:约经过9年,国民生产总值是2015年的2倍.解对数应用题的步骤4.2000年我国国内生产总值(GDP)为89 442亿元,如果我国的GDP 年均增长7.8%左右,按照这个增长速度,在2000年的基础上,经过多少年后,我国GDP 才能实现比2000年翻两番的目标?(lg 2≈0.301 0,lg 1.078≈0.032 6,结果保留整数).『解』 假设经过x 年实现GDP 比2000年翻两番的目标,根据题意,得89 442×(1+7.8%)x=89 442×4,即1.078x=4,故x =log 1.078 4=lg 4lg 1.078≈18.5.答:约经过19年以后,我国GDP 才能实现比2000年翻两番的目标.含对数式的方程的解法1.对数的运算性质有哪些?『提示』 log a (MN )=log a M +log a N ,log a M N =log a M -log a N ,log a b =log c blog c a,log a Mn=n log a M ,log am b n=nmlog a b .2.解对数方程log a M =log a N ,应注意什么?『提示』 ⎩⎪⎨⎪⎧M =N ,M >0,N >0.『例5』 已知lg x +lg y =2lg (x -2y ),求log 12⎝ ⎛⎭⎪⎫x y的值.思路点拨:根据对数的运算性质得到x ,y 的关系式,解方程即可. 『解』 lg x +lg y =lg (xy )=2lg (x -2y )=lg (x -2y )2, 由题知,xy =(x -2y )2,即x 2-5xy +4y 2=0,∴⎝ ⎛⎭⎪⎫x y 2-5⎝ ⎛⎭⎪⎫x y +4=0, ∴⎝ ⎛⎭⎪⎫x y -1⎝ ⎛⎭⎪⎫x y -4=0,故xy =1或4.又当x =y 时,x -2y =-y <0,故舍去,∴xy=4. ∴log 12 xy =log 124=-2.解含对数式的方程应注意两点 (1)对数的运算性质;(2)对数中底数和真数的范围限制.5.解方程:1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n=(log a N )n;②log a (MN )=log a M ·log a N ;③log a M ±log a N =log a (M ±N ).1.如a >0,a ≠1,x >0,y >0,则下列式子正确的是( ) A .log a x +log a y =log a (x +y ) B .log a x -log a y =log a (x -y ) C .log a xy=log a x ÷log a y D .log a (xy )=log a x +log a yD 『由对数的运算性质知D 正确.』2.已知lg 2=a ,lg 7=b ,那么用a ,b 表示log 8 98=________.a +2b 3a 『log 8 98=lg 98lg 8=2lg 7+lg 23lg 2=a +2b3a.』 3.已知2m =5n=10,则1m +1n=________.1 『因为m =log2 10,n =log 5 10,所以1m +1n=lg 2+lg 5=lg 10=1.』4.已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求x y的值.『解』 由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y>0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,∴x -2y =0,∴xy=2.。
高中数学 3.2.1 对数及其运算教案 新人教B版必修1
学科:数学课题:3.2.1对数及其运算教学目标(三维融通表述):通过讲解学生理解对数的概念及性质,了解常用对数、自然对数的概念;通过练习,学生会进行指数与对数的互化。
教学重点:对数的概念,对数式与指数式的相互转化教学难点:对数概念及性质的理解教学过程教学环节问题与任务时间教师活动学生活动引入新课讲解典型例题分析回顾指数函数概念及性质,导入新课理解对数的概念及性质,了解常用对数、自然对数的概念学生进一步理解对数概念及性质,会进行指数与对数的互相转化3分钟12分钟27分钟引导学生复习指数函数的概念和性质,引入对数的概念1.对数的概念:如果a b=N (a>0且a≠1),那么数b叫做以a为底N的对数,记作,其中a叫做底数,N叫做真数.2. 对数的性质:(1)负数和零没有对数(2)1的对数是0:log1a=0;(3)底数的对数是1:logaa= 1;(4)对数恒等式:log a Na=N;(5)log naa=n3. 常用对数:通常将以10为底N的对数叫做常用对数,记作lgN。
4. 自然对数:以无理数e(e = 2.71828…)为底N的对数叫做自然对数,记作lnN。
例1. 将下列指数式改写成对数式(1)23=8 (2)4-3=164(3)2.20=1 (4)例2. 将下列对数式改成指数式(1)log39=2 (2) log5125=3(3) log214=-2 (4)lg0.01=-2 (5)ln34=3.53例3. 填空…1161814121 2 4…12……18112719131 3 9 27回忆指数函数的定义及其性质理解对数概念及性质学生尝试解决问题讨论交流后回答y=log 3x … … y log 13x… … 例4.求值 (1)2log 82(2)3log 83(3)lg10 (4) lg1000 (5) lg1 (6) lg0.01 (7) lg10-3小结3分 引导学生回顾本节课所学的知识: 对数的概念及性质 个别回答板书设计 课题 概念及性质 例 作业训练 1、有下列说法:(1)零和负数没有对数;(2)任何一个指数式都可以化成对数式; (3)以10为底的对数叫做常用对数;(4)以e 为底的对数叫做自然对数。
《3.2.1对数》教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《3.2.1对数》教案【教学目标】1、理解对数的概念.2、能进行指数式与对数式的互化.3、理解对数恒等式并能运用于有关的对数计算.4、通过转化思想这种方法的运用,培养学生转化的思想观念及逻辑思维能力.【教学重点】1、对数的定义.2、指数式与对数式的互化.【教学难点】对数概念的理解(由于对数符号是直接引入的,有“规定”的性质,且比较抽象,不易使学生接受和理解,因此对数符号的认识及其定义的理解是教学中的难点)【教学方法】启发式、讲练结合【教学过程】一、 提出问题(新课导入)假设2002年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值是2002年时的2倍?分析:假设经过x 年国内生产总值是2002年时的2倍,根据题意,有()18%2xa a +=即 1.082x =上式是已知底数和幂的值,要求指数的问题.如何从1.082x=中解出x 来,这就是我们本节课将要学习的内容——对数问题.二、 讲授新课 1、对数的定义一般地,如果()0,1a a a >≠的b 次幂等于N ,即b a N =,那么数b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数.注:1)在定义中注意底数a 的取值()0,1a a a >≠;2)在b a N =中,0N >,由此可以知道负数和零没有对数;说明:对数的定义中为什么规定()0,1a a a >≠呢?1) 若0a <时,则N 为某些值时,b 值不存在.如:22,8b log 8a N -=-==时,不存在;或者b 为某些值时,N 值不存在(无意义)12,2a b N =-==时,. 2) 若0a =时,则N 为某些值时,b 值不存在(值不唯一).如:00,2b log 2a N ===时,不存在(也可以表述为:0的多少次幂等于2?);00,0b log 0a N ===时,有无数多个值,值不唯一(0的任何非0次幂等于0);3) 若1a =时,则N 为某些值时,b 值不存在(值不唯一).如:11,3b log 3a N ===时,不存在(也可以表述为:1的多少次幂等于3?);11,1b log 1a N ===时,有无数多个值,值不唯一(1的任何次幂等于1);因此在上述的对数定义中规定:()0,1a a a >≠.2、常用对数通常将以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N . 例如 10log 5简记为 lg 5 ,10log 3.5简记为 lg3.5.3、自然对数在科学技术中常常使用无理数e 2.71828=L 为底的对数,以e 为底的对数叫做自然对数,为了简便,N 的常用对数log e N 简记为ln N .例如 log 3e 简记为 ln3 ,log 10e 简记为 ln10.通过上面对对数的定义学习,我们可以看出指数与对数有着密切的关系.接下来,我们就重点学习指数式与对数式的互化.例1 将下列指数式写成对数式:(1)45625= (2)61264-=(3)327a = (4)1 5.733m ⎛⎫= ⎪⎝⎭分析:根据对数的定义,,则问题得以解决.解:(1)5log 6254= (2)21log 664=-(3)3log 27a = (4)13log 5.73m = 例2 将下列对数式写成指数式: (1)12log 164=- (2)2log 1287= (3)lg0.012=- (4)ln10 2.303=分析:根据对数的定义,,则问题得以解决. 解:(1)41162-⎛⎫= ⎪⎝⎭(2)72128= (3)2100.01-= (4) 2.30310e =注:1)例1和例2中,目的在于让学生熟悉对数的定义;2)处理对数与指数之间转化的运算时,应当充分利用对数的定义中log b a a N N b =⇔=的关系,突破点是准确找到与关系式中对应的量.我们有了一般的指数式与对数式的转化思路和方法,然而知识总是有特殊的地方,请同学们思考:log log 1?log ??a N a a a a ===()0,1a a >≠(给同学们自由探讨一定时间)推导:由对数的定义中可以得到注:以上三个式子可以作为公式直接使用.三、 课堂练习 1.把下列指数式写成对数式:(1)328= (2)5232=(3)1122-= (4)131273-= 2.把下列对数式写成指数式:(1)3log 92= (2)5log 1253=(3)lg1002= (4)lg0.00014=-3.求下列各式的值:(1)5log 25 (2)21log 16(3)lg1000 (4)3log 243对上述的3道题进行评讲,修正学生在解题中出现的错误,并强调应该注意的事项,与例题有同样的解题方法.四、 知识应用的升华(转化思想)1、求下列各式中x 的值: (1)271log 9x = (2)12log 4x =- (3)log 83x =- 分析:本题考查方程与对数的结合应用,对对数的定义的理解,对数式与指数式的互化是解题的关键.解:(1)由log ba a N Nb =⇔=,得 2711log 2799x x =⇔= 32233323x x x -⇒=⇒=-⇒=-(2)由log b a a N N b =⇔=,得4121log 4162x x x -⎛⎫=-⇔=⇒= ⎪⎝⎭ (3)由log b a a N N b =⇔=,得 3331log 8382x x x -⎛⎫=-⇔=⇒= ⎪⎝⎭1122x x ⇒=⇒= 2、已知log 2,log 3,a a m n ==求23m n a +的值. 分析:本题不仅考查对对数的定义的理解,对数式与指数式的互化,以及利用互化和常见的幂的运算法则解题.解:因为log 2,log 3,a a m n ==有对数的定义,有2,3m n a a ==,进而()()23232323108m n m n aa a +==⨯=g 注:本题不仅是简单的对数式与指数式的互化,同时还涉及到常见的幂的运算法则的应用.五、 课堂小结1、对数的定义(log b a a N N b =⇔=),对数与指数互化是对数与指数运算中常用的方法;2、熟记:log log 10,log 1,.a N a a a a N ===()0,1a a >≠ 3、注重转化思想的应用.。
精品获奖教案 3.2.1对数(2)教案 苏教版必修1
3.2.1 对数(2)教学目标:1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题;2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力;3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.教学重点:对数的运算法则及推导与应用;教学难点:对数的运算法则及推导.教学过程:一、情境创设1.复习对数的定义.2.情境问题(1)已知log a2=m,log a3=n,求a m n的值.(2)设log a M=m,log a N=n,能否用m,n表示log a(M·N)呢?二、数学建构1.对数的运算性质.(1)log a(M·N)=log a M+log a N(a>0,a≠1,M>0,N>0);(2)log a MN=log a M-log a N(a>0,a≠1,M>0,N>0);(3)log a M n=n log a M (a>0,a≠1,M>0,n R).2.对数运算性质的推导与证明由于a m·a n=a m+n,设M=a m,N=a n,于是MN=a m+n.由对数的定义得到log a M=m,log a N=n,log a(M·N)=m+n.所以有log a(M·N)=log a M+log a N.仿照上述过程,同样地由a m÷a n=a m n和(a m)n=a mn分别得出对数运算的其他性质.三、数学应用 例1 求值. (1)log 5125;(2)log 2(23·45);(3)(lg5)2+2lg5·lg2+(lg2)2;(4).例2 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值(结果保留4位小数):(1)lg12;(2)2716lg ;(3)例3 设lg a +lg b =2lg(a -2b ),求log 4ab的值. 例4 求方程lg(4x+2)=lg2x+lg3的解. 练习:1.下列命题:(1)lg2·lg3=lg5;(2)lg 23=lg9;(3)若log a (M +N )=b ,则M +N =a b;(4)若log 2M +log 3N =log 2N +log 3M ,则M =N .其中真命题有 (请写出所有真命题的序号).2.已知lg2=a ,lg3=b ,试用含a ,b 的代数式表示下列各式: (1)lg54; (2)lg2.4; (3)lg45. 3.化简:(1)333322log 2log log 89-+; (2)211);(3)333log log log 2+-. 4.若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy的值. 四、小结1.对数的运算性质; 2.对数运算性质的应用. 五、作业课本P79习题3(5)、(6),P80第6题. 六、课后探究化简:(1)2|log 0.2|12-;(2)lg3lg 223-.2.2.1 圆的方程(1)教学目标:1.理解建系解决轨迹方程的求法;2.能根据已知条件求出圆的标准方程.教材分析及教材内容的定位:培养学生用坐标法研究几何问题的能力,增强学生用代数的方法解决几何问题的意识.圆的方程研究是基础,为后续研究位置关系作下铺垫.在高考考点要求中是C 级要求,是必考内容,也是高考当中的热点和重点,需要掌握基础题型,并有很好的计算能力,才能解决好本节问题,综合体现了新课标下高考的要求,是非常重要的一节内容.教学重点:根据已知条件求出圆的标准方程.教学难点:运用几何法和待定系数法求圆的标准方程.教学方法:1.引导学生回顾知识,对于垂径定理要突出介绍,对以后的解题有很大帮助,为以后作铺垫;2.推导圆的方程并总结步骤,在推导中明确指出解析法在解决几何问题中的作用,充分体现平面解析几何的主旨,让学生形成一种意识,几何问题可以用计算来解决,而有些代数问题,又可以用图形来直观体现,让学生深刻体会数形结合思想的重要性;3.运用圆的方程解决例题,例题主要是给出相关条件求圆的标准方程,在解决这类问题时有两种思路:(1)几何法,利用平面几何知识来确定圆心和半径;(2)待定系数法,设圆的标准方程,通过已知建立方程组,解方程组.四、数学运用1.例题.例1 求圆心是C(2,-3),且经过坐标原点和圆的标准方程.例2 已知两点A(6,9)和B(6,3),求以AB为直径的圆的标准方程,并且判断点M(9,6),N(3,3),Q(5,3)是在圆上,在圆内,还是在圆外?例3 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2. 7m,高为3m的货车能不能驶入这个隧道?2.练习.求满足下列条件的圆的标准..方程:(1)经过点(0,4),(4,6),且圆心在直线x-2y-2=0上;(2)与两坐标轴都相切,且圆心在直线2x-3y+5=0上;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1 对数及其运算(二)【学习要求】1.加深对数的概念;2.了解对数运算性质的推导过程,掌握对数的运算性质、换底公式;3.能熟练运用对数的运算性质进行化简求值.【学法指导】通过对数运算性质的推导及对数式的运算、求值、化简,培养分析问题、解决问题的能力及数学应用的意识和科学分析问题的精神和态度.填一填:知识要点、记下疑难点1.对数运算法则:log a (MN)= log a M + log a N ,log a M N= log a M - log a N , log a M n = nlog a M .2.log b N =log a N log a b 叫做换底公式,log a m b n =n m log a b,log a b =1log b a(或 log a b·log b a =1 ). 研一研:问题探究、课堂更高效[问题情境]我们已经知道,实数有加、减、乘、除、乘方、开方运算,集合有交、并、补运算,指数也有三种运算,那么,对数有怎样的运算?探究点一 积、商、幂的对数问题1 指数的运算法则有哪些?答:a m ·a n =a m +n ;a m ÷a n =a m -n ;(a m )n =a mn ;m a n =a n m. 问题2 你能写出指数式与对数式的互化公式吗?答:指数式与对数式的互化公式为:a b =N ⇔log a N =b.问题3 根据对数的定义及对数与指数的关系你能解答下列问题吗?(1)设log a 2=m,log a 3=n,求a m +n ;(2)设log a M =m,log a N =n,试利用m 、n 表示log a (MN).解:(1)由log a 2=m,得a m =2,由log a 3=n,得a n =3,所以a m ·a n =a m +n =2×3=6,即a m +n =6.(2)由log a M =m,得a m =M,由log a N =n,得a n =N.所以a m ·a n =a m +n =M×N,把指数式化为对数式得:log a (MN)=m +n.小结:在问题3中的第(2)题中,我们得到log a (MN)=m +n,又由log a M =m,log a N =n,进行m,n 的代换后就得到对数的一条运算性质,即:log a (MN)=log a M +log a N.因为同底数幂相乘,不论有多少因数,都是把指数相加,所以这个性质可推广到若干个正因数的积:log a (N 1N 2…N k )=log a N 1+log a N 2+…+log a N k .问题4同样地,由a m ÷a n =a m -n 和(a m )n =a mn ,也得到对数运算的其他性质:log a M N=log a M -log a N;log a M n =nlog a M(n ∈R) (a>0,且a≠1,M>0,N>0).你能不能推导出呢?答:令M =a m ,N =a n ,则M N=a m ÷a n =a m -n , ∴m -n =log a M N.又由M =a m ,N =a n , ∴m =log a M,n =log a N,即:log a M -log a N =m -n =log a M N; 当n≠0时,令log a M =p,由对数定义可以得M =a p ,∴M n =(a p )n =a np ,∴log a M n =np,将log a M =p 代入,即证得log a M n =nlog a M.当n =0时,显然成立.∴log a M n =nlog a M.小结:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.对数运算性质可以用简易语言表达:“积的对数=对数的和”,“商的对数=对数的差”,“正数的n 次方的对数=正数的对数的n 倍”.有时用逆向运算性质:如log 105+log 102=log 1010=1.例1 用log a x,log a y,log a z 表示下列各式:(1)log a xy z ; (2)log a (x 3y 5); (3)log a x yz ; (4)log a x 2y 3z . 解:(1)log a xy z=log a (xy)-log a z =log a x +log a y -log a z;(2)log a (x 3y 5)=log a x 3+log a y 5=3log a x +5log a y;(3)log a x yz =log a x -log a (yz)=log a x -(log a y +log a z)=12log a x -log a y -log a z; (4)log a x 2y 3z =log a (x 2y)-log a 3z =log a x 2+log a y -log a z =2log a x +12log a y -13log a z. 小结:真数的取值范围是(0,+∞),log 2(-3)(-5)=log 2(-3)+log 2(-5)不成立,log 10(-10)2=2log 10(-10)也不成立.要特别注意log a (MN)≠log a M·log a N,log a (M±N)≠log a M±log a N.跟踪训练1计算:(1)lg 5100; (2)log 2(47×25); (3)lg 4+lg 25; (4)(lg 2)2+lg 20×lg 5.解:(1)lg 5100=15lg 102=25lg 10=25; (2)log 2(47×25)=log 247+log 225=log 222×7+log 225=2×7+5=19;(3)lg 4+lg 25=lg(4×25)=lg 100=2;(4)(lg 2)2+lg 20×lg 5=(lg 2)2+(1+lg 2)(1-lg 2)=(lg 2)2+1-(lg 2)2=1.探究点二 换底公式与自然对数导引 在实际应用中,常常碰到底数不为10的对数,如何求这类对数呢?如何求log 35?问题1:假设log 25log 23=x,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可得到什么结论? 答:把3x =5化为对数式为:log 35=x,又因x =log 25log 23,所以得出log 35=log 25log 23的结论. 问题2 如果a>0,且a≠1;c>0,且c≠1;b>0,那么log c b log c a与哪个对数相等?如何证明这个结论? 答:结论为log c b log c a=log a b. 证明如下:令log c b log c a =x ⇒log c b =xlog c a ⇒log c b =log c a x ⇒b =a x ⇒x =log a b ⇒log c b log c a=log a b. 小结:(1)log a b =log c b log c a(a>0,且a≠1;c>0,且c≠1;b>0)叫做换底公式. (2)由换底公式可得两个结论:①log a b n =n m log a b; ②log a b =1log b a(或log a b·log b a =1). 问题3:什么叫做自然对数?自然对数如何表示?答:以e =2.718 28…为底的对数叫做自然对数.记作ln N. 例2 已知log 23=a,log 37=b,用a,b 表示log 4256.解:因为log 23=a,则1a=log 32, 又∵log 37=b,∴log 4256=log 356log 342=log 37+3·log 32log 37+log 32+1=ab +3ab +a +1. 小结:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底. 跟踪训练2 求log 89·log 2732的值. 解:log 89·log 2732=lg 9lg 8×lg 32lg 27=2lg 33lg 2×5lg 23lg 3=23×53=109. 例3 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2. 解:(1)方法一原式=12(lg 25-lg 72)-43lg 2+lg(72×5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12.方法二:原式=lg 427-lg 4+lg 75=lg 42×757×4=lg(2×5)=12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.小结:这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂,然后化简求值. 跟踪训练3 (1)已知lg 2=0.301 0,lg 3=0.477 1,求lg 45;(2)已知lg x =2lg a +3lg b -5lg c,求x.解: (1)lg 45=12 lg 45=12lg 902=12[lg 9+lg 10-lg 2]=12[2lg 3+1-lg 2]=lg 3+12-12lg 2=0.477 1+0.5-0.150 5=0.826 6;(2)由已知得:lg x =lg a 2+lg b 3-lg c 5=lg a 2b 3c 5,∴x =a 2b 3c 5.练一练:当堂检测、目标达成落实处1.下列式子中成立的是(假定各式均有意义)( ) A.log a x·log a y =log a (x +y)B.(log a x)n =nlog a xC .log a x n =log a nxD.log a xlog a y =log a x -log a y解析:因log a x n =1n log a x =log a x =log a nx,所以选C.2.log 327+lg 25+lg 4+7+(-9.8)0=__________.解析:原式=12log 333+lg(25×4)+2+1=32+2+3=132.3.求证:(1)log x ylog y z =log x z;(2)log a b n =log a b.证明:(1)因为log x ylog y z =log x y log xzlog x y =log x z,所以log x ylog y z =log x z.(2)log a b n =log a b n log a a n =nlog a bnlog a a =log a b.课堂小结:1.对数的运算法则:如果a>0,a≠1,M>0,N>0有:(1)log a (MN)=log a M +log a N(2)log a M N =log a M -log a N(3)log a M n =nlog a M (n ∈R)2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c blog c a (a>0且a≠1,c>0且c≠1,b>0).。