图像特征特点及其常用的特征提取与匹配方法
Python技术实现图像特征提取与匹配的方法
Python技术实现图像特征提取与匹配的方法随着科技的不断进步,图像处理技术在各个领域得到了广泛应用。
图像特征提取与匹配是图像处理中的重要环节之一,它能够通过识别图像中的关键特征点,进行图像的检索、识别和对比。
Python作为一门功能强大的编程语言,提供了各种库和工具,可以方便地实现图像特征提取与匹配的方法。
一、图像特征提取图像特征是指在图像中具有独特而稳定的可视化特性,例如边缘、角点、颜色分布等。
图像特征提取的目的就是从图像中找到这些独特的特征点,以便后续的处理和分析。
1. 边缘检测边缘是图像中不同区域之间的分界线,是图像中的显著特征。
Python的OpenCV库提供了Sobel算子、Canny算子等用于边缘检测的函数,可以方便地实现边缘检测的过程。
2. 角点检测角点是图像中具有明显曲率或者弯曲的地方,是图像中的显著特征。
OpenCV 中的Harris角点检测算法和Shi-Tomasi角点检测算法提供了在Python中实现角点检测的函数。
3. SIFT和SURF特征提取SIFT(尺度不变特征变换)和SURF(加速稳健特征)是两种经典的特征提取算法,它们可以提取图像中的局部特征,并具有旋转、尺度不变性。
Python中的OpenCV库提供了SIFT和SURF算法的实现,可以方便地提取图像的特征。
二、图像特征匹配图像特征匹配是将两幅或多幅图像中的特征点进行对齐和匹配。
通过图像特征匹配,可以实现图像的检索、识别和对比,是图像处理中的重要环节。
1. 特征点描述在进行图像特征匹配之前,需要对特征点进行描述。
描述子是一种对特征点进行数学表示的方法,可以用于特征点的匹配和对比。
OpenCV中的SIFT和SURF 算法可以提取特征点的描述子。
2. 特征点匹配特征点匹配是将两个图像中的对应特征点连接起来,实现图像的对齐和匹配。
OpenCV中提供了FLANN(最近邻搜索)库,可以高效地实现特征点的匹配。
同时,还可以使用RANSAC算法进行特征点匹配的筛选和优化。
图像识别技术中的特征提取与匹配算法研究
图像识别技术中的特征提取与匹配算法研究随着计算机视觉领域的快速发展,图像识别技术在各个领域得到了广泛应用。
图像识别技术的核心问题之一是如何从大量的图像数据中提取出有效的特征,以便进行图像匹配和识别。
本文将重点讨论图像识别技术中的特征提取与匹配算法的研究。
一、特征提取算法特征提取算法是图像识别技术中最基础、最关键的环节之一,它通过对图像中的有效信息进行提取和表示,以便后续的匹配和识别过程。
常用的特征提取算法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(旋转矩不变特征)等。
SIFT算法是一种基于尺度空间的特征提取算法,它通过检测尺度不变的局部极值点,并在多个尺度下提取出稳定的特征。
SIFT算法对图像的旋转、缩放、平移等变换具有较好的不变性,是目前应用最广泛的特征提取算法之一。
SURF算法是一种基于Hessian矩阵的特征提取算法,它通过检测图像中的兴趣点,并计算其局部特征向量来描述图像信息。
与SIFT算法相比,SURF算法在保留了较好的特征表达能力的同时,大大加快了计算速度,因此在实时图像处理中得到了广泛应用。
ORB算法是一种结合了FAST特征检测和BRIEF特征描述的特征提取算法,它通过检测图像中的FAST角点,并用二进制位串来描述角点周围的灰度信息。
ORB算法既具有较好的特征表达能力,又在计算速度上有很大优势,因此在大规模图像检索等应用中表现出色。
二、特征匹配算法特征提取后,需要进行特征匹配以实现图像的识别和检索。
特征匹配算法的目标是找出两幅图像中相似的特征,并建立它们之间的对应关系。
在特征匹配过程中,常用的算法包括暴力搜索、k-d树算法和近似最近邻搜索算法等。
暴力搜索是一种简单直观的特征匹配算法,它通过遍历所有特征点对之间的距离来实现匹配。
暴力搜索算法的优点是简单易实现,但由于计算量大,在大规模图像匹配中往往不够高效。
k-d树算法是一种基于树结构的特征匹配算法,它通过构建k-d树来实现对特征点的快速搜索。
学习计算机像处理的特征提取与匹配
学习计算机像处理的特征提取与匹配学习计算机图像处理的特征提取与匹配图像处理是计算机视觉领域中的重要方向之一,而特征提取与匹配是图像处理中的核心技术之一。
本文将介绍学习计算机图像处理的特征提取与匹配的基本知识和方法。
一、概述特征提取与匹配是计算机图像处理中的关键步骤,其目的是从图像中提取出具有代表性的特征,并将其进行匹配以实现目标检测、图像识别等应用。
特征提取与匹配的基本步骤包括特征提取、特征描述和特征匹配。
二、特征提取特征提取是指从图像中提取出鲁棒性较强、具有区分度的特征点或者特征区域。
常见的图像特征包括角点、边缘、斑点等。
特征提取的方法有很多,其中比较经典的包括Harris角点检测、SIFT(Scale-Invariant Feature Transform)和SURF(Speeded Up Robust Feature)等。
Harris角点检测是一种基于图像局部灰度变化的方法,它根据图像的灰度梯度来判断一个像素点是否为角点。
SIFT和SURF是基于尺度空间的特征描述算法,它们通过检测图像中的稳定特征点,并对这些特征点进行描述,使其具有尺度、旋转和亮度不变性。
三、特征描述特征描述是指对提取出的特征点或特征区域进行描述,以便于后续的特征匹配。
特征描述的方法有很多,常用的包括SIFT描述子、SURF描述子和ORB(Oriented FAST and Rotated BRIEF)描述子等。
SIFT描述子是一种基于梯度的描述方法,它利用特征点周围的局部图像梯度信息,生成一个128维的描述子。
SURF描述子是一种基于图像局部特征形状的描述方法,它利用特征点周围的哈尔小波响应,生成一个64维的描述子。
ORB描述子是一种基于FAST角点检测器和BRIEF(Binary Robust Independent Elementary Features)描述子的方法,它结合了FAST的快速检测速度和BRIEF的高效描述性能。
使用图像处理技术实现图像特征提取的技巧与方法
使用图像处理技术实现图像特征提取的技巧与方法图像特征提取是图像处理领域中的一个重要任务,它旨在从图像数据中提取出有意义的特征信息,用于后续的图像分析和理解。
图像特征可以描述图像的某种属性或结构,如颜色、纹理、形状等,通过对图像进行特征提取,可以实现图像分类、目标检测、图像搜索等任务。
在实际应用中,图像特征提取的技巧和方法有很多种。
下面将介绍几种常用的图像特征提取方法。
首先是颜色特征提取技术。
颜色是图像中最直观、最容易获取和识别的特征之一。
常用的颜色特征提取方法包括直方图、颜色空间转换和颜色描述子等。
直方图能够统计图像中每个颜色的像素数目,通过对颜色直方图的分析,可以获取图像的颜色分布特征。
颜色空间转换可以将图像从RGB空间转换成其他颜色空间,如HSV、Lab等,从而提取出不同颜色通道的特征。
颜色描述子能够对图像的颜色进行定量化描述,如颜色矩、颜色矢量等。
其次是纹理特征提取技术。
纹理是指图像中像素间的某种规律或重复性,常用于描述物体表面的细节特征。
常用的纹理特征提取方法有灰度共生矩阵、小波变换和局部二值模式等。
灰度共生矩阵能够统计图像中不同像素间的灰度共生关系,通过计算共生矩阵中的纹理特征,可以获取图像的纹理信息。
小波变换能够将图像从空间域转换到频率域,通过分析不同频率的小波系数,可以提取出图像的纹理特征。
局部二值模式是一种基于像素邻域的纹理特征描述方法,通过比较像素与其邻域像素之间的灰度差异,可以刻画图像的纹理细节。
还有形状特征提取技术。
形状是物体的外形和轮廓特征,常用于目标检测和识别。
常用的形状特征提取方法有轮廓描述子、边缘检测和形状匹配等。
轮廓描述子能够基于物体的边缘轮廓提取其形状特征,如轮廓长度、曲率等。
边缘检测可以通过检测图像中的边缘信息,提取物体的形状特征。
形状匹配则是通过比较不同物体的形状特征,实现目标的检测和识别。
除了以上提到的方法,还有很多其他的图像特征提取技巧和方法,如兴趣点检测、尺度不变特征变换等。
Matlab中的图像特征提取与匹配技术
Matlab中的图像特征提取与匹配技术引言图像特征提取与匹配技术是计算机视觉领域中一项重要的技术,它广泛应用于图像处理、物体识别、目标跟踪等领域。
而在Matlab中,也提供了许多强大的函数和工具箱来支持图像特征提取与匹配。
本文将介绍Matlab中的一些常用的图像特征提取与匹配技术及其应用。
一、图像特征提取1. 颜色特征提取颜色是图像中最直观的视觉特征之一,对于图像分类和目标识别起着重要的作用。
在Matlab中,我们可以通过颜色直方图、颜色矩等统计方法来提取图像的颜色特征。
2. 纹理特征提取纹理是图像中的重要特征之一,可以用来描述物体的表面细节。
Matlab提供了丰富的纹理特征提取函数,比如灰度共生矩阵(GLCM)、局部二值模式(LBP)等。
这些函数可以帮助我们从图像中提取出不同尺度和方向的纹理特征。
3. 形状特征提取形状是图像中物体的几何外形,是图像特征中最常用的特征之一。
Matlab中可以使用边缘检测算法(如Canny边缘检测)来提取图像中的边缘信息,然后通过边缘描述子(如形状上下文)来提取图像的形状特征。
4. 尺度不变特征提取尺度不变特征是一种具有尺度不变性的图像特征,可以有效应对图像中物体的尺度变化。
在Matlab中,我们可以使用尺度不变特征变换(SIFT)算法来提取图像的尺度不变特征。
SIFT算法通过检测关键点和计算局部特征描述子,能够在不同尺度下对图像进行特征提取。
二、图像特征匹配1. 特征点匹配特征点匹配是图像特征匹配的一种常用方法,通过寻找两幅图像中相同或相似的特征点,来实现图像匹配和目标检测。
在Matlab中,我们可以使用SURF(加速稳健特征)算法或者基于特征距离的匹配算法(如欧氏距离、汉明距离等)来进行特征点的匹配。
2. 相似性度量相似性度量是图像特征匹配中另一种常见的方法,它通过计算两幅图像特征之间的相似度来实现图像匹配。
在Matlab中,我们可以使用余弦相似度、欧氏距离等数学公式来度量图像特征的相似性。
图像特征点提取及匹配算法研究论文
图像特征点提取及匹配算法研究论文1.SIFT算法:SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征点提取算法。
该算法首先使用高斯滤波器对图像进行多尺度的平滑处理,然后使用差分算子来检测图像中的关键点,最后计算关键点的主方向和描述符。
SIFT算法具有尺度不变性和旋转不变性,对于图像中存在较大尺度和角度变化的情况下仍能提取出稳定的特征点。
2.SURF算法:SURF(Speeded Up Robust Features)算法是一种快速的特征点提取算法,它在SIFT算法的基础上进行了优化。
SURF算法使用Haar小波响应来检测图像中的特征点,并使用积分图像来加速计算过程。
此外,SURF算法还使用了一种基于方向直方图的特征描述方法,能够提取出具有旋转不变性和尺度不变性的特征点。
3.ORB算法:ORB(Oriented FAST and Rotated BRIEF)算法是一种快速的特征点提取和匹配算法。
该算法结合了FAST角点检测算法和BRIEF描述符算法,并对其进行了改进。
ORB算法利用灰度值的转折点来检测图像中的角点,并使用二进制字符串来描述关键点,以提高特征点的匹配速度。
ORB算法具有较快的计算速度和较高的匹配精度,适用于实时应用。
4.BRISK算法:BRISK(Binary Robust Invariant Scalable Keypoints)算法是一种基于二进制描述符的特征点提取和匹配算法。
该算法首先使用田字形格点采样方法检测关键点,然后使用直方图来描述关键点的方向和纹理特征。
最后,BRISK算法使用二进制字符串来表示关键点的描述符,并使用汉明距离来进行特征点的匹配。
BRISK算法具有较快的计算速度和较高的鲁棒性,适用于大规模图像匹配任务。
总结起来,图像特征点提取及匹配算法是计算机视觉领域中的重要研究方向。
本文介绍了一些常用的特征点提取及匹配算法,并对其进行了讨论。
无人机图像处理中的特征提取与匹配方法研究
无人机图像处理中的特征提取与匹配方法研究一、引言随着无人机技术的不断发展和普及,无人机图像处理成为了当前研究的热点之一。
图像处理中的特征提取与匹配方法是无人机图像处理的核心内容,本文将对这一方面进行深入研究与探讨。
二、特征提取方法2.1 SIFT特征提取方法尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种常用的图像特征提取方法,它通过在不同尺度和方向上对图像进行变换,提取图像的关键点和特征描述符。
SIFT方法具有尺度不变性、旋转不变性和亮度不变性等优点,能够在不同环境下提取出稳定且具有独特性的图像特征。
2.2 SURF特征提取方法速度加速特征(Speeded Up Robust Feature,SURF)是一种快速且鲁棒的特征提取方法。
SURF方法通过构建图像的积分图像,通过快速Hessian矩阵检测关键点的位置和尺度,并生成特征描述符。
SURF方法具有快速性和鲁棒性,适用于无人机实时图像处理。
2.3 ORB特征提取方法旋转加速鲁棒特征(Oriented FAST and Rotated BRIEF,ORB)是一种结合了FAST关键点检测和BRIEF特征描述符的方法。
ORB方法通过FAST算法检测关键点,并通过BRIEF描述符对关键点进行描述。
ORB方法具有鲁棒性和效率高的优点,适用于无人机图像处理中的实时应用。
三、特征匹配方法3.1 特征点匹配方法特征点匹配是特征提取的后续步骤,用于寻找不同图像中对应的特征点。
特征点匹配方法包括基于距离的匹配、基于几何关系的匹配和基于深度信息的匹配等。
其中,基于距离的匹配方法常用的有最近邻匹配和最佳最近邻匹配。
3.2 RANSAC算法RANSAC(Random Sample Consensus)是一种常用的鲁棒估计算法,用于估计数据中的模型参数。
在无人机图像处理中,RANSAC算法常被应用于特征点匹配的过程中,通过随机采样一致性来剔除异常值,得到准确的特征点匹配结果。
医学图像配准中的图像特征提取与匹配
医学图像配准中的图像特征提取与匹配医学图像配准是指将多个医学图像按照相同的参考系统进行对齐,以实现不同图像之间的对比和分析。
在医学图像配准的过程中,图像特征提取与匹配是关键的步骤之一。
本文主要介绍医学图像配准中的图像特征提取与匹配的方法和技术。
1. 图像特征提取图像特征提取是指从医学图像中提取有用的、能够表征图像信息的特征。
医学图像中的特征可以包括形状、纹理、边缘等。
常用的图像特征提取方法包括:(1)边缘检测:边缘是图像中灰度变化较大的地方,边缘检测可以通过计算图像像素间的灰度差异来提取边缘信息。
(2)纹理特征提取:纹理是描述图像内部灰度分布的一种特征。
常见的纹理特征提取方法包括灰度共生矩阵、小波变换等。
(3)形状特征提取:形状是指物体的外观轮廓,可以通过提取轮廓特征、边界特征等来描述图像的形状。
2. 图像特征匹配图像特征匹配是指将不同图像中提取到的特征进行对应,以实现医学图像的配准。
医学图像特征匹配常用的方法有:(1)特征点匹配:通过提取图像中的特征点,并计算特征点间的相似性来实现匹配。
常用的特征点匹配算法有SIFT、SURF、ORB等。
(2)区域匹配:将图像划分为不同的区域,通过计算每个区域的特征来进行匹配。
常用的区域匹配方法有基于颜色直方图、基于形状特征等。
(3)局部匹配:先将图像进行分块,然后通过比较每个块的特征来实现匹配。
常用的局部匹配算法有基于SIFT局部特征的匹配方法。
3. 医学图像配准算法医学图像配准算法主要包括基于特征的配准算法和基于区域的配准算法。
(1)基于特征的配准算法:这类算法主要利用图像中提取到的特征进行匹配和配准。
常用的算法有Harris角点算法、SIFT算法等。
特征点匹配算法在医学图像配准中具有较好的鲁棒性和准确性。
(2)基于区域的配准算法:这类算法主要针对整个图像区域进行匹配和配准。
常用的算法有基于互信息和归一化互相关系数的方法。
区域匹配算法在医学图像配准中更适用于相似度较低的图像配准。
掌握图像处理中的特征提取与匹配方法
掌握图像处理中的特征提取与匹配方法引言图像处理是计算机视觉中的重要领域之一,它涵盖了从采集到处理再到分析整个图像处理流程。
特征提取和匹配是图像处理中的重要环节,它们有助于图像分类、图像识别、目标跟踪等应用场景中的实现。
本文将介绍图像处理中的特征提取与匹配方法。
一、特征提取特征提取是指从图像中提取一些基本特征的过程,这些特征能够描述或表示图像中的某些重要属性。
一般来说,特征提取要求提取出的特征应具有以下特点:可重复性、可靠性、特异性、鲁棒性、计算效率等。
在实际应用中,常用的特征提取方法包括SIFT、SURF、HOG、LBP等。
1. SIFT尺度不变特征转换(Scale-invariant feature transform,SIFT)是一种常用的特征提取算法。
它通过在各个尺度上检测图像的关键点,然后对每个关键点周围的像素进行梯度计算,再把梯度信息转换为特征向量,最终得到具有尺度不变性的特征描述子,用于匹配和分类。
SIFT算法具有较好的鲁棒性和旋转不变性,在目标跟踪、图像检索等领域具有广泛的应用。
2. SURF加速稳健特征(Speeded Up Robust Features,SURF)是一种基于尺度空间的特征提取算法。
它采用了快速哈尔小波变换来加速特征计算,并引入了Hessian矩阵来描述图像的局部特征,加强了图像的鲁棒性和抗干扰性。
SURF算法与SIFT算法相比,具有更快的计算速度和更好的抗噪性,适合于大规模图像数据的特征提取。
3. HOG方向梯度直方图(Histogram of Oriented Gradients, HOG)是一种基于图像梯度方向和强度的特征描述方法。
HOG算法通过计算图像中每个像素点的梯度幅值和梯度方向,并将其汇总为几个方向的直方图,最终得到具有方向和梯度信息的特征向量。
HOG算法具有较好的抗变形和旋转不变性,适合于人体检测、模式识别等领域。
4. LBP局部二值模式(Local Binary Pattern, LBP)是一种基于纹理分析的特征提取算法。
图像处理中的图像特征提取方法与技巧
图像处理中的图像特征提取方法与技巧图像处理是一门研究数字图像的领域,其目标是通过一系列的处理步骤来改善图像的质量或提取出其中的有用信息。
其中,图像特征提取是图像处理中的重要环节之一。
本文将介绍一些常用的图像特征提取方法和技巧。
1. 灰度特征提取灰度特征提取是图像处理中最基本的特征提取方法之一。
通过将彩色图像转换为灰度图像,可以提取出图像的亮度信息。
常用的灰度特征包括图像的平均灰度值、灰度直方图、对比度等。
这些特征可以反映出图像的整体明暗程度和灰度分布情况,对于一些亮度信息相关的任务,如人脸识别、目标检测等,具有重要意义。
2. 形态学特征提取形态学特征提取通过对图像进行形态学运算,如腐蚀、膨胀、开闭运算等,来提取出图像的形态信息。
比如,利用腐蚀和膨胀运算可以提取出图像的边缘信息,通过开闭运算可以获取到图像的拐点信息和孤立点信息。
形态学特征提取在图像的边缘检测、形状分析等领域中得到广泛应用。
3. 纹理特征提取纹理特征提取是指从图像中提取出具有纹理信息的特征。
图像的纹理是指图像中像素之间的空间关系,比如纹理的平滑度、粗糙度、方向等。
常见的纹理特征提取方法包括灰度共生矩阵(GLCM)、灰度差值矩阵(GLDM)等。
这些方法通过统计邻近像素之间的灰度差异来描述图像的纹理特征,对于物体识别、纹理分类等任务非常有用。
4. 频域特征提取频域特征提取是指通过对图像进行傅里叶变换或小波变换,从频域角度分析图像的特征。
对于傅里叶变换,可以得到图像的频谱图,从中提取出一些频域特征,如频谱能量、频谱密度等。
而小波变换则可以提取出图像的频率和幅度信息。
频域特征提取在图像压缩、图像识别等领域具有广泛应用。
5. 尺度空间特征提取尺度空间特征提取是指通过在不同的尺度下分析图像的特征,提取出图像的空间尺度信息。
常用的尺度空间特征提取方法包括拉普拉斯金字塔、高斯金字塔等。
这些方法可以从图像的多个尺度下提取出不同的特征,对于物体的尺度不变性分析、尺度空间关系分析等任务非常有用。
图像处理中的特征提取和匹配算法
图像处理中的特征提取和匹配算法图像处理在日益热门的人工智能技术中扮演着一种重要的角色。
在图像处理中,特征提取和匹配算法是两个至关重要的步骤。
特征提取是通过分析图像的局部特点来创建描述图像内容的向量,而匹配是将不同图像的特征或特征向量进行比较,以确定它们是否相似。
本文将介绍几种常用的特征提取和匹配算法。
一、特征提取算法1.尺度不变特征变换(SIFT)SIFT是一种特征提取算法,它能够从不同的尺度和方向上提取图像的局部特征。
这种算法在检索和匹配图像中特别有用。
SIFT算法的基本思想是通过高斯差分算子得到一组尺度空间图像,通过高斯图像之间的差异来确定关键点,然后计算每个关键点的局部梯度的幅值和方向,最后形成一个基于梯度方向的特征描述符。
2.速度增强型稀疏编码(SLEEC)SLEEC是一种新型的高效特征提取算法。
与其他算法不同的是,SLEEC只需扫描一次训练数据即可获得最具代表性的特征。
该算法通过运用具有多个分辨率的降采样、随机稀疏和加速度分析三种技术提取特征,从而实现了比其他算法更高的准确性和速度。
二、特征匹配算法1.暴力匹配算法暴力匹配算法是一种基本的匹配算法,它实现了图像特征之间的精确匹配。
该算法通过比较两个图像之间的每个可能的匹配,来确定匹配的好坏。
虽然该算法的准确性很高,但是它非常耗时,因此只适用于小图像匹配。
2.基于Flann树的匹配算法基于Flann树的匹配算法通过对特征向量进行一系列分割和聚类,以快速找到大量数据中的相似匹配。
该算法不仅适用于大规模数据集,而且具有高效和稳定性。
3.随机抽样一致性算法(RANSAC)随机抽样一致性算法是一种常见的特征匹配算法。
该算法通过随机采样一对点来确定匹配,在这个过程中,通过迭代重复采样和检测结果,不断提高匹配模型的准确度。
结论:在图像处理和计算机视觉中,特征提取和匹配是核心算法。
不同的特征提取和匹配算法适用于不同的应用场合。
在实际应用中,为了达到对图像的快速识别和匹配,我们需要根据具体的需求,选择合适的特征提取和匹配算法。
图像处理中的特征提取与匹配技术
图像处理中的特征提取与匹配技术随着科技的不断发展和应用的不断深入,图像处理技术在各个领域中都得到了广泛的应用。
而图像处理中最重要的一环就是特征提取与匹配技术。
这两个技术的不断发展和完善,为图像处理带来了更高的效率和精度,也极大地推动了图像技术的发展。
一、特征提取特征提取是指从图像中提取出具有代表性的特征点,用于描述图像的某些特征。
这些特征点可以是角点、线段、边缘等等。
在图像处理的各个领域中,特征提取都占据着至关重要的地位。
比如在目标识别领域中,特征点可以帮助我们快速准确地找到目标物体的位置和方向。
在图像匹配领域中,特征点可以帮助我们将两幅图像进行比较和匹配,识别出相同或相似的特征。
在特征提取技术中,有很多不同的方法,比较常用的有SIFT、SURF、ORB等。
其中SIFT算法是比较经典的一种。
该算法通过构建高斯金字塔和DoG差分金字塔,找到极值点,并计算该点在各个方向上的梯度方向和大小,从而得到特征向量。
在实际应用中,SIFT算法的鲁棒性和稳定性得到了广泛的应用。
二、特征匹配特征匹配是指将两幅图像中提取出的特征点进行对应,找到相同或相似的特征点,从而实现两幅图像的比较和匹配。
在特征匹配中,最常用的方法就是描述符匹配。
在描述符中,通常使用的是SIFT和SURF算法中的特征向量。
描述符匹配通常分为暴力匹配和基于近似匹配。
暴力匹配是将两幅图像中的所有特征点两两进行比较,计算它们之间的距离,找到最相似的一对特征点。
这种方法虽然简单,但随着特征点数量的增加,计算时间也会呈指数级增长,对于大规模图像处理来说会很耗费时间和资源。
而基于近似匹配则可以提高匹配的速度和准确率。
这种方法一般利用哈希表或KD树等数据结构,将特征点按照特征向量的某些属性进行分类,减少比较的数量和计算的时间。
三、特征提取与匹配的应用特征提取和匹配技术已经广泛应用于各个领域,比如人脸识别、场景监控、医学图像分析等等。
在人脸识别领域中,特征点可以帮助我们快速准确地识别出人脸,并进行人脸比对和识别。
基于深度学习的图像特征提取与匹配
基于深度学习的图像特征提取与匹配图像特征提取与匹配是计算机视觉中的一个重要任务。
它涉及到从图像中提取有意义的特征,并将这些特征用于识别、分类、定位或检索等应用中。
而深度学习作为一种强大的机器学习方法,已经在图像特征提取与匹配中取得了卓越的成果。
本文将介绍基于深度学习的图像特征提取与匹配的方法和应用。
首先,我们需要了解什么是图像特征。
图像特征是指图像中具有某种特异性或统计信息的局部区域或全局描述。
常见的图像特征包括颜色、纹理、形状等,这些特征能够反映图像的内容和结构。
传统的图像特征提取方法主要基于手工设计的算法,例如SIFT、SURF和HOG等。
这些方法需要依赖于人工选择和设计的特征提取策略,效果和鲁棒性受限。
而深度学习方法通过自动学习特征表示的方式,克服了传统方法的局限性。
深度学习方法在图像特征提取中的核心是卷积神经网络(CNN)。
CNN通过多层卷积和池化操作,逐渐提取出图像中的高层次、抽象的特征表示。
这些特征表示不仅具有好的区分性能,还能保持一定的尺度和形变不变性。
在图像特征提取中,一个常见的方法是使用预训练的CNN模型获取特征表示。
预训练的CNN模型在大规模图像数据上进行训练,学习到了一组通用的图像特征。
我们可以通过将图像输入到该模型中,提取出图像的高级语义特征。
常用的预训练模型包括VGGNet、ResNet和Inception等。
另一种方法是端到端的训练整个网络,用于从图像中直接学习特定任务的特征表示。
这种方法不依赖于预训练模型,可以更好地适应特定的任务需求。
例如,在人脸识别任务中,可以通过训练一个人脸验证网络,将同一人的图像嵌入到一个低维特征空间中,从而实现人脸的比对和识别。
除了特征提取,图像特征匹配也是图像处理中的一个重要任务。
图像特征匹配用于将两幅或多幅图像中的相似特征进行匹配,从而实现图像的对齐、配准、拼接等应用。
传统的图像特征匹配方法主要基于手工设计的匹配算法,效果受限。
而基于深度学习的图像特征匹配方法,通过学习图像特征的相似性度量,能够得到更准确和鲁棒的匹配结果。
计算机图像处理中的特征提取与匹配技术研究
计算机图像处理中的特征提取与匹配技术研究计算机图像处理与识别一直是人工智能领域中颇具挑战的课题。
在实际应用中,我们常常面临着不同光照环境、尺度变化、旋转变换、遮挡等种种问题,这些条件导致图像的特征出现了各种变换。
所以,选择合适的特征提取与匹配技术来处理图像数据是至关重要的一步。
本文将从理论和实践两方面,对图像特征提取与匹配技术进行研究。
一、图像特征提取技术特征提取是机器视觉领域中的一个重要问题,它旨在将图像中的信息转化为可计算的形式。
目前,常用的图像特征提取技术包括颜色特征、纹理特征、形态特征和边缘特征。
1、颜色特征颜色本身已经作为图像中的信息被人们广泛接受,且易于提取。
对于图像中某个区域的颜色特征提取,可以基于色彩、色调和亮度等信息来进行。
颜色信息经过特征转换后,可以通过各种机器学习算法进行分类、识别。
2、纹理特征纹理特征已经成为图像处理领域中重要的一种特征。
对于图像中某个区域的纹理特征提取,可以基于灰度共生矩阵、纹理分析算法等方法。
通过纹理特征提取,可以衡量图像中各个区域最近邻间的相似度。
3、形态特征形态特征反映了图像中物体的形状和结构,这种特征对于图像分割、识别和细化处理等方面具有很重要的意义。
形态学特征提取主要通过滤波、形态学变换、轮廓提取等方法,可以有效地描述图像中的形态信息。
4、边缘特征边缘特征是图像处理中最常用的,也是最基本的特征之一。
边缘特征可以通过Canny、Sobel、Prewitt等一系列滤波器所检出,以此来检测出图像中的边缘信息,并对其进行处理。
二、图像特征匹配技术图像特征匹配是指在图像特征提取的基础上,找出两幅不同图像中对应位置的图像特征点,以实现图像对比、匹配等功能。
图像特征匹配技术主要分为以下两种。
1、模板匹配法模板匹配法是通过将待检测图像与待识别模板图像进行比较,找出相似部分,来判断待检测图像中是否存在模板图像。
常用的模板匹配法包括基于相似度度量的模板匹配法和基于特征点描述的模板匹配法。
使用计算机视觉技术进行图像特征匹配的技巧与方法
使用计算机视觉技术进行图像特征匹配的技巧与方法图像特征匹配是计算机视觉领域的重要任务之一,它在各种应用场景下起着关键作用,如图像检索、目标跟踪、三维重建等。
本文将介绍一些常用的技巧与方法,帮助读者更好地理解和应用图像特征匹配。
一、特征提取在进行图像特征匹配之前,首先需要从图像中提取出具有代表性的特征点或特征描述子。
特征点是图像中具有显著变化的位置,常常通过兴趣点检测算法(如Harris角点检测、SIFT、SURF等)来提取。
而特征描述子是描述特征点周围局部纹理信息的向量,主要包括SIFT、SURF、ORB、BRIEF等。
选择合适的特征点检测算法和特征描述子对于后续的特征匹配至关重要,它们应该具有鲁棒性、尺度不变性和旋转不变性等优点。
二、特征匹配特征匹配是指在两幅图像中找到相互对应的特征点或特征描述子。
常见的特征匹配算法包括最近邻算法(Nearest Neighbor,简称NN算法)、最近邻加速算法(k-d树、FLANN算法)和基于几何关系的匹配算法(RANSAC算法)等。
其中,最近邻算法是最简单和常用的算法,它通过计算特征空间中特征点的距离来找到最近邻特征点,从而建立匹配关系。
但需要注意的是,最近邻算法在存在局部相似区域时很容易产生误匹配,因此需要采用合适的距离度量方法和匹配策略来提高匹配准确性。
三、匹配策略匹配策略主要指特征点或特征描述子的匹配方式。
常见的匹配策略包括单向匹配、双向匹配和迭代匹配等。
单向匹配是指从图像A中的特征点选取一个最佳匹配的特征点,而不考虑选取的特征点是否有在图像B中的相应匹配。
它简单直观,但容易出现误匹配。
双向匹配是指从图像A中的特征点选取一个最佳匹配的特征点,并且在图像B 中找到相应匹配。
这种方式可以通过对称距离比较来减少误匹配的可能性,但对于某些情况下,仍然可能存在误匹配。
迭代匹配是指通过交叉验证的方式,从匹配对中筛选出准确度更高的匹配结果。
其主要思想是,首先进行双向匹配得到初步匹配结果,然后对匹配对进行筛选和验证,去除不可靠的匹配对,最终得到准确的匹配结果。
图像特征特点及常用的特征提取与匹配方法
图像特征特点及常用的特征提取与匹配方法图像特征是指在图像中具有一定意义的局部区域,这些区域通常具有独特的纹理、形状或颜色信息。
通过提取并描述这些图像特征,可以实现图像的匹配、分类、检索和跟踪等应用。
本文将介绍图像特征的特点,并介绍常用的特征提取与匹配方法。
图像特征的特点有以下几个方面:1.独立性:图像特征具有一定的独立性,即可以通过特征描述子来唯一表示一个图像区域,这样就可以实现特征的匹配和跟踪。
2.不变性:图像特征应具有一定的不变性,即对于图像的旋转、平移、缩放、噪声等变换具有一定的鲁棒性。
这样可以保证在不同条件下对同一对象进行特征提取和匹配时能够得到相似的结果。
3.丰富性:图像特征应具有丰富的信息,即能够有效地描述图像区域的纹理、形状或颜色等特征。
常用的图像特征提取方法有以下几种:1. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT):SIFT特征是一种基于局部图像梯度的特征提取方法,它对图像的旋转、平移、缩放具有较好的不变性。
2. 快速特征检测(Features from Accelerated Segment Test,FAST):FAST特征是一种快速的角点检测算法,它通过比较像素点与其邻域像素点的亮度差异,从而检测到角点。
3. 霍夫变换(Hough Transform):霍夫变换是一种基于几何形状的特征提取方法,它通过在参数空间中进行投票,来检测图像中的直线、圆或其他形状。
常用的图像特征匹配方法有以下几种:1. 暴力匹配(Brute-Force Matching):暴力匹配是最简单的一种匹配方法,它将待匹配的特征描述子与数据库中的所有特征描述子逐一比较,找到相似度最高的匹配。
2. 最近邻匹配(Nearest Neighbor Matching):最近邻匹配是一种常用的特征匹配方法,它通过计算两个特征描述子之间的欧式距离,来找到相似度最高的匹配。
图像处理技术中的特征提取和匹配
图像处理技术中的特征提取和匹配一、引言随着现代数字图像处理技术的不断发展,图像的特征提取和匹配已经成为了图像处理中的重要课题。
图像特征提取的目的是根据某些特征来描述图像中的某些内容,常见的特征包括颜色、形状、纹理等等,而特征匹配则是通过对图像中的特征进行匹配,来实现对图像的自动识别、分类、跟踪等功能。
本文将介绍图像处理技术中的特征提取和匹配,并结合现有的实际应用场景进行分析和讨论。
二、图像特征提取1.基本概念图像的特征可以理解为不同的属性或者参数,用来描述图像中某些具有代表性的目标或区域。
早期的特征提取方式主要依靠手工设计的规则或算法,但随着计算机视觉的进一步发展,越来越多的自动化特征提取方法被提出。
常见的特征提取方法包括颜色直方图、边缘检测、角点检测、纹理特征等等。
其中,颜色直方图是一种统计图像中颜色分布的方法,可以用来描述图像的整体色调和颜色分布情况。
边缘检测可以通过计算图像中的灰度梯度,找出图像中的边缘特征。
角点检测则可以识别出图像中的拐角点,这些点通常具有独特的几何形状和内部结构。
而纹理特征则可以用来描述图像中的视觉纹理信息,通常可以通过计算灰度共生矩阵、局部二值模式等方式来实现。
2.实际应用图像特征提取在很多实际应用场景中都扮演着重要的角色。
例如,在图像识别和分类中,特征提取通常是关键的第一步,它可以帮助机器自动识别出图像中具有代表性的部分。
在图像搜索和检索中,特征提取则可以用来比对相似度,从而找到与目标图像相似的图像样本。
在智能车辆和机器人等领域,特征提取也是必不可少的一环。
例如,在自动驾驶中,系统需要通过分析车辆周围的景物和路况,提取出代表性的特征,来辅助汽车做出判断和决策。
同样,在机器人导航和视觉跟踪中,特征提取也是关键的一步,它可以帮助机器人感知周围环境、定位自身位置等等。
三、图像特征匹配1.基本概念特征匹配是指将提取的特征与已知模板或数据库中的特征进行比对,找到最佳的匹配结果。
图像特征提取算法的使用方法
图像特征提取算法的使用方法图像特征提取算法是计算机视觉领域中的一项重要技术,它通过对图像进行分析和处理,从中提取出具有代表性的信息,用于实现图像分类、目标检测、图像匹配等应用。
本文将介绍图像特征提取算法的基本原理和使用方法。
一、图像特征提取算法的基本原理图像特征提取算法主要基于图像的局部纹理、颜色、形状等特征进行分析。
以下是几种常见的图像特征提取算法及其基本原理:1. 尺度不变特征变换(SIFT)SIFT算法提取图像的局部不变特征,它通过检测关键点并为每个关键点计算一个局部描述子来实现。
SIFT算法具有旋转、尺度、亮度不变性,可以在图像中检测到对象的局部特征。
2. 霍夫变换(Hough Transform)霍夫变换算法主要用于检测图像中的直线和圆等形状。
它通过将图像空间投影到参数空间,再通过参数空间中的峰值来检测对象的形状。
3. 主成分分析(Principal Component Analysis, PCA)PCA算法通过将高维数据转换为低维数据,保留主要特征来进行特征提取。
它将图像中的像素点组成的高维向量进行降维操作,得到一组与原图像相关性最高的特征。
4. 纹理特征提取算法纹理特征提取算法主要利用图像的纹理信息进行特征提取。
常见的纹理特征提取算法包括局部二值模式(LBP)、灰度共生矩阵(GLCM)等。
以上是常见的几种图像特征提取算法,具体的使用方法会因算法而异。
二、图像特征提取算法的使用方法图像特征提取算法的使用方法主要包括以下几个步骤:1. 图像预处理在进行特征提取之前,需要对图像进行预处理,以减少噪声和增强图像的对比度。
常见的图像预处理方法包括灰度化、平滑化、边缘检测等。
根据具体的算法需求选择相应的预处理方法。
2. 特征提取选择合适的特征提取方法对图像进行特征提取。
根据不同的应用需求选择不同的特征提取算法。
如使用SIFT算法可以提取图像的关键点及其描述子,使用霍夫变换可以提取图像中的直线和圆等形状。
图像特征特点及其常用的特征提取与匹配方法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。
三 形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,
(二)常用的特征提取与匹方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
如何利用计算机视觉技术进行图像特征提取与匹配的关键技巧分享
如何利用计算机视觉技术进行图像特征提取与匹配的关键技巧分享计算机视觉技术的飞速发展使得人们能够以前所未有的方式处理和理解图像数据。
图像特征提取与匹配是计算机视觉领域中的核心任务之一,它对于识别、检测和跟踪等应用具有至关重要的作用。
在本文中,我们将分享一些利用计算机视觉技术进行图像特征提取与匹配的关键技巧。
一、图像特征提取技术图像特征提取是将图像数据转化为计算机可以理解和处理的形式的过程。
常用的图像特征提取技术包括颜色特征、纹理特征和形状特征等。
1. 颜色特征提取颜色是图像中最直观的特征之一。
提取颜色特征的方法有很多种,其中最常用的是直方图法。
直方图可以反映图像中不同颜色的分布,通过统计每个颜色在图像中的出现次数,可以得到颜色直方图。
颜色直方图可以用于图像分类、目标跟踪等领域。
2. 纹理特征提取纹理是图像中像素排列形成的局部空间结构。
纹理特征提取的目的是通过提取纹理的某些统计特征来描述纹理的结构信息。
常用的纹理特征提取方法有灰度共生矩阵法、局部二值模式法等。
这些方法通过计算像素之间的关系统计量,得到能够描述纹理特征的矩阵或向量。
纹理特征可以应用于图像检索、物体识别等领域。
3. 形状特征提取形状特征是描述物体轮廓或边界的特征。
形状特征提取的方法有很多种,常用的有边缘检测法和边界描述法。
边缘检测法通过寻找图像中不连续的亮度变化来提取边界信息;边界描述法则通过计算边界的形状描述子,如弧长、曲率等来描述形状特征。
二、图像特征匹配技术图像特征匹配是将给定图像的特征与数据库中的特征进行比对,找到最相似的图像或物体的过程。
图像特征匹配的关键在于如何选择合适的匹配算法和度量方法。
1. 特征点匹配特征点匹配是图像特征匹配中最常见的方法。
在图像中选择鲁棒的特征点,并计算特征向量或描述子,然后利用特征向量或描述子进行匹配。
常用的特征点匹配算法有SIFT、SURF和ORB等。
这些算法具有良好的尺度不变性和旋转不变性,能够有效地匹配图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像特征特点及其常用的特征提取与匹配方法
[ 2006-9-22 15:53:00 | By: 天若有情 ]
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。
一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。
由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。
另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。
颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法
(1)颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。
其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2)颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。
颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。
然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。
在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3)颜色矩
这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。
此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4)颜色聚合向量
其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。
(5)颜色相关图
二纹理特征
(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。
但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。
与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。
在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局
部的偏差而无法匹配成功。
作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。
但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。
另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3 -D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。
由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。
但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法
纹理特征描述方法分类
(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。
统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数(2)几何法
所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。
纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。
在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法
模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。
典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和Gibbs 随机场模型法
(4)信号处理法
纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。
T amura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。
自回归纹理模型(simultan eous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
三形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。
另外,从2-D 图像中表现的3-D 物体实际上只是物体在空间某一平面的投影,从2-D 图像中反映出来的形状常不是3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。
Ⅰ几种典型的形状特征描述方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。
图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。
其中H ough 变换检测平行直线方法和边界方向直方图方法是经典方法。
Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。
在QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数。
(5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Met hod 或FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descri ptor)等方法。
Ⅱ基于小波和相对矩的形状特征提取与匹配
该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的7个不变矩,再转化为10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。
四空间关系特征
(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。
通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。
前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。
显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。
另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。
为了检索,除使用空间关系特征外,还需要其它特征来配合。
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。