北京市东城区汇文中学2020-2021学年八年级第一学期数学期中试卷WORD无答案

合集下载

2022-2023学年北京东城区汇文中学初二(上)期中数学试卷及答案

2022-2023学年北京东城区汇文中学初二(上)期中数学试卷及答案

2022北京汇文中学初二(上)期中数学一、选择题(共8小题,每小题2分,满分16分)1. 斐波那契螺旋线也称为“黄金螺旋线”,它是根据斐波那契数列画出米的螺旋曲线,科学家在自然界中发现存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是().A. B. C. D.2. 下列等式中,从左到右的变形是因式分解的是()A. x2+3x+2=(x+1)(x+2)B. 3x2﹣3x+1=3x(x﹣1)+1C. m(a+b)=ma+mbD. (a+2)2=a2+4a+43. 已知三角形的三边长分别为3,4,x,且x为整数,则x的最大值为()A. 8B. 7C. 5D. 64. 桥梁的斜拉钢索是三角形的结构,主要是为了( )A. 节省材料,节约成本B. 保持对称C. 利用三角形的稳定性D. 美观漂亮5. 下列运算结果为a6的是()A. a3•a2B. a9﹣a3C. (a2)3D. a18÷a36. 如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,FG是()A. 以点C为圆心、OD的长为半径的弧B. 以点C为圆心、DM的长为半径的弧C. 以点E为圆心、DM的长为半径的弧D. 以点E为圆心、OD的长为半径的弧∠的平分线上:②点O到7. 如图,点O是ABC的两个外角平分线的交点,下列结论:①点O在AABC的三边的距离相等;③OB OC=,以上结论正确的有()A. ②③B. ①②C. ①③D. ①②③8. 如图,等腰△ABC 中,AB =AC ,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且MN =12BC ,MD ⊥BC 交AB 于点D ,NE ⊥BC 交AC 于点E ,在MN 从左至右的运动过程中,△BMD 和△CNE 的面积之和( )A. 保持不变B. 先变小后变大C. 先变大后变小D. 一直变大二、填空题(每小题2分,共16分)9. 如果等腰三角形一边长为3,另一边长为10,那么它的周长是 _____.10. 已知一个正多边形的一个外角为36°,则这个正多边形的边数是 _____.11. 如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则表示ABC 重心的点是__________;12. 有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示,右边场地为长方形,长为2()a b +,则宽为 _____.13. 借助如图所示的“三等分角仪”能三等分某些度数的角,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC =CD =DE ,点D ,E 可在槽中滑动,若∠BDE =75°,则∠COD =_____°.14. 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个既不留空隙,又不相互重叠的平面图形,我们称之为镶嵌.用一种或几种正多边形镶嵌平面有多种方案,如:6个正三角形,记作(3,3,3,3,3,3);3个正三角形和两个正方形,记作(3,3,3,4,4);请你写出一种同时使用正三角形和正六边形的镶嵌方案 _____.15. 如图,等边ABC 中,AD 是BC 边上的中线,且17AD =,E P ,分别是AC ,AD 上的动点,则CP EP +的最小值等于 _____.16. 新年联欢,某公司为员工准备了A 、B 两种礼物,A 礼物单价a 元、重m 千克,B 礼物单价(a +1)元,重(m ﹣1)千克,为了增加趣味性,公司把礼物随机组合装在盲盒里,每个盲盒里均放两样,随机发放,小林的盲盒比小李的盲盒重1千克,则两个盲盒的总价钱相差 _____元,通过称重其他盲盒,大家发现:三、解答题(共68分,其中17-18题每题8分,19-20题每题5分,21题6分,22-23题每题5分,24-25题每题6分,26-27题每题7分)17. 因式分解:(1)2363x x ++;(2)39a a −.18. 计算:(1)()3322a a a a ⋅+−÷;(2)()()()22m n m n n m ⎡⎤+−+−÷⎣⎦. 19. 已知210x x −+=,求代数式2(1)(1)(21)x x x +−+−的值.20. 已知:如图,=AB AD ,=AC AE ,BAD CAE ∠=∠,求证:=BC DE .21. 下面是小明同学设计的“已知底边及底边上的中线作等腰三角形”的尺规作图过程.已知:如图1,线段a 和线段b .求作:ABC ,使得AB AC =,BC a =,BC 边上的中线为b .作法:如图2,①作射线BM ,并在射线BM 上截取BC a =;②作线段BC 的垂直平分线PQ ,PQ 交BC 于D ;③以D 为圆心,b 为半径作弧,交PQ 于A ;④连接AB 和AC .则ABC 为所求作的图形.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:由作图可知BC a =,AD b .∵PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴AB AC =( )(填依据).又∵线段BC 的垂直平分线PQ 交BC 于D ,∴ = .∴AD 为BC 边上的中线,且AD b .22. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC ,AD =10,求CD 的长.23. 课本上介绍了求多边形的内角和的方法是过n 边形的一个顶点作对角线,把n 边形分成(2)n −个三角形,把求多边形的问题转化成三角形内角和的问题.从而得到n 边形的内角和等于(2)180n −⋅︒,现在再提供两种添辅助线的方案,请你选择其中一种,再次证明n 边形内角和定理. P 为n 边形12n A A A 内一连接12n PA PA PA ,,,,那么 个三角形,边形的内角和定理. P 为n 边形12n A A A 边A 上的任意一点,连接34PA PA ,,……边形被分成了 个三边形的内角和定理.中,ABC 的三个顶点的坐标分别是()1,0,(12)C ,,(1)在图中作出ABC 关于x 轴对称的111A B C △,其中1A 的坐标为 ;(2)如果要使以B C D 、、为顶点的三角形与ABC 全等(A D 、不重合),写出所有符合条件的点D 坐标.25. 小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x 的多项式223x x −+,由于2223(1)2x x x −+=−+,所以当1x −取任意一对互为相反数的数时,多项式223x x −+的值是相等的,例如,当11x −=±,即2x =或0时,223x x −+的值均为3;当12x −=±,即3x =或1−时,223x x −+的值均为6.于是小明给出一个定义:对于关于x 的多项式,若当x t −取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x t =对称.例如223x x −+关于1x =对称.请结合小明的思考过程,运用此定义解决下列问愿:(1)多项式2610x x −+关于x = 对称;(2)若关于x 的多项式223x bx ++关于4x =对称,求b 的值;(3)整式22(816)(44)x x x x ++++关于x = 对称.26. 在ABC 中,D 是BC 的中点,且90≠︒∠BAD ,将线段AB 沿AD 所在直线翻折,得到线段AB ',作CE AB ∥交直线AB '于点E .(1)如图,若AB AC >,①依题意补全图形;②用等式表示线段,,AB AE CE 之间的数量关系,并证明;(2)若AB AC <,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段,,AB AE CE 之间新的数量关系(不需证明).27. 在平面直角坐标系xOy 中,直线l 为一、三象限角平分线,点P 关于y 轴的对称点称为P 的一次反射点,记作1P ;1P 关于直线l 的对称点称为点P 的二次反射点,记作2P .例如,点(2−,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(3,4)的一次反射点为 ,二次反射点为 ;(2)当点A 在第三象限时,点M (4−,1),N (3,1−),Q (1−,5−)中可以是点A 的二次反射点的是 ;(3)若点A 在第二象限,点1A ,2A 分别是点A 的一次、二次反射点,1250A OA ∠=︒,求射线OA 与x 轴所夹锐角的度数;(4)若点A 在y 轴左侧,点1A ,2A 分别是点A 的一次、二次反射点,12AA A 是等腰直角三角形,请直接写出点A 在平面直角坐标系xOy 中的位置.参考答案一、选择题(共8小题,每小题2分,满分16分)1. 【答案】D【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,利用轴对称图形的定义一一排查即可.【详解】根据轴对称图形的定义,只有选项D是轴对称图形,其它都不是,故选择:D.【点睛】本题考查轴对称图形问题,掌握轴对称图形的定义,会利用轴对称图形的定义识别图形是解题关键.2. 【答案】A【解析】【分析】多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可.【详解】解:A、x2+3x+2=(x+1)(x+2),符合因式分解的定义,故正确;B、3x2﹣3x+1=3x(x﹣1)+1,右边不是整式的积的形式,不符合因式分解的定义,故错误;C、m(a+b)=ma+mb,是整式的乘法,不是因式分解,故错误;D、(a+2)2=a2+4a+4,是整式的乘法,不是因式分解,故错误.故选:A.【点睛】本题主要考查的是因式分解的定义,熟练掌握因式分解的定义以及运算方法是解题的关键.3. 【答案】D【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.【详解】解:根据三角形的三边关系,得:4-3<x<4+3,即1<x<7,∵x为整数,∴x的最大值为6.故选:D.【点睛】此题考查了三角形的三边关系.注意第三边是整数的已知条件.4. 【答案】C【解析】【分析】只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性,据此作答即可.【详解】解:桥梁的斜拉钢索往往是三角形结构,这主要是利用了三角形的稳定性.故选:C.【点睛】此题考查了三角形的特性:稳定性,应注意在实际生活中的应用.5. 【答案】C【解析】【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【详解】解:A 、a 3•a 2=a 5,不符合题意;B 、a 9﹣a 3,不能合并,不符合题意;C 、(a 3)2=a 6,符合题意;D 、a 18÷a 3=a 15,不符合题意,故选:C .【点睛】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.6. 【答案】C【解析】【分析】根据平行线的判定,作一个角等于已知角的方法即可判断.【详解】解:由作图可知作图步骤为:①以点O 为圆心,任意长为半径画弧DM ,分别交OA ,OB 于M ,D .②以点C 为圆心,以OM 为半径画弧EN ,交OA 于E .③以点E 为圆心,以DM 为半径画弧FG ,交弧EN 于N .④过点N 作射线CP .根据同位角相等两直线平行,可得CP ∥OB .故选C .【点睛】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【答案】B【解析】【分析】过点O 分别作,,OD AB OE BC OF AC ⊥⊥⊥,根据角平分线的性质可得OD OE OF ==,进而判断①②,连接AO ,结合①②的结论,进而可得AOD AOF △≌△,ODB OFC △≌△,假设③成立,进而得出AB AC =,根据题意无法证明AB AC =,进而判断③;【详解】过点O 分别作,,OD AB OE BC OF AC ⊥⊥⊥,如图,点O 是ABC 的两个外角平分线的交点, ,OD OE OE OF ∴==,∴OD OE OF ==,OD OF =,∴点O 到ABC 的三边的距离相等;故②正确;,OD AB OF AC ⊥⊥,∴点O 在A ∠的平分线上,故①正确;连接AO ,假设OB OC =, =OD OF ,AO 是BAC ∠的角平分线, ,OD AB OF AC ⊥⊥, OAD OAF ∴∠=∠,90ADO AFO ∠=∠=︒, ∴AOD AOF △≌△,ODB OFC △≌△, AD AF ∴=,DB CF =,AD BD AF CF ∴−=−,即AB AC =, AB 不一定等于AC ,故③不成立;故正确的有①②.故选B . 【点睛】本题考查了角平分线的性质与判定,三角形全等的性质与判定,掌握角平分线的性质与判定是解题的关键.8. 【答案】B【解析】【分析】妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,根据二次函数即可解决问题.【详解】解:不妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,则有S 阴=12•m•mtanα+12(a ﹣m )•(a ﹣m )tanα =12tanα(m 2+a 2﹣2am+m 2) =12tanα(2m 2﹣2am+a 2) =1tan 2α22[2()]22a a m •−+; 当2a m =时,S 阴有最小值; ∴S 阴的值先变小后变大,故选:B .【点睛】此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.二、填空题(每小题2分,共16分)9. 【答案】23【解析】【分析】结合等腰三角形两腰相等和三角形三边关系即可求解.【详解】解:分两种情况:当腰为3时,3310+<,所以不能构成三角形;当腰为10时,31010+>,所以能构成三角形,故周长是:3101023++=.故答案为:23.【点睛】本题考察等腰三角形的定义和三角形三边关系,属于基础几何知识考查,难度不大.解题的关键是掌握三角形的三边关系.10. 【答案】10【解析】【分析】先思考正多边形的外角和为360°,再根据一个外角为36°,即可求出正多边形的边数即可.【详解】正多边形的边数是:360°÷36°=10.故答案为:10.【点睛】本题主要考查了正多边形的外角和定理,掌握多边形的外角和等于360°是解题的关键. 11. 【答案】D【解析】【分析】根据三角形重心是三角形三条中线的交点,结合勾股定理即可得出结论.【详解】解:如下图所示由勾股定理可得:= =∴N ,M 分别是AB ,BC 的中点∴直线CD 经过ABC 的AB 边上的中线,直线AD 经过ABC 的BC 边上的中线,∴点D 是ABC 重心.故答案为:D .【点睛】本题主要考查了三角形重心的判断,掌握三角形的重心的定义是解决此题的关键,属于基础题意,比较简单.12. 【答案】1122a b + 【解析】【分析】先求出左边场地的面积,再根据面积相等可以求出右边场地的宽.【详解】解:左边场地面积222a b ab =++,∵左边场地的面积与右边场地的面积相等, ∴宽222111(2)2()()2()()222a b ab a b a b a b a b a b =++÷+=+÷+=+=+, 故答案为:1122a b +. 【点睛】本题考查整式的除法;熟练掌握整式的除法运算法则,准确计算式解题的关键.13. 【答案】25【解析】【分析】根据题意设COD x ∠=,所以COD CDO x ∠=∠=,然后列出等式进行求解即可.【详解】解:设COD x ∠=,∵OC CD DE ==,∴COD CDO x ∠=∠=,DCE DEC ∠=∠,∵2DCE COD CDO x ∠=∠+∠=,∴2DEC x ∠=,∵3BDE DEC COD x ∠=∠+∠=,∴375x =︒,∴25x =︒,故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及三角形外角的性质,熟练运用相关性质进行推理是解本题的关键.14. 【答案】(3,3,3,3,6)(答案不唯一)【解析】【详解】正三角形的一个内角度数为60°,正六边形的一个内角度数为120°,那么4个正三角形,一个正六边形能组成镶嵌,记做(3,3,3,3,6),故答案为:(3,3,3,3,6)(答案不唯一).15. 【答案】17【解析】【分析】点C 关于AD 的对称点为点B ,CP EP BP EP BE +=+≥,当且仅当,,B E P 三点共线时,CP EP BP EP BE +=+=,再根据垂线段最短,得到当BE AC ⊥时,CP EP +最小,利用等边三角形的性质,进行求解即可.【详解】解:过点B 作BE AC ⊥于E ,交AD 于P ,∵ABC 是等边三角形,AD 是BC 边上的中线,∴AD BC ⊥,∴AD 是BC 的垂直平分线,∴点B C ,关于AD 为对称,∴BP CP =,∴CP EP BP EP BE +=+≥当且仅当,,B E P 三点共线时,CP EP BP EP BE +=+=,根据垂线段最短得出:BEAC ⊥时,此时CP EP +的值最小, ∵ABC 是等边三角形,∴AC BC =, ∵1122ABC S BC AD AC BE ∆=⋅=⋅, ∴17BE AD ==,即CP EP +的最小值为17,故答案为:17.【点睛】本题考查等边三角形的性质,轴对称.熟练掌握等边三角形三线合一,以及轴对称法解决线段和最小问题,是解题的关键.16. 【答案】 ①. 1 ②. 50【解析】【分析】由题意知,盲盒中礼物的重量组合有(),m m ,(),1m m −,()1,1m m −−共三种情况,由图表可知,小林的盲盒的重量组合为(),m m ,小李的盲盒的重量组合为(),1m m −,共有1519420++++=个盲盒,表示出小林与小李盲盒的总价钱后作差即可;由图表可得盲盒中共有A 礼物有(15)21922+⨯++=个,B 礼物有194218++⨯=个,列一元一次方程2218(1)2018a a ++=,计算求解即可得到a 的值.【详解】解:由题意知,盲盒中礼物的重量组合有(),m m ,(),1m m −,()1,1m m −−共三种情况,总重量分别为2m ,21m −,22m −千克∴由图表可知,小林的盲盒的重量组合为(),m m ,重量为2m 千克,小李的盲盒的重量组合为(),1m m −,重量为21m −千克,共有1519420++++=个盲盒∴小林盲盒的总价钱为2a a a +=元,小李盲盒的总价钱为121a a a ++=+元∴两个盲盒的总价钱相差2121a a +−=元∴盲盒中共有A 礼物有(15)21922+⨯++=个,B 礼物有194218++⨯=个∴2218(1)2018a a ++=解得50a =故答案为:1;50.【点睛】本题考查了列代数式,一元一次方程的应用.解题的关键在于确定,A B 两种礼物的个数与不同盲盒的个数.三、解答题(共68分,其中17-18题每题8分,19-20题每题5分,21题6分,22-23题每题5分,24-25题每题6分,26-27题每题7分)17. 【答案】(1)()231x +(2)()()33a a a −+【解析】【分析】(1)先提公因式,再用完全平方公式()2222a ab b a b ±+=±;(2)先提公因式,再用平方差公式()()22a b a b a b −=+−; 【小问1详解】解:()()22236332131x x x x x ++=++=+; 【小问2详解】()()()329933a a a a a a a −=−=+−.【点睛】本题考查因式分解,解题关键掌握因式分解的方法:提公因式法、公式法,注意因式分解要彻底.18. 【答案】(1)0(2)12m 【解析】【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)先计算中括号里的乘方和乘法,然后计算括号里的加减,去掉括号后计算除法.【小问1详解】解:()3322a a a a ⋅+−÷ =()462a aa +÷- =44a a −=0【小问2详解】解:()()()22m n m n n m ⎡⎤+−+−÷⎣⎦=()2222m n nm −+÷ =22m m ÷ =12m 【点睛】本题考查了含乘方的整式的混合运算,熟练掌握运算法则是解题关键.19. 【答案】22x x −++,3.【解析】【分析】先按照完全平方公式与多项式乘以多项式的法则进行整式的乘法运算,再合并同类项即可得到化简的结果,再把210x x −+=化为21,x x −=−再整体代入求值即可得到答案.【详解】解:原式2212221x x x x x =++−+−+22x x =−++.当210x x −+=时,21,x x ∴−=−原式()()221212 3.x x =−−+=−−+=+=【点睛】本题考查的是整式的混合运算,化简求值,掌握利用完全平方公式及多项式乘以多项式的运算法则进行整式的乘法运算是解题的关键.20. 【答案】见解析【解析】【分析】先证明∠=∠BAC DAE ,再根据SAS 得出BAC DAE ≅,即可证明=BC DE .【详解】证明:∵BAD CAE ∠=∠,∴=BAD DAC CAE DAC ∠+∠∠+∠,∴∠=∠BAC DAE在BAC △和DAE △中,===AB AD BAC DAE AC AE ∠∠⎧⎪⎨⎪⎩,∴BAC DAE ≅()SAS∴=BC DE .【点睛】本题考查三角形的判定与性质,三角形全等的判定方法有:SSS ASA SAS AAS HL 、、、、,选用合适的判定定理是解题的关键.21. 【答案】(1)见解析 (2)线段的垂直平分线上的点到线段的两个端点距离相等,BD DC =.【解析】【分析】(1)根据步骤作图即可;(2)根据线段垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点距离相等,据此填空即可.【小问1详解】解:图形如图所示:【小问2详解】证明:由作图可知BC a =,AD b ,∵PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴AB AC =(线段的垂直平分线上的点到线段的两个端点距离相等)又∵线段BC 的垂直平分线PQ 交BC 于D ,∴BD DC =,∴AD 为BC 边上的中线,且AD b .【点睛】本题考查线段垂直平分线的性质及作图,三角形的中线,牢固掌握其性质是解题的关键.22. 【答案】DC 的长是5【解析】【分析】在Rt △ABC 中利用∠C =90°,∠A =30°易求∠ABC =60°,再利用角平分线性质可求∠ABD =∠DBC =30°,从而可得∠ABD =∠A ,进而可求BD ,在Rt △BDC 中,利用30°的角所对的边等于斜边的一半可求CD .【详解】解:在Rt △ABC 中,∵∠C =90°,∠A =30°,∴∠ABC =60°,∵BD 是∠ABC 的平分线,∴∠ABD =∠DBC =30°,∴∠ABD =∠A ,∴BD =AD =10,又∵∠DBC =30°,∠C =90°,∴DC =12BD =5.即DC 的长是5.【点睛】本题考查了含有30°角的直角三角形、角平分线的性质.解题的关键是得出BD =AD =10. 23. 【答案】方案一:n ,证明见解析;方案二:(n )1−,证明见解析【解析】【分析】方案一,在n 边形内任取一点O ,并把O 与各顶点连接起来,共构成n 个三角形,这n 个三角形的角和为180n ⋅︒,再减去以点O 为顶点的一个周角,就可以得到n 边形的内角和为(2)180n −⋅︒; 方案二,连接P 点与其它各顶点的线段可以把n 边形分成(n )1−个三角形.【详解】证明:方案一,在n 边形内任取一点P ,并把O 与各顶点连接起来,共构成n 个三角形,这n 个三角形的角和为180n ⋅︒,再减去以点O 为顶点的一个周角,就可以得到n 边形的内角和为(2)180n −⋅︒.故答案为:n ;方案二,在n 边形的边12A A 上的任意一点P ,连接P 点与其它各顶点的线段可以把n 边形分成(n )1−个三角形, 这(n )1−个三角形的内角和等于(1)180n −⋅︒,以P 为公共顶点的(n )1−个角的和是180︒,所以n 边形的内角和是(1)180180(2)180n n −⋅−=−⋅︒︒︒.故答案为:(n )1−.【点睛】本题考查了多边形的内角和定理的证明,解题关键是将多边形的内角和问题转化为三角形中解决.、24. 【答案】(1)图见解析,(2,3)−(2)(0,3)或(0,1)−或(2,1)−【解析】【分析】(1)由关于x 轴对称的点的坐标的特征先确定111A B C 、、三点的坐标,再描点,连线即可; (2)根据全等三角形的判定可画出图形,根据图形可直接写出一个符合条件的点D 坐标.【小问1详解】如图,111A B C △即为所求;1A 的坐标为(2,﹣3);故答案为:(2,﹣3);【小问2详解】如图2,所有符合条件的点D 坐标为:(0,3)或(0,1)−或(2,1)−;【点睛】本题考查了轴对称的性质,全等三角形的判定等,解题关键是牢固掌握关于坐标轴对称的点的坐标的特征并能灵活运用.25. 【答案】(1)3 (2)4b =−(3)3−【解析】【分析】(1)对多项式进行配方,根据新定义判断即可;(2)求出223x bx ++的对称轴,令对称轴4x =即可;(3)对多项式进行配方,根据新定义判定即可.【小问1详解】解:22610(3)1x x x −+=−+,则多项式关于3x =对称.故答案为:3;【小问2详解】解:∵22223()3x bx x b b ++=++−,∴关于x 的多项式223x bx ++关于x b =−对称,∴4b −=,∴4b =−;【小问3详解】解:22(816)(44)x x x x ++++22(4)(2)x x =++[]2(4)(2)x x =++22(68)x x =++22(3)1x ⎡⎤=+−⎣⎦, ∴关于3x =−对称.故答案为:3−.【点睛】本题考查了配方法的应用,能够对多项式进行配方,根据新定义判断出对称轴是解题的关键. 26. 【答案】(1)①见解析;②AB AE CE =+ ,理由见解析(2)不成立,AB AE CE =−【解析】【分析】(1)①根据题意作图即可;②连接,由折叠的性质可证,推出,再由平行线的性质及等腰直角三角形的性质得出,即可推出答案; (2)连接,由折叠的性质可证,推出,再由平行线的性质及等腰直角三角形的性质得出,即可推出答案.【小问1详解】①补全图形如图所示:②AB AE CE =+ ,理由如下:如图,连接B D B C '', ,将线段AB 沿AD 所在直线翻折,得到线段AB ', ,AB AB B AD BAD ''∴=∠=∠ ,又AD AD = ,(SAS)B AD BAD '∴∆≅∆ ,,AB D ABD B D BD ''∴∠=∠=,CE AB ∥ ,BCE ABD ∴∠=∠,AB D BCE '∴∠=∠,D 是BC 的中点,BD CD ∴= ,B D CD '∴=,DB C DCB ''∴∠=∠,即AB D EB C BCE ECB '''∠+∠=∠+∠, EB C ECB ''∴∠=∠,B E CE '∴= ,AB AE B E AE CE ''∴=+=+ ,AB AB AE CE '∴==+;【小问2详解】不成立,AB AE CE =−,理由如下:如图,连接B D B C '',,将线段AB 沿AD 所在直线翻折,得到线段AB ',,AB AB B AD BAD ''∴=∠=∠ ,又AD AD = ,(SAS)B AD BAD '∴∆≅∆ ,,AB D ABD B D BD ''∴∠=∠=,D 是BC 的中点,BD CD ∴= ,B D CD '∴=,DB C DCB ''∴∠=∠,CE AB ∥ ,180DCE ABD ∴∠+∠=︒,即180ABD DCB ECB ''∠+∠+∠=︒,180AB D DB C EB C '''∠+∠+∠=︒,180AB D DB C EB C ABD DCB ECB '''''∴∠+∠+∠=︒=∠+∠+∠,DCB DB C ''∠=∠,ECB EB C ''∴∠=∠,B E CE '∴= ,AB AE B E AE CE ''∴=−=− ,AB AB AE CE '∴==−.【点睛】本题考查了折叠的性质,平行线的性质,等腰三角形的性质,全等三角形的判定和性质,熟练掌握并灵活运用上述知识点是解题的关键.27. 【答案】(1)(3−,4),(4,3−)(2)M (4−,1)(3)20°或70° (4)点A 在x 轴上或直线y x =上【解析】【分析】(1)根据一次反射点,二次反射点的定义求解;(2)根据一次反射点,二次反射点的定义判断2A 的位置即可;(3)判断出射线1OA 与x 轴的夹角,可得结论;(4)利用图像法,点A 在x 轴上或直线y x =上满足条件.【小问1详解】点(3,4)的一次反射点为(3−,4),二次反射点为(4,3−);故答案为:(3−,4),(4,3−;【小问2详解】∵点A 在第三象限时,∴一次反射点在第四象限,二次反射点在第二象限,∴点M (4−,1),N (3,1−),Q (1−,5−)中可以是点A 的二次反射点的是M (4−,1); 故答案为:(4−,1);【小问3详解】如图1中,∵1250A OA ∠=︒,∴1OA 与x 轴的夹角为20°或70°,根据对称性可知,OA 与x 轴所夹锐角的度数为20°或70°;【小问4详解】如图2中,观察图象可知,当点A 在x 轴上时,12AA A 是等腰直角三角形.如图3中,观察图象可知,当点A 在直线y x =上时,12AA A 是等腰直角三角形.综上所述,点A 在x 轴上或直线y x =上.【点睛】本题考查坐标与图形变化——对称,等腰直角三角形的判定和性质,解题的关键是理解一次反射点、二次反射点的定义,学会利用图像法解决问题.。

2020-2021北京市初二数学上期中试题含答案

2020-2021北京市初二数学上期中试题含答案

2020-2021北京市初二数学上期中试题含答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.如图,在Rt△ABC中,∠ACB=90º,∠A=60º,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm3.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+4.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点6.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠7.计算()2x yxy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy -8.如图,ABC 是等腰直角三角形,BC 是斜边,将ABP 绕点A 逆时针旋转后,能与ACP '重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .339.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A 29B 34C .2D 4110.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°11.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .712.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1 C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 14.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是_________. 15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 17.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.因式分解:2()4()a a b a b ---=___.20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.22.(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于时,线段AC的长取到最大值,则最大值为;(用含a、b的式子表示).(2)如图2,若点A为线段BC外一动点,且BC=4,AB=2,分别以AB,AC为边,作等边ABD△和等边ACE△,连接CD,BE.①图中与线段BE相等的线段是线段,并说明理由;②直接写出线段BE长的最大值为.(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为,及此时点P的坐标为.(提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1223.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元? 24.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.25.如图,在四边形ABCD 中,AB=BC ,BF 平分∠ABC ,AF ∥DC ,连接AC ,CF. 求证:(1)AF=CF ; (2)CA 平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再求出AB即可.【详解】解:∵在Rt△ABC中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB(直角三角形30°所对的直角边等于斜边的一半),又∵CD是斜边AB上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC(直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB=.故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.3.C解析:C 【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.4.D解析:D 【解析】 【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC 各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论. 【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC ,∠2=180°−60°−∠ACB=120°−∠ACB ,∠3=180°−60°−∠BAC=120°−∠BAC , ∵∠ABC+∠ACB+∠BAC=180°, ∴∠1+∠2+∠3=360°−180°=180°, 故选D .【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.5.D解析:D 【解析】 【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断. 【详解】在Rt △ABC 和Rt △CDE 中,AB CDBC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=, 90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明 故A 、B 、C.正确, 故选. D 【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B 【解析】 【分析】直接利用分式有意义,则分母不为零,进而得出答案. 【详解】 解:要使分式13a +有意义, 则a +3≠0, 解得:a ≠-3. 故选:B . 【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.7.C解析:C 【解析】 【分析】根据分式的减法和除法可以解答本题 【详解】()()()22===x yxy x xyxy x y x x y xyx x y x y x y--÷-⋅--⋅--- 故答案为C 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.A解析:A 【解析】 【分析】 【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3, 根据勾股定理得:223332'=+=PP ,故选A .9.D解析:D 【解析】解:设△ABP 中AB 边上的高是h .∵S △P AB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离. 在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即P A +PB的最小值为41.故选D .10.D解析:D 【解析】 【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答. 【详解】∵等腰三角形的一个外角是100°, ∴与这个外角相邻的内角为180°−100°=80°, 当80°为底角时,顶角为180°-160°=20°, ∴该等腰三角形的顶角是80°或20°. 故答案选:D. 【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.11.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任意一点,∴△A A 1P 是等腰三角形,MN 垂直平分AA 1、CC 1,△ABC 与△A 1B 1C 1面积相等, ∴选项A 、B 、C 选项正确;∵直线AB ,A 1B 1关于直线MN 对称,因此交点一定在MN 上.∴选项D 错误.故选D .【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.0【解析】【分析】根据题意先解出方程的根为x=4-2m 由题意可知x=2即可得4-2m=2解出m 即可【详解】解:方程两边同时乘以x-2得解得:∵分式方程有增根∴x=2∴∴故答案为:0【点睛】本题考查分解析:0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.【详解】解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键.14.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x a x +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2.详解:去分母得2x+a=x-1,解得x=-a-1, ∵关于x 的方程21x a x +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2,∴a 的取值范围是a <-1且a≠-2.故答案为a <-1且a≠-2. 点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.15.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx -6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值,即可得出m n 的值.【详解】∵x 2+mx-6=(x-3)(x+n )=x 2+nx-3x-3n=x 2+(n-3)x-3n ,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n =1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a的式子,解为正数且最简公分母不为零,得到关于a的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a -∵x>0且x−1≠0,∴52510 2aa-⎧>⎪⎪⎨-⎪-≠⎪⎩解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.18.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.20.6cm 【解析】【分析】根据∠C=90°∠A=30°易求∠ABC=60°而BD 是角平分线易得∠ABD=∠DBC=30°根据△BCD 是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD =BD 从而解析:6cm【解析】【分析】根据∠C =90°,∠A =30°,易求∠ABC =60°,而BD 是角平分线,易得∠ABD =∠DBC =30°,根据△BCD 是含有30°角的直角三角形,易求BD ,然后根据等角对等边可得AD =BD ,从而可求AC .【详解】解:∵∠C =90°,∠A =30°,∴∠ABC =60°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,在Rt △BCD 中,BD =2CD =4cm ,又∵∠A =∠ABD =30°,∴AD =BD =4cm ,∴AC =6cm .故答案为6cm .【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD,难度适中.三、解答题21.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.22.(1)CB延长线上;a+b(2)①DC②6;(3))或(2-,).【解析】【分析】1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【详解】(1)CB延长线上;a+b;(2)①DC,理由如下:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD 与△EAB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△EAB ,∴CD=BE.②6(3)()【点睛】本题考查的知识点是等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质. 23.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元. 由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.24.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF 平分∠ABC ⇒∠ABF=∠CBF ,再加上AB=BC ,BF=BF 就可以推出△ABF ≌△CBF ,依据全等三角形对应边相等的性质可以推出AF=CF ;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC ;依据平行线的性质可以得出内错角∠FAC 、∠DCA 相等,等量代换后,就可推出CA 平分∠DCF .【详解】证明:如图.(1)∵BF 平分ABC ∠,∴ABF CBF ∠=∠.在△ABF 与△CBF 中,,{,,AB CB ABF CBF BF BF =∠=∠=∴ △ABF ≌△CBF .∴AF CF =.(2)∵AF CF =,∴FCA FAC ∠=∠.∵AF ∥DC ,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF,继而推出∠FCA=∠FAC,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。

北京市东城区汇文中学2020-2021-11初二数学期中试卷WORD无答案

北京市东城区汇文中学2020-2021-11初二数学期中试卷WORD无答案

北京市东城区汇⽂中学2020-2021-11初⼆数学期中试卷WORD⽆答案北京汇⽂中学2020-2021学年度第⼀学期初⼆年级期中考试数学班级姓名学号1.本试卷共⼋页,30道⼩题,满分100分。

考试时间120分钟;2.答题纸上⽤⿊⾊字迹签字笔作答,画图⽤铅笔;3.题⽬答案写在答题纸上,在试卷上作答⽆效。

⼀.选择题(每⼩题2分,共20分)1.下列有关医疗和倡导卫⽣的图标中,是轴对称图形的是A B C D 2.使分式23x -有意义的x 的取值范围是 A.x ≠3 B.x >3 C.x <3 D.x =3 3.若分式2x x -1+1的值为0.则x 应满⾜的条件是 A.x =-1 B.x =1 C.x =±1 D.x ≠-14.在国庆70周年的庆典活动中,使⽤了⼤量的电⼦显⽰屏,0.0009m 微间距显⽰屏就是其中之⼀.数字0.0009⽤科学记数法表⽰应为A.4910-?B.3910-?C.0.3910-?D.0.4910-?5.下列约分正确的是 A.623m m m = B.b c b a c a +=+ C.22x y x y x y -=+- D.x y y x+= 6.如图:△ABC 中,∠A =40°,AB 的垂直平分线分别AB ,AC 于点D.E ,连接BE ,则∠BEC 的⼤⼩为()A.40°B.50°C.80°D.100°7.已知△ABC 两个完全⼀样的三⾓板如图摆放,它们的⼀组对应直⾓边分别在AB 、AC 上,且这组对应边所对的顶点重合于点M ,点M ⼀定在A.AC 边的⾼上B.AB 边的中线上C.BC 边的垂直平分线上D.∠A 的平分线上8.如图,直线1l //2l ,点A 在直线1l 上,以点A 为圆⼼,适当长度为半径画弧,分别交直线1l ,2l 于B ,C 两点,以点C 为圆⼼,CB 长为半径画弧,与前弧交于点D(不与点B 重合),连接AC ,AD ,BC ,CD ,其中AD 交2l 于点E.若∠ECA =40°,则下列结论错误的是A.∠ABC =70°B.∠BAD =80°C.CE =CDD.CE =AE9.⽼师设计了⼀个接⼒游戏,⽤⼩组合作的⽅式完成分式的运算,规则是:每⼈只能看见前⼀个⼈给的式⼦,并进⾏⼀步计算,再将结果传递给下⼀个⼈,最后完成计算.其中⼀个组的过程是:⽼师给甲,甲⼀步计算后写出结果给⼄,⼄⼀步计算后写出结果给丙,丙⼀步计算后写出结果给丁,丁最后算出结果,接⼒中,⾃⼰负责的⼀步出现错误的是A.甲B.⼄C.丙D.丁10如图,在△ABC 中,AB =3,AC =4,BC =5,EF 是BC的垂直平分线,P 是直线EF 上的任意⼀点,则PA+PB的最⼩值是A.3B.4C.5D.6⼆.填空题(每题2分,共16分)11.请写出⼀个只含有字母x 的分式,当x =3时分式的值为0,你写的分式是_____________.12.若等腰三⾓形的两条边长分别为3cm 和6cm ,则它的周长为_____________cm.13.⼰知,如图AB =AC ,∠BAC =40°,D 为AB 边上的⼀点,过D 作DF ⊥AB,交AC 于E.交BC 延长线于点F ,则∠F =________.14.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC 于点D.若AD =3,则BC =________.13题图 14题图 15题图15.如图,在△ABC 中,∠C =90°,以点A 为圆⼼,适当长为半径画弧,分别交AC , AB 于点M ,N ,再分别以点M ,N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D.若CD =1,AB =4,则△ABD 的⾯积是_______.16.如图,平⾯直⾓坐标系x0y 中,点A(4,3),点B(3,0),点C(5,3),点E 在x 轴上.当CE =AB 时,点E 的坐标为_______.17.如图△ABC 中,AC =BC ,∠ACB =120°,点D 在线段AB 上运动(D 不与A ,B 重介),连接CD ,作∠CDE =30°,DE 交BC 于点E ,若△CDE 是等腰三⾓形,则∠ADC 的度数是_______.18.下⾯是⼩军同学计算2222x x x x11--+的过程. 2222x x x x11--+ =22x x x x 11-(-)(+)……………………………………………………………………[1] =222222x x x x x x x x +--(+)(-)(+)(-)……………………………………………………[2] =2222x x x x x +-(-)(+)(-)…………………………………………………………………………[3] =2222x x x x x +-+(+)(-) (4)=422x x x (+)(-)(5)其中运算步骤[2]为:_____________,该步骤的依据是_____________.三.解答题(19-28题每题5分,29-30题每题7分,共64分)19.下⾯是⼩⽯设计的“过直线上⼀点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l 及直线l 上⼀点P.求作:直线PQ ,使得PQ ⊥l 。

2023-2024学年北京市第八中学八年级上学期期中考试数学试卷含详解精选全文完整版

2023-2024学年北京市第八中学八年级上学期期中考试数学试卷含详解精选全文完整版

北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.336x x x += B.2510x x x ⋅= C.()3666x x = D.()22422x x =3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.47.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a -- D.(,40)a -8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y≥ B.x y≤ C.x y< D.x y>9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A .19AB << B.313AB << C.513AB << D.913AB <<10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cmAB A B ''==2乙4cmBC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③二、填空题(每题3分,共24分)11.计算:()01π-=_____.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.13.已知3m a =,4n a =,则2m n a +的值是_________.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a babc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A 不符合题意;∵不是轴对称图形,∴B 不符合题意;∵不是轴对称图形,∴C 不符合题意;∵是轴对称图形,∴D 符合题意;故选D .【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键.2.下列运算正确的是()A.336x x x +=B.2510x x x ⋅= C.()3666x x = D.()22422x x =【答案】C【分析】本题考查了合并同类项,幂的乘方,同底数幂的乘法,积的乘方.根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则,积的乘方法则进行判断即可.【详解】解:A 、33362x x x x +=≠,选项错误,不符合题意;B 、21075x x x x ⋅=≠,选项错误,不符合题意;C 、()3666x x =,选项正确,符合题意;D 、()2244242x x x =≠,选项错误,不符合题意.故选:C .3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS【答案】A【分析】根据图形可知两角及夹边是已知条件即可判断.【详解】解:由图可知,左下角和右下角可测量,为已知条件,两角的夹边也可测量,为已知条件,故可根据ASA 得到与原图形全等的三角形,故选:A .【点睛】本题考查全等三角形的的判定定理,掌握全等三角形的的判定定理是关键.4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上【答案】C【分析】本题考查了直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定.根据直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定等知识,一一判断即可.【详解】解:A 、直角三角形两锐角互余,故A 不符合题意;B 、直角边、斜边分别相等的两个直角三角形全等,故B 不符合题意;C 、如果两个三角形全等,则它们不一定是关于某条直线成轴对称,故C 符合题意;D 、与线段两个端点距离相等的点在这条线段的垂直平分线上,故D 不符合题意.故选:C .5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒【答案】A【分析】本题考查三角形全等的性质、三角形内角和的应用,根据DBE BCA ≌△△可得55ABC BDE ∠=∠=︒,再根据DBE ABC EBC =∠-∠∠即可求解.【详解】解:∵DBE BCA ≌△△,∴55ABC BDE ∠=∠=︒,∵85DBE C =∠=︒∠,∴30DB EBC E ABC -∠=︒∠=∠,故选:A .6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.4【答案】B【分析】本题主要考查多项式乘多项式.根据多项式乘多项式的运算法则可进行把含x 的多项式进行展开,然后再根据题意可求解.【详解】解:()()()2222222x p x x px x p x p x p -+=-+-=+--,∵展开后不含x 项,∴20p -=,解得:2p =;故选:B .7.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a --D.(,40)a -【答案】B【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∴飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y ≥B.x y≤ C.x y< D.x y>【答案】A【分析】本题主要考查完全平方公式、比较大小.利用作差法即可比较大小关系.【详解】解:已知2x a ab =-,2y ab b =-,则()22a a x yb ab b-=---22a ab ab b =-+-()20a b =-≥,所以x y ≥.故选:A .9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A.19AB <<B.313AB << C.513AB << D.913AB <<【答案】B【分析】作辅助线(延长AD 至E ,使4DE AD ==,连接BE )构建全等三角形BDE ADC △≌△,然后由全等三角形的对应边相等知5BE AC ==;而三角形的两边之和大于第三边、两边之差小于第三边,据此可以求得AB 的取值范围.【详解】解:延长AD 至E ,使4DE AD ==,连接BE ,则8AE =,∵AD 是边BC 上的中线,D 是中点,∴BD CD =,又∵,DE AD BDE ADC =∠=∠,∴()BDE ADC SAS ≌,∴5BE AC ==,由三角形三边关系,得AE BE AB AE BE -<<+,即8585AB -<<+,∴313AB <<.故选:B .【点睛】本题主要考查了全等三角形的判定与性质、三角形三边关系等知识,解题关键是正确作出辅助线构造全等三角形,运用全等三角形的性质判定对应线段相等.10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cm AB A B ''==2乙4cm BC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③【答案】B 【分析】本题考查全等三角形的判定定理.根据全等三角形的判定定理逐一分析判断即可.【详解】解:①∵如果甲添加5cm AC A C ''==,又∵2cm AB A B ''==,4cm BC B C ''==,∴()SSS ABC A B C '''△≌△,∴乙获胜,故结论①正确;②∵如果甲添加30C C '==︒∠∠,又12AB BC =,反证法,假设90CAB ∠≠︒,那么在AC 上存在另一点D ,使得∠90CDB =︒,则在Rt CDB △中30︒角的对边为斜边的一半,即是12cm 2BD BC ==,又因为一点到直线的垂直线段长度最短,且交点唯一,那么A 与D 应重合,90CDB CAB ∠=∠=︒,∴ABC 是直角三角形,且90A ∠=︒,∴这两个三角形的三边长度就确定下来,且必然对应相等,∴这两个三角形全等,故甲会输,故结论②错误,③如果第二轮条件修改为90A A '∠=∠=︒,则第3轮甲无论添加任何对应的边或角的等量条件,都能判定A ABC B C '''≌△△,则甲失败,乙获胜,故说法正确,符合题意.故选:B .二、填空题(每题3分,共24分)11.计算:()01π-=_____.【答案】1【分析】根据零指数幂的意义即可求出答案.【详解】∵10π-≠,∴()011π-=,故答案为1.【点睛】本题考查零指数幂的意义,解题的关键是熟练运用零指数幂的意义,本题属于基础题型.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.【答案】①.九②.27【分析】根据多边形内角和公式得到多边形边数,根据多边形对角线的条数的计算公式进行计算即可得到答案.【详解】设这个多边形的边数为n ,∴(n ﹣2)×180°=1260°,解得n =9,∴这个多边形为九边形;∴对角线的条数=(93)92-⨯=27条.故答案为九;27【点睛】本题考查多边形内角和、多边形对角线的条数,解题的关键是掌握多边形内角和、多边形对角线的条数的计算.13.已知3m a =,4n a =,则2m n a +的值是_________.【答案】36【分析】根据()222m n m n mn a a a a a +==g g 求解即可得到答案.【详解】解:∵3m a =,4n a =∴()()22223436m n m n mn a a a a a +===⨯=g g ,故答案为:36.【点睛】本题主要考查了幂的乘方的逆运算,同底数幂乘法的逆运算,解题的关键在于能够熟练掌握相关计算法则进行求解.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .【答案】6【分析】本题考查了含30度角的直角三角形的性质.如图,作AH CD ⊥于H ,根据含30度角的直角三角形的性质求解即可.【详解】解:如图,作AH CD ⊥于H ,∵三角板的一边与纸带的一边所在的直线成30︒角,即30ACH ∠=︒,3cm AH =,∴等腰直角三角形的直角边()26cm BC AC AH ===,故答案为:6.15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.【答案】80︒或50︒【分析】分50︒的内角是等腰三角形的底角或顶角两种情况,利用三角形内角和定理求解.【详解】解:当50︒的内角是等腰三角形的底角时,它的顶角的度数为:180505080︒-︒-︒=︒;当50︒的内角是等腰三角形的顶角时,它的底角的度数为:()118050652⨯︒-︒=︒,符合要求;故答案为:80︒或50︒.【点睛】本题考查等腰三角形的定义、三角形内角和定理,解题的关键是注意分情况讨论,避免漏解.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .【答案】3【分析】本题考查了垂直平分线的判定与性质、等边三角形的判定与性质;先根据AB AC =,DB DC =,得AD 是BC 的垂直平分线,进而证明ABC 是等边三角形,即可求解.【详解】解:∵AB AC =,DB DC =,∴AD 是BC 的垂直平分线,∴AD BC ⊥,BE CE =,∵60ABC ∠=︒,AB AC =,∴60ACB ∠=︒,∴60BAC ∠=︒,∴ABC 是等边三角形,∴6cm BC AB AC ===,∴13cm 2BE BC ==,故答案为:3.17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.【答案】11【分析】根据角平分线的性质得出BE BD =,再证明Rt Rt (HL)BEC BDC ≌,得出CE CD =即可求解.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵||AB CD ,∴ABC BCD ∠=∠,∴BCD ACB ∠=∠,∴CB 平分ACD ∠,∵BD CD ⊥,BE AC ⊥,∴BE BD =,∵BC BC =,∴Rt Rt (HL)BEC BDC ≌,∴CE CD =,∵ABE 的周长AE BE AB =++,∵AB AC =,即ABE 的周长=CA AE BE CE BE CD ++=+=8311BD +=+=,故答案为:11.【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,熟练掌握角平分线的性质是解题的关键.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.【答案】2【分析】本题主要考查整式的混合运算的实际应用.利用面积的和差关系,分别表示出1S 和2S ,再表示出21S S -,结合213-=S S ,即可求解.【详解】∵四边形ABCD 是长方形,∴6AB CD ==,5AD BC ==,∵2216(5)()(6)30666306S a a b a a a b a ab b a ab =-+--=-+--+=--+,225(6)()(5)30555S a a b a a a b a ab =-+-⋅-=-+--+,∵213-=S S ,∴()212230555306S b S -+--=----++2230555306a a b a ab b a ab=-+--+-++-b =,∵213-=S S ,∴3b =,∴12-=b .故答案是:2.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a b abc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.【答案】(1)53a b c(2)231310n n +-(3)2244x xy y ++(4)2332x y xy -+【分析】本题考查了整式的混合运算.(1)先计算积的乘方,再计算单项式的乘法即可;(2)利用多项式乘多项式的运算法则即可求解.(3)利用完全平方公式计算即可;(4)利用多项式除单项式的运算法则即可求解.【小问1详解】解:()22124a b abc -⋅24144a b abc =⋅53a b c =;【小问2详解】解:()()325n n -+2321510n n n -+-=231310n n =+-;【小问3详解】解:()()22x y x y ----()22x y =--2244x xy y =++;【小问4详解】解:()()32222362x y x y xy xy -+÷()()()3222223262x y xy x y xy xy xy =÷-÷+÷2332x y xy =-+.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.【答案】225a a ++,2028【分析】此题主要考查了整式的混合运算-化简求值.直接利用乘法公式以及整式的混合运算法则化简,再利用已知变形代入即可.【详解】解:2(21)6(1)(32)(32)a a a a a -++-+-2224416694a a a a a =-+++-+,225a a =++,∵2220230a a +-=,∴222023a a +=,∴原式202352028=+=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .【答案】证明见解析.【详解】试卷分析:根据AB//CD 得出∠DCA=∠CAB ,结合AB=CE ,AC=CD 得出△CAB ≌△DCE ,从而得出答案.试卷解析:∵AB//CD ,∴∠DCA=∠CAB 又∵AB=CE ,AC=CD ,∴△CAB ≌△DCE ∴∠B=∠E.考点:(1)平行线的性质;(2)三角形全等的判定与性质22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.【答案】(1)见解析(2)CH BD<(3)2:1【分析】本题考查了作图−基本作图,角平分线的性质.(1)利用基本作图,作BC 的垂直平分线;(2)根据斜边大于直角边以及线段中点的意义即可求解;(3)作ME CD ⊥于点E ,MF AD ⊥于点F ,利用角平分线的性质求得ME MF =,利用面积法即可求解.【小问1详解】解:如图,直线l 为所作;【小问2详解】解:ADC △的高CH 如图所示,∵CH DH ⊥,∴90H ∠=︒,∴CH CD <,∵BC 的垂直平分线,交BC 于D ,∴BD CD =,∴CH BD <,故答案为:CH BD <;【小问3详解】解:ADC △的角平分线DM 如图所示,作ME CD ⊥于点E ,MF AD ⊥于点F,∵BD CD =,60ABC S =△,∴1302ADC ABC S S == ,∵10DCM S =△,∴20ADM S =△,∵DM 是ADC ∠的角平分线,ME CD ⊥,MF AD ⊥,∴ME MF =,∵12022a AD MF MF ⨯=⨯=,11022b CD MF MF ⨯=⨯=,∴40220a MF b ME ==,∴:2:1a b =故答案为:2:1.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.【答案】(1)直线l 见解析,点A 关于l 的对称点A '坐标为()06,;(2)20(3)点P 的坐标为()1,5-和()1,3--.【分析】本题主要考查了坐标与图形,等腰直角三角形的性质和判定,垂直平分线的性质.(1)根据点B 与点C 的坐标求出中点坐标D ,然后过点D 作BC 的垂线即可得出直线l ;(2)根据三角形面积公式求出结果即可;(3)分两种情况:当P 在直线BC 上方时,当P 在直线BC 下方时,分别求出结果即可.【小问1详解】解:∵()5,1B -,()3,1C ,∴中点D 的坐标为()1,1-,过点D 作BC 的垂线,即为所求作的直线l ,如图所示:;∴点A 关于l 的对称点A '坐标为()06,;【小问2详解】解:如图,()1861202A BC S '=⨯⨯-= ;故答案为:20;【小问3详解】解:∵B 与点C 关于直线l 对称,∴直线l 垂直平分BC ,∵点P 在直线l 上,∴BP CP =,∵PD BC ⊥,∴PD 平分BPC ∠,∵90BPC ∠=︒,∴190452BPD CPD ∠=∠=⨯︒=︒,∴BPD △为等腰直角三角形,∴142PD BD BC ===,当P 在直线BC 上方时,如图所示:此时点P 的纵坐标为:145+=,∴此时点P 的坐标为()15-,;当P 在直线BC 下方时,如图所示:此时点P 的纵坐标为:143-=-,∴此时点P 的坐标为()1,3--;综上分析可知,点P 的坐标为()1,5-和()1,3--.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.【答案】(1)见解析(2)见解析【分析】(1)先根据条件得到AD 是ABC 的中线,同时是角平分线,高线,再结合BE AB ⊥利用角之间的变换得到EBD CAD ∠=∠,从而证明()SAS CAF CBE ≌,即可得到结论;(2)先根据垂直平分线的性质得到CE BE =,进而得到CE CF =,再根据三角形外角的性质得到60CFD CAF ACF ∠=∠+∠=︒即可证明CFE 是等边三角形,即可得到结论.【小问1详解】证明:∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,AC BC =,∴AD BC ⊥,CAD BAD ∠=∠,∴90DBA BAD ∠+∠=︒,∵BE AB ⊥,∴90DBA EBD ∠+∠=︒,∴EBD BAD ∠=∠,∴EBD CAD ∠=∠,∵AF BE =,AC BC =,∴()SAS CAF CBE ≌,∴ACF BCE ∠=∠;【小问2详解】证明:∵ABC 是等边三角形,∴AC AB =,∴AD 是BC 的垂直平分线,∵点E 在AD 的延长线上,∴CE BE =,由(1)得:()SAS CAF CBE ≌,∴CF BE =,CF AF =,∴CE CF =,∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,∴1302CAD CAB ACF ∠=∠=︒=∠,∴60CFD CAF ACF ∠=∠+∠=︒,∴CFE 是等边三角形,∴CF EF =;【点睛】本题考查了等边三角形的判定与性质,垂直平分线的性质,三角形全等的判定与性质,三角形外角性质,看到等边三角形要想到三线合一,一般证明两个角相等都会用到三角形全等.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.【答案】(1)见解析(2)2FE FA FD +=,见解析【分析】(1)由等边三角形的性质及等腰三角形的性质,求得FEA FBA ∠=∠,根据线段垂直平分线的性质求得ABE ACF ∠=∠,据此可得出答案;(2)在FC 上截取FN ,使FN FE =,连接EN ,根据等边三角形的性质得出60EFM ∠=︒,根据等边三角形的判定得出EFN 是等边三角形,求出60FEN ∠=︒,EN EF =,求出AEF CEN ∠=∠,根据SAS 推出EFA ENC △≌,根据全等得出FA NC =,求出2FC FD =,即可得出答案.【小问1详解】证明:AD 为边BC 的垂直平分线,AB AC ∴=,ACE Q V 为等边三角形,AC AE ∴=,AB AE =∴,FEA FBA ∴∠=∠;∵直线AD 垂直平分BC ,AB AC ∴=,FB FC =,ABC ACB FBC FCB ∴∠=∠∠=∠,,FBC ABC FCB ACB ∴∠-∠=∠-∠,即ABE ACF ∠=∠,ABE AEF ∠=∠ ,∴FEA FBA ∠=∠;【小问2详解】解:2FE FA FD +=,证明:在FC 上截取FN ,使FN FE =,连接EN ,如图2,由(1)得:AEF ACF ∠=∠,FME CMA ∠=∠ ,EFC CAE ∴∠=∠,等边三角形ACE 中,60CAE ∠=︒,60EFC ∴∠=︒.FN FE = ,EFN ∴ 是等边三角形,60FEN ∴∠=︒,EN EF =,ACE Q V 为等边三角形,60AEC ∴∠=︒,EA EC =,FEN AEC ∴∠=∠,FEN MEN AEC MEN ∴∠-∠=∠-∠,即AEF CEN ∠=∠,在EFA △和ENC ∠中,EF EN AEF CEN EA EC =⎧⎪∠=∠⎨⎪=⎩,()SAS EFA ENC ∴ ≌,FA NC ∴=,FE FA FN NC FC ∴+=+=,60EFC FBC FCB ∠=∠+∠=︒ ,FBC FCB ∠=∠,160302FCB ∴∠=⨯︒=︒,AD BC ⊥ ,90FDC ∴∠=︒,2FC FD ∴=,2FE FA FD ∴+=.【点睛】本题是三角形综合题,考查了等腰三角形的性质,等边三角形的性质和判定,含30︒角的直角三角形的性质,全等三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.【答案】(1)()()224x y x y xy-=+-(2)()22500x -的值是2016.【分析】本题主要考查几何图形与整式乘法.(1)直接利用图象面积得出答案;(2)利用多项式乘法将已知条件变形,即可求出答案.【小问1详解】解:由题意得,小正方形的面积=大正方形的面积4-个长方形的面积和,()()224x y x y xy ∴-=+-,故答案为:()()224x y x y xy -=+-;【小问2详解】解:设300A x =-,200B x =-,∴100A B +=-,2500A B x -=-,1996AB =,∴22()()4A B A B AB -=+-,∴()()222500100419962016x -=--⨯=,故()22500x -的值是2016.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.【答案】(1)()3,1--(2)13x <<(3)31N y '-≤≤【分析】(1)根据“二次对称点”的定义求解即可;(2)由题意,直线OE 的解析式为y x =,点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,由直线OE 的解析式为y x =,得M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标即是关于y 轴的纵坐标,,由此可得结论;(3)如图2中,当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,如图3中,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.求出这两种特殊位置N '的坐标,可得结论.【小问1详解】解∶点()A 3,5关于y 轴的对称点为()13,5A -,∵直线l 是经过()0,2且平行于x 轴的一条直线,∴点()13,5A -关于直线l 的对称点为()3,1A '--;故答案为:()3,1--【小问2详解】解∶如图,设直线OE 的解析式为y kx =,∵点E 的坐标为()1,1,∴1k =,∴直线OE 的解析式为y x =,∵()0,1A ,()0,3B ,()2,3C ,()2,1D ,∴点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,∴点M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标x 的取值范围是13x <<,故答案为:13x <<;【小问3详解】解∶如图2,设点N 关于y 轴的对称点为点N ''当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,∵,60CDO ∠=︒OD KJ ∥,OD OC ⊥,∴60CKJ CDO ∠=∠=︒,30KCJ ∠=︒∵N '和N ''关于直线l 对称,∴18060120CKN CKN ︒'''∠=∠=︒-︒=,∴1801203030KN J KCJ '∠=︒-︒-︒=︒=∠,∴KC KN '=,∵KJ CN '⊥,∴2CJ JN '==,∴3ON '=,∴此时点()0,3N '-,如图3,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.根据题意得:0t ≥,观察图象得:满足条件的N '的纵坐标为31N y '-≤≤.故答案为:31N y '-≤≤【点睛】本题属于四边形综合题,考查了正方形的性质,轴对称变换,一次函数的性质等知识,解题的关键是学会寻找特殊位置,解决问题,属于中考压轴题.。

2020-2021北京汇文中学初二数学上期中第一次模拟试卷及答案

2020-2021北京汇文中学初二数学上期中第一次模拟试卷及答案

2020-2021北京汇文中学初二数学上期中第一次模拟试卷及答案一、选择题1.下列各式中,分式的个数是( ) 2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a b+. A .2 B .3 C .4 D .52.下列分式中,最简分式是( )A .B .C .D . 3.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 6.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .9.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠10.下列说法中正确的是( ) A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角11.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b12.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯ B .113.410-⨯ C .103.410-⨯ D .93.410-⨯二、填空题13.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.14.当x =_____时,分式293x x -+的值为零. 15.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .17.若实数,满足,则______.18.在实数范围因式分解:25a -=________. 19.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值.22.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.23.已知a 、b 、c 是三角形三边长,试化简:|b +c ﹣a |+|b ﹣c ﹣a |+|c ﹣a ﹣b |﹣|a ﹣b +c |.24.解分式方程(1)2101x x -=+. (2)2216124x x x --=+- 25.如图,已知△ABC ,∠C=90°,AC<BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹);(2)连结AD ,若∠B=37°,求∠CAD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】22a b +, a b π+的分母中均不含有字母,因此它们是整式,而不是分式; b a b +的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B.【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a b π+不是分式,是整式. 2.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式; B.,分式的分子与分母含公因式2,不是最简分式; C.,分式的分子与分母含公因式x -2,不是最简分式; D.,分式的分子与分母含公因式a ,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 3.D解析:D【解析】分析:根据全等三角形的判定定理AAS ,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===x y xyx xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.6.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式. 7.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.D解析:D【解析】【分析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC和△DBC同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.9.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.10.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.11.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.12.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】二、填空题13.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°.【解析】【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°,∴∠4=180°-35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为145.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【解析】【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键. 16.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.17.5【解析】【分析】根据非负数的性质列式求出mn 的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m ,n 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:, ∴∴; 故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值. 18.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键 解析:(5)(5)a a 【解析】【分析】将5改成25,然后利用平方差进行分解即可. 【详解】25a - =2a -25 =(55a a +, 故答案为(55a a . 【点睛】本题考查了在实数范围内分解因式,把5写成25是利用平方差公式进行分解的关键.19.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS);③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此,只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.20.y(x+y)(x-y)【解析】【分析】(1)原式提取y再利用平方差公式分解即可【详解】原式=y(x2-y2)=y(x+y)(x-y)故答案为y(x+y)(x-y)【点睛】此题考查了提公因式法与公式法解析:y(x+y)(x-y)【解析】【分析】(1)原式提取y,再利用平方差公式分解即可.【详解】原式=y(x2-y2)=y(x+y)(x-y),故答案为y(x+y)(x-y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.22.底边长为4cm,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC的腰长为xcm,则AD=DC=12xcm,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC是等腰三角形,AB=AC,BD是AC边上的中线.设△ABC的腰长为xcm,则AD=DC=12 xcm.分下面两种情况解:①AB+AD=x+12x=9,∴x=6. ∵三角形的周长为9+15=24(cm),∴三边长分别为6cm,6cm,12cm. 6+6=12,不符合三角形的三边关系,舍去;②AB+AD=x+12x=15,∴x=10. ∵三角形的周长为24cm,∴三边长分别为10cm,10cm,4cm,符合三边关系.综上所述,这个等腰三角形的底边长为4cm,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b24.(1)x=-2;(2)无解【解析】【分析】【详解】(1)去分母得:2(1)0x x +-=,解此整式方程得:2x =-,检验:当2x =-时,(1)0x x +≠,∴原方程的解为:2x =-.(2)去分母得:22(2)164x x --=-,解此整式方程得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,∴2x =-是原方程的增根,∴原方程无解.【点睛】解分式方程时需注意两点:(1)解分式方程的基本思路是“去分母,化分式方程为整式方程”;(2)求得对应的整式方程的解后,需检验,再作结论.25.(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)16°.【解析】【分析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB 的中垂线.(2)要求∠CAD 的度数,只需求出∠CAD ,而由(1)可知:∠CAD=2∠B【详解】解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)∵在Rt △ABC 中,∠B=37°,∴∠CAB=53°.又∵AD=BD ,∴∠BAD=∠B=37°.∴∠CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.。

2020-2021学年北京市东城区汇文中学八年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市东城区汇文中学八年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市东城区汇文中学八年级(上)期中数学试卷1.下列有关医疗和倡导卫生的图标中,是轴对称图形的是()A. B.C. D.2.使分式2x−3有意义的x的取值范围是()A. x≠3B. x>3C. x<3D. x=33.若分式x2−1x+1的值为0,则x应满足的条件是()A. x=−1B. x≠−1C. x=±1D. x=14.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为()A. 9×10−4B. 9×10−3C. 0.9×10−3D. 0.9×10−45.下列约分正确的是()A. m6m3=m2 B. b+ca+c=baC. x2−y2x−y =x+y D. x+yx=y6.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A. 40°B. 50°C. 80°D. 100°7.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A. ∠A的平分线上B. AC边的高上C. BC边的垂直平分线上D. AB边的中线上8.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A. ∠ABC=70°B. ∠BAD=80°C. CE=CDD. CE=AE9.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A. 3B. 4C. 5D. 611.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是______.12.等腰三角形的两边长分别是3cm和6cm,则它的周长是______ .13.已知,如图AB=AC,∠BAC=40°,D为AB边上的一点,过D作DF⊥AB,交AC于E,交BC延长线于点F,则∠F=______°.14.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC=______.15.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP 交BC于点D,若CD=1,AB=4,则△ABD的面积是______.16.平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为______.17.如图,在△ABC中,AC=BC,∠ACB=120°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=30°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是______.18.下面是小军同学计算1x2−2x −1x2+2x的过程.1x2−2x −1x2+2x=1x(x−2)−1x(x+2) (1)=x+2x(x+2)(x−2)−x−2x(x+2)(x−2) (2)=x+2−(x−2)x(x+2)(x−2) (3)=x+2−x+2x(x+2)(x−2) (4)=4x(x+2)(x−2) (5)其中运算步骤[2]为:______,该步骤的依据是______.19.下面是小石设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l及直线l上一点P.求作:直线PQ,使得PQ⊥l.作法:如图2:①以点P为圆心,任意长为半径作弧,交直线l于点A,B;②分别以点A,B为圆心,以大于12AB的同样长为半径作弧,两弧在直线l上方交于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小石设计的尺规作图过程:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接QA,QB.∵QA=______,PA=______,∴PQ⊥l(______)(填推理的依据).20.计算:4−1+(3.14)0−|−1|.21.计算:(−2ab )3÷(2a23b)2.22.解方程:xx+2−2x2−4=1.23.已知m−n=2,求代数式(m2+n22m −n)÷m−nm的值.24.如图,在△ABC中,AC的垂直平分线交AC于点D,交BC延长线交于点E,连接AE,如果∠B=50°,∠BAC=21°,求∠CAE的度数.25.如图,在△ABC中,∠B=∠ACB,D是边AB上一点,E是边AC的中点,作CF//AB交DE的延长线于点F,DB=3,CF=7,求AE.26.列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270000平方米增加到330000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x平方米,把下表补充完整:(2)根据以上分析,列出方程(不解方程).27.阅读:对于两个不等的非零实数a、b,若分式(x−a)(x−b)x的值为零,则x=a或x=b.又因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx−(a+b),所以关于x的方程x+abx=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+px=q的两个解分别为x1=−1,x2=4,则p=______;q=______;(2)方程x+3x=4的两个解中较大的一个为______;(3)关于x的方程2x+n2+n−22x+1=2n的两个解分别为x1、x2(x1<x2),则x1=______,x2=______.28.在Rt△ABC中,AB=AC,∠CAB=90°.点D是射线BA上一点,点E是线段AB上一点.且点D与点E关于直线AC对称,连接CD,过点E作直EF⊥CD于F,交CB的延长线于点G.(1)根据题意补全图形;(2)写出∠CDA与∠G之间的数量关系,并进行证明;(3)已知在等腰直角三角形中,有以下结论:斜边长为一条直角边长的√2倍,写出线GB,AD之间的数量关系,并进行证明.29.已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点,点C为线段AB关于点A的逆转点的示意图如图1.(1)如图2,在正方形ABCD中,点______为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图形;②判断过逆转点G,F的直线与x轴的位置关系并证明.③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,用含x的代数式表示y=______.答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】A有意义,得【解析】解:由分式2x−3x−3≠0,解得x≠3,故选:A.根据分式的分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分式的分母不为零得出不等式是解题关键.3.【答案】D【解析】解:∵分式x2−1的值为0,x+1∴x2−1=0,且x+1≠0,解得:x=1.故选:D.直接利用分式的值为零的条件得出答案.此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.【答案】A【解析】解:数字0.0009用科学记数法表示应为9×10−4.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】C【解析】解:A、m6m3=m3,错误;B、b+ca+c =b+ca+c,错误;C、x2−y2x−y=x+y,正确;D、x+yx =1+yx,错误;故选:C.找出分子分母的公因式进行约分即可.此题主要考查了约分,首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.6.【答案】C【解析】解:∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠BEC=∠EBA+∠A=80°,故选:C.根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EBA=∠A= 40°,根据三角形的外角性质计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.【答案】A【解析】[分析]作射线AM,根据角平分线的判定定理得到AM平分∠BAC,得到答案.本题考查的是角平分线的判定,掌握到角的两边的距离相等的点在角平分线上是解题的关键.[详解]解:作射线AM,由题意得,MG=MH,MG⊥AB,MH⊥AC,∴AM平分∠BAC,故选:A.8.【答案】C【解析】解:∵直线l1//l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,=70°,故A正确;∴∠ABC=180°−40°2∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.此题考查平行线的性质,关键是根据平行线的性质得出∠CAB=40°解答.9.【答案】B【解析】【分析】此题考查了分式的加减运算,熟练掌握运算法则是解本题的关键.检查四名同学的计算过程,找出错误的步骤即可.【解答】解:乙同学的过程有误,应为a 2+ab−ab+b2 (a+b)(a−b),故选:B.10.【答案】B【解析】解:如图,连接BE,∵EF是BC的垂直平分线,∴BE=CE,根据两点之间线段最短,PA+PB=PA+PC=AC,最小,此时点P与点E重合.所以PA+PB的最小值即为AC的长,为4.所以PA+PB的最小值为4.故选:B.根据线段的垂直平分线的性质可得BE=EC,根据两点之间线段最短即可求解.本题考查了轴对称−最短路线问题,解决本题的关键是利用线段的垂直平分线的性质.11.【答案】x−3x(答案不唯一)【解析】解:由题意得:x−3x,故答案为:x−3x.根据题意可得分子为x−3,再确定分母即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.【答案】15cm【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6−3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故答案为15cm.13.【答案】20【解析】解:过点A作AG⊥BC于点G,则∠AGB=90°,∴∠B+∠BAG=90°,∵DF⊥AB,∴∠BDF=90°,∴∠B+∠F=90°,∴∠F=∠BAG,∵AB=AC,AG⊥BC,∠BAC,∴∠BAG=12∠BAC=20°,∴∠F=12故答案为:20过点A作AG⊥BC于点G,根据等腰三角形的两个底角相等进行证明即可.此题主要考查等腰三角形的基本性质,关键是根据综合运用等腰三角形的性质来证明.14.【答案】9【解析】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,又∠C=30°,∴CD=2AD=6,∵∠BAC=120°,∠DAC=90°,∴∠BAD=30°,∴∠DAB=∠B,∴BD=AD=3,∴BC=BD+CD=9,故答案为:9.根据三角形内角和定理,等腰三角形的性质得到∠B=∠C=30°,根据直角三角形的性质求出CD,根据等腰三角形的性质求出BD,计算即可.本题考查的是等腰三角形的性质,直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.15.【答案】2【解析】解:作DE⊥AB于E,由尺规作图可知,AD为∠CAB的平分线,又∠C=90°,DE⊥AB,∴DE=CD=1,∴△ABD的面积=12×AB×DE=12×4×1=2,故答案为:2.作DE⊥AB于E,根据角平分线的性质得到DE=CD=1,根据三角形面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.【答案】(4,0)或(6,0)【解析】解:∵点A(4,3),点C(5,3),∴AC//x轴,AC=1,连接AC,过C作CE//AB交x轴于E,∴AB=CE,BE=AC=1,∵点B(3,0),∴E(4,0),以C为圆心,CE为半径画弧交x轴于E′,则CE=CE′=AB,过C作CD⊥x轴于D,∴DE=DE′=1,∴E′(6,0),∴当CE=AB时,点E的坐标为(4,0)或(6,0),故答案为:(4,0)或(6,0).根据平行四边形的性质和等腰三角形的性质即可得到结论.本题考查了坐标与图形性质,平行四边形的判定和性质,等腰三角形的性质,正确的作出图形是解题的关键.17.【答案】60°或105°【解析】解:△CDE可以是等腰三角形,∵△CDE是等腰三角形;①当CD=DE时,∵∠CDE=30°,∴∠DCE=∠DEC=75°,∴∠ADC=∠B+∠DCE=105°,②当DE=CE时,∵∠CDE=30°,∴∠DCE=∠CDE=30°,∴∠ADC=∠DCE+∠B=60°.③当EC=CD时,∠BCD=180°−∠CED−∠CDE=180°−30°−30°=120°,∵∠ACB=180°−∠A−∠B=120°,∴此时,点D与点A重合,不合题意.综上,△ADC可以是等腰三角形,此时∠ADC的度数为60°或105°.故答案为60°或105°.分类讨论:当CD=DE时;当DE=CE时;当EC=CD时;然后利用等腰三角形的性质和三角形的内角和定理进行计算.本题主要考查了等腰三角形的性质,解决问题的关键是学会用分类讨论的思想思考问题.18.【答案】通分分式的基本性质【解析】解:异分母分式相加减的一般步骤:一、因式分解分母;二、通分;三、分式加减四、分子部分去括号;五、分子部分合并同类项并化简.故答案为:通分;分式的基本性质.根据异分母分式加减法的法则填空即可.本题考查了异分母分式的加减,掌握异分母分式的加减法法则是解决本题的关键.19.【答案】QB PB等腰三角形底边上的中线与底边上的高互相重合【解析】解:(1)补全的图形如图2所示:(2)证明:连接QA,QB.∵QA=QB,PA=PB,∴PQ⊥l(等腰三角形底边上的中线与底边上的高互相重合).故答案为:QB;PB;等腰三角形底边上的中线与底边上的高互相重合.(1)根据作图过程即可补全图形;(2)根据等腰三角形的性质即可完成证明.本题考查了作图−基本作图、等腰三角形的性质,解决本题的关键掌握等腰三角形的性质.20.【答案】解:原式=14+1−1=14.【解析】化简负整数指数幂,零指数幂,绝对值,然后再计算.本题考查负整数指数幂,零指数幂,理解a0=1(a≠0),a−p=1a p(a≠0)是解题关键.21.【答案】解:原式=−8a3b3÷4a49b2=−8a3b3⋅9b2 4a4=−18ab.【解析】先算乘方,然后将除法转化为乘法,进行约分计算.本题考查分式的乘除法运算,掌握积的乘方运算法则以及约分的技巧是解题关键.22.【答案】解:去分母得:x(x−2)−2=x2−4,解得:x=1,经检验x=1是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.【答案】解:原式=m2+n2−2mn2m ⋅m m−n=(m−n)22m ⋅m m−n=m−n2,当m−n=2时.原式=22=1.【解析】根据分式的混合运算法则把原式化简,把m−n的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.24.【答案】解:∵AC的垂直平分线交AC于点D,∴EA=EC,∴∠EAC=∠CAE,∵∠B=50°,∠BAC=21°,∴∠ECA=∠B+∠BAC=71°,∴∠CAE=71°.【解析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠ECA,根据三角形的外角性质解答.本题考查的是线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.25.【答案】解:∵E是边AC的中点,∴AE=CE.又∵CF//AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,{∠ADF=∠F ∠A=∠ACF AE=CE,∴△ADE≌△CFE(AAS).∴CF=AD=7,∴AB=AD+BD=10,又∵∠B=∠ACB,∴AB=AC=10,∵E是边AC的中点,∴AE=12AC=5.【解析】根据AAS证明△ADE≌△CFE,利用全等三角形的性质求出AD,进而得出AB的长以及AC的长,再根据E是AC的中点即可解决问题.本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是寻找恰当的判定条件.26.【答案】270000x330000(1+12.8%)x(1+12.8%)x【解析】解:(1)故答案为:270000x ,330000(1+12.8%)x,(1+12.8%)x;(2)由题意可得:270000x +300=330000(1+12.8%)x.(1)直接利用总面积除以企业平均展览面积=参展企业数量,进而得出答案;(2)利用参展企业比首届多了约300家,得出等式即可.此题主要考查了分式方程的应用,正确理解题意表示出参展企业数量是解题关键.27.【答案】−433n2n+3 2【解析】解:(1)由已知可得:p=−1×4=−4;q=−1+4=3;故答案为:−4;3;(2)∵ab=3,a+b=4,∴这两个数为:3和1,∴两解中较大的一个为3;故答案为:3;(3)∵2x+n2+n−22x+1=2n,∴2x−1+(n+2)(n−1)2x+1=(n+2)+(n−1),∴2x−1=n+2或2x−1=n−1,∵x1<x2,∴x1=n2,x2=n+32,故答案为:n2;n+32.(1)由已知可得:p=−1×4=−4;q=−1+4=3;(2)由ab=3,a+b=4,得这两个数为:3和1,即可求解;(3)2x+n2+n−22x+1=2n可变形为2x−1+(n+2)(n−1)2x+1=(n+2)+(n−1),得2x−1=n+2或2x−1=n−1,即可求解.本题考查了方式方程,理解题中的方法,解题关键是将所求分式方程转化为题中所描述的形式.28.【答案】解:(1)如图所示:(2)∠CDA−∠G=45°,证明:∵在Rt△ABC中,AB=AC,∠CAB=90°,∴∠CBA=45°,又∵∠CBA为△BEG的外角,∴∠G+∠BEG=∠CBA=45°①,在Rt△DEF中,∠CDA+∠FED=90°②,∵∠BEG=∠FED,∴②−①,得∠CDA−∠G=45°;(3)GB=√2AD,证明:连接CE,过点G作GH⊥AB,垂足为点H,∵点D,点E关于直线AC对称,∴CD=CE,∵CA⊥DE,∴设∠DCA=∠ECA=a°,在Rt△CFG中,∠EGB=90°−∠GCF=90°−(45+a)°=(45−a)°,在Rt△ABC中,∠ACB=45°,∴∠ECB=∠BCA−∠ECA=(45−a)°,∴∠ECB=∠EGB,∴EG=CE=CD,∵∠HEG=∠FED,∠FED+∠D=90°,∠DCA+∠D=90°,∴∠DCA=∠FED=∠HEG,在△CDA与△EGH中,{∠DAC=∠GHE ∠DCA=∠GEH CD=EG∴△CDA≌△EGH(AAS),∴HG=AD,又∵在Rt△BHG中,∠GBH=45°,∴GB=√2HG,∴GB=√2AD.【解析】(1)根据题意可完成作图;(2)先写出结论CDA−∠G=45°,利用等腰直角三角形的性质先证∠G+∠BEG=∠CBA=45°,由∠CDA+∠FED=90°和∠BEG=∠FED可推出结论CDA−∠G=45°;(3)先写出结论GB=√2AD,连接CE,过点G作GH⊥AB,垂足为点H,先证CD=CE,由三线合线定理可知并设∠DCA=∠ECA=a°,推出∠EGB=(45−a)°,∠ECB=(45−a)°,再推出EG=CE=CD,证明△CDA≌△EGH,得到HG=AD,因为在Rt△BHG中,∠GBH =45°,可得GB =√2HG ,即可得出GB =√2AD .本题考查了等腰直角三角形的性质,三线合一性质,全等三角形的判定与性质等,解题关键是能够作出合适的辅线构造全等三角形从而转化相等的线段.29.【答案】A {−12x 2+52x(0<x <5)12x 2−52x(x >5)【解析】解:(1)由题意知,将线段BC 绕B 点逆时针旋转90°得到线段BA ,∴点A 是线段BC 关于点B 的逆转点,故答案为:A ;(2)①补图如下图: ;②GF ⊥x 轴,证明如下:∵点F 是线段EF 关于点E 的逆转点,点G 是线段EP 关于点E 的逆转点,∴∠OEF =∠PEG =90°,EG =EP ,EF =EO ,∴∠OEF −∠FEP =∠PEG −∠FEP ,即∠GEF =∠PEO ,∴△GEF≌△PEO(SAS),∴∠GFE =∠EOP ,∵OE ⊥OP ,∴∠POE =90°,∴∠GFE =90°,∵∠OEF =∠EFH =∠EOH =90°,∴四边形EFHO 是矩形,∴∠FHO =90°,∴FG ⊥x 轴;③如图4,当0<x <5时,∵E(0,5),∴OE =5,∵四边形EFHO 是矩形,EF =EO ,∴四边形EFHO 是正方形,∴OH =OE =5,由②知△GEF≌△PEO ,∴GF =OP ,∴y =12FG ⋅PH =12⋅x(5−x)=−12x 2+52x , 如图5,当x >5时,同理可得y =12FG ⋅PH =12x(x −5)=12x 2−52x ,综上,y ={−12x 2+52x(0<x <5)12x 2−52x(x >5), 故答案为:{−12x 2+52x(0<x <5)12x 2−52x(x >5). (1)将线段BC 绕点B 逆时针旋转90°得到线段BA ,即可求解;(2)①按定义补图即可;②先根据SAS 证△GEF≌△PEO ,根据全等三角形的性质得到∠GFE =∠EOP =90°,进而得到四边形EFHO是矩形,然后即可得出结论;③分两种情况,当0<x<5时,当x>5时,分别利用三角形的面积公式求解即可.本题主要考查正方形性质,三角形的面积,分段函数等知识点,正确理解逆转点的定义是解题的关键.。

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。

2020_2021学年度第一学期八年级期中学业质量监测 数学试卷(Word图片版有答案)

2020_2021学年度第一学期八年级期中学业质量监测  数学试卷(Word图片版有答案)

2020~2021学年度第一学期八年级期中水平质量监测数学参考答案及评分标准说明:本评分标准每题给出了一种或两种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共8小题,每小题2分,共16分)11.m (a +b +c )=ma +mb +mc (答案不唯一) 12.9 13.4b -3a 14.(-6,-1) 15.20° 16.2a +3b17.22.5°18.18三、解答题(本大题共8小题,共64分) 19.(本小题满分10分)解:(1)原式=3a 6-8a 6+5a 6 ……………………………………………………………………………3分=0 ………………………………………………………………………………………5分(2)原式=a 3-a 2b +ab 2+a 2b -ab 2+b 3 ………………………………………………………………8分=a 3+b 3 ……………………………………………………………………………………10分20.(本小题满分7分)解:原式=x 2+1-2x +x 2-4+x 2-x -3x +3…………………………………………………………………3分=3x 2-6x ………………………………………………………………………………………5分将x =3代入,原式=27-18=9 …………………………………………………………………………7分 21.(本小题满分6分)证明:∵BC ∥EF ,∴∠ACB =∠DFE . ……………………………………………………………………………1分 ∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF .……………………………………………………………2分 在△ABC 与△DEF 中, A D AC DEACB DFE ∠∠⎧⎪⎨⎪∠∠⎩=,==, ∴△ABC ≌△DEF (ASA ) ………………………………………………………………………5分 ∴AB =DE . ………………………………………………………………………………………6分22.(本小题满分7分)解:(1)(x +y )2-(x -y )2=4xy ; …………………………………………………………………………2分 (2)∵(3x +2y )2-(3x -2y )2=24xy =9-5=4,∴xy =16; ………………………………………………………………………………………4分(3)∵(2x +y )2-(2x -y )2=8xy ,∴25-16=(2x -y )2,∴2x -y =±3.……………………………………………………………………………………7分23.(本小题满分6分)解:(1)如图1中,线段AD 即为所求.(2)如图1中,∠APB 即为所求(点P 不唯一).……………………………………………………………………………………6分24.(本小题满分8分)(1)证明:∵∠BED =∠CFD =∠BAC ,∠BED =∠BAE +∠ABE , ∠BAC =∠BAE +∠CAF , ∠CFD =∠FCA +∠CAF ,∴∠ABE =∠CAF ,∠BAE =∠FCA .…………………………………………………3分 在△ABE 和△CAF 中, .ABE CAF AB AC BAE ACF ∠∠⎧⎪⎨⎪∠∠⎩=,=,= ∴△ABE ≌△CAF (ASA ).…………………………………………………………………5分(2)解: ∵△ABE ≌△CAF,∴S 1=S △ACF ,∴S 1+S 2=S △ACD .……………………………………………………………………………6分 ∵S △ABC =18,BD BC =13, A BC(第23题)DP∴S △ACD =23S 1=12. ∴S 1+S 2=12. ………………………………………………………………………………8分25.(本小题满分9分)(1)解:补图如下:………………………………………………………………………………3分(2)证明:∵△ABD 和△DCE 是等边三角形,∴BD =AD ,ED =CD ,∠ADF =∠CDE =60°. ∵△ABC 是等腰直角三角形, ∴AC =BC .在△ACD 和△BCD 中, AC BC AD BD CD CD ⎧⎪⎨⎪⎩=,=,=, ∴△ACD ≌△BCD (SSS ).………………………………………………………………6分(3)解:由(2)得△ACD ≌△BCD ,∴∠ADC =∠BDC =30°, ∴∠BDE =60°-30°=30°. 在△BED 和△ACD 中, BD AD BDE ADC ED CD ⎧⎪∠∠⎨⎪⎩=,=,=, ∴△BED ≌△ACD (SAS ). ∴BE =AC . ∴BE =BC .∴点B 在CE 的垂直平分线上. 又ED =CD ,(第25题)ABCDEF∴点D 在CE 的垂直平分线上. ∴BD 垂直平分CE .………………………………………………………………………9分26.(本小题满分11分)(1)②; …………………………………………………………………………………………………2分(2)20°,40°,60°,80°或100°;………………………………………………………………………7分(3)解:∵CD 为AB 边上的高,∴∠CDB =∠CDA =90°.∴∠ACD =90°-∠A =60°.∴△CDA 不是等腰三角形.∵CD 为△ABC 的“友好分割线”,∴△CDB 和△CDA 中至少有一个是等腰三角形.∴△CDB 是等腰三角形,且CD =BD =2.…………………………………………………8分∵∠A =30°,∴AC =2CD =4.………………………………………………………………………………9分作AG ⊥l 于点G .∵DN ⊥l 于N ,∴∠DNE =∠AGE =90°.∵E 为AD 的中点,∴BE =AE .在△DNE 和△AGE 中AGE DNE DE AE DEN AEG ∠∠⎧⎪⎨⎪∠∠⎩=,=,=, ∴△DNE ≌△AGE (ASA ).∴DN =AG .………………………………………………………………………………10分在Rt △AGF 和Rt △CMF 中,∠CMF =∠AGF =90°,∴CM ≤CF ,AG ≤AF .∴CM +AG ≤CF +AF .即CM +AG ≤AC .∴CM +DN ≤4.∴CM +DN 的最大值为4. …………………………………………………………………11分B AC 图1DEF l M N G。

北京市文汇中学2024~2025学年八年级上学期期中考试数学试卷

北京市文汇中学2024~2025学年八年级上学期期中考试数学试卷

北京市文汇中学2024~2025学年八年级上学期期中考试数学试卷一、单选题1.重庆今年夏天连续高温,9月7日是二十四节气中的“白露”,“白露”是反映自然界寒气增长的重要节气,下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.2.已知三角形的两边长分别为8和4,则第三边长可能是()A.3B.4C.8D.123.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,若图中点A的坐标为−3,2,则其关于y轴对称的点B的坐标为()3,2-A.()3,2B.2,3C.−3,2D.()4.下列计算正确的是()A.(x2y3)2=x4y6B.(x3)2=x9C.a3•a2=a6D.b8÷b4=b25.一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.六边形C.五边形D.七边形a b>,把剩下部分拼成一6.如图1,在边长为a的正方形中剪去一个边长为b的小正方形()个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A .22()()a b a b a b +=+-B .22()()a b a b a b -=+-C .222()2a b a ab b +=++D .222()2a b a ab b -=-+7.如图,在ABC V 中,AB AC =,30C ∠=︒,点D 是AB 的中点,过点D 作DE AB ⊥交BC 于点E ,2DE =,则CE 的长度为()A .7B .8C .9D .108.如图,若记北京为A 地,莫斯科为B 地,雅典为C 地,若想建立一个货物中转仓,使其到A 、B 、C 三地的距离相等,则中转仓的位置应选在()A .三边中线的交点B .三边上高的交点C .三条角平分线的交点D .三边垂直平分线的交点9.如图,ABC V 中,点D 为BC 边上的一点,且BD BA =,连接AD ,BP 平分ABC ∠交AD 于点P ,连接PC ,若ABC V 面积为26cm ,则BPC 的面积为()A .23cmB .24cm C .27cm2D .216cm 510.如图所示的正方形网格中,网格线的交点称为格点.已知线段A 是等腰三角形ABC V 的一边,ABC V 的三个顶点都在正方形网格的格点上,则这样的等腰三角形的个数为()A .4个B .6个C .8个D .10个二、填空题11.2024年8月5日,巴黎奥运会射击项目进入最后一个比赛口,中国射击队最终以5金、2银、3铜的好成绩结束本届奥运会,以较大优势占据射击项目金牌榜头名.射击队员在瞄准目标时,手、肘、肩构成托枪三角形,这种方法应用的几何原理是.12.若0(3)1x -=有意义,则x 的取值范围.13.若等腰三角形一个内角是70°,则该三角形的顶角为.14.当240x y +-=,则242y x -⋅的值为.15.如图,B ,E ,C ,F 四个点在一条直线上.B DEF ∠=∠,AB DE =,请添加一个条件使ABC DEF ≌△△,则添加的条件可以是.16.如图,在ABC V 中.点D 是BC 上一点,将ABD △沿着AD 翻折得到AED △,点B 的对应点为点E ,26BAD ABC ∠=∠=︒,则CDE ∠的度数为°.17.若关于x 的多项式()()224x x x k +++展开后不含有一次项,则实数k 的值为.18.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,以BC 为边在BC 的右侧作等边BCD △,点E 为BD 的中点,点P 为CE 上一动点,连接AP ,BP ,当AP BP +的值最小时:(1)则CBP ∠的度数为;(2)若4AC =,则ACD 的面积为.三、解答题19.计算:(1)()2323x x y⋅-(2)()4352823a a a a ⋅+--(3)()23322927(3)x y x y xy -÷20.计算:(1)2135m n ⎛⎫+ ⎪⎝⎭(2)(2)(2)(1)(5)y y y y +---+21.先化简,再求值:2(2)()()x y x y x y y ⎡⎤--+-÷⎣⎦,其中1,2x y ==.22.下面是小明同学设计的“作一个角等于已知角的2倍”的尺规作图的过程.已知:如图1,AOB ∠.求作:ADC ∠,使2ADC AOB ∠=∠,且点D 在射线OA 上.作法:①如图2,在射线OB 上任取一点C ;②作线段OC 的垂直平分线MN ,交OA 于点D ;③连接DC .则ADC ∠即为所求作的角.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形(保留作图痕迹);(2)完成下面的证明:证明:MN 是线段OC 的垂直平分线,OD ∴=_________(_________)(填推理的依据).AOB DCO ∴∠=∠(_________)(填推理的依据).ADC AOB DCO =∠+∠∠ ,2ADC AOB =∠∴∠.23.已知:在平而直角坐标系xOy 中.ABC V 的三个顶点的坐标分别是(2,3),(1,0),(1,2)A B C .(1)在坐标系中,描出ABC V ;(2)在图中画出ABC V 关于y 轴对称的111A B C △;(3)如果要使以B 、C 、D 为顶点的三角形与ABC V 全等,直接写出所有符合条件的点D 坐标,(点D 不与点A 重合)24.如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅ .(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.25.如图,四边形ABCD 中,90AB AC D BE AC =Ð=°^,,于点F ,交CD 于点E ,连接EA ,EA 平分DEF ∠.(1)求证:AF AD =;(2)若73BF DE ==,,求CE 的长.26.我们规定:若实数a 与b 的平方差等于80,则称实数对(),a b 在平面直角坐标系中对应的点为“双曲点”;若实数a 与b 的平方差等于0,则称实数对(),a b 在平面直角坐标系中对应的点为“十字点”.(1)若(),P a b 为“双曲点”,则a ,b 应满足的等量关系为______;(2)在点()8,4A ,()12,8B -,()21,19C ,()40,4D 中,是“双曲点”的有______;(3)若点()9,B k 是“双曲点”,求k 的值;(4)若点(),A x y 为“十字点”,点()5,5B x y y x +-是“双曲点”,求x ,y 的值.27.已知,90MON ∠=︒,点A 在边OM 上,点P 是边ON 上一动点,OAP α∠=.以线段AP 为边在AP 上方作等边ABP ,连接OB BP 、,再以线段OB 为边作等边OBC △(点C 、P 在OB 的同侧),作CH ON ⊥于点H .(1)如图1,60α=︒.①依题意补全图形;②求BPH ∠的度数;(2)如图2,当点P 在射线ON 上运动时,用等式表示线段OA 与CH 之间的数量关系,并证明.28.在平面直角坐标系中,对于点(,)M a b ,(,)N c d ,将点M 关于直线x c =对称得到点M ',当0d时,将点M '向上平移d 个单位,当0d <时,将点M '向下平移||d 个单位,得到点P ,我们称点P 为点M 关于点N 的对称平移点.例如,如图已知点(1,2)M ,(3,5)N ,点M 关于点N 的对称平移点为(5,7)P .(1)已知点(2,1)A ,(4,3)B ,①点A 关于点B 的对称平移点为________(直接写出答案).②若点A 为点B 关于点C 的对称平移点,则点C 的坐标为________.(直接写出答案)(2)已知点D 在第一、三象限的角平分线上,点D 的横坐标为m ,点E 的坐标为(1.5,0)m .点K 为点E 关于点D 的对称平移点,若以D ,E ,K 为顶点的三角形围成的面积为1,求m 的值.。

2020-2021第一学期八年级数学期中测试-参考答案

2020-2021第一学期八年级数学期中测试-参考答案

2020-2021学年第一学期第二次教学质量自查八年级数学 (参考答案)二、填空题( 本大题共7个小题,每小题4分,共28分)11. (1,2) . 12. 4∠x∠14 .13. 4 3 14. 125°15∠A=∠C(或其它合理答案).16. 6 17. ①②③18.(6分)解:∵∠A=20°,∠B=60°∴∠ACB=180°-∠A-∠B=100°∵CE是∠ACB的平分线∴∠ECB=50°∵CD⊥AB ∠B=60°∴∠BCD=30°∴∠ECD=∠ECB-∠BCD=20°19.(6分)解:在AC和AD的交点记为点O∵AD⊥AC,BC⊥BD∴∠DAC=∠CBD=90°∴在△AOD和△BOC中∠OAD=∠OBC∠AOD=∠BOCAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,CO=DO∴BD=AC20.(6分)解:可选①AB=DC和③∠B=∠C证明△ABE≌△DCE(AAS)可得:AE=DE进而有:△AED是等腰三角形注:选其它的合理即可21.(8分)解:(1)(4分)∵DE、FG分别为AB、AC的垂直平分线∴∠BAD=∠ABD∠FAC=∠ACF∵∠BAC=110°∴∠ABD+∠ACF=70°∴∠BAD+∠FAC=70°∴∠DAF=∠BAC-∠BAD-∠FAC=40°(2)(4分)∵DE、FG分别为AB、AC的垂直平分线∴BD=ADAF=CF∴BC=BD+DF+FC=10cm∴C△DAF=DA+AF+FD=10cm22.(8分)解:图上:23.(8分)证明:延长AD于点H,令DH=AD∵D是BC的中点,所以BD=CD∴△BDH≌△ADC(∠BDH=∠ADC(SAS))∴∠BHE=∠BEH, ∠BHE=∠DAC ∠BEH=∠AEF(对顶角)∴∠AEF=∠FAE∴AF=EF24.(10分)图略解:(1):S△ABC=4.5(3)坐标:略25.(10分)解:(1)说明:找到AO=BO,∠AOB=∠BOC=90°通过△BFM和△AFO的度数相等,可得到∠OBE=∠OAF进而有△AFO和△BEO全等,即有OE=OF(2)成立,通过角的度数计算就可得到∠BAM=∠CBE,有:∠BAO=∠CBO=45°所以有:∠FAO=∠EBO,因为∠AOF=∠BOE=90°(AO=BO)即有△AFO≌△BEO 即证OE=OF。

北京市汇文中学2023-2024学年八年级上学期期中数学试题

北京市汇文中学2023-2024学年八年级上学期期中数学试题

北京市汇文中学2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________A.AB AE=B.BC5.如图,线段DE交线段BCA.10°B.20°6.下列命题是真命题的是(A.同旁内角互补C.三角形的一个外角等于它的两个内角之和7.如图,在△ABC中,分别以点相交于点M,N,作直线MN则△ABC 的周长为()A .8B .10C .18D .208.如图,直线EF MN ∥,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若50D ∠=︒,则m 的值为()A .70B .74C .76D .8013.下列式子中:①()()x y x y ---+;②()()x y x y -+-;③(④()()2222x y y x +-,能用平方差公式运算的是.14.教材中有如下一段文字:如图,把一长一短的两根木棍的一端固定在一起,摆出ABC15.已知2(1)(1)1x x x -+=-,(2(1)x x -+根据前面各式的规律,可得:2023202222++是.16.如果三角形的两个内角α与β满足3α+β三角形”.如图,B 、C 为直线l 上两点,点一点,且△ABP 是“准直角三角形”,则∠APB 三、解答题17.计算:(1)423287x y x y÷(2)()232x x x ⋅+-;(3)(2)(2)3(2)a b a b a a b +---.18.因式分解:(1)234xy x -;(2)2241616ax axy ay ++.19.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC 及直线BC 外一点P .求作:直线PE ,使得∥PE BC .作法:如图2.①在直线BC上取一点A,连接PA;∠的平分线AD;②作PAC③以点P为圆心,PA长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程完成下面的证明:∠,证明:∵AD平分PAC∠=∠.∴PAD CAD∵PA PE=,∠=________,∴PAD∴PEA∠=________,PE BC.(________________________)(填推理依据).∴∥20.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.21.如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).A B C;(1)请画出△ABC关于x轴对称的图形△111(2)求△ABC 的面积;(3)在x 轴上求一点P ,使△PAB 周长最小,请画出△PAB ,并通过画图求出P 点的坐标.22.已知2()11a b +=,1ab =.(1)求22a b +的值;(2)求2()a b -的值.23.如图,ABC 是等边三角形,DE BC ∥,分别交AB ,AC 于点D ,E .(1)求证:ADE V 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.24.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,测得的线段长度如图所示,若把图②中未被小正方形覆盖部分(图②中的阴影部分)折成一个无盖的长方体盒子.(1)用含有a ,b 的代数式表示该长方体盒子的体积,并化简.(2)若a=12,b=2,求此长方体盒子的体积.25.已知,在△ABD 中,45ABD ∠=︒,90ADB ∠=o ,点B 关于直线AD 的对称点为E ,连接AE ,点C 在射线DE 上,作直线AC ,作EN AC ⊥于N ,BM AC ⊥于M .(1)若点C 在点E 的右边,如图1,若1EN =,3BM =,求MN 的长;(2)当点C 在线段DE 上运动时,请求出EN ,BM ,MN 之间的数量关系.(1)若3BD =,试求出BC (2)若BE BC =,设PB 与①请求出BFC ∠的度数;②连接EF ,过点C 作CG 段CF 的长.28.在平面直角坐标系xOy 三点中横坐标的最大值与最小值的差,差.若三点的横长与纵长相等,我们称这三点为正方点.例如:点()2,0A -,点B A ,B ,C 三点的“纵长(1)在点()3,5R ,()3,2S -,()4,3T --中,与点A ,B 为正方点的是___________;(2)点()0,P t 为y 轴上一动点,若A ,B ,P 三点为正方点,则t 的值为___________;(3)已知点()1,0D .平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,且3a b ==.①在图中画出所有符合条件的点E 组成的图形;②当ADE V 为等腰三角形时,称E 点为等腰正方点,直接写出所有位于x 轴上方的等腰正方点.。

2020-2021北京市八年级数学上期中一模试卷及答案

2020-2021北京市八年级数学上期中一模试卷及答案

2020-2021北京市八年级数学上期中一模试卷及答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.7 2.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=13.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°4.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.146.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7B.8C.6D.57.如图,已知a∥b,∠1=50°,∠3=10°,则∠2等于()A.30°B.40°C.50°D.60°8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7 10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( ) A .3B .1C .0D .﹣3 11.2012201253()(2)135-⨯-=( ) A .1-B .1C .0D .1997 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.15.已知210x x +-=,则2421x x x ++的值是______. 16.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 17.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .18.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为_____°.19.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.20.已知3221可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,求降价后每枝玫瑰的售价是多少元?23.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.24.材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.25.如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF. 求证:(1)AF=CF;(2)CA平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.7.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m=0,再解得出答案.【详解】解:(x﹣m)(x+3)=x2+3x﹣mx﹣3m=x2+(3﹣m)x﹣3m,∵乘积中不含x的一次项,∴3﹣m=0,解得:m=3,故选:A.【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.11.B解析:B【解析】【分析】根据积的乘方公式进行简便运算.【详解】解:20122012 532135⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=20122012513()()135⨯ =2012513()135⨯ =1.故选B【点睛】 此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.12.B解析:B【解析】【分析】先证得△ABE ≌△ACD ,可得AE =AD ,∠BAE =∠CAD =60°,即可证明△ADE 是等边三角形.【详解】∵△ABC 为等边三角形,∴AB =AC ,∵∠1=∠2,BE =CD ,∴△ABE ≌△ACD ,∴AE =AD ,∠BAE =∠CAD =60°,∴△ADE 是等边三角形,故选B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.9【解析】∵m −n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m −4mn=1+2(m −n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及 解析:9【解析】∵m −n =2,mn =−1,∴(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9.故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.【解析】【分析】由可知x≠0根据分式的基本性质可得进而可得根据分式的基本性质可得把代入即可得答案【详解】∵∴x≠0∴两边同时平方得:∴故答案为:【点睛】本题考查分式的基本性质分式的分子分母同时乘以或 解析:12【解析】【分析】由210x x +-=可知x≠0,根据分式的基本性质可得11x x-=-,进而可得2211x x +=,根据分式的基本性质可得242221111x x x x x=++++,把2211x x +=代入即可得答案. 【详解】∵210x x +-=,∴x≠0, ∴11x x-=-, 两边同时平方得:2211x x +=,∴24222111121xx x xx==++++.故答案为:12【点睛】本题考查分式的基本性质,分式的分子、分母同时乘以或除以一个不为0的整式,分式的值不变;灵活运用分式的基本性质把已知和所求分式变形是解题关键.16.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k解得x=6-k≠3解析:k<6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:233x kx x-=--,方程两边都乘以(x-3),得x=2(x-3)+k,解得x=6-k≠3,关于x的方程程233x kx x-=--有一个正数解,∴x=6-k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为k<6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.17.【解析】试题分析:如图连接OA∵OBOC分别平分∠ABC和∠ACB∴点O到ABACBC的距离都相等∵△ABC的周长是20OD⊥BC于D且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=12×20×3=30.考点:角平分线的性质.18.180°【解析】∵将△ABC三个角分别沿DEHGEF翻折三个顶点均落在点O 处∴∠B=∠HOG∠A=∠DOE∠C=∠EOF∠1+∠2+∠HOG+∠EOF+∠DOE=360°∵∠HO G+∠EOF+∠DO解析:180°【解析】∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.19.85°【解析】【分析】根据三角形内角和得出∠C=60°再利用角平分线得出∠DBC=35°进而利用三角形内角和得出∠BDC的度数【详解】∵在△ABC中∠A=5 0°∠ABC=70°∴∠C=60°∵BD平解析:85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将3221-可以被10到20之间的某两个整数整除,21-利用平方差公式分解因式,根据32即可得到两因式分别为15和17.【详解】因式分解可得:32-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)21(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.22.降价后每枝玫瑰的售价是2元.【解析】分析:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据题意得:30301.51x x=⨯+,解得:x=2,经检验,x=2是原分式方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.24.(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x2y²+364y+4x+9x²y²=13x²y²+364y+4x=(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF 平分∠ABC ⇒∠ABF=∠CBF ,再加上AB=BC ,BF=BF 就可以推出△ABF ≌△CBF ,依据全等三角形对应边相等的性质可以推出AF=CF ;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC ;依据平行线的性质可以得出内错角∠FAC 、∠DCA 相等,等量代换后,就可推出CA 平分∠DCF .【详解】证明:如图.(1)∵BF 平分ABC ∠,∴ABF CBF ∠=∠.在△ABF 与△CBF 中,,{,,AB CB ABF CBF BF BF =∠=∠=∴ △ABF ≌△CBF .∴AF CF =.(2)∵AF CF =,∴FCA FAC ∠=∠.∵AF ∥DC ,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF ,继而推出∠FCA=∠FAC ,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。

北京市东城区文汇中学2020-2021学年八年级下学期期中数学试题

北京市东城区文汇中学2020-2021学年八年级下学期期中数学试题

北京市东城区文汇中学2020-2021学年八年级下学期期中数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 若代数式在实数范围内有意义,则的取值范围是A.x<1 B.x≤1C.x>1 D.x≥12. 下列四组线段中,可以构成直角三角形的是()A.4, 5, 6 B.5, 12, 13 C.2, 3, 4 D.1,,3 3. 下列各曲线中,不表示y是x的函数的是()A.B.C.D.4. 要得到函数y=2x+3的图象,只需将函数y=2x的图象()A.向左平移3个单位B.向右平移3个单位C.向下平移3个单位D.向上平移3个单位5. 下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC ∠B=∠D6. 矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等7. 若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形8. 如图,直线的图象如图所示.下列结论中,正确的是()A.B.方程的解为;C.D.若点A(1,m)、B(3,n)在该直线图象上,则.9. 某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是()A.甲成绩的平均分低于乙成绩的平均分;B.甲成绩的中位数高于乙成绩的中位数;C.甲成绩的众数高于乙成绩的众数;D.甲成绩的方差低于乙成绩的方差.10. 已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D.二、填空题11. 请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.12. 如图,在数轴上点A表示的实数是_____________.13. 如图,A,B两地被池塘隔开,小石通过下面的方法测出A,B间的距离:先在AB外选一点C,然后通过测量找到AC,BC的中点D,E,并测量出DE的长为20m,由此他就知道了A,B间的距离为___m,小石的依据是___.14. 如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB =3,则BC的长为_____.15. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.16. 在一次救灾捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,统计图(如图)反映了不同捐款数的人数比例,那么该班同学捐款的众数和中位数分别是___元、___元.17. 计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为____;若,分别满足方程和,则,的大小关系是____.18. 如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.三、解答题19. 下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;②连接AD,CD,则四边形ABCD为矩形.根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2)完成下面的证明.证明:∴点O为AC的中点,∴AO=CO.又∵DO=BO,∵四边形ABCD为平行四边形(__________)(填推理的依据).∵∠ABC=90°,∴ABCD为矩形(_________)(填推理的依据).20. 已知:如图,在平行四边形ABCD中,点E,F分别在边AD,BC上,AE=CF.求证:BE=DF.21. 在平面直角坐标系中,已知一次函数的图像与轴交于点,与轴交于点求两点的坐标在给定的平面直角坐标系中画出该函数的图象;根据图像回答:当时,的取值范围是.22. 如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE折叠后点D恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得PA+PE值最小?若存在,请求出最小值:若不存在,请说明理由.23. 如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为(1,0),(0,2),直线AB与直线相交于点P.(1)求直线AB的表达式;(2)求点P的坐标;(3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.24. 在矩形ABCD中,连接AC,AC的垂直平分线交AC于点O,分别交AD、BC 于点E、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的面积.25. 小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:时段1日至10日11日至20日21日至30日平均数100 170 250日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26. 已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明MB=ME;(2)①用等式表示线段AM与CF的数量关系,并证明;②直接用等式表示线段AM,BM,DM之间的数量关系.27. 平面直角坐标系中,对于点和点,给出如下定义:若则称点为点的可变点.例如:点的可变点的坐标是,点的可变点的坐标是.(1)①点的可变点的坐标是;②在点,中有一个点是函数图象上某一个点的可变点,这个点是;(填“A”或“B”)(2)若点在函数的图象上,求其可变点的纵坐标的取值范围;(3)若点A在函数y=-x+4(-1≤x≤a,a>-1)的图象上,其可变点B的纵坐标n的取值范围是-5≤n'≤3,直接写出a的取值范围.。

2022-2023学年北京市汇文中学教育集团八年级(上)期中数学试卷

2022-2023学年北京市汇文中学教育集团八年级(上)期中数学试卷

2022-2023学年北京市汇文中学教育集团八年级(上)期中数学试卷试题数:27.满分:1001.(单选题.2分)斐波那契螺旋线也称为“黄金螺旋线”.是根据斐波那契数列画出来的螺旋曲线.自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.2.(单选题.2分)下列等式中.从左到右的变形是因式分解的是()A.m(a+b)=ma+mbB.3x2-3x+1=3x(x-1)+1C.x2+3x+2=(x+1)(x+2)D.(a+2)2=a2+4a+43.(单选题.2分)已知三角形的三边长分别为3.4.x.且x为整数.则x的最大值为()A.8B.7C.5D.64.(单选题.2分)如图.河谷大桥桥梁的斜拉钢索是三角形的结构.主要是()A.节省材料.节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮5.(单选题.2分)下列运算结果为a6的是()A.a3•a2B.a9-a3C.(a2)3D.a18÷a36.(单选题.2分)如图.点C在∠AOB的边OA上.用尺规作出了CP || OB.作图痕迹中. FĜ是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧7.(单选题.2分)如图.点O是△ABC的两个外角平分线的交点.下列结论:① 点O在∠A的平分线上;② 点O到△ABC的三边的距离相等;③ OB=OC.以上结论正确的有()A. ② ③B. ① ②C. ① ③D. ① ② ③8.(单选题.2分)如图.等腰△ABC中.AB=AC.MN是边BC上一条运动的线段(点M不与点BBC.MD⊥BC交AB于点D.NE⊥BC交AC于点E.在MN从重合.点N不与点C重合).且MN= 12左至右的运动过程中.△BMD和△CNE的面积之和()A.保持不变B.先变小后变大C.先变大后变小D.一直变大9.(填空题.2分)如果等腰三角形一边长为3.另一边长为10.那么它的周长是 ___ .10.(填空题.2分)已知一正多边形的每个外角是36°.则该正多边形是___ 边形.11.(填空题.2分)如图所示的网格由边长相同的小正方形组成.点A、B、C、D、E、F、G在小正方形的顶点上.则表示△ABC重心的点是___ .12.(填空题.2分)有两块总面积相等的场地.左边场地为正方形.由四部分构成.各部分的面积数据如图所示.右边场地为长方形.长为2(a+b).则宽为 ___ .13.(填空题.2分)借助如图所示的“三等分角仪”能三等分某些度数的角.这个“三等分角仪”由两根有槽的棒OA.OB组成.两根棒在O点相连并可绕O转动.C点固定.OC=CD=DE.点D.E可在槽中滑动.若∠BDE=75°.则∠COD=___ °.14.(填空题.2分)当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时.就能拼成一个既不留空隙.又不相互重叠的平面图形.我们称之为镶嵌.用一种或几种正多边形镶嵌平面有多种方案.如:6个正三角形.记作(3.3.3.3.3.3);3个正三角形和两个正方形.记作(3.3.3.4.4);请你写出一种同时使用正三角形和正六边形的镶嵌方案 ___ .15.(填空题.2分)如图.等边△ABC中.AD是BC边上的中线.且AD=17.E.P分别是AC.AD上的动点.则CP+EP的最小值等于 ___ .16.(填空题.2分)新年联欢.某公司为员工准备了A、B两种礼物.A礼物单价a元、重m千克.B礼物单价(a+1)元.重(m-1)千克.为了增加趣味性.公司把礼物随机组合装在盲盒里.每个盲盒里均放两样.随机发放.小林的盲盒比小李的盲盒重1千克.则两个盲盒的总价钱相差 ___ 元.通过称重其他盲盒.大家发现:称重情况重量大于小林的盲盒的与小林的盲盒一样重重量介于小林和小李之间的与小李的盲盒一样重重量小于小李的盲盒的盲盒个数 5 9 417.(问答题.8分)因式分解:(1)3x2+6x+3;(2)a3-9a.18.(问答题.8分)计算:(1)a3•a+(-a2)3÷a2;(2)[(m+n)(m-n)+(-n)2]÷2m.19.(问答题.5分)已知x2-x+1=0.求代数式(x+1)2-(x+1)(2x-1)的值.20.(问答题.5分)如图.AB=AD.AC=AE.∠1=∠2.求证:BC=DE.21.(问答题.6分)下面是小明同学设计的“已知底边及底边上的中线作等腰三角形”的尺规作图过程.已知:如图1.线段a和线段b.求作:△ABC.使得AB=AC.BC=a.BC边上的中线为b.作法:如图2.① 作射线BM.并在射线BM上截取BC=a;② 作线段BC的垂直平分线PQ.PQ交BC于D;③ 以D为圆心.b为半径作弧.交PQ于A;④ 连接AB和AC.则△ABC为所求作的图形.根据上述作图过程.回答问题:(1)用直尺和圆规.补全图2中的图形;(2)完成下面的证明:证明:由作图可知BC=a.AD=b.∵PQ为线段BC的垂直平分线.点A在PQ上.∴AB=AC( ___ )(填依据).又∵线段BC的垂直平分线PQ交BC于D.∴___ =___ .∴AD为BC边上的中线.且AD=b.22.(问答题.5分)如图.在Rt△ABC中.∠C=90°.∠A=30°.BD平分∠ABC.AD=10.求CD的长.23.(问答题.5分)课本上介绍了求多边形的内角和的方法是过n边形的一个顶点作对角线.把n边形分成(n-2)个三角形.把求多边形的问题转化成三角形内角和的问题.从而得到n边形的内角和等于(n-2)•180°.现在再提供两种添辅助线的方案.请你选择其中一种.再次证明n边形内角和定理.方案一方案二如图.P为n边形A1A2……A n内一点.连接PA1.PA2.…….PA n.那么如图.P为n边形A1A2……A n边n边形被分成了 ___ 个三角形. 由此推理n边形的内角和定理.A1A2上的任意一点.连接PA3.PA4.…….PA n.那么n边形被分成了 ___ 个三角形.由此推理n边形的内角和定理.证明:证明:24.(问答题.6分)如图.在平面直角坐标系xOy中.△ABC的三个顶点的坐标分别是A(2.3).B (1.0).C(1.2).(1)在图中作出△ABC关于x轴对称的△A1B1C1.其中A1的坐标为 ___ ;(2)如果要使以B、C、D为顶点的三角形与△ABC全等(A、D不重合).写出所有符合条件的点D坐标.25.(问答题.6分)小明在学习有关整式的知识时.发现一个有趣的现象:对于关于x的多项式x2-2x+3.由于x2-2x+3=(x-1)2+2.所以当x-1取任意一对互为相反数的数时.多项式x2-2x+3的值是相等的.例如.当x-1=±l.即x=2或0时.x2-2x+3的值均为3;当x-1=±2.即x=3或-1时.x2-2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式.若当x-t取任意一对互为相反数的数时.该多项式的值相等.就称该多项式关于x=1对称.例如x2-2x+3关于x=1对称.请结合小明的思考过程.运用此定义解决下列问题:(I)多项式x2-6x+10关于x=___ 对称;(2)若关于x的多项式x2+2bx+3关于x=4对称.求b的值;(3)整式(x2+8x+16)(x2+4x+4)关于x=___ 对称.26.(问答题.7分)在△ABC中.D是BC的中点.且∠BAD≠90°.将线段AB沿AD所在直线翻折.得到线段AB'.作CE || AB交直线AB'于点E.(1)如图.若AB>AC.① 依题意补全图形;② 用等式表示线段AB.AE.CE之间的数量关系.并证明;(2)若AB<AC.上述结论是否仍然成立?若成立.简述理由;若不成立.直接用等式表示线段AB.AE.CE之间新的数量关系(不需证明).27.(问答题.7分)在平面直角坐标系xOy中.直线l为一、三象限角平分线.点P关于y轴的对称点称为P的一次反射点.记作P1;P1关于直线l的对称点称为点P的二次反射点.记作P2.例如.点(-2.5)的一次反射点为(2.5).二次反射点为(5.2).根据定义.回答下列问题:(1)点(3.4)的一次反射点为 ___ .二次反射点为 ___ ;(2)当点A在第三象限时.点M(-4.1).N(3.-1).Q(-1.-5)中可以是点A的二次反射点的是 ___ ;(3)若点A在第二象限.点A1.A2分别是点A的一次、二次反射点.∠A1OA2=50°.求射线OA与x轴所夹锐角的度数;(4)若点A在y轴左侧.点A1.A2分别是点A的一次、二次反射点.△AA1A2是等腰直角三角形.请直接写出点A在平面直角坐标系xOy中的位置.2022-2023学年北京市汇文中学教育集团八年级(上)期中数学试卷参考答案与试题解析试题数:27.满分:1001.(单选题.2分)斐波那契螺旋线也称为“黄金螺旋线”.是根据斐波那契数列画出来的螺旋曲线.自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【正确答案】:A【解析】:根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】:解:A、是轴对称图形.故本选项正确;B、不是轴对称图形.故本选项错误;C、不是轴对称图形.故本选项错误;D、不是轴对称图形.故本选项错误.【点评】:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴.图形两部分折叠后可重合.2.(单选题.2分)下列等式中.从左到右的变形是因式分解的是()A.m(a+b)=ma+mbB.3x2-3x+1=3x(x-1)+1C.x2+3x+2=(x+1)(x+2)D.(a+2)2=a2+4a+4【正确答案】:C【解析】:利用因式分解的定义.将多项式和的形式化为积的形式.即可得到结果.【解答】:解:A、是整式的乘法.不是因式分解.故本选项不符合题意;B、不是积的形式.不是因式分解.故本选项不符合题意;C、是因式分解.故本选项符合题意;D、是整式的乘法.不是因式分解.故本选项不符合题意;故选:C.【点评】:此题考查了因式分解的意义.熟练掌握因式分解的定义是解本题的关键.3.(单选题.2分)已知三角形的三边长分别为3.4.x.且x为整数.则x的最大值为()A.8B.7C.5D.6【正确答案】:D【解析】:根据三角形两边之和大于第三边.三角形的两边差小于第三边.求出x的取值范围.进而得到x的最大值.【解答】:解:∵4-3=1.4+3=7.∴1<x<7.∵x为整数.∴x的最大值为6.【点评】:此题主要考查了三角形的三边的关系.要熟练掌握.解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.4.(单选题.2分)如图.河谷大桥桥梁的斜拉钢索是三角形的结构.主要是()A.节省材料.节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮【正确答案】:C【解析】:桥梁的斜拉钢索是三角形的结构.故主要是利用了三角形的稳定性.【解答】:解:桥梁的斜拉钢索是三角形的结构.这样做的数学依据是三角形的稳定性.故选:C.【点评】:本题主要考查了三角形的稳定性.解题的关键是熟记三角形的稳定性.5.(单选题.2分)下列运算结果为a6的是()A.a3•a2B.a9-a3C.(a2)3D.a18÷a3【正确答案】:C【解析】:分别根据同底数幂的乘法法则.合并同类项法则.幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】:解:A.a3•a2=a5.故本选项不合题意;B.a9与-a3不是同类项.所以不能合并.故本选项不合题意;C.(a2)3=a6.故本选项符合题意;D.a18÷a3=a15.故本选项不合题意.【点评】:本题主要考查了合并同类项.同底数幂的乘除法以及幂的乘方与积的乘方.熟记幂的运算法则是解答本题的关键.6.(单选题.2分)如图.点C在∠AOB的边OA上.用尺规作出了CP || OB.作图痕迹中. FĜ是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧【正确答案】:C【解析】:根据平行线的判定.作一个角等于已知角的方法即可判断.【解答】:解:由作图可知作图步骤为:① 以点O为圆心.任意长为半径画弧DM.分别交OA.OB于M.D.② 以点C为圆心.以OM为半径画弧EN.交OA于E.③ 以点E为圆心.以DM为半径画弧FG.交弧EN于N.④ 过点N作射线CP.根据同位角相等两直线平行.可得CP || OB.故选:C.【点评】:本题考查作图-基本作图.平行线的判定等知识.解题的关键是熟练掌握基本知识.属于中考常考题型.7.(单选题.2分)如图.点O是△ABC的两个外角平分线的交点.下列结论:① 点O在∠A的平分线上;② 点O到△ABC的三边的距离相等;③ OB=OC.以上结论正确的有()A. ② ③B. ① ②C. ① ③D. ① ② ③【正确答案】:B【解析】:过O点作OD⊥AB于D.OE⊥BC于E.OF⊥AC于F.如图.根据角平分线的性质得到OD=OE.OE=OF.则OD=OF.于是根据角平分线的性质定理的逆定理可对① 进行判断;同时可对② 进行判断;由于不能确定∠ABC=∠ACB.则不能确定∠OBE=∠OCE.则可对③ 进行判断.【解答】:解:过O点作OD⊥AB于D.OE⊥BC于E.OF⊥AC于F.如图.∵BO平分∠DBC.OD⊥BD.OE⊥BC.∴OD=OE.同理可得OE=OF.∴OD=OF.∴点O在∠A的平分线上.所以① 正确;OD=OE=OF.所以② 正确;∵不能确定∠ABC=∠ACB.∴不能确定∠OBE=∠OCE.∴不能确定OB=OC.所以③ 错误.故选:B.【点评】:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了角平分线的性质定理的逆定理.8.(单选题.2分)如图.等腰△ABC中.AB=AC.MN是边BC上一条运动的线段(点M不与点B 重合.点N不与点C重合).且MN= 12BC.MD⊥BC交AB于点D.NE⊥BC交AC于点E.在MN从左至右的运动过程中.△BMD和△CNE的面积之和()A.保持不变B.先变小后变大C.先变大后变小D.一直变大【正确答案】:B【解析】:妨设BC=2a.∠B=∠C=α.BM=m.则CN=a-m.根据二次函数即可解决问题.【解答】:解:不妨设BC=2a.∠B=∠C=α.BM=m.则CN=a-m.则有S阴= 12•m•mtanα+ 12(a-m)•(a-m)tanα= 12tanα(m2+a2-2am+m2)= 12tanα(2m2-2am+a2).∴S阴的值先变小后变大.故选:B.【点评】:此题考查等腰三角形的性质.关键根据二次函数的性质得出面积改变规律.9.(填空题.2分)如果等腰三角形一边长为3.另一边长为10.那么它的周长是 ___ .【正确答案】:[1]23【解析】:题目给出等腰三角形有两条边长为10和3.而没有明确腰、底分别是多少.所以要进行讨论.还要应用三角形的三边关系验证能否组成三角形.【解答】:解:分两种情况:当腰为3时.3+3<10.所以不能构成三角形;当腰为10时.3+10>10.所以能构成三角形.周长是:3+10+10=23.故答案为:23.【点评】:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况.分类进行讨论.还应验证各种情况是否能构成三角形进行解答.这点非常重要.也是解题的关键.10.(填空题.2分)已知一正多边形的每个外角是36°.则该正多边形是___ 边形.【正确答案】:[1]十【解析】:多边形的外角和等于360°.因为所给多边形的每个外角均相等.故又可表示成36°n.列方程可求解.【解答】:解:设所求正n边形是n边形.则36°n=360°.解得n=10.故正多边形是十边形.故答案为:十.【点评】:本题考查根据多边形的外角和求多边形的边数.解答时要会根据公式进行正确运算、变形和数据处理.11.(填空题.2分)如图所示的网格由边长相同的小正方形组成.点A、B、C、D、E、F、G在小正方形的顶点上.则表示△ABC重心的点是___ .【正确答案】:[1]点D【解析】:利用三角形重心的定义进行判断.【解答】:解:根据图形.点D为AB和BC边上的中线的交点.所以点D为△ABC重心.故答案为点D.【点评】:本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;三角形的重心到顶点的距离与重心到对边中点的距离之比为2:1.12.(填空题.2分)有两块总面积相等的场地.左边场地为正方形.由四部分构成.各部分的面积数据如图所示.右边场地为长方形.长为2(a+b).则宽为 ___ .【正确答案】:[1] 12a+12b【解析】:求出左边场地的面积为a2+b2+2ab.由题意可求右边场地的宽=(a2+b2+2ab)÷2(a+b).按此计算便可.【解答】:解:左边场地面积=a2+b2+2ab.∵左边场地的面积与右边场地的面积相等.∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)= 12(a+b)= 12a+12b .故答案为:12a+12b.【点评】:本题考查整式的除法;熟练掌握整式的除法运算法则.准确计算是解题的关键.13.(填空题.2分)借助如图所示的“三等分角仪”能三等分某些度数的角.这个“三等分角仪”由两根有槽的棒OA.OB组成.两根棒在O点相连并可绕O转动.C点固定.OC=CD=DE.点D.E可在槽中滑动.若∠BDE=75°.则∠COD=___ °.【正确答案】:[1]25【解析】:由等腰三角形的性质分别求出∠COD.∠DEC的度数.由外角的性质可求解.【解答】:解:设∠COD=x.∵OC=CD=DE.∴∠COD=∠CDO=x.∠DCE=∠DEC.∵∠DCE=∠COD+∠CDO=2x.∴∠DEC=2x.∵∠BDE=∠DEC+∠COD=3x.∴3x=75°.∴x=25°.故答案为:25.【点评】:本题考查了旋转的性质.等腰三角形的性质.灵活运用这些性质解决问题是解题的关键.14.(填空题.2分)当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时.就能拼成一个既不留空隙.又不相互重叠的平面图形.我们称之为镶嵌.用一种或几种正多边形镶嵌平面有多种方案.如:6个正三角形.记作(3.3.3.3.3.3);3个正三角形和两个正方形.记作(3.3.3.4.4);请你写出一种同时使用正三角形和正六边形的镶嵌方案 ___ .【正确答案】:[1](3.3.3.3.6)(答案不唯一)【解析】:一种正多边形组成镶嵌.看一个内角度数为360°的约数即可;两种正多边形能否组成镶嵌.要看同一顶点处的几个角之和能否为360°.找到这样的正多边形或组合即可.【解答】:解:正三角形的一个内角度数为60°.正六边形的一个内角度数为120°.那么4个正三角形.一个正六边形能组成镶嵌.记做(3.3.3.3.6).故答案为:(3.3.3.3.6)(答案不唯一).【点评】:此题考查了平面镶嵌.用到的知识点为:一种正多边形能镶嵌平面.这个正多边形的一个内角的度数是360°的约数;两种或两种以上的正多边形能组成镶嵌.同一顶点处的几个角之和为360°.15.(填空题.2分)如图.等边△ABC中.AD是BC边上的中线.且AD=17.E.P分别是AC.AD上的动点.则CP+EP的最小值等于 ___ .【正确答案】:[1]17【解析】:作BE⊥AC于E.交AD于P.根据等边三角形的性质得到AD⊥BC.求得点B.C关于AD 为对称.得到BP=CP.根据垂线段最短得出CP+EP=BP+EP=BE=AD.即可得到结论.【解答】:解:BE⊥AC于E.交AD于P.∵△ABC是等边三角形.AD是BC边上的中线.∴AD⊥BC.∴AD是BC的垂直平分线.∴点B.C关于AD为对称.∴BP=CP.根据垂线段最短得出:CP+EP=BP+EP=BE.即此时CP+EP的值最小.∵△ABC是等边三角形.∴AC=BC.∵S△ABC= 12BC•AD= 12AC•BE.∴BE=AD=17.即CP+EP的最小值为17.故答案为:17.【点评】:本题考查了等边三角形的性质和轴对称等知识.熟练掌握等边三角形和轴对称的性质是本题的关键.16.(填空题.2分)新年联欢.某公司为员工准备了A、B两种礼物.A礼物单价a元、重m千克.B礼物单价(a+1)元.重(m-1)千克.为了增加趣味性.公司把礼物随机组合装在盲盒里.每个盲盒里均放两样.随机发放.小林的盲盒比小李的盲盒重1千克.则两个盲盒的总价钱相差 ___ 元.通过称重其他盲盒.大家发现:称重情况重量大于小林的盲盒的与小林的盲盒一样重重量介于小林和小李之间的与小李的盲盒一样重重量小于小李的盲盒的盲盒个数 5 9 4【正确答案】:[1]1; [2]50【解析】:根据小林的盲盒比小李的盲盒重1千克可判断两个盲盒的总价钱相差1元.再根据重量小于小李的盲盒的为4盒可以得出结论:小李的盲盒中为1件A礼物和1件B礼物.小林的盲盒中为2件A礼物.然后再根据表格中的数据列一元一次方程求解即可..【解答】:解:∵A礼物重m千克.B礼物重(m-1)千克.∴A礼物比B礼物重1千克.∵每个盲盒里均放两样.小林的盲盒比小李的盲盒重1千克.∴小李的盲盒中为1件A礼物和1件B礼物.小林的盲盒中为2件A礼物;或小李的盲盒中为2件B礼物.小林的盲盒中为1件A礼物和1件B礼物;∴不管以上哪种情况.两个盲盒的礼物总价格都相差a+1-a=1(元).由表格中数据可知.重量小于小李的盲盒的有4盒可知小李的盲盒中为1件A礼物和1件B礼物.不可能为2件B礼物.∴小李的盲盒中为1件A礼物和1件B礼物.小林的盲盒中为2件A礼物.∴重量小于小李的盲盒为2件B礼物.∵与小林的盲盒一样重盲盒有5盒.与小李的盲盒一样重的盲盒有9盒.重量小于小李的盲盒有4盒.∴2件B礼物的有4盒.1件A礼物和1件B礼物有10盒.2件A礼物有6盒.∴2×4(a+1)+10×a+10(a+1)+2×6a=2018.解得a=50.故答案为:1.50.【点评】:本题主要考查数据的收集与整理.能根据一直数据准确判断小李与小林的盲盒中的礼物时解答此题的关键.17.(问答题.8分)因式分解:(1)3x2+6x+3;(2)a3-9a.【正确答案】:【解析】:(1)先提公因式.再用公式法因式分解即可;(2)先提公因式.再用公式法因式分解即可.【解答】:解:(1)3x2+6x+3=3(x2+2x+1)=3(x+1)2;(2)a3-9a=a(a2-9)=a(a-3)(a+3).【点评】:本题考查了提公因式法与公式法的综合运用.熟练掌握因式分解的方法是解题的关键.18.(问答题.8分)计算:(1)a3•a+(-a2)3÷a2;(2)[(m+n)(m-n)+(-n)2]÷2m.【正确答案】:【解析】:(1)根据同底数幂的乘除法.幂的乘方和积的乘方即可得出答案;(2)根据平方差公式和整式的除法计算即可.【解答】:解:(1)a3•a+(-a2)3÷a2=a4+(-a6)÷a2=a4-a4=0;(2)[(m+n)(m-n)+(-n)2]÷2m=(m2-n2+n2)÷2m=m2÷2m= 1m.2【点评】:本题考查了整式的混合运算.熟练掌握同底数幂的乘除法.幂的乘方和积的乘方.平方差公式是解题的关键.19.(问答题.5分)已知x2-x+1=0.求代数式(x+1)2-(x+1)(2x-1)的值.【正确答案】:【解析】:根据多项式乘多项式进行化简.然后整体代入即可求值.【解答】:解:原式=x 2+2x+1-2x 2+x-2x+1=-x 2+x+2.当x 2-x+1=0.即-x 2+x=1时.原式=1+2=3.【点评】:本题考查了多项式乘多项式.解决本题的关键是掌握多项式乘多项式.20.(问答题.5分)如图.AB=AD.AC=AE.∠1=∠2.求证:BC=DE .【正确答案】:【解析】:要证明BC=DE.只要证明三角形ABC 和ADE 全等即可.两三角形中已知的条件有AB=AD.AC=AE.只要再得出两对应边的夹角相等即可.我们发现∠ABC 和∠DAE 都是由一个相等的角加上∠DAC .因此∠ABC=∠DAE .这样就构成了两三角形全等的条件(SAS ).两三角形就全等了.【解答】:证明:∵∠1=∠2.∴∠1+∠DAC=∠2+∠DAC .即:∠BAC=∠DAE .在△ABC 与又△ADE 中. {AB =AD∠BAC =∠DAE AC =AE.∴△ABC≌△ADE .∴BC=DE.【点评】:本题主要考查了全等三角形的判定.利用全等三角形来得出简单的线段相等是解此类题的常用方法.21.(问答题.6分)下面是小明同学设计的“已知底边及底边上的中线作等腰三角形”的尺规作图过程.已知:如图1.线段a和线段b.求作:△ABC.使得AB=AC.BC=a.BC边上的中线为b.作法:如图2.① 作射线BM.并在射线BM上截取BC=a;② 作线段BC的垂直平分线PQ.PQ交BC于D;③ 以D为圆心.b为半径作弧.交PQ于A;④ 连接AB和AC.则△ABC为所求作的图形.根据上述作图过程.回答问题:(1)用直尺和圆规.补全图2中的图形;(2)完成下面的证明:证明:由作图可知BC=a.AD=b.∵PQ为线段BC的垂直平分线.点A在PQ上.∴AB=AC( ___ )(填依据).又∵线段BC的垂直平分线PQ交BC于D.∴___ =___ .∴AD为BC边上的中线.且AD=b.【正确答案】:线段的垂直平分线上的点到线段的两个端点距离相等; BD; DC【解析】:(1)根据要求作出图形即可;(2)利用线段的承载着平分线的性质.等腰三角形的性质解决问题即可.【解答】:(1)解:图形如图所示:(2)证明:由作图可知BC=a.AD=b.∵PQ为线段BC的垂直平分线.点A在PQ上.∴AB=AC(线段的垂直平分线上的点到线段的两个端点距离相等).又∵线段BC的垂直平分线PQ交BC于D.∴BD=DC.∴AD为BC边上的中线.且AD=b.故答案为:线段的垂直平分线上的点到线段的两个端点距离相等.BD.DC.【点评】:本题考查作图-复杂作图.线段的垂直平分线的性质.等腰三角形的性质等知识.解题的关键是理解题意.灵活运用所学知识解决问题.22.(问答题.5分)如图.在Rt△ABC中.∠C=90°.∠A=30°.BD平分∠ABC.AD=10.求CD的长.【正确答案】:【解析】:在Rt△ABC中利用∠C=90°.∠A=30°易求∠ABC=60°.再利用角平分线性质可求∠ABD=∠DBC=30°.从而可得∠ABD=∠A.进而可求BD.在Rt△BDC中.利用30°的角所对的边等于斜边的一半可求CD.【解答】:解:在Rt△ABC中.∵∠C=90°.∠A=30°.∴∠ABC=60°.∵BD是∠ABC的平分线.∴∠ABD=∠DBC=30°.∴∠ABD=∠A.∴BD=AD=10.又∵∠DBC=30°.∴DC= 12BD=5.即DC的长是5.【点评】:本题考查了含有30°角的直角三角形、角平分线的性质.解题的关键是得出BD=AD=10.23.(问答题.5分)课本上介绍了求多边形的内角和的方法是过n边形的一个顶点作对角线.把n边形分成(n-2)个三角形.把求多边形的问题转化成三角形内角和的问题.从而得到n边形的内角和等于(n-2)•180°.现在再提供两种添辅助线的方案.请你选择其中一种.再次证明n边形内角和定理.方案一方案二如图.P为n边形A1A2……A n内一点.连接PA1.PA2.…….PA n.那么n边形被分成了 ___ 个三角形. 由此推理n边形的内角和定理.如图.P为n边形A1A2……A n边A1A2上的任意一点.连接PA3.PA4.…….PA n.那么n边形被分成了 ___ 个三角形.由此推理n边形的内角和定理.证明:证明:【正确答案】:n; (n-1)【解析】:在n边形内任取一点O.并把O与各顶点连接起来.共构成n个三角形.这n个三角形的角和为n•180°.再减去以点O为顶点的一个周角.就可以得到n边形的内角和为(n-2)•180°;连接P点与其它各顶点的线段可以把n边形分成(n-1)个三角形.【解答】:证明:方法① 在n边形内任取一点O.并把O与各顶点连接起来.共构成n个三角形.这n个三角形的角和为n•180°.再减去以点O为顶点的一个周角.就可以得到n边形的内角和为(n-2)•180°.故答案为:n;方法② 在n边形的任意一边上任取一点P.连接P点与其它各顶点的线段可以把n边形分成(n-1)个三角形.这(n-1)个三角形的内角和等于(n-1)•180°.以P为公共顶点的(n-1)个角的和是180°.所以n边形的内角和是(n-1)•180°-180°=(n-2)•180°.故答案为:(n-1).【点评】:本题考查了多边形的内角和定理的证明.解题关键是将多边形的内角和问题转化为三角形中解决.24.(问答题.6分)如图.在平面直角坐标系xOy中.△ABC的三个顶点的坐标分别是A(2.3).B (1.0).C(1.2).(1)在图中作出△ABC关于x轴对称的△A1B1C1.其中A1的坐标为 ___ ;(2)如果要使以B、C、D为顶点的三角形与△ABC全等(A、D不重合).写出所有符合条件的点D坐标.【正确答案】:(2.-3)【解析】:(1)根据轴对称的性质即可作出△ABC关于x轴对称的△A1B1C1.进而可以得A1的坐标;(2)根据网格利用全等三角形的判定即可写出所有符合条件的点D坐标.【解答】:解:(1)如图.△A1B1C1即为所求;A1的坐标为(2.-3);故答案为:(2.-3);(2)所有符合条件的点D坐标为:(0.3)或(0.-1)或(2.-1).。

2021年北京八中初二(上)期中数学试卷及答案

2021年北京八中初二(上)期中数学试卷及答案

2021北京八中初二(上)期中数 学一、选择题(每小题2分,共20分)下面各题均有四个选项,其中只有一个是符合题意的。

1.(2分)剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .2.(2分)下列运算正确的是( )A .2510a a a ⋅=B .224a a a +=C .2353()a b a b =D .248()a a −=3.(2分)如图,已知12∠=∠,则不一定能使ABD ACD ∆≅∆的条件是( )A .AB AC = B .BD CD = C .B C ∠=∠ D .BDA CDA ∠=∠4.(2分)在平面直角坐标系xOy 中,点(3,5)P −关于x 轴的对称点的坐标是( )A .(3,5)B .(3,5)−C .(5,3)−D .(3,5)−−5.(2分)如图,ABC DCB ∆≅∆,若7AC =,5BE =,则DE 的长为( )A .2B .3C .4D .56.(2分)下列命题中正确的有( )个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别对应相等的两个三角形全等;④等底等高的两个三角形全等.A .1B .2C .3D .47.(2分)如图,在Rt ABC ∆中,30A ∠=︒,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若2DE =,则AC 的值为( )A .4B .6C .8D .108.(2分)下面四个整式中,不能表示图中阴影部分面积的是( )A .(3)(2)2x x x ++−B .(3)6x x ++C .23(2)x x ++D .25x x +9.(2分)已知,如图在直角坐标系中,点A 在y 轴上,BC x ⊥轴于点C ,点A 关于直线OB 的对称点D 恰好在BC上,点E 与点O 关于直线BC 对称,35OBC ∠=︒,则OED ∠的度数为( )A .10︒B .20︒C .30︒D .35︒10.(2分)如图所示,在长方形ABCD 的对称轴l 上找点P ,使得PAB ∆,PBC ∆,PDC ∆,PAD ∆均为等腰三角形,则满足条件的点P 有( )A .5个B .4个C .3个D .1个二、填空题(每小题2分,共16分)11.(2分)计算21(6)3a ab ⋅−的结果是 . 12.(2分)如图,已知OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点.若2PA =,则PQ 的最小值为 ,理论根据为 .13.(2分)如图,点P 、M 、N 分别在等边三角形ABC 的各边上,且MP AB ⊥于点P ,MN BC ⊥于点M ,PN AC⊥于点N ,若15AB cm =,则CM 的长为 .14.(2分)若等腰三角形的一个外角为140︒,则它的顶角的度数为 .15.(2分)已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是 .16.(2分)如图,Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,10AB =,BD 平分ABC ∠,如果M 、N 分别为BD 、BC 上的动点,那么CM MN +的最小值是 .17.(2分)如果n x y =,那么我们规定(,)x y n =.例如:因为239=,所以(3,9)2=.根据上述规定,(2,8)= ,若(,16)m p =,(,5)m q =,(,)m t r =,且满足p q r +=,则t = .18.(2分)如图,点D 是ABC ∆三条角平分线的交点,68ABC ∠=︒,若AB BD AC +=,则ACB ∠的度数为 .三、解答题(本题共20分)19.(16分)计算:(1)232()()a a a ⋅⋅−;(2)22334()8xy x yz ⋅; (3)22222(3)4(2)xy x y xy x y −−+;(4)(32)(5)x x −+.20.(4分)先化简,再求值.222(24)(63)(2)x x x x x x x −−−+,其中12x =−. 四、作图题(6分)21.(6分)下面是小芸设计的“作三角形一边上的高”的尺规作图过程.已知:ABC ∆.求作:ABC ∆的边BC 上的高AD .作法:①以点A 为圆心,适当长为半径画弧,交直线BC 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ; ③作直线AP 交BC 于点D ,则线段AD 即为所求ABC ∆的边BC 上的高.根据小芸设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)AP 是线段MN 的 .(填下列选项的序号)①垂直平分线②角平分线点P 在这条线上的依据是 .五、解答题(22-25每题6分,26-27每题7分,共38分)22.(6分)如图,ABC ∆中,AB AC =,30B ∠=︒,点D 是AC 的中点,过点D 作DE AC ⊥交BC 于点E ,连接AE .若3AE =,求BC 的长.解:AB AC =,30B ∠=︒.30(C B ∴∠=∠=︒ ),180120BAC B C ∴∠=︒−∠−∠=︒.点D 是AC 的中点,且DE AC ⊥,3(EC EA ∴== ),30EAC C ∴∠=∠=︒,BAE BAC EAC ∴∠=∠−∠= ︒.在Rt ABE ∆中,30B ∠=︒,2BE ∴= = ,BC BE EC ∴=+= .23.(6分)已知:如图,BAC DAM ∠=∠,AB AN =,AD AM =,求证:B ANM ∠=∠.24.(6分)如图,已知90A D ∠=∠=︒,AB DC =,AC 与BD 相交于E ,F 是BC 的中点,求证:BEF CEF ∠=∠.25.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是边AC 上一点,且DE BC =.求证:DEA C ∠=∠.26.(7分)在平面直角坐标系xOy 中,点(1,1)A t −与点B 关于过点(,0)t 且垂直于x 轴的直线对称.(1)以AB 为底边作等腰三角形ABC ,①当2t =时,点B 的坐标为 ;②当0.5t =且直线AC 经过原点O 时,点C 与x 轴的距离为 ;③若ABC ∆上所有点到y 轴的距离都不小于1,则t 的取值范围是 .(2)以AB 为斜边作等腰直角三角形ABD ,直线m 过点(0,)b 且与x 轴平行,若直线m 上存在点P ,ABD ∆上存在点K ,满足1PK =,直接写出b 的取值范围.27.(7分)在等边ABC∆中,线段AM为BC边上的中线.点D在直线AM上,以CD为一边在CD的下方作等边CDE∆,连接BE.(1)当点D在线段AM上时,①请在图1中补全图形;②CAM∠的度数为;③求证:ADC BEC∆≅∆;(2)当点D在直线AM上时,直线BE与直线AM的交点为O(点D与点M不重合,点E与点O不重合),直接写出线段OE,OM与OD的数量关系.2021北京八中初二(上)期中数学参考答案一、选择题(每小题2分,共20分)下面各题均有四个选项,其中只有一个是符合题意的。

2020-2021学年北京市汇文中学朝阳垂杨柳分校八年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市汇文中学朝阳垂杨柳分校八年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市汇文中学朝阳垂杨柳分校八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列长度的三根木棒能组成三角形的是()A. 3,4,8B. 4,4,8C. 5,6,10D. 6,7,142.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.3.在平面直角坐标系中,点P(−2,3)关于y轴的对称点的坐标()A. (−2,−3)B. (2,−3)C. (−2,3)D. (2,3)4.正多边形的每一个外角都等于30°,则这个多边形的边数为()A. 6B. 9C. 12D. 155.如图E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添加下列一个条件,仍不能判断出△ABC≌△DEF的是()A. DF//ACB. AB=DEC. AB//DED. ∠E=∠ABC6.在等腰三角形ABC中,∠A=50°,则底角的度数是()A. 65°B. 65°或80°C. 50°或80°D. 50°或65°7.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A. 2B. 4C. 6D. 88.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1−∠2的度数是()A. 40°B. 80°C. 90°D. 140°二、填空题(本大题共8小题,共24.0分)9.如果等腰三角形的两边长分别为3和5,则它的周长为________.10.如图所示,则∠3的度数是______°.11.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为______.12.如图,AB=DE,∠A=∠D=90°,那么要得到△ABC≌△DEF,可以添加一个条件是______,△ABC与△DEF全等的理由是______.13.已知点A(m+1,2)和点B(−2,n+1)关于y轴对称,则m=______,n=______.14.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,若CB=6,那么DE+DB=______ .15.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为______.16.如图,要测量一条小河的宽度AB的长,可以在小河的岸边作AB的垂线MN,然后在MN上取两点C,D,使BC=CD,再画出MN的垂线DE,并使点E与点A,C在一条直线上,这时测得DE的长就是AB的长,其中用到的数学原理是:______ .三、解答题(本大题共10小题,共52.0分)17.如图,已知∠A=30°,∠B=40°,∠EFB=95°求∠D的度数.18.已知:如图,AB=AD,∠C=∠E,∠1=∠2,求证:BC=DE.19.如图,E、F在线段AC上,∠A=∠C,AE=CF,若∠B=∠D.求证:DF=BE.20.如图,AB⊥AC,BD⊥CD,AC=BD.求证:AB=CD.21.如图,在△ABC中,AB=AD=DC,∠C=40°,求∠BAD的度数.22.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.23.如图,已知∠BAC及两点M、N.求作:点P,使得PM=PN,且P到∠BAC两边的距离相等.24.在平面直角坐标系xOy中,A(1,3)、B(5,2)、C(3,0).(1)在图中作出△ABC关于x轴对称的图形△A1B1C1;(2)在图中作出△ABC关于y轴对称的图形△A2B2C2,写出A2的坐标.25.如图,在△ABC中,AB=AC,其中AD,BE都是△ABC的高.求证:∠BAD=∠CAD=∠EBC.26.如图1,B、C、D三点在一条直线上,AD与BE交于点O,△ABC和△ECD是等边三角形.(1)求证:△ACD≌△BCE;(2)求∠BOD的度数;(3)如图2,若B、C、D三点不在一条直线上,∠BOD的度数是否发生改变?______(填“改变”或“不改变”)答案和解析1.【答案】C【解析】【分析】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【解答】解:A、3+4<8,不能构成三角形;B、4+4=8,不能构成三角形;C、5+6>10,能够组成三角形;D、7+6<14,不能组成三角形.故选C.2.【答案】B【解析】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】D【解析】解:点P(−2,3)关于y轴的对称点坐标为(2,3).故选:D.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】C【解析】解:依题意,得多边形的边数=360°÷30°=12,故选:C.正多边形的每一个外角都等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数.本题考查了多边形内角与外角.关键是明确多边形的外角和为定值,即360°,而当多边形每一个外角相等时,可作除法求边数.5.【答案】B【解析】解:∵EB=CF,∴EB+BF=BF+CF,即BC=EF,又∵∠A=∠D,且BC和EF分别是∠A和∠D的对边,∴要证明△ABC≌△DEF,只能再找一组角相等,利用AAS或ASA来证明,∴当添加AB=DE时,满足的条件是ASS,不能判定△ABC≌△DEF,故选B.由条件可知EF=BC,且∠A=∠D,要证明△ABC≌△DEF,只能增加一组角相等才能证明这两个三角形全等,可得出答案.本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS 和AAA是不能判定两个三角形全等的.6.【答案】D【解析】解:当50°的角为等腰三角形的顶角时,=65°;底角的度数=180°−50°2当50°的角为等腰三角形的底角时,其底角为45°,故它的底角的度数是65°或50°.故选:D.由于不明确50°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.7.【答案】C【解析】【分析】本题主要考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.【解答】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.8.【答案】B【解析】【分析】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键,由折叠的性质得到∠D=∠C,再利用三角形外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=40°,根据三角形外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1−∠2=80°.故选B.9.【答案】11或13【解析】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.【答案】80【解析】解:∵∠1+150°=180°,∴∠1=30°,∴∠3=∠1+50°=30°+50°=80°.故答案为80.根据补角的定义可求解∠1的度数,再利用三角形外角的性质可求解.本题主要考查三角形外角的性质,求解∠3的度数是解题的关键.11.【答案】5【解析】【分析】本题考查了角平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC⋅EF=12×5×2=5.故答案为5.12.【答案】AC=DF SAS【解析】解:故答案为:AC=DF,SAS,或者BC=EF,HL,或者∠B=∠E,ASA,或者∠ACB=∠DFE,AAS由已知一边一角相等,根据全等三角形的判定可知需要添加一组边或角相等即可证明△ABC≌△DEF;本题考查全等三角形的判定,解题的关键是根据已知的条件判断需要增加的条件,本题属于基础题型.13.【答案】11【解析】解:∵点A(m+1,2)和点B(−2,n+1)关于y轴对称,∴m+1=2,n+1=2,解得m=1,n=1,故答案为:1;1.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m+1=2,n+ 1=2,再解方程即可.此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.14.【答案】6【解析】解:∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∴DE+DB=DC+DB=BC=6.故答案为6.根据角平分线的性质得到DE=DC,利用等量代换得到DE+DB=BC.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.15.【答案】13【解析】解:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故答案为:13.根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BEC周长=AC+BC,再根据等腰三角形两腰相等可得AC=AB,代入数据计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两腰相等的性质,熟记性质并准确识图是解题的关键.16.【答案】ASA,全等三角形对应边相等【解析】【分析】此题主要考查了全等三角形的应用,关键是掌握全等三角形的判定和性质定理.根据题意可得∠ABC=∠EDC=90°,再加上条件BC=CD,对顶角∠ACB=∠DCE,可利用ASA 定理判定△ABC≌△EDC,再根据全等三角形对应边相等可得DE=AB.【解答】解:∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,{∠ABC=∠EDC BC=DC∠ACB=∠ECD,∴△ABC≌△EDC(ASA),∴DE=AB.故答案为:ASA,全等三角形对应边相等.17.【答案】解:∵∠A=30°,∠B=40°,∴∠DCB=70°,∵∠EFB=95°,∴∠EFB=∠CFD=95°,∴∠D=180°−95°−70°=15°.【解析】先根据三角形外角的性质求出∠DCB的度数,再由对顶角相等得出∠EFB=∠CFD=95°,根据三角形内角和定理即可得出结论.本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.18.【答案】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE,在△ABC和△ADE中,∠C=∠E,∠BAC=∠DAE,AB=AD,∴△ABC≌△ADE(AAS),∴BC=DE.【解析】先证出∠BAC=∠DAE,再由AAS证明△ABC≌△ADE即可证明对应边相等.本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.19.【答案】证明:∵AE=CF,∴AE−EF=CF−EF,∴AF=CE,在△ADF与△CBE中,{∠D=∠B ∠A=∠C AF=CE,∴△ADF≌△CBE(AAS),∴DF=BE.【解析】由“AAS”可证△ADF≌△CBE,可得DF=BE.本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.20.【答案】证明:连接BC,∵AB⊥AC,BD⊥CD,∴∠A=∠D=90°,在Rt△ABC与Rt△DCB中,{BC=CBAC=DB,∴Rt△ABC≌Rt△DCB(HL),∴AB=CD.【解析】连接BC,证Rt△ABC≌Rt△DCB(HL),即可得出结论.本题考查了全等三角形的判定与性质,证明Rt△ABC≌Rt△DCB是解题的关键.21.【答案】解:∵AD=DC∴∠DAC=∠C,∵∠C=40°,∴∠DAC=40°,∴∠BDA=∠C+∠DAC═80°,∵AB=AD∴∠BDA=∠B=80°,∴∠BAD=180°−∠BDA−∠B=20°.【解析】首先利用等腰三角形的性质求得∠DAC的度数,然后求得∠BDA的度数,最后利用三角形的内角和求得∠BAD的度数.本题考查了等腰三角形的性质:等腰三角形两底角相等.22.【答案】解:(1)如图所示:(2)BD=DE,证明:∵BD平分∠ABC,∠ABC.∴∠1=12∵AB=AC,∴∠ABC=∠4.∠4.∴∠1=12∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∠4.∴∠3=12∴∠1=∠3.∴BD=DE.【解析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM 的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,(2)根据角平分线的性质可得∠1=12然后再证明∠1=∠3,根据等角对等边可得BD=DE.此题主要考查了复杂作图,以及等腰三角形的性质,关键是正确画出图形,掌握等边对等角和等角对等边.23.【答案】解:如图,点P即为所求.【解析】作∠BAC平分线,再作MN的垂直平分线交点即是P点.此题主要考查了复杂作图,正确把握角平分线的性质和线段垂直平分线的性质是解题关键.24.【答案】解:(1)如图所示:(2)如图所示:A2坐标(−3,0).【解析】(1)根据题意画出图形,根据图形可直接写出坐标;(2)根据题意画出图形,根据图形可直接写出坐标.此题主要考查了作图—轴对称变换,关键是正确找出关键点的对称点,再画出图形.25.【答案】证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵BE⊥CE,AD⊥BC,∴∠BEC=∠ADC=90°,∴∠EBC+∠C=90°,∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠BAD=∠CAD=∠EBC.【解析】先根据等腰三角形三线合一的性质得出∠BAD=∠CAD,再由三角形的高的定义得出∠BEC=∠ADC=90°,根据直角三角形两锐角互余得到∠EBC+∠C=90°,∠CAD+∠C=90°,根据同角的余角相等得出∠EBC=∠CAD,等量代换得到∠BAD=∠CAD=∠EBC.本题考查了等腰三角形三线合一的性质,三角形的高的定义,直角三角形的性质,余角的性质,证明出∠BAD=∠CAD,∠EBC=∠CAD是解题的关键.26.【答案】不改变【解析】(1)证明:∵△ABC和△ECD是等边三角形,∴∠ACB=∠ECD=60°,BC=AC,EC=CD,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,{BC=AC∠BCE=∠ACD CE=CD,∴△BCE≌△ACD(SAS);(2)解:∵△BCE≌△ACD,∴∠ADC=∠BEC,∵∠AOB=∠EBC+∠ADC,∴∠AOB=∠EBC+∠BEC=∠DCE=60°,∵∠AOB+∠BOD=180°,∴∠BOD=120°;(3)解:不改变,理由如下:同(1)得:△ACD≌△BCE(SAS),∴∠DAC=∠EBC,∵∠AOE=∠ABO+∠OAB=∠ABO+∠DAC+∠BAC=∠ABO+∠EBC+∠BAC=∠ABC+∠BAC=120°,∴∠BOD=∠AOE=120°,即∠BOD的度数不改变,故答案为:不改变.(1)由SAS证明△ACD≌△BCE即可;(2)由全等三角形的性质得∠ADC=∠BEC,再由三角形的外角性质得∠AOB=60°,即可求解;(3)同(1)得△ACD≌△BCE,则∠DAC=∠EBC,再由三角形的外角性质求出∠AOE= 120°,即可求解.本题考查了全等三角形的判定与性质、等边三角形的性质以及三角形的外角性质等知识,熟练掌握等边三角形的性质,证明△ACD≌△BCE是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京汇文中学2020-2021学年度第一学期初二年级期中考试 数学班级 姓名 学号1.本试卷共八页,30道小题,满分100分。

考试时间120分钟;2.答题纸上用黑色字迹签字笔作答,画图用铅笔;3.题目答案写在答题纸上,在试卷上作答无效。

一.选择题(每小题2分,共20分)1.下列有关医疗和倡导卫生的图标中,是轴对称图形的是A B C D2.使分式23x -有意义的x 的取值范围是 A.x ≠3 B.x >3 C.x <3 D.x =33.若分式2x x -1+1的值为0.则x 应满足的条件是 A.x =-1 B.x =1 C.x =±1 D.x ≠-14.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示 屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B.3910-⨯C.0.3910-⨯D.0.4910-⨯5.下列约分正确的是A.623m m m =B.b c b a c a +=+C.22x y x y x y -=+-D.x y y x+= 6.如图:△ABC 中,∠A =40°,AB 的垂直平分线分别AB ,AC 于点D.E ,连接BE ,则∠BEC 的大小为( )A.40°B.50°C.80°D.100°7.已知△ABC 两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB 、AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.AC 边的高上B.AB 边的中线上C.BC 边的垂直平分线上D.∠A 的平分线上8.如图,直线1l //2l ,点A 在直线1l 上,以点A 为圆心,适当长度为半径画弧,分别交直线1l ,2l 于B ,C 两点,以点C 为圆心,CB 长为半径画弧,与前弧交于点D(不与点B 重合),连接AC ,AD ,BC ,CD ,其中AD 交2l 于点E.若∠ECA =40°,则下列结论错误的是A.∠ABC =70°B.∠BAD =80°C.CE =CDD.CE =AE9.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果,接力中,自己负责的一步出现错误的是A.甲B.乙C.丙D.丁10如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是A.3B.4C.5D.6二.填空题(每题2分,共16分)11.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是_____________.12.若等腰三角形的两条边长分别为3cm和6cm,则它的周长为_____________cm.13.己知,如图AB=AC,∠BAC=40°,D为AB边上的一点,过D作DF⊥AB,交AC于E.交BC延长线于点F,则∠F=________.14.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D.若AD=3,则BC=________.13题图 14题图 15题图15.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D.若CD=1,AB=4,则△ABD的面积是_______.16.如图,平面直角坐标系x0y中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为_______.17.如图△ABC中,AC=BC,∠ACB=120°,点D在线段AB上运动(D不与A,B重介),连接CD,作∠CDE=30°,DE交BC于点E,若△CDE是等腰三角形,则∠ADC的度数是_______.18.下面是小军同学计算2222x x x x11--+的过程. 2222x x x x11--+ =22x x x x 11-(-)(+)……………………………………………………………………[1] =222222x x x x x x x x +--(+)(-)(+)(-)……………………………………………………[2] =2222x x x x x +-(-)(+)(-)…………………………………………………………………………[3] =2222x x x x x +-+(+)(-)…………………………………………………………………………[4] =422x x x (+)(-) (5)其中运算步骤[2]为:_____________,该步骤的依据是_____________.三.解答题(19-28题每题5分,29-30题每题7分,共64分)19.下面是小石设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l 及直线l 上一点P.求作:直线PQ ,使得PQ ⊥l 。

作法:如图2,①以点P 为圆心,任意长为半径作弧,交直线l于点A ,B ; ②分别以点A ,B 为圆心,以大于12AB 的同样长为半径作弧,两弧在直线l 上方交于点Q ;③作直线PQ.所以直线PQ 就是所求作的直线,根据小石设计的尺规作图过程:(1)使用直尺和规,补全图形(保留作图痕迹):(2)完成下面的证明,证明:连接QA ,QB.∵QA =(______),PA =(______).∴PQ ⊥l (______________________)(填推理的依据).20.计算:1-4+0(3.14)-1|-| 21.计算:232223a a b b (-)÷()22.计算:232223a a b b (-)÷() 23.解方程:2212xx x -=+-424.己知m -n =2,求代数式222m n m nn m m +-(-)÷的值。

25.如图,在△ABC中,AC的垂直平分线交AC于点D,交BC的延长线于点E,连接AE.如果∠B=50°,∠BAC=21°,求∠CAE的度数。

26.如图,在△ABC中,∠B=∠ACB,D是边AB上一点,E是边AC的中点,作CF//AB交DE的延长线于点F,DB=3,CF=7,求AE.27.列方程、解应用题:第二届中国国际进口博览会于209年11月5日至10日在上海国家会展中心举行。

与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区.展览面积由270000平方米增加到330000平方米,参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积。

(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x 平方米,把下表补充完整:(2)根据以上分析,列出方程(不解方程):______________________.28.阅读:对于两个不等的非零实数a 、b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =. 又因为2x a x b x a b x ab ab x a b x x x(-)(-)-(+)+==+-(+),所以关于x 的方程ab x a b x+=+有两个解,分别为12,.x a x b == 应用上面的结论解答下列问题:(1)方程p x q x+=的两个解分别为12x x =-1,=4,则p =________. q =________;(2)方程3x x+=4的两个解中较大的一个为_______; (3)关于x 的方程22221n n x n x +-+=2+的两个解分别为1212x x x x (<)、,则 1x =________,2x =________.29.在RT△ABC中,AB=AC.∠CAB=90°.点D是射线BA上一点,点E是线段AB 上一点.且点D与点E关于直线AC对称,连接CD,过点E作直EF⊥CD于F,交CB的延长线于点G.(1)根据题意补全图形;(2)写出∠CDA与∠G之间的数量关系,并进行证明;(3倍,写出线GB,AD之间的数量关系,并进行证明.30.已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点,点C为线段AB关于点A的逆转点的示意图如下:(1)如图,在正方形ABCD中,点_______为线段BC关于点B的逆转点;(2)如图,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y 轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图形;②判断过逆转点G,F的直线与x轴的位置关系并证明:③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,用含x的代数式表示y:_________________________________________________.。

相关文档
最新文档