第三章-直线与方程---直线的倾斜角与斜率-教案

合集下载

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。

通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。

教学目标:1. 理解直线的倾斜角的概念。

2. 掌握计算直线的斜率的方法。

3. 理解直线的斜率与倾斜角之间的关系。

4. 能运用直线的斜率和倾斜角解决实际问题。

教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。

2. 直线的倾斜角的计算方法。

二、直线的斜率1. 直线的斜率的定义。

2. 直线的斜率的计算方法。

三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。

2. 斜率与倾斜角的计算方法。

四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。

2. 运用斜率和倾斜角计算直线的交点。

五、巩固练习1. 计算给定直线的斜率和倾斜角。

2. 解决实际问题,运用直线的斜率和倾斜角。

教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。

2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。

3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。

教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。

2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。

3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。

教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。

2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。

3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。

教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。

2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。

3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。

二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。

2. 教学难点:直线的倾斜角与斜率之间的关系的运用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。

2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。

3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。

四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。

2. 教学素材:几何图形、实际问题。

3. 教学工具:黑板、粉笔、直尺、圆规。

五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。

2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。

3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。

4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。

5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。

6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。

7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。

六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。

如有问题,要及时调整教学方法,提高教学质量。

七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。

八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。

2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。

2. 教学难点:直线的斜率与倾斜角的计算。

三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。

3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。

4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。

四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。

(1)直线y = 2x + 3;(2)直线x = 4。

五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。

在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。

布置适量的练习题,让学生巩固所学知识。

在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。

六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。

2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。

3. 让学生能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

4. 求直线的倾斜角和斜率的方法。

5. 直线的倾斜角和斜率在实际问题中的应用。

三、教学重点与难点:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。

2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。

3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。

3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。

4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。

6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。

说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。

在教学过程中,注意启发学生的思维,培养学生的动手能力。

六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。

2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。

3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。

七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。

2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。

第三章直线与方程31直线的倾斜角与斜率教案

第三章直线与方程31直线的倾斜角与斜率教案

第三章直线与方程3.1 直线的倾斜角与斜率教案 A第1课时教学内容:3.1.1 倾斜角与斜率教学目标一、知识与技能1.正确理解直线的倾斜角和斜率的概念;2.斜率公式的推导过程,掌握过两点的直线的斜率公式.二、过程与方法经历将直线的位置问题(几何问题)转化为倾斜角问题的过程,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,不断体会“数形结合”的思想方法.三、情感、态度与价值观1.通过把直线倾斜角的概念的引入学习和直线倾斜角与斜率关系,提高观察、探索能力,运用数学语言表达能力,数学交流与评价能力;2.通过建立斜率概念和推导斜率公式,进一步理解数形结合的思想,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神.教学重点、难点教学重点:直线的倾斜角、斜率的概念和公式.教学难点:斜率的计算方法.教学关键:直线斜率的两种计算方法.教学突破方法:结合图形,使学生理解直线倾斜角的概念,抓住直线的倾斜角与斜率的联系,引导学生掌握直线斜率的计算方法.教法与学法导航教学方法:启发、引导、讨论.学习方法:探究、思考、讨论、练习.教学准备教师准备:多媒体课件(用于展示问题、引导讨论、出示答案).学生准备:一次函数与直线的关系、特殊角的正切值.教学过程详见下页表格.教学环节教学内容师生互动设计意图创设情景导入新课我们知道,经过两点有且只有(确定)一条直线,那么,经过一点P的直线l的位置能确定吗?如图,过一点P可作无数多条直线a,b,c,…易见,答案是否定的,这些直线有什么联系呢?学生回答(不能确定)(1)它们都经过点P.(2)它们的倾斜程度不同.接着教师提出:怎样描述这种倾斜程度的不同?由此引入课题.设疑激趣导入课题.概念形成1.直线倾斜角的概念当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定0α=o.教师提问:倾斜角α的取值范围是什么?0°≤α<180°当直线l与x轴垂直时90α=o(由学生结合图形回答)概念深化因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.确定平面直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角α.教师提问:如左图,直线a∥b∥c,那么它们的倾斜角α相等吗?学生回答后作出结论.一个倾斜角α不能确定一条直线,进而得出确定一条直线位置的几何要素.通过这种师生互动引导学生明确确定一条直线位置的两个几何要素.概念形成2.直线的斜率一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即tankα=.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如α= 45°时,k = tan45°= 1;α= 135°时,k = tan135°= –1 .教师提问:(由学生讨论后回答)(1)当直线l与x轴平行或重合时,k为多少?k = tan0°= 0.(2)当直线l与x轴垂直时,k还存在吗?α= 90°,k不存在.设疑激发学生思考得出结论.yabcxO续上表概念形成3.直线的斜率公式2121.y ykx x-=-对于上面的斜率公式要注意下面四点:(1)当x1 = x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1、y2和x1、x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1 = y2时,斜率k = 0,直线的倾斜角α= 0°,直线与x轴平行或重合;(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.教师提出问题:给定两点P1 (x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1、P2的斜率?可用计算机作动画演示:直线P1P2的四种情况,并引导学生如何作辅助线,共同完成斜率公式的推导.借助多媒体演示让学生亲自体会斜率公式的推导过程.应用举例例1已知A (3,2),B(–4,1),C (0,–1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角.(用计算机作直线,图略)【分析】已知两点坐标,而且x1≠ x-2,由斜率公式代入即可求得k的值;而当tan0kα=<时,倾斜角α是钝角;而当tan0kα=>时,倾斜角α是锐角;而当tan0kα==时,倾斜角α是0°.学生分析求解,教师板书例1 略解:直线AB的斜率k1= 1/7>0,所以它的倾斜角α是锐角.直线BC的斜率k2=–0.5<0,所以它的倾斜角α是钝角.通过应用进一步理解倾斜角,斜率的有关定义例2 在平面直角坐标系中,画出经过原点且斜率分别为1,–1,2及–3的直线a ,b ,c ,1.【分析】要画出经过原点的直线a ,只要再找出a 上的另个一点M .而M 的坐标可以根据直线a 的斜率确定;或者k = ta n α=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边,在x 轴的上方作45°的角,再把所作的这一边反向延长成直线即可.例2 略解:设直线a 上的另一个点M 的坐标为(x ,y ),根据斜率公式有1 = (y – 0)/(x – 0),所以 x = y .可令x = 1,则y = 1,于是点M 的坐标为(1,1).此时过原点和点M (1,1),可作直线a .同理,可作直线b ,c ,1.(用计算机作动画演示画直线过程)小结(1)直线的倾斜角和斜率的概念.(2)直线的斜率公式.师生共同总结交流完善.引导学生学会自己总结.课堂作业1. 求下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. (1)(1,1),(2,4); (2)(–3,5),(0,2); (3)(2,3),(2,5); (4)(3,–2),(6,–2)【解析】(1)413021k -==>-,所以倾斜角是锐角; (2)25100(3)k -==-<--,所以倾斜角是钝角;(3)由x 1 = x 2 = 2得:k 不存在,倾斜角是90°; (4)2(2)063k ---==-,所以倾斜角为0°. 2. 已知点P (3,1)-,点Q 在y 轴上,直线PQ 的倾斜角为120°,则Q 点的坐标为 .【解析】因为点Q 在y 轴上,则可设其坐标为(0,b )直线PQ 的斜率k = tan120°= 3-, ∴30(3)k ==--- , ∴b = –2,即Q 点坐标为(02)-,.第2课时教学内容:3.1.2 两条直线平行与垂直的判定教学目标一、知识与技能1.理解并掌握两条直线平行与垂直的条件;2.会运用条件判定两直线是否平行或垂直.二、过程与方法通过探究两直线平行或垂直的条件,提高运用已有知识解决新问题的能力,以及数形结合能力.三、情感、态度与价值观通过对两直线平行与垂直的位置关系的研究,获得成功感觉;同学合作交流的学习方式,激发学生的学习兴趣.教学重点、难点教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.教学难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.教学关键:理解并掌握判断两直线平行和垂直的方法.教学突破方法:结合图形探究两直线平行和垂直时二者斜率的关系,并从这种关系的内涵和外延两个方面强化学生对此结论的理解.对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.教法与学法导航教学方法:以实验探究的教学方法为主,具体以实例展示法、多媒体演示法、分析讨论法、问题教学法和练习巩固法展开教学活动.学习方法:以探究理解学习方法为主,自主学习,自我反馈,渐进式提高.教学准备教师准备:多媒体课件(用于展示问题、引导讨论、出示答案),资料图片.学生准备:直线的倾斜角与斜率的概念及联系.教学过程教学环节教学内容师生互动设计意图创设情景导入新课我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的计算公式.现在,我们来研究通过两条直线的斜率来判断两条直线的平行或垂直.师:解析几何的本质是什么?生:用代数的方法研究几何图形的位置关系.设疑激趣导入课题续上表师生互动探究新知1.先研究特殊情况下的两条直线平行与垂直讨论: 两条直线中有一条直线没有斜率(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.师生互动探究新知2.两条直线的斜率都存在时,两直线的平行.设直线l1和l2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的.问题: 两条互相平行或垂直的直线,它们的斜率有什么关系?结论1: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即l1∥l2k1=k2.注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有l1∥l2; 反之则不一定.首先研究两条直线互相平行(不重合)的情形.如果l1∥l2(如下图),那么它们的倾斜角相等:α1=α2.(借助多媒体,让学生通过观察度量,感知α1,α2的关系)因为tanα1=tanα2 即k1=k2.反过来,如果两条直线的斜率相等:即k1=k2,那么tanα1=tanα2.由于0°≤α1<180°,0°≤α2<180°,所以α1=α2.又因为两条直线不重合,两条直线平行l1∥l2.通过这种师生互动引导学生明确两条直线平行的判定方法续上表师生互动探究新知3.下面我们研究两条直线的斜率都存在时,两直线的垂直的情形.如果l1⊥l2,这时α1≠α2,否则两直线平行.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12112211l l k k kk⊥⇔=-⇔=-注意: 结论成立的条件,即如果k1·k2=-1,那么一定有21ll⊥;反之则不一定.设α2<α1(如下图),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为l1、l2的斜率分别是k1、k2,即α1≠90°,所以α2≠0,1221tan tan(90)tanααα∴=︒+=-,即211kk-=或121-=kk.反过来,如果211kk-=或121-=kk.不失一般性,设k1<0,k2>0,那么1221tan tan(90)tanααα∴=-=︒+可以推出: α1=90°+α2.即21ll⊥.借助多媒体演示让学生经历两条直线垂直的判定结论的推导.续上表应用举例例1(1)已知直线1l经过点M(-3,0)、N(-15,-6),2l经过点R(-2,32)、S(0,52),试判断1l与2l是否平行?(2)1l的倾斜角为45°,2l经过点P(-2,-1)、Q(3,-6),问1l与2l是否垂直?例2 已知A(1,1),B(2,2),C(3,-3),求点D,使直线CD⊥AB,且CB∥AD.例1【解析】(1)∵MNk=0(6)13(15)2--=---,531220(2)2RSk-==--,∴1l//2l.(2)∵1tan451k=︒=,26(1)13(2)k---==---,121k k=-,∴1l⊥2l.例2 【解析】设D(x,y),则CD ABk k⊥,BC ADk k=.∴(3)2113212(3)1231yxyx---⎧⨯=-⎪⎪--⎨---⎪=⎪--⎩,即,56,y xx y=-⎧⎨+=⎩解得3,23,2xy⎧=⎪⎪⎨⎪=-⎪⎩.∴D(33,22-).通过实例熟练对两条直线平行和垂直的判定.小结1.知识小结(1)两条直线平行或垂直的判定方法.(2)注意特殊情况特殊处理,如有斜率为零或斜率不存在的情况.(3)应用直线平行的条件,判定三点共线.2.思想方法:倾斜角、平行是几何概念,坐标、斜率是代数概念,解析几何的本质是用代数方法来研究几何问题.师生共同总结交流完善.引导学生学会自己总结.xyo.BACD课堂作业1.如果直线l 1的斜率为a ,且21l l ⊥ ,则直线l 2的斜率为( ). A .a 1 B . a C . a 1- D . a1-或不存在 答案:选D .2. 若过点A (2,-2),B (5,0)的直线与过点P (2m ,1)Q (-1,-m )的直线平行,则m 的值为( ).A . -1B . 1C . 2D .21答案:选B .3.已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,则点P 的坐标为( ).答案:(1,0),(6,0).教案 B第1课时教学内容:3.1.1 倾斜角和斜率 教学目标一、知识和技能目标1. 了解直线方程的概念,正确理解直线倾斜角和斜率概念;2. 理解公式的推导过程,掌握过两点的直线的斜率公式. 二、过程和方法目标掌握由直线上两点的坐标求直线的倾斜角和斜率的方法,会实现直线方程的各种形式之间的互化.三、情感、态度与价值观目标发展观察、探索能力,运用数学语言表达能力;进一步理解数形结合思想,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神. 教学重点直线的倾斜角和斜率的概念,过两点的直线的斜率公式. 教学难点斜率概念的学习,过两点的直线的斜率公式. 教学过程1.创设情景,揭示课题(1)简述本章研究什么?怎样研究?(2)问题探究:我们知道, 经过两点有且只有一条直线. 那么, 在平面直角坐xy aCbxy acbP标系中,经过一点P 的直线l 的位置由哪些条件确定?如图, 过一点P 可以作无数多条直线a ,b ,c ,…,易见这些直线的共同特点是:都经过同一点P ,那么,它们的不同点是什么?学生交流讨论,发表见解:它们的‘倾斜程度’不同. 教师提出:怎样描述这种‘倾斜程度’的不同? 引入直线的倾斜角的概念.2.直线的倾斜角的概念当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线λ向上方向之间所成的角α叫做直线λ的倾斜角.... 特别地,当直线λ与x 轴平行或重合时, 规定α= 0°.观察下图直线l 1,l 2,l 3的倾斜角是怎样的?由此回答直线的倾斜角α的取值范围是什么? 0°≤α<180°.当直线λ与x 轴垂直时, α= 90°.教师强调:平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.思考1:如上图, 直线a ∥b ∥c , 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P 和一个倾斜角......α.二者缺一不可.思考2:生活中的“倾斜程度”通常用什么量表示?引导学生讨论交流,举例.如道路的坡度等,使学生理解生活中坡度的意义:升高前进α坡度(比)=升高量/前进量如果我们使用“倾斜角”这个概念,这里的“坡度”实际是“倾斜角α的正切值”. 3.直线的斜率(1)一条直线的倾斜角α (α≠90°)的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,也就是k = tan .α当直线λ与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线λ与x 轴垂直时, α= 90°, k 不存在.由此可知, 一条直线λ的倾斜角α一定存在,但是斜率k 不一定存在. 例如, α=45°时, k = tan45°= 1.4.利用信息技术获得直线的倾斜角和直线的斜率的关系观察上图直线的倾斜角和斜率之间的关系:由于知识的原因,学生不能通过正切值获得直线的倾斜角和斜率之间的关系,因此教学中通过信息技术演示操作(如《几何画板》)获得直线的倾斜角和斜率的关系.(如上图)可以清楚看到: 当οο900<<α时,直线的斜率k 是正数;当οο18090<<α时,直线的斜率k 是负数.思考3:两点确定一条直线,那么给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,如何用两点的坐标来表示直线P 1P 2的斜率?xyαOP 2P 15.探究并推导直线斜率的两点式公式可用计算机作动画演示: 直线P 1P 2的四种情况(如下图), 并引导学生通过作辅助线,共同完成斜率公式的推导.斜率公式:2121.y ykx x-=-对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°,直线与x 轴垂直;(2)k值的大小与P1、P2的顺序无关,即y1,y2和x1,x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k = 0,直线的倾斜角α=0°,直线与x轴平行或重合.6.应用举例例1直线过点A(-2,0),B(-5,3),求直线AB的斜率.【解析】k=(3-0)/[(-5)-(-2)]=-1,又α∈[0°,180°),∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°变式:m为何值时,经过两点A(m,0),B(-5,1-m)的直线AB的斜率是-1?【分析】101 2.5mmm--=-⇒=---例2分别在下列条件求直线的倾斜角和斜率.(1)直线l的倾斜角α的正弦值是1/2;(2)直线l的方向向量(→=-v.【分析】⑴由已知条件求出直线的倾斜角α,再来求直线的斜率.注意到α∈[0,π),而sinα= 1/2,因此求角时,要分α为锐角与钝角来求. ⑵抓住直线P 1P 2的方向向量21P P 的坐标是(x 2-x 1,y 2-y 1),其中P 1(x 1,y 1),P 2(x 2,y 2)与过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率公式的结构关系来求.【解析】⑴∵α∈[0,π),又sin α= 1/2.∴α为锐角时,α=π/6;α为钝角时,α=5π/6. 当α=π/6时,斜率k =tanπ/6 =3/3; 当α=5π/6时,斜率k =tan5π/6 =-3/3.⑵∵直线l 的方向向量(→=-v ,∴直线l 的斜率3/3-=k ,故倾斜角α=5π/6. 6. 课后作业P86练习:1,2,3,4;P89习题3.1A 组:1,2,3,4,5.第2课时教学内容:3.1.2 两条直线的平行与垂直 教学目标一、知识与技能理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. 二、过程与方法通过探究两直线平行或垂直的条件,培养学生运用代数方法来研究几何问题. 三、情感、态度和价值观通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣,欣赏解析几何的代数抽象美. 教学重点、难点教学重点:熟练掌握两条直线平行和垂直的条件. 教学难点:研究两条直线的平行或垂直问题的判断. 教学方法引导、启发、讨论,练习. 教学过程一、创设情景,导入课题复习已经学习的直线的倾斜角和斜率的概念,可以用倾斜角和斜率来表示直线相对于x 轴的倾斜程度,并推导出了斜率的坐标计算公式.现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.二、师生互动,探究新知1. 先研究特殊情况下的两条直线平行与垂直讨论: 两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.2. 两条直线的斜率都存在时,两直线的平行设直线 l 1和l 2的斜率分别为k 1和k 2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的.所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果l 1∥l 2(如下图),那么它们的倾斜角相等:α1=α2.(借助多媒体, 让学生通过观察度量, 感知α1, α2的关系) 因为tan α1=tan α2 即 k 1=k 2.反过来,如果两条直线的斜率相等: 即k 1=k 2,那么tan α1=tan α2. 由于0°≤α1<180°, 0°≤α2<180°,所以α1=α2.又因为两条直线不重合,两条直线平行l 1∥l 2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即l 1∥l 2,k 1=k 2.注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 2; 反之则不一定.3. 两条直线的斜率都存在时, 两直线的垂直 下面我们研究两条直线垂直的情形.如果21l l ,这时α1≠α2,否则两直线平行.设α2<α1(如下图),甲图的特征是l 1与l 2的交点在x 轴上方;乙图的特征是l 1与l 2的交点在x 轴下方;丙图的特征是l 1与l 2的交点在x 轴上,无论哪种情况下都有α1=90°+α2.因为l 1、l 2的斜率分别是k 1、k 2,即α1≠90°,所以α2≠0°.1221tan tan(90)tanααα∴=︒+=-,即211k k -=或121-=k k . 反过来,如果211k k -=或121-=k k . 不失一般性,设k 1<0, k 2>0,那么 1221tan tan(90)tan ααα∴=-=︒+ 可以推出: α1=90°+α2. 即21l l ⊥.结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12112211l l k k k k ⊥⇔=-⇔=-注意: 结论成立的条件. 即如果k 1·k 2 = -1, 那么一定有21l l ⊥;反之则不一定. 三、概念辨析,巩固提高 例 1 已知A (2,3), B (-4,0), P (-3,1), Q (-1,2), 试判断直线BA 与PQ 的位置关系, 并证明你的结论.分析: 借助媒体动画展示, 通过观察猜想:BA ∥PQ , 再通过计算加以验证.(图略)【解析】:直线BA 的斜率k 1=21)4(203=---,直线PQ 的斜率k 2=21)3(112=----,因为 k 1=k 2=21,所以 直线BA ∥PQ . 例2 四边形ABCD的顶点为(2,2A +、(2,2)B -、(0,2C -、(4,2)D ,试判断四边形ABCD 的形状.【解析】AB边所在直线的斜率AB k ==,CD边所在直线的斜率CD k ==, BC 边所在直线的斜率BC k =,DA 边所在直线的斜率DA k ==因为,AB CD BC DA k k k k ==,所以AB //CD ,BC //DA ,即四边形ABCD 为平行四边形.又因为1)2(22-=-⨯=⋅BC AB k k ,所以AB ⊥BC ,即四边形ABCD 为矩形. 例 3 已知A (-6,0), B (3,6), P (0,3), Q (-2,6), 试判断直线AB 与PQ 的位置关系.【解析】直线AB 的斜率32)6(3061=---=k , 直线PQ 的斜率23)02361-=---=k ,因为k 1·k 2=-1 所以 AB ⊥PQ .例4 已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标. 【解析】设顶点A 的坐标为(,)x y . ∵ ,AC BH AB CH ⊥⊥,∴ 11AC BH AB CH k k k k ⋅=-⎧⎨⋅=-⎩,, 即 31()16511()123y x y x -⎧⨯-=-⎪⎪+⎨-⎪⨯-=-⎪-⎩,,化简为53335y x y x =+⎧⎨=-⎩,,解之得:1962.x y =-⎧⎨=-⎩,∴ A 的坐标为(19,62)--.四、小结1.知识和技能(1)两条直线平行或垂直的判定方法.(2)注意特殊情况特殊处理,如有斜率为零或斜率不存在的情况.(3)应用直线平行的条件,判定三点共线.2.思想方法:倾斜角、平行是几何概念,坐标、斜率是代数概念,解析几何的本质是用代数方法来研究几何问题.五、作业P89练习:1,2.P90习题3.1 A组:8.B组:3,4.。

教案直线的倾斜角与斜率教案

教案直线的倾斜角与斜率教案

3.1.1直线的倾斜角与斜率教案一、教学目标(1)知识与技能:正确理解直线倾斜角和斜率的概念。

理解直线倾斜角的唯一性。

理解直线斜率的存在性。

斜率公式的推导过程,掌握过两点的直线的斜率公式。

(2)过程与方法:经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想和数形结合思想。

(3)情感态度与价值观:通过教学,使学生从生活中的坡度,自然迁移到数学中直线的斜率,感受数学概念来源于实际生活,数学概念的形成是自然的,从而渗透辩证唯物主义思想。

二、教学重点与难点重点:直线倾斜角和斜率的概念以及过两点的直线的斜率公式。

难点:用代数方法推导斜率的过程。

三、教学方法计算机辅助教学与发现法相结合。

即在多媒体课件支持下,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构。

四、教学过程(一)创设情境,揭示课题问题1、(出示幻灯片)给出的两点相同吗?从形的角度看,它们有位置之分,但无大小与形状之分。

从数的角度看,如何区分两个点?(用坐标区分)问题2、过这两点可作什么图形?唯一吗?只经过其中一点可作多少条直线?若只想定出其中的一条直线,除了再用一点外,还有其他方法吗?可以增加一个什么样的几何量?由此引导学生归纳,确定直线位置可有两种方式(1)已知直线上两点(2)已知直线上一点和直线的方向(倾斜角、倾斜程度)问题3、角的形成还需一条线,也就是说要有刻画倾斜程度的角,就必须还有一条形成角的参照的直线。

在平面直角坐标系下,以哪条轴线为基准形成刻画倾斜程度的角?(学生可能回答x轴或y轴)以x轴或y轴为基准都可以,习惯上我们用x轴。

选择哪个角来描述直线的倾斜程度,就能保证坐标系下的任何一条直线都有唯一的角与它对应呢?(教师引导学生选取不同的方向来描述角)。

数学概念来刻画事物时,讲求统一美与简洁美,如何用数学语言准确描述这个角呢?(揭示课题)1、倾斜角的定义:在直角坐标系下,以x轴为基准,当直线l与x 轴相交时,x轴正向与直线l向上方向之间所成的角α,叫做直线l的倾斜角。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1.理解直线的倾斜角和斜率的概念;2.掌握求直线的倾斜角和斜率的方法;3.能够应用直线的倾斜角和斜率解决实际问题。

二、教学重点1.直线的倾斜角和斜率的概念;2.求直线的倾斜角和斜率的方法。

三、教学难点1.直线的倾斜角和斜率的关系;2.应用直线的倾斜角和斜率解决实际问题。

四、教学内容1. 直线的倾斜角和斜率的概念直线的倾斜角是指直线与水平线之间的夹角,用α表示。

直线的斜率是指直线的倾斜程度,用k表示。

2. 求直线的倾斜角和斜率的方法(1)已知直线的解析式设直线的解析式为y=kx+b,其中k为斜率,b为截距。

直线的倾斜角可以用斜率k求得,即tanα=k。

直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。

(2)已知直线上两点坐标设直线上两点坐标为(x1,y1)和(x2,y2)。

直线的倾斜角可以用斜率k求得,即tanα=k=(y2-y1)/(x2-x1)。

直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。

3. 应用直线的倾斜角和斜率解决实际问题(1)求两条直线的夹角设两条直线的斜率分别为k1和k2,则两条直线的夹角为α=|tan⁡(k2-k1)/(1+k1k2)|。

(2)求直线的方程已知直线上一点坐标为(x1,y1)和直线的斜率为k,则直线的解析式为y-y1=k(x-x1)。

(3)求直线与坐标轴的交点设直线与x轴的交点坐标为(x,0),则x=-b/k。

设直线与y轴的交点坐标为(0,b),则b=y1-kx1。

五、教学方法1.讲解法:通过讲解直线的倾斜角和斜率的概念、求解直线的倾斜角和斜率的方法以及应用直线的倾斜角和斜率解决实际问题的步骤,让学生掌握相关知识点。

2.案例分析法:通过实际案例,让学生应用所学知识解决实际问题,提高学生的实际应用能力。

3.互动探究法:通过让学生自己探究直线的倾斜角和斜率的关系,提高学生的自主学习能力。

六、教学评价1.课堂练习:通过课堂练习,检查学生对直线的倾斜角和斜率的掌握程度。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容:1. 直线的倾斜角:定义、求法。

2. 斜率与倾斜角的关系:正切函数的应用。

3. 直线的斜率:定义、求法。

4. 实际问题中的应用:求直线的倾斜角和斜率。

三、教学重点与难点:1. 重点:直线的倾斜角的概念、斜率与倾斜角的关系。

2. 难点:直线的斜率的求法、实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解直线的倾斜角和斜率的定义及求法。

2. 利用例题,演示直线的倾斜角和斜率的计算过程。

3. 引导学生运用直线的倾斜角和斜率解决实际问题。

五、教学过程:1. 导入新课:回顾直线的倾斜角和斜率的概念,引导学生思考两者之间的关系。

2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解求法,举例说明。

3. 讲解斜率与倾斜角的关系:引入正切函数,讲解斜率与倾斜角的关系,举例说明。

4. 讲解直线的斜率:介绍直线的斜率的定义,讲解求法,举例说明。

6. 课堂练习:布置练习题,巩固所学知识。

8. 布置作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂讲解:评估学生对直线的倾斜角和斜率概念的理解程度,观察学生能否正确求解直线的倾斜角和斜率。

2. 课堂练习:评估学生运用直线的倾斜角和斜率解决实际问题的能力,观察学生是否能够正确计算和应用。

3. 课后作业:评估学生对直线的倾斜角和斜率知识的掌握程度,检查学生是否能够独立完成相关练习。

七、教学反思:1. 反思教学内容:根据学生的学习情况,调整直线的倾斜角和斜率的教学内容,确保学生能够理解和掌握。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高学生的学习兴趣和参与度。

八、教学拓展:1. 直线的倾斜角和斜率在实际应用中的例子:如工程测量、物理学中的运动分析等。

直线的倾斜角和斜率教学教案

直线的倾斜角和斜率教学教案

直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。

《直线的倾斜角与斜率》教学设计

《直线的倾斜角与斜率》教学设计

《直线的倾斜角与斜率》教学设计第三章直线与方程3.1 直线的倾斜角与斜率(第1课时)教学目标1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念.3.经历用代数方法刻画直线斜率的过程,掌握直线的倾斜角与斜率的关系.教学重点斜率的概念、用代数方法刻画直线斜率的过程、直线的倾斜角与斜率的关系.教学难点对斜率概念的理解、直线斜率与他的倾斜角的关系教学方法启发、引导、探究教学手段多媒体课件辅助教学(几何画板绘制的图形)教学用具三角板教学设计引入新课我们知道在直角坐标系中,点是用有序实数对表示的,那么在直角坐标系中,直线怎样表示?如直线,它的本质是二元一次方程,它与直线的交点如何求?(联列方程组,解得方程组的解写成有序实数对,即坐标的形式,即为它们的交点).那么,我们把这种建立在直角坐标系的基础上,用坐标表示点,用方程表示曲线(或直线),通过方程研究曲线的性质,通过方程组的解研究几何图形间的位置关系的方法叫做用代数方法研究几何问题——解析几何.而我们在初中几何中,所用的方法大都是以公理为基础,直接依据图形的中点、直线等研究图形的性质,这属于欧式几何的范畴.设计意图:回顾初中所学内容,引出本章主题,指出从本章开始将学习用解析法(代数法)解决几何问题.从本章起,我们就来学习用坐标法研究几何问题,首先我们从最简单的几何对象——直线开始.(板书课题第三章直线与方程)推进新课在初中学习直线时,知道两点确定一条直线,这两点实际上确定的是该直线的位置(图1).图1问题1:一点能确定一条直线的位置吗?已知直线经过点,直线的位置能够确定吗(图2)?图2师生互动:学生回答,教师示范.问题2:过一点可以做无数条直线…,它们都经过点(组成一个直线束),这些直线的区别在哪里?师生互动:学生思考回答,教师点拨.问题3:容易看出它们的倾斜程度不同,那么怎样描述直线的倾斜程度呢?(用一个角度)设计意图:回忆初中相关知识,直接引出本节内容板书课题: 3.1.1 倾斜角一、倾斜角1. 定义:直线向上的方向与轴正向所夹的角叫直线的倾斜角(注:直线在轴上方的射线方向叫做向上的方向,直线在轴下方的射线方向叫做向下的方向).2. 倾斜角的范围问题4:找出图2中直线的倾斜角,观察各自角度的范围.师生互动:学生观察、思考后回答,教师点拨.观察得到,说明倾斜角可为锐角,也可为钝角.问题5:观察图3中直线与轴的位置关系图3师生互动:学生观察、思考、回答,教师点拨.(1) 直线与轴平行,或将向下平移至与轴重合,此时直线与轴不成角,所以规定:直线与轴平行或重合时,倾斜角.(2) 直线与轴垂直,倾斜角.学生活动:学生归纳倾斜角的范围综上,得倾斜角的范围:.设计意图:由学生自己观察、思考、并发现倾斜角的取值范围问题6:平面直角坐标系中,每一条直线是否都有一个确定的倾斜角?且倾斜程度相同的直线,倾斜角有什么关系?倾斜程度不同的直线倾斜角又如何?图4学生活动:观察图4,思考回答.(平面直角坐标系中,每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线倾斜角相同,它们是一组平行线;倾斜程度不同直线倾斜角不同.)问题7:已知直线的倾斜角,能否确定其位置?(不能)问题8:已知一点不能确定直线的位置,已知直线的倾斜角也不能确定直线的位置,那么把这两个因素结合起来,即已知直线过的一点和直线的倾斜角,能否确定该直线的位置?(能,且唯一确定一条直线)设计意图:使学生自己归纳得出确定一条直线的几何要素所以,在平面直角坐标系中,确定一条直线位置的几何要素是:直线经过的一点和直线的倾斜角.课堂练习1:做出过点且倾斜角为的直线.师生互动:学生自己动手画图,教师巡视,必要时个别辅导.问题9:日常生活中,还有没有表示倾斜程度的量?日常生活中,讨论斜面时,常遇到“坡度”(倾斜程度)问题,即如图建立平面直角坐标系,是所在直线的倾斜角,在△中,教师活动:引导学生把“坡度”这一同样用来刻画直线倾斜程度的量与倾斜角联系起来,从而引入“斜率”(在本节标题中添写“与斜率”).设计意图:使学生联系生活实际得到刻画直线倾斜程度的另一个量:斜率二、斜率1. 定义:直线的倾斜角的正切值叫做直线的斜率.即问题10:倾斜角时,是否存在?师生互动:学生观察,教师演示,以教室墙角为例,说明当时,不存在.设计意图:使学生发现并不是任何一条直线都有斜率,倾斜角为900的直线没有斜率这样得到直线斜率的完整概念:倾斜角不是的直线,它的倾斜角的正切值交做这条直线的斜率.直线的斜率通常用表示,即()课堂练习:P86练习1学生活动:给适当的时间让学生先做后答.难点突破一:对斜率的理解是本节的难点之一,学生认为倾斜角就可以刻画直线的倾斜程度,而且对每条直线的倾斜角是唯一的,二斜率却不这样,另外,为什么要用倾斜角的正切定义斜率对学生来说也有一定困难,教学中通过日常生活的例子,充分利用学生已有的知识(坡度概念),引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念。

直线的倾斜角与斜率教学设计

直线的倾斜角与斜率教学设计

2.1直线的倾斜角与斜率第一课时:倾斜角与斜率教学设计教学目标:1.初步了解直线的倾斜角和斜率的概念.2.初步掌握过两点的直线斜率的计算公式,会求直线的倾斜角和斜率.3.通过斜率概念的建立和斜率公式的推导,经历几何问题代数化的过程,经历从特殊到一般,从感性到理性的认知过程,体会数形结合和化归转化思想.教学重点:理解直线的倾斜角和斜率概念,初步掌握过两点的直线斜率的计算公式教学难点:直线的倾斜角、斜率概念的形成,两点斜率公式的建构。

教学过程:新课引入:在以往的几何学习中,我们常常通过直观感知、操作确认、思辨论证、度量计算等方法研究几何图形的形状、大小和位置关系,这种方法通常称为综合法.本章我们采用一种新的方法——坐标法研究几何图形的性质.坐标法是解析几何中最基本的研究方法.解析几何是17世纪法国数学家笛卡儿和费马创立的,它的基本内涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对象——数(有序数对)对应起来,在此基础上建立曲线(点的轨迹)的方程,从而把几何问题转化为代数问题,通过代数方法研究几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学从此进入变量数学时期,它为微积分的创建奠定了基础.本章我们将在平面直角坐标系中,探索确定直线位置的几何要素,建立直线的方程,并通过直线的方程研究两条直线的位置关系、交点坐标以及点到直线的距离等.探究新知:我们知道,点是构成直线的基本元素. 在平面直角坐标系中,点用坐标表示,那么,直线如何表示呢?自主学习:阅读课本51-52页探究上方问题1确定一条直线位置的几何要素是什么?对于平面直角坐标系中的一条直线l,如何利用坐标系确定它的位置?教师讲解:两点以及一点和一个方向可以确定一条直线,由方向向量我们可以知道,两点确定一条直线可以归结为一点和一个方向确定一条直线.问题2如何表示直线的方向?教师讲解:在平面直角坐标系中,我们规定一条直线向上的方向为这条直线的方向. 因此,这些直线的区别在于它们的方向不同. 如何表示这些直线的方向?我们看到,这些直线相对于x 轴的倾斜程度不同,也就是它们与x 轴所成的角不同. 因此,我们可以利用这样的角来表示这些直线的方向.新知:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角问题3 当直线l 与x 轴平行或重合时,其倾斜角大小为多少?直线的倾斜角的取值范围是什么?当直线l 与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.这样,平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方向不同的直线,其倾斜程度不同,倾斜角不相等. 因此,我们可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也就表示了直线的方向. 探究: (1)已知直线l 经过点O (0,0),P (√3,1),α与点O ,P 的坐标有什么关系? (2)类似地,如果直线l 经过点P 1(-1,1),P 2(√2,0),α与点P 1,P 2的坐标又有什么关系?对于问题(1),如图,向量OP ⃗⃗⃗⃗⃗ =(√3,1),且直线OP 的倾斜角也为α.由正切函数的定义,有tan α=√3=√33. 对于问题(2),如图,P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1−√2,1−0)=(−1−√2,1).平移向量P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ 到OP ⃗⃗⃗⃗⃗ ,则点P 的坐标为(−1−√2,1),且直线OP 的倾斜角也是α.由正切函数的定义,有tan α=−1−√2=1−√2.1)0)一般地,如图,当向量21P P 的方向向上时,),(121221y y x x P P --=.平移向量21P P 到OP ,则点P 的坐标为,且直线OP 的倾斜角也是α,由正切函数的定义,有tan α=.同样,当向量12P P 的方向向上时,如图,),(212112y y x x P P --=,也有tan α==.新知:直线l 的倾斜角α与直线l 上的两点P 1(x 1,y 1), P 2(x 2,y 2)(x 1≠x 2)的坐标有如下关系:tan α=y 2−y 1x 2−x 1.我们把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,即k =tan α.日常生活中常用“坡度”表示倾斜面的倾斜程度:坡度=铅直高度水平宽度.问题3 当直线的倾斜角由0o 逐渐增大到180o 时,其斜率如何变化?为什么? 当倾斜角α满足0o ≤α<90o 且逐渐增大时,斜率k 逐渐增大; 当倾斜角α=90o ,斜率不存在;当倾斜角α满足90o <α<180o 且逐渐增大时,斜率k 逐渐增大.由正切函数的单调性,倾斜角不同的直线其斜率也不同.因此,我们可以用斜率表示倾斜角不等于90o 的直线相对于x 轴的倾斜程度,进而表示直线的方向.由tan α=y 2−y1x 2−x 1及k =tan α知,k = y 2−y1x 2−x 1.2121(,)--x x y y 2121y y x x --1212y y x x --2121y y x x --问题4 直线的方向向量与斜率k 有什么关系?我们知道,直线P 1P 2上的向量21P P 及与它平行的向量都是直线的方向向量. 直线P 1P 2的方向向量21P P 的坐标为2121(,)--x x y y , 当直线P 1P 2与x 轴不垂直时,12≠x x . 此时向量21121P P x x -也是直线P 1P 2的方向向量,且它的坐标为2121211(,),---x x y y x x 即21211y y x x --(,)=(1,),k 其中k 是直线P 1P 2的斜率.因此,若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=y k x. 例1、 如图,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB 的斜率k AB =1243---=17; 直线BC 的斜率k BC =1104----()=24-=-12;直线CA 的斜率k CA =2-(-1)30-=33=1.由k AB >0及k CA >0可知,直线AB 与CA 的倾斜角均为锐角; 由k BC <0可知,直线BC 的倾斜角为钝角. 随堂练习:1.已知坐标平面内三点A(-1,1)、B(1,1)、C(2,3+1). 求直线AB 、BC 的斜率和倾斜角;2.若A(1,0),B(-3,m),直线AB 的斜率为-12,则m =( ) A .-8 B .-2 C .2D .8CBAxyO3、若直线过点(1,3),(4,3+3),则此直线的倾斜角是 ( ) A .π6 B .π4 C .π3D .2π34、已知点M(0,b)与点N(-3,1)连成直线的倾斜角为120°,则b =_______. 课堂小结本节课,我们在平面直角坐标系中,讨论了确定直线位置的几何要素,即两点确定一条直线以及一点和一个方向确定一条直线. 并从形和数的角度利用倾斜角和斜率来刻画直线的倾斜程度,即表示了直线的方向,并探讨了倾斜角、斜率与直线上两点坐标的关系,探讨了直线的方向向量与斜率的关系.在此过程中体会到了数形结合数学思想以及将几何问题转化为代数问题的化归转化思想.知识点回顾:(1)倾斜角的定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.直线的倾斜角α的取值范围为 0°≤α<180°.(2)k=tan α k=y 2−y 1x 2−x 1.(3)若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=yk x. 作业:课本55页练习。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。

二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。

三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。

2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。

并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。

3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。

4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。

通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。

5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。

通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。

6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。

引导学生思考直线斜率和倾斜角的重要性以及实际应用。

四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。

同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。

针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。

人教版高一数学必修二第三章 直线与方程教案

人教版高一数学必修二第三章 直线与方程教案

教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。

(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。

定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。

②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。

(完整版)直线的倾斜角和斜率教案

(完整版)直线的倾斜角和斜率教案

《直线的倾斜角和斜率》教案教学目的:1。

了解“坐标法”2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式并牢记斜率公式的特点及适用范围;3。

已知直线的倾斜角,求直线的斜率4。

已知直线的斜率,求直线的倾斜角5.培养学生“数形结合”的数学思想.教学重点: 斜率概念,用代数方法刻画直线斜率的过程.教学难点: 1直线的斜率与它的倾斜角之间的关系。

2运用两点坐标计算直线的斜率授课类型:新授课课时安排: 1课时教具:多媒体教学过程:一。

知识背景与课题的引入1.从本章起,我们研究什么?怎样研究?解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。

解析几何由此成为近代数学的基础之一。

在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质.坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.本章首先在平面直角坐标系中,建立直线的方程。

然后通过方程,研究直线的交点、点到直线的距离等.2.课题的引入下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象-—直线,学习直线的倾斜角和斜率.二。

新课1问题1对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.注:平行于轴或于轴重合的直线的倾斜角为0°问题2直线倾斜角的范围是多少?这样在平面直角坐标系内每一条直线都有一个确定的倾斜角,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等,倾斜程度不相同的直线,其倾斜角也不相等.问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量:例如:坡度(比)= 升高量/前进量能否用一个比值刻画斜率呢?如果是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop)记作:tank问题4(1)是不是所有的直线都有倾斜角?是(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

一、教案内容1.1 直线的倾斜角【教学目标】理解直线的倾斜角的概念,掌握求直线倾斜角的方法,能运用直线的倾斜角解决相关问题。

【教学重点】直线的倾斜角的概念,求直线倾斜角的方法。

【教学难点】如何运用直线的倾斜角解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习直线的斜率概念,引导学生思考直线的倾斜角与斜率的关系。

(2)讲解:介绍直线的倾斜角的概念,讲解求直线倾斜角的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线倾斜角的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的倾斜角解决实际问题,如求直线的倾斜角和斜率,判断直线的方向等。

1.2 直线的斜率【教学目标】理解直线的斜率的概念,掌握求直线斜率的方法,能运用直线的斜率解决相关问题。

【教学重点】直线的斜率的概念,求直线斜率的方法。

【教学难点】如何运用直线的斜率解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习倾斜角的概念,引导学生思考直线的斜率与倾斜角的关系。

(2)讲解:介绍直线的斜率的概念,讲解求直线斜率的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线斜率的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的斜率解决实际问题,如判断两直线是否平行或重合,求直线的倾斜角等。

二、教案说明本教案分为两个课时,第一课时讲解直线的倾斜角,第二课时讲解直线的斜率。

在教学过程中,注重让学生通过实例来理解和掌握概念和方法,并在应用环节中引导学生将所学知识运用到实际问题中。

,教案中还提供了丰富的练习题,以便学生巩固所学知识。

六、直线的斜率计算【教学目标】掌握直线斜率的计算方法,能够运用直线的斜率解决实际问题。

【教学重点】直线斜率的计算方法。

【教学难点】如何运用直线斜率解决实际问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习上节课的内容,引导学生思考直线的斜率与倾斜角的关系。

《直线的倾斜角及斜率》导学案.

《直线的倾斜角及斜率》导学案.

.
5.已知直线斜率的绝对值等于 1,则直线的倾斜角是 6.设直线的斜率是 k ,且 1 k
.
3 ,求直线倾斜角 的取值范围.
第四层级
总结评价与反思
【思维导图】
4
0
【应用二】 已知线段 PQ 两端点的坐标分别为 ( 1,1), ( 2,2), 若直线 l 经过定点 A(0,1, ) 且与线段 PQ 有交点,求直 线 l 的斜率 k 的取值范围.
【应用三】 已知直线 l 经过 A( 2,1), B (1, m )(m R ) 两点,求直线 l 的倾斜角的取值范围.
2
3西双版纳州民族中学郑从胜第三层级 1.下列说法中,正确的是( )
技能应用与拓展【固学区】
【课后作业】
A.直线的倾斜角为 ,则此直线的斜率为 tan . B.有倾斜角的直线都有斜率. C.若直线的倾斜角为 ,则 sin 0 . D.任一直线都有倾斜角,但它不一定有斜率. 2.如图,直线 l1 , l2 , l3 的斜率分别为 k1 , k 2 , k3 ,则成立的是( A. k1 k 2 k3 B. k3 k1 k 2 ) C. k1 k3 k 2 D. k3 k 2 k1 1 3.若三点 A( 2,3), B (3,2), C ( , m) 共线,则 m 等于( ). 2 1 1 A.1 B.2 C. D.2 或 2 2 4.直线 l 经过两点 A(3, 3 ), B (6,2 3 ) ,而直线 l1 的倾斜角是直线 l 的倾斜角的 2 倍,则直线 l1 的斜率为
的大小
k 的范围 k 的增减性
0
0
0 90
0
0
90
0
900 1800

《直线的倾斜角和斜率》 教学设计

《直线的倾斜角和斜率》 教学设计

《直线的倾斜角和斜率》教学设计一、教学目标1、知识与技能目标理解直线的倾斜角和斜率的概念。

掌握过两点的直线斜率的计算公式。

能根据直线的倾斜角求出直线的斜率,能根据直线上两点的坐标求出直线的斜率。

2、过程与方法目标通过对直线倾斜角和斜率的探究,培养学生的观察、分析和归纳能力。

通过斜率公式的推导,培养学生的逻辑推理和数学运算能力。

3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

通过合作探究,培养学生的团队合作精神和创新意识。

二、教学重难点1、教学重点直线倾斜角和斜率的概念。

过两点的直线斜率的计算公式。

2、教学难点直线倾斜角的范围。

斜率公式的推导。

三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课展示生活中一些与直线相关的图片,如桥梁、楼梯等,引导学生思考如何描述直线的倾斜程度。

2、讲授新课直线的倾斜角结合图片,引导学生观察直线与 x 轴的夹角。

给出直线倾斜角的定义:当直线 l 与 x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直线 l 的倾斜角。

强调倾斜角的取值范围:0°≤α<180°。

通过实例让学生判断直线的倾斜角。

直线的斜率提出问题:如何用数值来刻画直线的倾斜程度?引入直线斜率的概念:倾斜角不是 90°的直线,它的倾斜角的正切值叫做这条直线的斜率,常用 k 表示,即 k =tanα(α≠90°)。

让学生通过计算不同倾斜角的正切值,感受斜率的变化。

斜率公式设两点 P(x₁,y₁),Q(x₂,y₂),且 x₁≠x₂,则过这两点的直线的斜率 k =(y₂ y₁)/(x₂ x₁)。

推导斜率公式,引导学生理解其几何意义。

3、课堂练习给出一些直线上的点,让学生计算直线的斜率和倾斜角。

给出一些倾斜角,让学生计算斜率。

4、课堂小结回顾直线倾斜角和斜率的概念。

强调重点和难点。

5、布置作业书面作业:课本上的相关习题。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容1. 直线的倾斜角的概念:直线与x轴正方向所成的角称为直线的倾斜角。

2. 直线的斜率与倾斜角的关系:直线的斜率k等于tan(倾斜角)。

3. 直线的斜率的计算:给定直线的倾斜角,可以计算出直线的斜率。

三、教学方法1. 采用讲解法,讲解直线的倾斜角的概念和斜率与倾斜角的关系。

2. 采用例题解析法,通过例题讲解如何计算直线的斜率。

3. 采用练习法,让学生通过练习题巩固所学知识。

四、教学步骤1. 导入新课:通过提问方式引导学生回顾初中阶段学习的直线倾斜角的概念。

2. 讲解直线的倾斜角的概念,解释斜率与倾斜角的关系。

3. 讲解直线的斜率的计算方法,并通过例题进行讲解。

4. 布置练习题,让学生巩固所学知识。

五、教学评价1. 课堂讲解:评价学生对直线倾斜角的概念和斜率与倾斜角的关系的理解程度。

2. 练习题:评价学生运用直线的倾斜角和斜率解决问题的能力。

说明:本教案分为五个部分,包括教学目标、教学内容、教学方法、教学步骤和教学评价。

在教学过程中,要注意引导学生理解直线的倾斜角的概念,掌握斜率与倾斜角的关系,并通过练习题让学生巩固所学知识。

教案中的教学内容可以根据实际情况进行调整。

六、教学拓展1. 讨论斜率的正负性:解释当倾斜角大于45度时,斜率为正;小于45度时,斜率为负。

2. 探究斜率与倾斜角的关系:引导学生通过绘制不同倾斜角的直线,观察斜率的变化。

七、实际应用1. 生活实例:举例说明直线的倾斜角和斜率在生活中的应用,如建筑物的屋顶斜率、道路的坡度等。

2. 数学应用:引导学生运用直线的倾斜角和斜率解决数学问题,如计算直线与坐标轴的交点、直线的方程等。

八、课堂小结1. 回顾本节课所学的内容,强调直线的倾斜角的概念和斜率与倾斜角的关系。

优秀教案直线的倾斜角与斜率优秀教案

优秀教案直线的倾斜角与斜率优秀教案

优秀教案直线的倾斜角与斜率优秀教案引言:优秀的教案是教学活动的重要组成部分,它能够帮助教师有效地组织教学内容,使学生更好地掌握知识。

本文将重点探讨优秀教案中涉及直线的倾斜角与斜率的教学方法和策略。

一、直线的倾斜角直线的倾斜角是直线和水平方向之间的夹角,是斜率的几何意义之一。

在教学中,我们可以通过几何方法和数学方法两种不同的途径来介绍直线的倾斜角。

1. 几何方法通过几何方法来介绍直线的倾斜角可以帮助学生直观地理解倾斜角的概念。

教师可以通过实际操作,如使用直尺和量角器,帮助学生绘制倾斜角,并观察倾斜角的变化规律。

同时,教师可以引导学生观察不同直线的倾斜角是否相等或相似,让学生发现其中的规律。

2. 数学方法数学方法是更加严谨和精确的方法,通过数学公式来计算直线的倾斜角。

教师可以通过引入概念、定义和公式,让学生明确直线的倾斜角的含义和计算方法。

在教学中,可以设计一些实际问题,让学生运用所学知识解答,如求解两条直线的倾斜角大小之差等。

二、直线的斜率直线的斜率是表示直线的陡峭程度的一个重要指标,也是直线方程中的关键要素。

在教学中,我们可以通过图像分析和计算公式两种方法来介绍直线的斜率。

1. 图像分析通过图像分析的方法,教师可以引导学生观察直线的趋势和陡峭程度。

教师可以提供一些实际图像,如山坡、楼梯等,让学生观察并判断斜率的大小。

通过图像分析,学生可以感受到斜率与直线的陡峭程度之间的关系,从而更好地理解斜率的概念。

2. 计算公式通过计算公式来介绍直线的斜率可以让学生更加深入地理解斜率的含义和计算方法。

教师可以通过数学公式来引导学生计算直线上两个点的坐标之差,并将其带入斜率公式中进行计算。

同时,教师还可以设计一些实际问题,让学生运用斜率公式解答,从而提高学生的应用能力。

三、教学策略在教学过程中,我们可以运用一些教学策略来帮助学生更好地理解直线的倾斜角与斜率。

1. 激发学生兴趣激发学生的学习兴趣是提高教学效果的关键。

高中数学 第三章《直线与方程》3.1直线的倾斜角和斜率教学设计高一数学教案

高中数学 第三章《直线与方程》3.1直线的倾斜角和斜率教学设计高一数学教案


究直线及其几何性质(如直线的位置关系、夹角、点到直线的距离等)的基础。

通过本节内容的学习,帮助学生初步了解直角坐标系内几何要素代数化的过程和意义,初步

渗透解析几何的基本思想和基本研究方法,进一步培养学生对函数、数形结合、分类讨论思想的

应用知识。本课有着开启全章,奠定基调,渗透方法的作用。

用坐标法解决几何问题是解析几何的主要目标,其本质是抽象的代数语言和直观的集合语言
何对应关系? 新
程的解和直线 程的概念学

上的点的关系。 习 需 要 一 个
为 后 面 分 类 讨 过程,直线的
当学生归纳出方程的解和直线上的点存 论作准备。
方程和方程
在一一对应关系时,师生共同总结出直线的方
(2)学生准 的 直 线 概 念

程和方程的直线(幻灯片):
确说出方程的 的描述中体
以一个方程的解为坐标的点都是某条直
知 定的,那么,如何用两点的坐标来表示直线 P1P2
(2)斜率公 问题(2)
的斜率呢?
式表明,直线对 引 导 学 生 从
于 x 轴的倾斜 不同的角度
第一步:提出两个问题
程 度 可 以 通 过 计算斜率,并
(1)如何求斜率 K?
直线上任意两 对学生进行
(当 时,由 k tan [0, ) ) 2
2 同学们还能定义别的表示直线倾斜程度 的量吗?
了,直线的方向 也就确定了,倾 斜角不同,直线
破。 3. 函 数
的应用应与
3 应用哪一个三角函数更能合理地表示直 线的倾斜程度?
的倾斜程度也 不同。那么所用 函数尽可能是
实际研究问 题的需要相 结合。只有这
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章直线与方程3.1 直线的倾斜角与斜率教案 A第1课时教学内容:3.1.1 倾斜角与斜率教学目标一、知识与技能1.正确理解直线的倾斜角和斜率的概念;2.斜率公式的推导过程,掌握过两点的直线的斜率公式.二、过程与方法经历将直线的位置问题(几何问题)转化为倾斜角问题的过程,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,不断体会“数形结合”的思想方法.三、情感、态度与价值观1.通过把直线倾斜角的概念的引入学习和直线倾斜角与斜率关系,提高观察、探索能力,运用数学语言表达能力,数学交流与评价能力;2.通过建立斜率概念和推导斜率公式,进一步理解数形结合的思想,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神.教学重点、难点教学重点:直线的倾斜角、斜率的概念和公式.教学难点:斜率的计算方法.教学关键:直线斜率的两种计算方法.教学突破方法:结合图形,使学生理解直线倾斜角的概念,抓住直线的倾斜角与斜率的联系,引导学生掌握直线斜率的计算方法.教法与学法导航教学方法:启发、引导、讨论.学习方法:探究、思考、讨论、练习.教学准备教师准备:多媒体课件(用于展示问题、引导讨论、出示答案).学生准备:一次函数与直线的关系、特殊角的正切值.教学过程详见下页表格.教学环节教学内容师生互动设计意图创设情景导入新课我们知道,经过两点有且只有(确定)一条直线,那么,经过一点P的直线l的位置能确定吗?如图,过一点P可作无数多条直线a,b,c,…易见,答案是否定的,这些直线有什么联系呢?学生回答(不能确定)(1)它们都经过点P.(2)它们的倾斜程度不同.接着教师提出:怎样描述这种倾斜程度的不同?由此引入课题.设疑激趣导入课题.概念形成1.直线倾斜角的概念当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定0α=o.教师提问:倾斜角α的取值范围是什么?0°≤α<180°当直线l与x轴垂直时90α=o(由学生结合图形回答)概念深化因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.确定平面直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角α.教师提问:如左图,直线a∥b∥c,那么它们的倾斜角α相等吗?学生回答后作出结论.一个倾斜角α不能确定一条直线,进而得出确定一条直线位置的几何要素.通过这种师生互动引导学生明确确定一条直线位置的两个几何要素.概念形成2.直线的斜率一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即tankα=.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如α= 45°时,k = tan45°= 1;α= 135°时,k = tan135°= –1 .教师提问:(由学生讨论后回答)(1)当直线l与x轴平行或重合时,k为多少?k = tan0°= 0.(2)当直线l与x轴垂直时,k还存在吗?α= 90°,k不存在.设疑激发学生思考得出结论.yabcxO续上表概念形成3.直线的斜率公式2121.y ykx x-=-对于上面的斜率公式要注意下面四点:(1)当x1 = x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1、y2和x1、x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1 = y2时,斜率k = 0,直线的倾斜角α= 0°,直线与x轴平行或重合;(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.教师提出问题:给定两点P1 (x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1、P2的斜率?可用计算机作动画演示:直线P1P2的四种情况,并引导学生如何作辅助线,共同完成斜率公式的推导.借助多媒体演示让学生亲自体会斜率公式的推导过程.应用举例例1已知A (3,2),B(–4,1),C (0,–1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角.(用计算机作直线,图略)【分析】已知两点坐标,而且x1≠ x-2,由斜率公式代入即可求得k的值;而当tan0kα=<时,倾斜角α是钝角;而当tan0kα=>时,倾斜角α是锐角;而当tan0kα==时,倾斜角α是0°.学生分析求解,教师板书例1 略解:直线AB的斜率k1= 1/7>0,所以它的倾斜角α是锐角.直线BC的斜率k2=–0.5<0,所以它的倾斜角α是钝角.通过应用进一步理解倾斜角,斜率的有关定义例2 在平面直角坐标系中,画出经过原点且斜率分别为1,–1,2及–3的直线a ,b ,c ,1.【分析】要画出经过原点的直线a ,只要再找出a 上的另个一点M .而M 的坐标可以根据直线a 的斜率确定;或者k = ta n α=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边,在x 轴的上方作45°的角,再把所作的这一边反向延长成直线即可.例2 略解:设直线a 上的另一个点M 的坐标为(x ,y ),根据斜率公式有1 = (y – 0)/(x – 0),所以 x = y .可令x = 1,则y = 1,于是点M 的坐标为(1,1).此时过原点和点M (1,1),可作直线a .同理,可作直线b ,c ,1.(用计算机作动画演示画直线过程)小结(1)直线的倾斜角和斜率的概念.(2)直线的斜率公式.师生共同总结交流完善.引导学生学会自己总结.课堂作业1. 求下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. (1)(1,1),(2,4); (2)(–3,5),(0,2); (3)(2,3),(2,5); (4)(3,–2),(6,–2)【解析】(1)413021k -==>-,所以倾斜角是锐角; (2)25100(3)k -==-<--,所以倾斜角是钝角;(3)由x 1 = x 2 = 2得:k 不存在,倾斜角是90°; (4)2(2)063k ---==-,所以倾斜角为0°. 2. 已知点P (3,1)-,点Q 在y 轴上,直线PQ 的倾斜角为120°,则Q 点的坐标为 .【解析】因为点Q 在y 轴上,则可设其坐标为(0,b )直线PQ 的斜率k = tan120°= 3-, ∴30(3)k ==--- , ∴b = –2,即Q 点坐标为(02)-,.第2课时教学内容:3.1.2 两条直线平行与垂直的判定教学目标一、知识与技能1.理解并掌握两条直线平行与垂直的条件;2.会运用条件判定两直线是否平行或垂直.二、过程与方法通过探究两直线平行或垂直的条件,提高运用已有知识解决新问题的能力,以及数形结合能力.三、情感、态度与价值观通过对两直线平行与垂直的位置关系的研究,获得成功感觉;同学合作交流的学习方式,激发学生的学习兴趣.教学重点、难点教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.教学难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.教学关键:理解并掌握判断两直线平行和垂直的方法.教学突破方法:结合图形探究两直线平行和垂直时二者斜率的关系,并从这种关系的内涵和外延两个方面强化学生对此结论的理解.对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.教法与学法导航教学方法:以实验探究的教学方法为主,具体以实例展示法、多媒体演示法、分析讨论法、问题教学法和练习巩固法展开教学活动.学习方法:以探究理解学习方法为主,自主学习,自我反馈,渐进式提高.教学准备教师准备:多媒体课件(用于展示问题、引导讨论、出示答案),资料图片.学生准备:直线的倾斜角与斜率的概念及联系.教学过程教学环节教学内容师生互动设计意图创设情景导入新课我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的计算公式.现在,我们来研究通过两条直线的斜率来判断两条直线的平行或垂直.师:解析几何的本质是什么?生:用代数的方法研究几何图形的位置关系.设疑激趣导入课题续上表师生互动探究新知1.先研究特殊情况下的两条直线平行与垂直讨论: 两条直线中有一条直线没有斜率(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.师生互动探究新知2.两条直线的斜率都存在时,两直线的平行.设直线l1和l2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的.问题: 两条互相平行或垂直的直线,它们的斜率有什么关系?结论1: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即l1∥l2k1=k2.注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有l1∥l2; 反之则不一定.首先研究两条直线互相平行(不重合)的情形.如果l1∥l2(如下图),那么它们的倾斜角相等:α1=α2.(借助多媒体,让学生通过观察度量,感知α1,α2的关系)因为tanα1=tanα2 即k1=k2.反过来,如果两条直线的斜率相等:即k1=k2,那么tanα1=tanα2.由于0°≤α1<180°,0°≤α2<180°,所以α1=α2.又因为两条直线不重合,两条直线平行l1∥l2.通过这种师生互动引导学生明确两条直线平行的判定方法续上表师生互动探究新知3.下面我们研究两条直线的斜率都存在时,两直线的垂直的情形.如果l1⊥l2,这时α1≠α2,否则两直线平行.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12112211l l k k kk⊥⇔=-⇔=-注意: 结论成立的条件,即如果k1·k2=-1,那么一定有21ll⊥;反之则不一定.设α2<α1(如下图),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为l1、l2的斜率分别是k1、k2,即α1≠90°,所以α2≠0,1221tan tan(90)tanααα∴=︒+=-,即211kk-=或121-=kk.反过来,如果211kk-=或121-=kk.不失一般性,设k1<0,k2>0,那么1221tan tan(90)tanααα∴=-=︒+可以推出: α1=90°+α2.即21ll⊥.借助多媒体演示让学生经历两条直线垂直的判定结论的推导.续上表应用举例例1(1)已知直线1l经过点M(-3,0)、N(-15,-6),2l经过点R(-2,32)、S(0,52),试判断1l与2l是否平行?(2)1l的倾斜角为45°,2l经过点P(-2,-1)、Q(3,-6),问1l与2l是否垂直?例2 已知A(1,1),B(2,2),C(3,-3),求点D,使直线CD⊥AB,且CB∥AD.例1【解析】(1)∵MNk=0(6)13(15)2--=---,531220(2)2RSk-==--,∴1l//2l.(2)∵1tan451k=︒=,26(1)13(2)k---==---,121k k=-,∴1l⊥2l.例2 【解析】设D(x,y),则CD ABk k⊥,BC ADk k=.∴(3)2113212(3)1231yxyx---⎧⨯=-⎪⎪--⎨---⎪=⎪--⎩,即,56,y xx y=-⎧⎨+=⎩解得3,23,2xy⎧=⎪⎪⎨⎪=-⎪⎩.∴D(33,22-).通过实例熟练对两条直线平行和垂直的判定.小结1.知识小结(1)两条直线平行或垂直的判定方法.(2)注意特殊情况特殊处理,如有斜率为零或斜率不存在的情况.(3)应用直线平行的条件,判定三点共线.2.思想方法:倾斜角、平行是几何概念,坐标、斜率是代数概念,解析几何的本质是用代数方法来研究几何问题.师生共同总结交流完善.引导学生学会自己总结.xyo.BACD课堂作业1.如果直线l 1的斜率为a ,且21l l ⊥ ,则直线l 2的斜率为( ). A .a 1 B . a C . a 1- D . a1-或不存在 答案:选D .2. 若过点A (2,-2),B (5,0)的直线与过点P (2m ,1)Q (-1,-m )的直线平行,则m 的值为( ).A . -1B . 1C . 2D .21答案:选B .3.已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,则点P 的坐标为( ).答案:(1,0),(6,0).教案 B第1课时教学内容:3.1.1 倾斜角和斜率 教学目标一、知识和技能目标1. 了解直线方程的概念,正确理解直线倾斜角和斜率概念;2. 理解公式的推导过程,掌握过两点的直线的斜率公式. 二、过程和方法目标掌握由直线上两点的坐标求直线的倾斜角和斜率的方法,会实现直线方程的各种形式之间的互化.三、情感、态度与价值观目标发展观察、探索能力,运用数学语言表达能力;进一步理解数形结合思想,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神. 教学重点直线的倾斜角和斜率的概念,过两点的直线的斜率公式. 教学难点斜率概念的学习,过两点的直线的斜率公式. 教学过程1.创设情景,揭示课题(1)简述本章研究什么?怎样研究?(2)问题探究:我们知道, 经过两点有且只有一条直线. 那么, 在平面直角坐xy aCbxy acbP标系中,经过一点P 的直线l 的位置由哪些条件确定?如图, 过一点P 可以作无数多条直线a ,b ,c ,…,易见这些直线的共同特点是:都经过同一点P ,那么,它们的不同点是什么?学生交流讨论,发表见解:它们的‘倾斜程度’不同. 教师提出:怎样描述这种‘倾斜程度’的不同? 引入直线的倾斜角的概念.2.直线的倾斜角的概念当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线λ向上方向之间所成的角α叫做直线λ的倾斜角.... 特别地,当直线λ与x 轴平行或重合时, 规定α= 0°.观察下图直线l 1,l 2,l 3的倾斜角是怎样的?由此回答直线的倾斜角α的取值范围是什么? 0°≤α<180°.当直线λ与x 轴垂直时, α= 90°.教师强调:平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.思考1:如上图, 直线a ∥b ∥c , 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P 和一个倾斜角......α.二者缺一不可.思考2:生活中的“倾斜程度”通常用什么量表示?引导学生讨论交流,举例.如道路的坡度等,使学生理解生活中坡度的意义:升高前进α坡度(比)=升高量/前进量如果我们使用“倾斜角”这个概念,这里的“坡度”实际是“倾斜角α的正切值”. 3.直线的斜率(1)一条直线的倾斜角α (α≠90°)的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,也就是k = tan .α当直线λ与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线λ与x 轴垂直时, α= 90°, k 不存在.由此可知, 一条直线λ的倾斜角α一定存在,但是斜率k 不一定存在. 例如, α=45°时, k = tan45°= 1.4.利用信息技术获得直线的倾斜角和直线的斜率的关系观察上图直线的倾斜角和斜率之间的关系:由于知识的原因,学生不能通过正切值获得直线的倾斜角和斜率之间的关系,因此教学中通过信息技术演示操作(如《几何画板》)获得直线的倾斜角和斜率的关系.(如上图)可以清楚看到: 当οο900<<α时,直线的斜率k 是正数;当οο18090<<α时,直线的斜率k 是负数.思考3:两点确定一条直线,那么给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,如何用两点的坐标来表示直线P 1P 2的斜率?xyαOP 2P 15.探究并推导直线斜率的两点式公式可用计算机作动画演示: 直线P 1P 2的四种情况(如下图), 并引导学生通过作辅助线,共同完成斜率公式的推导.斜率公式:2121.y ykx x-=-对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°,直线与x 轴垂直;(2)k值的大小与P1、P2的顺序无关,即y1,y2和x1,x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k = 0,直线的倾斜角α=0°,直线与x轴平行或重合.6.应用举例例1直线过点A(-2,0),B(-5,3),求直线AB的斜率.【解析】k=(3-0)/[(-5)-(-2)]=-1,又α∈[0°,180°),∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°变式:m为何值时,经过两点A(m,0),B(-5,1-m)的直线AB的斜率是-1?【分析】101 2.5mmm--=-⇒=---例2分别在下列条件求直线的倾斜角和斜率.(1)直线l的倾斜角α的正弦值是1/2;(2)直线l的方向向量(→=-v.【分析】⑴由已知条件求出直线的倾斜角α,再来求直线的斜率.注意到α∈[0,π),而sinα= 1/2,因此求角时,要分α为锐角与钝角来求. ⑵抓住直线P 1P 2的方向向量21P P 的坐标是(x 2-x 1,y 2-y 1),其中P 1(x 1,y 1),P 2(x 2,y 2)与过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率公式的结构关系来求.【解析】⑴∵α∈[0,π),又sin α= 1/2.∴α为锐角时,α=π/6;α为钝角时,α=5π/6. 当α=π/6时,斜率k =tanπ/6 =3/3; 当α=5π/6时,斜率k =tan5π/6 =-3/3.⑵∵直线l 的方向向量(→=-v ,∴直线l 的斜率3/3-=k ,故倾斜角α=5π/6. 6. 课后作业P86练习:1,2,3,4;P89习题3.1A 组:1,2,3,4,5.第2课时教学内容:3.1.2 两条直线的平行与垂直 教学目标一、知识与技能理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. 二、过程与方法通过探究两直线平行或垂直的条件,培养学生运用代数方法来研究几何问题. 三、情感、态度和价值观通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣,欣赏解析几何的代数抽象美. 教学重点、难点教学重点:熟练掌握两条直线平行和垂直的条件. 教学难点:研究两条直线的平行或垂直问题的判断. 教学方法引导、启发、讨论,练习. 教学过程一、创设情景,导入课题复习已经学习的直线的倾斜角和斜率的概念,可以用倾斜角和斜率来表示直线相对于x 轴的倾斜程度,并推导出了斜率的坐标计算公式.现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.二、师生互动,探究新知1. 先研究特殊情况下的两条直线平行与垂直讨论: 两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.2. 两条直线的斜率都存在时,两直线的平行设直线 l 1和l 2的斜率分别为k 1和k 2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的.所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果l 1∥l 2(如下图),那么它们的倾斜角相等:α1=α2.(借助多媒体, 让学生通过观察度量, 感知α1, α2的关系) 因为tan α1=tan α2 即 k 1=k 2.反过来,如果两条直线的斜率相等: 即k 1=k 2,那么tan α1=tan α2. 由于0°≤α1<180°, 0°≤α2<180°,所以α1=α2.又因为两条直线不重合,两条直线平行l 1∥l 2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即l 1∥l 2,k 1=k 2.注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 2; 反之则不一定.3. 两条直线的斜率都存在时, 两直线的垂直 下面我们研究两条直线垂直的情形.如果21l l ,这时α1≠α2,否则两直线平行.设α2<α1(如下图),甲图的特征是l 1与l 2的交点在x 轴上方;乙图的特征是l 1与l 2的交点在x 轴下方;丙图的特征是l 1与l 2的交点在x 轴上,无论哪种情况下都有α1=90°+α2.因为l 1、l 2的斜率分别是k 1、k 2,即α1≠90°,所以α2≠0°.1221tan tan(90)tanααα∴=︒+=-,即211k k -=或121-=k k . 反过来,如果211k k -=或121-=k k . 不失一般性,设k 1<0, k 2>0,那么 1221tan tan(90)tan ααα∴=-=︒+ 可以推出: α1=90°+α2. 即21l l ⊥.结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12112211l l k k k k ⊥⇔=-⇔=-注意: 结论成立的条件. 即如果k 1·k 2 = -1, 那么一定有21l l ⊥;反之则不一定. 三、概念辨析,巩固提高 例 1 已知A (2,3), B (-4,0), P (-3,1), Q (-1,2), 试判断直线BA 与PQ 的位置关系, 并证明你的结论.分析: 借助媒体动画展示, 通过观察猜想:BA ∥PQ , 再通过计算加以验证.(图略)【解析】:直线BA 的斜率k 1=21)4(203=---,直线PQ 的斜率k 2=21)3(112=----,因为 k 1=k 2=21,所以 直线BA ∥PQ . 例2 四边形ABCD的顶点为(2,2A +、(2,2)B -、(0,2C -、(4,2)D ,试判断四边形ABCD 的形状.【解析】AB边所在直线的斜率AB k ==,CD边所在直线的斜率CD k =BC 边所在直线的斜率BC k ==,DA 边所在直线的斜率DA k ==因为,AB CD BC DA k k k k ==,所以AB //CD ,BC //DA ,即四边形ABCD 为平行四边形.又因为1)2(22-=-⨯=⋅BC AB k k ,所以AB ⊥BC ,即四边形ABCD 为矩形. 例 3 已知A (-6,0), B (3,6), P (0,3), Q (-2,6), 试判断直线AB 与PQ 的位置关系.【解析】直线AB 的斜率32)6(3061=---=k , 直线PQ 的斜率23)02361-=---=k ,因为k 1·k 2=-1 所以 AB ⊥PQ .例4 已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标. 【解析】设顶点A 的坐标为(,)x y . ∵ ,AC BH AB CH ⊥⊥,∴ 11AC BH AB CH k k k k ⋅=-⎧⎨⋅=-⎩,, 即 31()16511()123y x y x -⎧⨯-=-⎪⎪+⎨-⎪⨯-=-⎪-⎩,,化简为53335y x y x =+⎧⎨=-⎩,,解之得:1962.x y =-⎧⎨=-⎩,∴ A 的坐标为(19,62)--.四、小结1.知识和技能(1)两条直线平行或垂直的判定方法.(2)注意特殊情况特殊处理,如有斜率为零或斜率不存在的情况.(3)应用直线平行的条件,判定三点共线.2.思想方法:倾斜角、平行是几何概念,坐标、斜率是代数概念,解析几何的本质是用代数方法来研究几何问题.五、作业P89练习:1,2.P90习题3.1 A组:8.B组:3,4.。

相关文档
最新文档